4.D4_4单调性
2024年高考数学总复习第二章《函数与基本初等函数》函数的单调性与最值
2024年高考数学总复习第二章《函数与基本初等函数》§2.2函数的单调性与最值最新考纲1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义.2.学会运用函数图象理解和研究函数的性质.1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意的x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ;(4)存在x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示对∀x 1,x 2∈D ,f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,减函数类似.2.写出对勾函数y =x +ax (a >0)的增区间.提示(-∞,-a ]和[a ,+∞).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.(×)(2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(3)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)所有的单调函数都有最值.(×)题组二教材改编2.函数f (x )=x 2-2x 的单调递增区间是____________.答案[1,+∞)(或(1,+∞))3.函数y =2x -1在[2,3]上的最大值是______.答案24.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________.答案(-∞,2]解析由题意知,[2,+∞)⊆[m ,+∞),∴m ≤2.题组三易错自纠5.函数y =12log (x 2-4)的单调递减区间为________.答案(2,+∞)6.若函数f (x )=|x -a |+1的增区间是[2,+∞),则a =________.答案2解析∵f (x )=|x -a |+1的单调递增区间是[a ,+∞),∴a =2.7.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.答案[-1,1)解析-2≤a+1≤2,-2≤2a≤2,a+1>2a,解得-1≤a<1.8.函数f(x)1x,x≥1,-x2+2,x<1的最大值为________.答案2解析当x≥1时,函数f(x)=1x为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.题型一确定函数的单调性命题点1求函数的单调区间例1(1)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)答案D解析函数y=x2-2x-8=(x-1)2-9图象的对称轴为直线x=1,由x2-2x-8>0,解得x>4或x<-2,所以(4,+∞)为函数y=x2-2x-8的一个单调递增区间.根据复合函数的单调性可知,函数f(x)=ln(x2-2x-8)的单调递增区间为(4,+∞).(2)函数y=-x2+2|x|+3的单调递减区间是__________________.答案[-1,0],[1,+∞)解析由题意知,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4,二次函数的图象如图.由图象可知,函数y=-x2+2|x|+3的单调递减区间为[-1,0],[1,+∞).命题点2讨论函数的单调性例2判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解函数f (x )=ax 2+1x(1<a <3)在[1,2]上单调递增.证明:设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1=(x 2-x 1)a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4,1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增.引申探究如何用导数法求解本例?解f ′(x )=2ax -1x 2=2ax 3-1x 2,因为1≤x ≤2,所以1≤x 3≤8,又1<a <3,所以2ax 3-1>0,所以f ′(x )>0,所以函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上是增函数.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.跟踪训练1(1)下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是()A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x -xD .f (x )=ln(x +1)答案C解析由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.(2)函数f (x )=(a -1)x +2在R 上单调递增,则函数g (x )=a |x -2|的单调递减区间是______________.答案(-∞,2]解析因为f (x )在R 上单调递增,所以a -1>0,即a >1,因此g (x )的单调递减区间就是y =|x -2|的单调递减区间(-∞,2].(3)函数f (x )=|x -2|x 的单调递减区间是________.答案[1,2]解析f (x )2-2x ,x ≥2,x 2+2x ,x <2.画出f (x )图象,由图知f (x )的单调递减区间是[1,2].题型二函数的最值1.函数y =x 2-1x 2+1的值域为____________.答案[-1,1)解析由y =x 2-1x 2+1,可得x 2=1+y 1-y.由x 2≥0,知1+y1-y≥0,解得-1≤y <1,故所求函数的值域为[-1,1).2.函数y =x +1-x 2的最大值为________.答案2解析由1-x 2≥0,可得-1≤x ≤1.可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin θ∈[0,π],所以-1≤y ≤2,故原函数的最大值为 2.3.函数y =|x +1|+|x -2|的值域为________.答案[3,+∞)解析函数y 2x +1,x ≤-1,,-1<x <2,x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞).4.函数y =3x +1x -2的值域为________________.答案{y |y ∈R 且y ≠3}解析y =3x +1x -2=3(x -2)+7x -2=3+7x -2,因为7x -2≠0,所以3+7x -2≠3,所以函数y =3x +1x -2的值域为{y |y ∈R 且y ≠3}.5.函数f (x )-log 2(x +2)在区间[-1,1]上的最大值为________.答案3解析由于y 在[-1,1]上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.6.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ()A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关答案B 解析方法一设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.方法二由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关,故选B.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(4)分离常数法:形如求y=cx+dax+b(ac≠0)的函数的值域或最值常用分离常数法求解.(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.题型三函数单调性的应用命题点1比较函数值的大小例3已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)]·(x2-x1)<0恒成立,设a=f -12,b=f(2),c=f(3),则a,b,c的大小关系为()A.c>a>b B.c>b>aC.a>c>b D.b>a>c答案D解析根据已知可得函数f(x)的图象关于直线x=1对称,且在(1,+∞)上是减函数,因为a=f -12f522<52<3,所以b>a>c.命题点2解函数不等式例4(2018·四川成都五校联考)设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则f(x)<0的解集是()A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}答案B解析∵f(x)是奇函数,f(-3)=0,∴f(-3)=-f(3)=0,解得f(3)=0.∵函数f(x)在(0,+∞)内是增函数,∴当0<x<3时,f(x)<0;当x>3时,f(x)>0.∵函数f(x)是奇函数,∴当-3<x<0时,f(x)>0;当x<-3时,f(x)<0.则不等式f (x )<0的解集是{x |0<x <3或x <-3}.命题点3求参数的取值范围例5(1)(2018·全国Ⅱ)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是()A.π4B.π2C.3π4D .π答案C解析∵f (x )=cos x -sin x =-2sin∴当x -π4∈-π2,π2,即x ∈-π4,3π4时,y =sinf (x )=-2sin ∴-π4,3π4是f (x )在原点附近的单调减区间,结合条件得[0,a ]⊆-π4,3π4,∴a ≤3π4,即a max =3π4.(2)已知函数f (x )2+12a -2,x ≤1,x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案(1,2]解析由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.(3)(2018·安徽滁州中学月考)已知函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则实数a 的取值范围是______________.答案(-4,4]解析设g (x )=x 2-ax +3a ,根据对数函数及复合函数的单调性知,g (x )在[2,+∞)上是增函数,且g (2)>0,2,a >0,∴-4<a ≤4,∴实数a 的取值范围是(-4,4].思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2(1)如果函数f (x )2-a )x +1,x <1,x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案32,解析对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数.-a >0,>1,2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是32,(2)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f x 的取值范围是______________.答案12,解析因为函数f (x )是定义在区间[0,+∞)上的增函数,且满足f (2x -1)<所以0≤2x -1<13,解得12≤x <23.1.下列函数中,在区间(0,+∞)上为增函数的是()A .y =ln(x +2)B .y =-x +1C .yD .y =x +1x答案A解析函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.已知函数f(x)=x2-2x-3,则该函数的单调递增区间为()A.(-∞,1]B.[3,+∞)C.(-∞,-1]D.[1,+∞)答案B解析设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3,所以函数f(x)的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f(x)的单调递增区间为[3,+∞).3.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)答案A解析因为f(x)是偶函数,所以f(-3)=f(3),f(-2)=f(2).又因为函数f(x)在[0,+∞)上是增函数,所以f(π)>f(3)>f(2),即f(π)>f(-3)>f(-2).4.已知函数f(x)-2a)x,x≤1,a x+13,x>1,当x1≠x2时,f(x1)-f(x2)x1-x2<0,则a的取值范围是(),13 B.13,12,12 D.14,13答案A解析当x1≠x2时,f(x1)-f(x2)x1-x2<0,∴f(x)是R上的减函数.∵f(x)-2a)x,x≤1,a x+13,x>1,-2a<1,a<1,-2a≥13,∴0<a≤13.5.设f (x )x -a )2,x ≤0,+1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为()A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]答案D 解析∵当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2.∴a 的取值范围是0≤a ≤2.故选D.6.已知函数f (x )2x ,x ≥1,+c ,x <1,则“c =-1”是“函数f (x )在R 上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A 解析若函数f (x )在R 上单调递增,则需log 21≥c +1,即c ≤-1.由于c =-1,即c ≤-1,但c ≤-1不能得出c =-1,所以“c =-1”是“函数f (x )在R 上单调递增”的充分不必要条件.7.已知奇函数f (x )在R 上是增函数.若a =-b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为________________.答案a >b >c 解析∵f (x )在R 上是奇函数,∴a =-log f (log 25).又f (x )在R 上是增函数,且log 25>log 24.1>log 24=2>20.8,∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c .8.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是______________.答案-14,0解析当a =0时,f (x )=2x -3在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是-140.9.记min{a ,b },a ≤b ,,a >b ,若f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为________.答案6解析由题意知,f (x )+2,0≤x ≤4,-x ,x >4,易知f (x )max =f (4)=6.10.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是__________________.答案(-∞,1]∪[4,+∞)解析作函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.11.已知f (x )=x x -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明当a =-2时,f (x )=x x +2.设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增.(2)解设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,0<a ≤1.12.(2018·河南南阳一中月考)设函数f (x )=ax 2+bx +1(a ,b ∈R ),F (x )x ),x >0,f (x ),x <0.(1)若f (-1)=0,且对任意实数x 均有f (x )≥0成立,求F (x )的解析式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)∵f (-1)=0,∴b =a +1.由f (x )≥0恒成立,知a >0且方程ax 2+bx +1=0中Δ=b 2-4a =(a +1)2-4a =(a -1)2≤0,∴a =1.从而f (x )=x 2+2x +1.∴F (x )x +1)2,x >0,(x +1)2,x <0.(2)由(1)可知f (x )=x 2+2x +1,∴g (x )=f (x )-kx =x 2+(2-k )x +1,由g (x )在[-2,2]上是单调函数,知-2-k 2≤-2或-2-k 2≥2,得k ≤-2或k ≥6.即实数k 的取值范围为(-∞,-2]∪[6,+∞).13.已知函数f (x )3,x ≤0,(x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是()A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案D 解析∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.14.已知f (x )2-4x +3,x ≤0,x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.答案(-∞,-2)解析二次函数y 1=x 2-4x +3的对称轴是x =2,∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减,∴-x 2-2x +3<3,∴f (x )在R 上单调递减,∴由f (x +a )>f (2a -x )得到x +a <2a -x ,即2x <a ,∴2x <a 在[a ,a +1]上恒成立,∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).15.已知函数f (x )=2020x +ln(x 2+1+x )-2020-x +1,则不等式f (2x -1)+f (2x )>2的解集为____________.答案解析由题意知,f (-x )+f (x )=2,∴f (2x -1)+f (2x )>2可化为f (2x -1)>f (-2x ),又由题意知函数f (x )在R 上单调递增,∴2x -1>-2x ,∴x >14,∴16.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1.(1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解(1)2-1>0,x 2-1<3,得2<x <2或-2<x <- 2.∴原不等式的解集为(-2,-2)∪(2,2).(2)∵函数f (x )在(0,3]上是增函数,∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立.设g (a )=-2ma +m 2,a ∈[-1,1],∴(-1)≥0,(1)≥0,m +m 2≥0,2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0,即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).。
函数的单调性与最值
函数的单调性与最值1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.2.函数的最值 1.下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x 3 C .y =ln x D .y =|x |答案:B2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12答案:D3.已知函数f(x)=2x-1(x∈[2,6]),则函数的最大值为________.答案:21.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f(x)在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f(x)=1 x.3.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但f(x)·g(x),1f(x)等的单调性与其正负有关,切不可盲目类比.[小题纠偏]1.函数y=x2-6x+10在区间(2,4)上是()A.递减函数B.递增函数C.先递减再递增D.先递增再递减答案:C2.设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为________.答案:[-1,1],[5,7]考点一函数单调性的判断(基础送分型考点——自主练透)[题组练透]1.下列四个函数中,在(0,+∞)上为增函数的是()A.f(x)=3-x B.f(x)=x2-3xC.f(x)=-1x+1D.f(x)=-|x|解析:选C当x>0时,f(x)=3-x为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性. 解:法一(定义法): 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(-1,1)上为减函数. 法二(导数法):f ′(x )=a (x 2-1)-2ax 2(x 2-1)2=-a (x 2+1)(x 2-1)2.又a >0, 所以f ′(x )<0,所以函数f (x )在(-1,1)上为减函数.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤: 取值作差(商)变形确定符号(与1的大小)得出结论(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间(重点保分型考点——师生共研)[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.若将[典例引领](1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1)和(1+2,+∞);单调递减区间为(-∞,1-2)和(1,1+2).2.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 解析:选B 令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18. 因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减. 所以y =⎝⎛⎭⎫132x 2-3x +1在⎝⎛⎦⎤-∞,34上单调递增. 考点三 函数单调性的应用(常考常新型考点——多角探明)[命题分析]高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.常见的命题角度有: (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小2.已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:选D 因f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e), ∴b >a >c .角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析:选B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.角度四:利用单调性求参数的取值范围或值4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0解析:选D 当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0, 且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎡⎦⎤-14,0. 5.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log ax ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a的取值范围为________.解析:要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3][方法归纳]函数单调性应用问题的常见类型及解题策略(1)求函数值域或最值.常用方法有:单调性法、图象法、基本不等式法、导数法、换元法.(2)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(3)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.一抓基础,多练小题做到眼疾手快1.下列函数中,定义域是R 且为增函数的是( )A .y =2-x B .y =x C .y =log 2 xD .y =-1x解析:选B 由题知,只有y =2-x与y =x 的定义域为R ,且只有y =x 在R 上是增函数.2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( ) A .(-∞,1] B .(-∞,-1] C .[-1,+∞)D .[1,+∞)解析:选A 因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 4.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4. ∴a +b =6. 答案:65.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)二保高考,全练题型做到高考达标1.给定函数:①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④解析:选B ①是幂函数,在(0,+∞)上为增函数,故此项不符合要求;②中的函数图象是由y =log 12x 的图象向左平移1个单位得到的,函数y =log 12x 是(0,+∞)上的减函数,所以函数y =log 12(x +1)是(-1,+∞)上的减函数,故此项符合要求;③中的函数在(-∞,1)上为减函数,(1,+∞)上为增函数,符合要求;④中的函数在R 上为增函数,不符合要求.2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B 设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞). 3.函数f (x )=x1-x在( ) A .(-∞,1)∪(1,+∞)上是增函数 B .(-∞,1)∪(1,+∞)上是减函数 C .(-∞,1)和(1,+∞)上是增函数 D .(-∞,1)和(1,+∞)上是减函数解析:选C 函数f (x )的定义域为{x |x ≠1}.f (x )=x 1-x =11-x-1,根据函数y =-1x 的单调性及有关性质,可知f (x )在(-∞,1)和(1,+∞)上是增函数.4.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.5.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log ax ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,1解析:选C 当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0⇒17≤a <13.此时,log a x 是减函数,符合题意.6.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎫t -122+14,结合图象知,当t =12,即x =14时,y max =14. 答案:147.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞)8.设函数f (x )=⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧ x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)9.已知函数f (x )=1a -1x(a >0,x >0), (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在 ⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2, ∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知f (x )在⎣⎡⎦⎤12,2上为增函数,∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25. 10.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述知a 的取值范围是(0,1].三上台阶,自主选做志在冲刺名校1.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A .[1,+∞)B .[0, 3 ]C .[0,1]D .[1, 3 ]解析:选D 因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x在区间[1,3]上单调递减,故“缓增区间”I 为[1, 3 ].2.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9).由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.∴f (x )在[2,9]上的最小值为-2.。
函数的单调性例题
1.3.1函数的单调性题型一、利用函数的图象确定函数的单调区间 例1.作出下列函数的图象,并写出函数的单调区间 (1)12-=x y ; 2322++-=x x y ; (3)2)2(1-++=x x y ; 4969622++++-=x x x x y相应作业1:课本P32第3题. 题型二、用定义法证明函数的单调性用定义法证明函数的单调性步骤:取值 作差变形 定号 下结论①取值,即_____________________________;②作差变形,作差____________,变形手段有__________、_____、_____、_______等; ③定号,即____________________________________________________________;④下结论,即______________________________________________________;例2.用定义法证明下列函数的单调性(1)证明:1)(3+-=x x f 在()+∞∞-,上是减函数.▲定义法证明单调性的等价形式: 设[]b a x x ,21∈、,21x x ≠,那么[])(0)()(0)()()(21212121x f x x x f x f x f x f x x ⇔>--⇔>--在[]b a ,上是增函数;[])(0)()(0)()()(21212121x f x x x f x f x f x f x x ⇔<--⇔<--在[]b a ,上是减函数.(2)证明:x x x f -+=1)(2在其定义域内是减函数;(3)证明:21)(xx f =在()0,∞-上是增函数; 法一: 作差 法二:作商(4)已知函数)(x f y =在()+∞,0上为增函数,且)0(0)(><x x f ,试判断)(1)(x f x F =在()+∞,0上的单调性,并给出证明过程;▲方法技巧归纳——判断函数单调性的方法:1、直接法:熟悉的函数,如一次函数、二次函数、反比例函数等;如,练习册P272P31上5、12、图象法;3、定义法;4、运算性质法:①当0>a 时,函数)(x af 与)(x f 有相同的单调性; 当0<a 时,函数)(x af 与)(x f 有相反的单调性; ②当函数)(x f 恒不等于零时,)(x f 与)(1x f 单调性相反;③若0)(≥x f ,则)(x f 与)(x f 具有相同的单调性;④若)(x f 、)(x g 的单调性相同,则)()(x g x f +的单调性与之不变; ▲即:增+增=增 减+减=减⑤若)(x f 、)(x g 的单调性相反,则)()(x g x f -的单调性与)(x f 同.▲即:增-减=增 减-增=增注意:1可熟记一些基本的函数的单调性,一些较复杂的函数可化为基本函数的组合形式,再利用上述结论判断; 2)()(x g x f 与)()(x g x f 的单调性不能确定.相应作业2:1讨论函数1)(2-=x axx f 在()1,1-上的单调性0≠a ; ▲2务必记住“对勾”函数)0()(>+=k xkx x f 的单调区间见练习册P29探究之窗.探究1知识拓展——复合函数单调性▲难点一、复习回顾:复合函数的定义:如果函数)(t f y =的定义域为A,函数)(x g t =的定义域为D,值域为C,则当A C ⊆时,称函数))((x g f y =为f 与g 在D 上的复合函数,其中t 叫做中间变量,)(x g t =叫内层函数,)(x f y =叫外层函数;二、引理1 已知函数y=fgx.若t=gx 在区间a,b 上是增函数,其值域为c,d,又函数y=ft 在区间c,d 上是增函数,那么,原复合函数y=fgx 在区间a,b 上是增函数.引理2 已知函数y=fgx.若t=gx 在区间a,b 上是减函数,其值域为c,d,又函数y=ft 在区间c,d 上是减函数,那么,复合函数y=fgx 在区间a,b 上是增函数. 引理1的证明:▲重要结论1:复合法则规律可简记为“_____________________”四个字▲重要结论2:若一个函数是由多个简单函数复合而成的,则此复合函数的单调性由简单函数中减函数的个数决定:①若减函数有偶数个,则复合函数为增函数; ②若减函数有奇数个,则复合函数为减函数. 规律可简记为“_____________________”四个字题型三、求复合函数的单调区间 例3. 求下列函数的单调区间. (1)267x x y --=23212--=x x y ▲小结:1、注意:1求单调区间必先求定义域; (2)单调区间必须是定义域的子集;(3)写多个单调区间时,区间之间不能用“ ”并起来,应用“,”隔开. 2、判断复合函数单调性步骤: ①求函数的定义域;②将复合函数分解成基本初等函数:)(t f y =与)(x g t =; ③确定两个函数的单调性;④由复合法则“同増异减”得出复合函数单调性. 相应作业3:求下列函数的单调区间.(1)228x x y --= 23212--=x x y3xx y 412-=单调性的应用题型四、比较函数值的大小例4.已知函数)(x f y =在[)+∞,0上是减函数,试比较)43(f 与)1(2+-a a f 的大小.题型五、已知单调性,求参数范围 例5.已知函数2)(2)(2+--=x a x x x f (1)若)(x f 的减区间是(]4,∞-,求实数a 的值; (2)若)(x f 在(]4,∞-上单调递减,求实数a 的取值范围.例6.若函数⎩⎨⎧≤-+->-+-=0,)2(0,1)12()(2x x b x x b x b x f 在R 上为增函数,求实数b 的取值范围.题型六、利用单调性,求解抽象不等式例7.已知函数)(x f y =是()1,1-上的减函数,且)1()1(2->-a f a f ,求实数a 的取值范围.例8.已知)(x f 是定义在()+∞,0上的增函数,且)()()(y f x f yx f -=,且1)2(=f ,解不等式2)31()(≤--x f x f .相应作业4:已知)(x f 是定义在()+∞,0上的增函数,且)()()(y f x f xy f +=,且1)2(=f ,解不等式3)2()(≤-+x f x f .题型七、抽象函数单调性的判断——定义法 解决此类问题有两种方法:①“凑”,凑定义或凑已知条件,从而使用定义或已知条件得出结论; ②赋值法,给变量赋值要根据条件与结论的关系,有时可能要进行多次尝试.例9.已知函数)(x f 对任意实数x 、y 都有)()()(y f x f y x f +=+,且当0>x 时0)(>x f ,求证:)(x f 在R 上单调递增.例10.已知定义在()+∞,0上的函数)(x f 对任意x 、y ∈()+∞,0,恒有)()()(y f x f xy f +=,且当10<<x 时0)(>x f ,判断)(x f 在()+∞,0上单调性.相应作业5:定义在()+∞,0上的函数)(x f 对任意x 、y ∈()+∞,0,满足)()()(n f m f mn f +=,且当1>x 时0)(>x f .(1)求)1(f 的值; (2)求证:)()()(n f m f nmf -=; 3求证:)(x f 在()+∞,0上是增函数;4若1)2(=f ,解不等式2)2()2(>-+x f x f ;函数的最大小值1、函数的最大小值定义2、利用单调性求最值常用结论(1)若函数)(x f y =在闭区间[]b a ,上单调递增,则)(min a f y =,)(max b f y =; (2)若函数)(x f y =在闭区间[]b a ,上单调递减,则)(min b f y =,)(max a f y =; (3)若函数)(x f y =在开区间()b a ,上单调递增,则函数无最值,但值域为())(),(b f a f ; (4)若函数)(x f y =在闭区间[]b a ,上单调递增,在闭区间[]c b ,上单调递减,那么函数)(x f y =,[]c a x ,∈在b x =处有最大值,即)(max b f y =;(5)若函数)(x f y =在闭区间[]b a ,上单调递减,在闭区间[]c b ,上单调递增,那么函数)(x f y =,[]c a x ,∈在b x =处有最小值,即)(min b f y =.题型八、单调性法求函数最值值域 例11、1函数121)(-=x x f 在[]5,1上的最大值为________,最小值为________;(2)函数112++=x x y 在[]4,2上的最大值为________,最小值为________;(3)函数x x y 212--=的值域为________________;(4)函数1-+=x x y 的值域为________________;(5)函数212+--=x x y 的值域为________________;6函数x xy +=1的值域为________________;二次函数的区间最值的求法二次函数在给定区间[]n m ,上求最值,常见类型: (1)定轴定区间:对称轴与区间[]n m ,均是确定的;(2)动轴定区间: (3)定轴动区间: (4)动轴动区间: 1、定轴定区间可数形结合,较易解决,注意对称轴与区间位置关系; 例12.当22≤≤-x 时,求函数322--=x x y 的最值.相应作业6:求函数542++-=x x y 在[]5,1上的最值.2、动轴定区间例13.已知函数22)(2++=ax x x f ,求)(x f 在[]5,5-上的最值.▲动轴定区间问题一般解法:对对称轴在区间左侧、右侧、内部三种情况进行讨论,从而确定最值在区间端点处还是在顶点处取得.相应作业7:求函数12)(2--=ax x x f 在[]2,0上的最值.3、定轴动区间例14.已知函数22)(2+-=x x x f ,当[]1,+∈t t x 时,求)(x f 的最小值)(t g .相应作业8:已知函数34)(2-+-=x x x f ,当[]2,+∈m m x 时,求)(x f 的最大值)(m g . 4、动轴动区间解决方法:可将对称轴和区间之一看做不动,进行讨论.例15.求函数ax x y +-=2在[]a x ,1-∈上的最大值.相应作业9:求函数222--=ax x y 在[]1,a x -∈上的最值.。
函数的单调性 教案-高一上学期数学人教B版(2019)必修第一册
函数的单调性【第1课时】【教学目标】【核心素养】1.理解函数的单调性及其几何意义,能运用函数图像理解和研究函数的单调性.(重点)2.会用函数单调性的定义判断(或证明)一些函数的单调性,会求一些具体函数的单调区间.(重点、难点)3.理解函数的最大值和最小值的概念,能借助函数的图像和单调性,求一些简单函数的最值.(重点、难点)1.借助单调性判断与证明,培养数学抽象、逻辑推理、直观想象素养.2.利用求单调区间、最值、培养数学运算素养.3.利用函数的最值解决实际问题,培养数学建模素养.【教学过程】一、新知初探条件一般地,设函数y=f(x)的定义域为A,且M⊆A:如果对任意x1,x2∈M,当x1>x2时都有f(x1)>f(x2)都有f(x1)<f(x2)结论y=f(x)在M上是增函数(也称在M上单调递增)y=f(x)在M上是减函数(也称在M上单调递减)图示思考1:增(减)函数定义中的x1,x2有什么特征?提示:定义中的x1,x2有以下3个特征(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1>x2;(3)属于同一个单调区间.2.函数的单调性与单调区间如果函数y=f(x)在M上单调递增或单调递减,那么就说函数y=f(x)在M上具有单调性(当M为区间时,称M为函数的单调区间,也可分别称为单调递增区间或单调递减区间).思考2:函数y=1x在定义域上是减函数吗?提示:不是.y=1x在(-∞,0)上递减,在(0,+∞)上也递减,但不能说y=1x在(-∞,0)∪(0,+∞)上递减.最大值最小值条件一般地,设函数f(x)的定义域为D:且x0∈D,如果对任意x∈D 都有f(x)≤f(x0)都有f(x)≥f(x0)结论称f(x)的最大值为f(x0),记作f max =f(x0),而x0称为f(x)的最大值点称f(x)的最小值为f(x0),记作f min=f(x0),而x0称为f(x)的最小值点统称最大值和最小值统称为最值最大值点和最小值点统称为最值点二、初试身手1.函数y=f(x)的图像如图所示,其增区间是()A.[-4,4]B.[-4,-3]∪[1,4]C.[-3,1]D.[-3,4]答案:C解析:由题图可知,函数y=f(x)的单调递增区间为[-3,1],选C.2.下列函数中,在区间(0,+∞)上是减函数的是()A.y=-1x B.y=xC.y=x2D.y=1-x答案:D解析:函数y =1-x 在区间(0,+∞)上是减函数,其余函数在(0,+∞)上均为增函数,故选D .3.函数y =f (x )在[-2,2]上的图像如图所示,则此函数的最小值、最大值分别是( )A .-1,0B .0,2C .-1,2D .12,2答案:C解析:由题图可知,f (x )的最大值为f (1)=2,f (x )的最小值为f (-2)=-1.4.函数f (x )=x 2-2x +3的单调减区间是________. 答案:(-∞,1]解析:因为f (x )=x 2-2x +3是图像开口向上的二次函数,其对称轴为x =1,所以函数f (x )的单调减区间是(-∞,1]. 三、合作探究类型1:定义法证明(判断)函数的单调性例1:证明:函数f (x )=x +1x 在(0,1)上是减函数. 思路点拨:设元任取x 1,x 2∈0,1且x 1>x 2―→作差:fx 1-fx 2――→变形判号:fx 2>fx 1――→结论减函数证明:设x 1,x 2是区间(0,1)上的任意两个实数,且x 1>x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-1x 1x 2=x 1-x 2-1+x 1x 2x 1x 2,∵0<x 2<x 1<1,∴x 1-x 2>0,0<x 1x 2<1,则-1+x 1x 2<0,∴x1-x2-1+x1x2x1x2<0,即f(x1)<f(x2),∴f(x)=x+1x在(0,1)上是减函数.规律方法利用定义证明函数单调性的步骤1.取值:设x1,x2是该区间内的任意两个值,且x1>x2.2.作差变形:作差f(x1)-f(x2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.3.定号:确定f(x1)-f(x2)的符号.4.结论:根据f(x1)-f(x2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.跟踪训练1.证明:函数y=xx+1在(-1,+∞)上是增函数.证明:设x1>x2>-1,则y1-y2=x1x1+1-x2x2+1=x1-x2x1+1x2+1.∵x1>x2>-1,∴x1-x2>0,x1+1>0,x2+1>0,∴x1-x2x1+1x2+1>0,即y1-y2>0,y1>y2,∴y=xx+1在(-1,+∞)上是增函数.类型2:求函数的单调区间例2:求下列函数的单调区间,并指出该函数在其单调区间上是增函数还是减函数.(1)f(x)=-1x;(2)f(x)=⎩⎨⎧2x+1,x≥1,5-x,x<1;(3)f(x)=-x2+2|x|+3.解:(1)函数f(x)=-1x的单调区间为(-∞,0),(0,+∞),其在(-∞,0),(0,+∞)上都是增函数.(2)当x≥1时,f(x)是增函数,当x<1时,f(x)是减函数,所以f(x)的单调区间为(-∞,1),[1,+∞),并且函数f(x)在(-∞,1)上是减函数,在[1,+∞)上是增函数.(3)因为f (x )=-x 2+2|x |+3=⎩⎨⎧-x 2+2x +3,x ≥0,-x 2-2x +3,x <0.根据解析式可作出函数的图像如图所示,由图像可知,函数f (x )的单调区间为(-∞,-1],(-1,0),[0,1),[1,+∞).f (x )在(-∞,-1],[0,1)上是增函数,在(-1,0),[1,+∞)上是减函数.(3)因为f (x )=-x 2+2|x |+3=⎩⎨⎧-x 2+2x +3,x ≥0,-x 2-2x +3,x <0.根据解析式可作出函数的图像如图所示,由图像可知,函数f (x )的单调区间为(-∞,-1],(-1,0),[0,1),[1,+∞).f (x )在(-∞,-1],[0,1)上是增函数,在(-1,0),[1,+∞)上是减函数.规律方法求函数单调区间的方法1.利用已知函数的单调性求函数的单调区间. 2.利用函数图像求函数的单调区间.提醒:1.若所求出函数的单调增区间或单调减区间不唯一,函数的单调区间之间要用“,”隔开.2.理清“单调区间”和“在区间上单调”的区别与联系. 跟踪训练2.根据如图所示,写出函数在每一单调区间上是增函数还是减函数.解:函数在[-1,0],[2,4]上是减函数,在[0,2],[4,5]上是增函数. 3.写出y =|x 2-2x -3|的单调区间. 解:先画出f (x )=⎩⎨⎧x 2-2x -3,x <-1或x >3,-(x 2-2x -3),-1≤x ≤3的图像,如图.所以y =|x 2-2x -3|的单调减区间为(-∞,-1],[1,3];单调增区间为[-1,1],[3,+∞).类型3:函数单调性的应用 探究问题1.若函数f (x )是其定义域上的增函数,且f (a )>f (b ),则a ,b 满足什么关系.如果函数f (x )是减函数呢?提示:若函数f (x )是其定义域上的增函数,那么当f (a )>f (b )时,a >b ;若函数f (x )是其定义域上的减函数,那么当f (a )>f (b )时,a <b .2.决定二次函数f (x )=ax 2+bx +c 单调性的因素有哪些?提示:开口方向和对称轴的位置,即字母a 的符号及-b2a 的大小.例3:(1)若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是________.(2)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x -6),则实数x 的取值范围为________.思路点拨:(1)分析fx 的对称轴与区间的关系数形结合,建立关于a 的不等式――→求a 的范围(2)f2x -3>f5x -6f (x )在(-∞,+∞)上是增函数,建立关于x 的不等式――→求x 的范围答案:(1)(-∞,-4] (2)(-∞,1)解析:(1)∵f (x )=-x 2-2(a +1)x +3的图像开口向下,要使f (x )在(-∞,3]上是增函数,只需-(a +1)≥3,即a ≤-4.∴实数a 的取值范围为(-∞,-4].(2)∵f (x )在(-∞,+∞)上是增函数,且f (2x -3)>f (5x -6),∴2x -3>5x -6,即x <1.∴实数x 的取值范围为(-∞,1).]母题探究1.(变条件)若本例(1)的函数f (x )在(1,2)上是单调函数,求a 的取值范围.解:由题意可知-(a +1)≤1或-(a +1)≥2,即a ≤-3或a ≥-2. 所以a 的取值范围为(-∞,-3]∪[-2,+∞).2.(变条件)若本例(2)的函数f (x )是定义在(0,+∞)上的减函数,求x 的取值范围.解:由题意可知,⎩⎨⎧2x -3>0,5x -6>0,2x -3<5x -6,解得x >32.∴x 的取值范围为⎝ ⎛⎭⎪⎫32,+∞.规律方法函数单调性的应用1.函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.2.若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.类型4:求函数的最值(值域)例4:已知函数f (x )=2x +1x +1.(1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论; (2)求该函数在区间[2,4]上的最大值和最小值.解:(1)f (x )在(-1,+∞)上为增函数,证明如下:任取-1<x 1<x 2,则f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),因为-1<x 1<x 2⇒x 1+1>0,x 2+1>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0⇒f (x 1)<f (x 2), 所以f (x )在(-1,+∞)上为增函数. (2)由(1)知f (x )在[2,4]上单调递增,所以f (x )的最小值为f (2)=2×2+12+1=53, 最大值为f (4)=2×4+14+1=95. 规律方法1.利用单调性求函数的最大(小)值的一般步骤 (1)判断函数的单调性.(2)利用单调性求出最大(小)值. 2.函数的最大(小)值与单调性的关系(1)若函数f (x )在区间[a ,b ]上是增(减)函数,则f (x )在区间[a ,b ]上的最小(大)值是f (a ),最大(小)值是f (b ).(2)若函数f (x )在区间[a ,b ]上是增(减)函数,在区间[b ,c ]上是减(增)函数,则f (x )在区间[a ,c ]上的最大(小)值是f (b ),最小(大)值是f (a )与f (c )中较小(大)的一个.提醒:(1)求最值勿忘求定义域.(2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错误,求解时一定注意.跟踪训练4.已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1<x ≤1,1x ,x >1,求(1)f (x )的最大值、最小值;(2)f (x )的最值点.解:(1)作出函数f (x )的图像(如图).由图像可知,当x =1时,f (x )取最大值为f (1)=1.当x =0时,f (x )取最小值f (0)=0,故f (x )的最大值为1,最小值为0.(2)f (x )的最大值点为x 0=1,最小值点为x 0=0. 四、课堂小结1.定义单调性时应强调x 1,x 2在其定义域内的任意性,其本质是把区间上无限多个函数值的大小比较转化为两个任意值的大小比较.2.证明函数的单调性(利用定义)一定要严格遵循设元、作差、变形、定号、结论的步骤,特别在变形上,一定要注意因式分解、配方等技巧的运用,直到符号判定水到渠成才可.3.求函数的最值与求函数的值域类似,常用的方法是:(1)图像法,即画出函数的图像,根据图像的最高点或最低点写出最值; (2)单调性法,一般需要先确定函数的单调性,然后根据单调性的意义求出最值;4.通过函数最值的学习,渗透数形结合思想,树立以形识数的解题意识. 五、当堂达标1.思考辨析(1)若函数y =f (x )在定义域上有f (1)<f (2),则函数y =f (x )是增函数.( )(2)若函数y =f (x )在区间[1,3]上是减函数,则函数y =f (x )的单调递减区间是[1,3].( )(3)任何函数都有最大(小)值.( )(4)函数f (x )在[a ,b ]上的最值一定是f (a )(或f (b )).( ) 答案:(1)×(2)×(3)×(4)×2.下列函数中,在(0,2)上是增函数的是( )A .y =1x B .y =2x -1 C .y =1-2x D .y =(2x -1)2答案:B解析:对于A ,y =1x 在(-∞,0),(0,+∞)上单调递减;对于B ,y =2x -1在R 上单调递增;对于C ,y =1-2x 在R 上单调递减;对于D ,y =(2x -1)2在⎝ ⎛⎭⎪⎫-∞,12上单调递减,在⎝ ⎛⎭⎪⎫12,+∞上单调递增.故选B .3.函数y =x 2-2x ,x ∈[0,3]的值域为________. 答案:[-1,3]解析:∵函数y =x 2-2x =(x -1)2-1,x ∈[0,3],∴当x =1时,函数y 取得最小值为-1,当x =3时,函数取得最大值为3,故函数的值域为[-1,3].4.试用函数单调性的定义证明:f (x )=2xx -1在(1,+∞)上是减函数.证明:f (x )=2+2x -1,设x 1>x 2>1,则f (x 1)-f (x 2)=2x 1-1-2x 2-1=2(x 2-x 1)(x 1-1)(x 2-1).因为x 1>x 2>1,所以x 2-x 1<0,x 1-1>0,x 2-1>0, 所以f (x 1)<f (x 2),所以f (x )在(1,+∞)上是减函数.【第2课时】【教学目标】【核心素养】1.理解斜率的含义及平均变化率的概念.(重点) 2.掌握判断函数单调性的充要条件.(重点、难点)通过利用函数f (x )的平均变化证明f (x )在I 上的单调性,提升数学运算和培养逻辑推理素养.【教学过程】一、新知初探 1.直线的斜率(1)定义:给定平面直角坐标系中的任意两点A (x 1,y 1),B (x 2,y 2),当x 1≠x 2时,称y 2-y 1x 2-x 1为直线AB 的斜率;(若记Δx =x 2-x 1,Δy =y 2-y 1,当Δx ≠0时,斜率记为ΔyΔx ),当x 1=x 2时,称直线AB 的斜率不存在.(2)作用:直线AB 的斜率反映了直线相对于x 轴的倾斜程度. 2.平均变化率与函数单调性若I 是函数y =f (x )的定义域的子集,对任意x 1,x 2∈I 且x 1≠x 2,记y 1=f(x 1),y 2=f (x 2),Δy Δx =y 2-y 1x 2-x 1⎝ ⎛⎭⎪⎫即Δf Δx =f (x 2)-f (x 1)x 2-x 1,则 (1)y =f (x )在I 上是增函数的充要条件是ΔyΔx >0在I 上恒成立;(2)y =f (x )在I 上是减函数的充要条件是ΔyΔx <0在I 上恒成立.当x 1≠x 2时,称Δf Δx =f (x 2)-f (x 1)x 2-x 1为函数y =f (x )在区间[x 1,x 2](x 1<x 2时)或[x 2,x 1](x 1>x 2时)上的平均变化率.通常称Δx 为自变量的改变量,Δy 为因变量的改变量.3.平均变化率的物理意义(1)把位移s 看成时间t 的函数s =s (t ),则平均变化率的物理意义是物体在时间段[t 1,t 2]上的平均速度,即v =s (t 2)-s (t 1)t 2-t 1.(2)把速度v 看成时间t 的函数v =v (t ),则平均变化率的物理意义是物体在时间段[t 1,t 2]上的平均加速度,即a =v (t 2)-v (t 1)t 2-t 1.二、初试身手1.已知点A (1,0),B (-1,1),则直线AB 的斜率为( )A .-12B .12C .-2D .2 答案:A解析:直线AB 的斜率1-0-1-1=-12.2.如图,函数y =f (x )在[1,3]上的平均变化率为( )A .1B .-1C .2D .-2答案:B解析:Δy Δx =f (3)-f (1)3-1=1-33-1=-1.3.一次函数y =-2x +3在R 上是________函数.(填“增”或“减”) 答案:减解析:任取x 1,x 2∈R 且x 1≠x 2.∴y 1=-2x 1+3,y 2=-2x 2+3,∴Δy Δx =y 1-y 2x 1-x 2=-2<0,故y =-2x +3在R 上是减函数.4.已知函数f (x )=2x 2+3x -5,当x 1=4,且Δx =1时,求Δy 的平均变化率Δy Δx .解:∵f(x)=2x2+3x-5,x1=4,x2=x1+Δx,∴Δy=f(x2)-f(x1)=2(x1+Δx)2+3(x1+Δx)-5-(2x21+3x1-5)=2(Δx)2+(4x1+3)Δx.当x1=4,Δx=1时,Δy=2×12+(4×4+3)×1=21.则ΔyΔx=211=21.三、合作探究类型1:平均变化率的计算例1:一正方形铁板在0℃时边长为10cm,加热后会膨胀,当温度为t℃时,边长变为10(1+at)cm,a为常数.试求铁板面积对温度的平均膨胀率.思路点拨:由正方形的边长与面积关系列出函数表达式,再求面积的平均变化率.解:设温度的增量为Δt,则铁板面积S的增量ΔS=102[1+a(t+Δt)]2-102(1+at)2=200(a+a2t)Δt+100a2(Δt)2,所以平均膨胀率ΔSΔt=200(a+a2t)+100a2Δt.规律方法1.关于平均变化率的问题在生活中随处可见,常见的有求某段时间内的平均速度、平均加速度、平均膨胀率等.找准自变量的改变量和因变量的改变量是解题的关键.2.求平均变化率只需要三个步骤:(1)求出或者设出自变量的改变量;(2)根据自变量的改变量求出函数值的改变量;(3)求出函数值的改变量与自变量的改变量的比值.跟踪训练1.路灯距地面8m,一个身高为1.6m的人以84m/min的速度在地面上从路灯在地面上的射影点C处沿直线匀速离开路灯.(1)求身影的长度y与人距路灯的距离x之间的关系式;(2)求人离开路灯10s内身影长度y关于时间t的平均变化率.解:(1)如图所示,设此人从C点运动到B点的位移为x m,AB为身影长度,AB的长度为y m,由于CD∥BE,则ABAC=BECD,即yy+x=1.68,所以y=0.25x.(2)84m/min=1.4m/s,则y关于t的函数关系式为y=0.25×1.4t=0.35t,所以10 s内平均变化率ΔyΔt=3.510=0.35(m/s),即此人离开灯10s内身影长度y关于时间t的平均变化率为0.35m/s.类型2:利用平均变化率证明函数的单调性例2:若函数y=f(x)是其定义域的子集I上的增函数且f(x)>0,求证:g=1f(x)在I上为减函数.思路点拨:由y=f(x)在I上为增函数的充要条件可得ΔyΔx>0,再证ΔgΔx<0即可.证明:任取x1,x2∈I且x2>x1,则Δx=x2-x1>0,Δy=f(x2)-f(x1),∵函数y=f(x)是其定义域的子集I上的增函数,∴Δy>0,ΔyΔx>0,∴Δg=g(x2)-g(x2)=1f(x2)-1f(x1)=f(x1)-f(x2)f(x1)f(x2).又∵f(x)>0,∴f(x1)f(x2)>0且f(x1)-f(x2)<0,∴Δg<0,∴ΔgΔx<0,故g=1f(x)在I上为减函数.规律方法单调函数的运算性质若函数f(x),g(x)在区间I上具有单调性,则:1.f(x)与f(x)+C (C为常数)具有相同的单调性.2.f(x)与a·f(x),当a>0时具有相同的单调性;当a<0时具有相反的单调性.3.当f(x)恒为正值或恒为负值时,f(x)与1f(x)具有相反的单调性.(4f(x)g(x)f(x)+g(x)f(x)-g(x)增函数增函数增函数不能确定单调性增函数减函数不能确定单调性增函数减函数减函数减函数不能确定单调性减函数增函数不能确定单调性减函数跟踪训练2.已知函数f(x)=1-3x+2,x∈[3,5],判断函数f(x)的单调性,并证明.解:由于y=x+2在[3,5]上是增函数,且恒大于零,因此,由性质知f(x)=1-3x+2为增函数.证明过程如下:任取x1,x2∈[3,5]且x1<x2,即Δx=x2-x1>0,则Δy=f(x2)-f(x1)=1-3x2+2-⎝⎛⎭⎪⎫1-3x1+2=3x1+2-3x2+2=3(x2-x1)(x1+2)(x2+2).∵(x1+2)(x2+2)>0,∴Δy>0,∴ΔyΔx>0,故函数f(x)在[3,5]上是增函数.类型3:二次函数的单调性最值问题探究问题1.二次函数f(x)=ax2+bx+c(a>0)的对称轴与区间[m,n]可能存在几种位置关系,试画草图给予说明?提示:2.求二次函数f(x)=ax2+bx+c在[m,n]上的最值,应考虑哪些因素?提示:若求二次函数f(x)在[m,n]上的最值,应考虑其开口方向及对称轴x =-b2a 与区间[m ,n ]的关系.例3:已知函数f (x )=x 2-ax +1,求f (x )在[0,1]上的最大值. 思路点拨:解:因为函数f (x )=x 2-ax +1的图像开口向上,其对称轴为x =a2, 当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ; 当a 2>12,即a >1时,f (x )的最大值为f (0)=1. 母题探究1.在题设条件不变的情况下,求f (x )在[0,1]上的最小值.解:(1)当a2≤0,即a ≤0时,f (x )在[0,1]上单调递增,∴f (x )min =f (0)=1.(2)当a2≥1,即a ≥2时,f (x )在[0,1]上单调递减,∴f (x )min =f (1)=2-a .(3)当0<a 2<1,即0<a <2时,f (x )在⎣⎢⎡⎦⎥⎤0,a 2上单调递减,在⎣⎢⎡⎦⎥⎤a 2,1上单调递增,故f (x )min =f ⎝ ⎛⎭⎪⎫a 2=1-a 24.2.在本例条件不变的情况下,若a =1,求f (x )在[t ,t +1](t ∈R )上的最小值.解:当a =1时,f (x )=x 2-x +1,其图像的对称轴为x =12, ①当t ≥12时,f (x )在其上是增函数,∴f (x )min =f (t )=t 2-t +1; ②当t +1≤12,即t ≤-12时,f (x )在其上是减函数,∴f (x )min =f (t +1)=⎝ ⎛⎭⎪⎫t +122+34=t 2+t +1;③当t <12<t +1,即-12<t <12时,函数f (x )在⎣⎢⎡⎦⎥⎤t ,12上单调递减,在⎝ ⎛⎦⎥⎤12,t +1上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12=34.规律方法二次函数在闭区间上的最值设f(x)=ax2+bx+c(a>0),则二次函数f(x)在闭区间[m,n]上的最大对称轴与区间的关系-b2a<m<n,即-b2a∈(-∞,m)m<-b2a<n,即-b2a∈(m,n)m<n<-b2a,即-b2a∈(n,+∞)图像最值f(x)max=f(n),f(x)min=f(m)f(x)max=max{f(n),f(m)},f(x)min=f⎝⎛⎭⎪⎫-b2af(x)max=f(m),f(x)min=f(n)四、课堂小结1.平均变化率中Δx,Δy,ΔyΔx的理解(1)函数f(x)应在x1,x2处有定义;(2)x2在x1附近,即Δx=x2-x1≠0,但Δx可正可负;(3)注意变量的对应,若Δx=x2-x1,则Δy=f(x2)-f(x1),而不是Δy =f(x1)-f(x2);(4)平均变化率可正可负,也可为零.但是,若函数在某区间上的平均变化率为0,并不能说明该函数在此区间上的函数值都相等.2.判断函数y=f(x)在I上单调性的充要条件(1)y=f(x)在I上单调递增的充要条件是ΔyΔx>0恒成立;(2)y=f(x)在I上单调递减的充要条件是ΔyΔx<0恒成立.五、当堂达标1.思考辨析(1)一次函数y=ax+b(a≠0)从x1到x2的平均变化率为a.()(2)函数y=f(x)的平均变化率ΔyΔx=f(x2)-f(x1)x2-x1的几何意义是过函数y=f(x)图像上两点A(x1,f(x1)),B(x2,f(x2))所在直线的斜率.()(3)在[a,b]上,y=ax2+bx+c(a≠0)任意两点的平均变化率都相等.()答案:(1)√(2)√(3)×2.函数f(x)=x从1到4的平均变化率为()A.13B.12C.1 D.3 答案:A解析:Δy=4-1=1,Δx=4-1=3,则平均变化率为ΔyΔx=13.3.李华在参加一次同学聚会时,他用如图所示的圆口杯喝饮料,李华认为:如果向杯子中倒饮料的速度一定(即单位时间内倒入的饮料量相同),那么杯子中饮料的高度h是关于时间t的函数h(t),则函数h(t)的图像可能是()答案:B解析:由于圆口杯的形状是“下细上粗”,则开始阶段饮料的高度增加较快,往后高度增加得越来越慢,仅有B中的图像符合题意.4.一质点的运动方程为s=8-3t2,其中s表示位移(单位:m),t表示时间(单位:s).求该质点在[1,1+Δt]这段时间内的平均速度.解:该质点在[1,1+Δt]这段时间内的平均速度为ΔsΔt=8-3(1+Δt)2-8+3×12Δt=(-6-3Δt)(m/s).。
函数的单调性奇偶性与周期性
函数的单调性、奇偶性与周期性基础知识一、函数的单调性 1. 单调性概念如果函数y= f (x )对于定义域I 内某个区间上的任意两个自变量的值x 1、、x 2,当x 1、<x 2时, ①都有f (x 1)< f (x 2),则称f (x )在这个区间上是增函数(或单调递增),而这个区间称函数的一个单调递增区间 ;②都有f (x 1)> f (x 2),则称f (x )在这个区间上是减函数(或单调递减),而这个区间称函数的一个单调减区间.注意,若函数f (x )在整个定义域I 内只有唯一的一个单调(递增或递减)区间,则f (x )称单调函数.2. 函数的单调性与其导函数的正负有如下关系:在某个区间(,)a b 内,如果/()0f x >,那么函数()y f x =在这个区间内是单调递增; 如果/()0f x <,那么函数()y f x =在这个区间内是单调递减。
二、函数的奇偶性 3.奇偶性概念如果对于函数f (x )定义域内的任意x ,①都有f (-x )=-f (x ),则称f (x )为奇函数;②都有f (-x )= f (x ),则称f (x )为偶函数;③如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.④如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:函数f (x )具有奇偶性的必要条件是其定义域关于原点对称。
4.性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称。
5.函数f (x )为奇函数,且在0x =处有定义,则(0)0f =三、函数的周期性 6.周期性概念如果存在一个非零常数T ,使得对于函数定义域内的任意x ,都有f (x+T )= f (x ),则称f (x )为周期函数。
T 是f (x )的一个周期。
若f (x )的周期中,存在一个最小的正数,则称它为f (x )的最小正周期。
第4课时三角函数的单调性奇偶性周期性
y=tanx,y=cotx的最小正周期T=π
(4) y=Asin(ωx+φ)+k的周期为T=2π/ω(ω>0) y=Atan(ωx+φ)+k的周期为T=π/ω(ω>0)
返回
课前热身
1.下列函数中,在区间(0,π/2)上为增函数且以π为周期的是 ( )D
3.已知函数 f x 5sin x cos x 5 3 cos2 x 5
2
(1)求f(x)的最小正周期; (2)求f(x)的单调区间; (3)求f(x)图象的对称轴,对称中心
3x R
【解题回顾】将函数y=f(x)化成y=Asin(ωx+φ)的形式(即单 一形式),才能研究其图象及性质.
2.奇偶性 y=sinx,y=cosx,y=tanx在各自定义域上分别是奇函数、偶函 数、奇函数.
3.周期性 (1)定义 对于函数y=f(x),如果存在一个不为零的常数T,使得当x取 定义域内的每一个值时,f(x+T)=f(x)都成立,则y=f(x)叫周 期函数,T叫这个函数的周期
(2)所有周期中的最小正数叫最小正周期
2.判断下列函数是否为周期函数;若是,判断其是否存 在最小正周期,若存在,求出它的最小正周期:
①y 1 sin 4x 1 ②y sin x
3 3
③y tan x
4 6
④y 2
【 解 题 回 顾 】 若 三 角 函 数 y=f(x) 的 最 小 正 周 期 为 T, 则 f(ωx+φ)的最小正周期就是T|ω|;另外,周期函数的图像必 然呈现一种“周而复始”的规律特征,反之亦然,所以判 断函数的周期性的一个有效方法是作图
高考数学一轮复习讲义 函数的单调性(学生版),最牛总结
第二讲 函数的单调性1.函数的单调性 (1)单调函数的定义增函数 减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数 当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意的x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ;(4)存在x 0∈I ,使得f (x 0)=M 结论M 为最大值 M 为最小值考向一 单调区间求解【例1】(1)下列函数中,定义域是R 且为增函数的是( )A.y =2-xB.y =xC.y =log 2xD.y =-1x(2)函数f (x )=ln (x 2-2x -8) 的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞) (3)求函数f (x )=|x 2-4x +3|的单调区间 . (4)求函数f (x )=x -ln x 的单调区间 .(5)函数33y x x =-的单调增区间为__________.【举一反三】1.下列函数中,在上单调递减的是A .B .C .D .2.函数的单调递减区间是( )A .B .C .D .3.函数()| g x x =的单调递增区间是 ( )【套路总结】一.函数单调性的判断方法有 ①定义法; ②图象法;③利用已知函数的单调性; ④导数法.二.复合函数y =f (g (x ))的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.A . [)0+∞,B . (]0-∞,C . (]2-∞-,D . [)2+-∞,考向二 单调性的运用一---比较大小【例2】定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3)【举一反三】1.已知f (x )=2x-2-x,117459279,,log 97a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则f (a ),f (b ),f (c )的大小顺序为( ) A.f (b )<f (a )<f (c ) B.f (c )<f (b )<f (a ) C.f (c )<f (a )<f (b )D.f (b )<f (c )<f (a )2.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >b D .b >a >c3.设,,,则A. B. C. D.4.已知,,,则x,y,z的大小关系是A. B. C. D.考向三单调性的运用二---解不等式【例3】(1)f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x -8)≤2时,x的取值范围是( )A.(8,+∞) B.(8,9] C.[8,9] D.(0,8)(2)已知函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x 的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]【举一反三】1.若,则实数的取值范围是( )A. B. C. D.2.设函数,则满足的x的取值范围是()A. B. C. D.3.定义在R 上的偶函数在上单调递增,且,则满足的x 的集合为______.4.设函数,若,则实数a 的取值范围是 _______。
函数的单调性(解析版)
考点10 函数的单调性【命题解读】考查函数的基本性质,如奇偶性、单调性与最值、函数与方程(零点)、不等式的解法等,考查数学式子变形的能力、运算求解能力、等价转化思想和数形结合思想.其中函数与方程考查频率较高.涉及函数性质的考查;【基础知识回顾】1. 函数单调性的定义(1)一般地,对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2)(或都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是增函数(或减函数).(2)如果函数y =f(x)在某个区间上是增函数(或减函数),那么就说f(x)在这个区间上具有(严格的)单调性,这个区间叫做f(x)的单调区间;若函数是增函数则称该区间为增区间,若函数为减函数则称该区间为减区间.2. 函数单调性的图像特征对于给定区间上的函数f(x),若函数图像从左向右连续上升,则称函数在该区间上单调递增;若函数图像从左向右连续下降,则称函数在该区间上单调递减.3. 复合函数的单调性对于函数y =f(u)和u =g(x),如果当x ∈(a ,b)时,u ∈(m ,n),且u =g(x)在区间(a ,b)上和y =f(u)在区间(m ,n)上同时具有单调性,则复合函数y =f(g(x))在区间(a ,b)上具有单调性,并且具有这样的规律:增增(或减减)则增,增减(或减增)则减.4. 函数单调性的常用结论(1)对∀x 1,x 2∈D(x 1≠x 2),f (x 1)-f (x 2)x 1-x 2>0⇔f(x)在D 上是增函数; f ()x 1-f ()x 2x 1-x 2<0⇔f(x)在D 上是减函数.(2)对勾函数y =x +ax (a>0)的增区间为(-∞,-a]和[a ,+∞),减区间为(-a ,0)和(0,a). (3)在区间D 上,两个增函数的和是增函数,两个减函数的和是减函数.(4)函数f(g(x))的单调性与函数y =f(u)和u =g(x)的单调性的关系是“同增异减”5.常用结论1.若函数f (x ),g (x )在区间I 上具有单调性,则在区间I 上具有以下性质: (1)当f (x ),g (x )都是增(减)函数时,f (x )+g (x )是增(减)函数;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反; (4)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”. 2.增函数与减函数形式的等价变形:∀x 1,x 2∈[a ,b ]且x 1≠x 2,则(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.1、函数y =x 2-5x -6在区间[2,4]上是( )A .递减函数B .递增函数C .先递减再递增函数D .先递增再递减函数【答案】C【解析】作出函数y =x 2-5x -6的图象(图略)知开口向上,且对称轴为x =52,在[2,4]上先减后增.故选C.2、函数y =1x -1在[2,3]上的最小值为( )A .2 B.12 C.13 D .-12【答案】B【解析】 因为y =1x -1在[2,3]上单调递减,所以y min =13-1=12. 故选B.3、已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x的取值范围是( )A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23【答案】D【解析】因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13.所以0≤2x -1<13, 解得12≤x <23.故选D.4、设函数f(x)在R 上为增函数,则下列结论一定正确的是(D )A. y =1f (x )在R 上为减函数 B. y =|f (x )|在R 上为增函数C. y =-1f (x )在R 上为增函数 D. y =-f (x )在R 上为减函数 【答案】D.【解析】 如f (x )=x 3,则y =1f (x )的定义域为(-∞,0)∪(0,+∞),在x =0时无意义,A 、C 错;y =|f (x )|是偶函数,在R 上无单调性,B 错.故选D.5、对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--在同一坐标系内的图象不可能是( )A .B .C .D .【答案】BD .【解析】:若1a >,则对数函数log a y x =在(0,)+∞上单调递增,二次函数2(1)y a x x =--开口向上,对称轴102(1)x a =>-,经过原点,可能为A ,不可能为B .若01a <<,则对数函数log a y x =在(0,)+∞上单调递减,二次函数2(1)y a x x =--开口向下,对称轴102(1)x a =<-,经过原点,可能为C ,不可能为D .故选:BD .6、函数y =|-x 2+2x +1|;单调递减区间是 . 【答案】(1-2,1),(1+2,+∞);(,(1,1+2).【解析】作出函数y =|-x 2+2x +1|的图像如图所示.由图像可知,函数y =|-x 2+2x +1|的单调增区间为(1-2,1),(1+2,+∞);单调递减区间是(-∞,1-2),(1,1+2).故应分别考向一函数单调性的证明与判断例1、判断函数f(x)=x1+x 2在区间[1,+∞)上的单调性并证明你的结论.【解析】 函数f (x )=21xx +在区间[1,+∞)上是单调减函数,证明如下: 设x 1、x 2∈[1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=1211x x +-2221x x +=2212212212(1)(1)1)(1)x x x x x x +-+++(=11122212()(1)1)(1)x x x x x x -++(.∵x 1、x 2∈[1,+∞),且x 1<x 2,∴ x 1-x 2<0,1-x 1x 2<0. 又(1+x 21)(1+x 22)>0,∴ f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2).∴ f (x )=21xx +在[1,+∞)上为减函数. 变式1、试讨论函数f (x )=x +kx (k >0)的单调性.【解析】.法一:由解析式可知,函数的定义域是(-∞,0)∪(0,+∞).在(0,+∞)内任取x 1,x 2,令x 1<x 2,那么f (x 2)-f (x 1)=⎝⎛⎭⎫x 2+k x 2-⎝⎛⎭⎫x 1+k x 1=(x 2-x 1)+k ⎝⎛⎭⎫1x 2-1x 1=(x 2-x 1)x 1x 2-k x 1x 2.因为0<x 1<x 2,所以x 2-x 1>0,x 1x 2>0. 故当x 1,x 2∈(k ,+∞)时,f (x 1)<f (x 2), 即函数在(k ,+∞)上单调递增. 当x 1,x 2∈(0,k )时,f (x 1)>f (x 2), 即函数在(0,k )上单调递减.考虑到函数f (x )=x +kx (k >0)是奇函数,在关于原点对称的区间上具有相同的单调性,故在(-∞,-k )上单调递增,在(-k ,0)上单调递减.综上,函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减. 法二:由解析式可知,函数的定义域是(-∞,0)∪(0,+∞). f ′(x )=1-kx 2.令f ′(x )>0得x 2>k ,即x ∈(-∞,-k )或x ∈(k ,+∞),故函数的单调增区间为(-∞,-k )和(k ,+∞).令f ′(x )<0得x 2<k ,即x ∈(-k ,0)或x ∈(0,k ),故函数的单调减区间为(-k ,0)和(0,k ). 故函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减. 变式2、试讨论函数f(x)=axx 2+1(a >0)在(0,+∞)上的单调性,并证明你的结论.【解析】 (方法1)设x 1,x 2∈(0,+∞)且x 1<x 2,则f(x 1)-f(x 2)=ax 1x 21+1-ax 2x 22+1=ax 1(x 22+1)-ax 2(x 21+1)(x 21+1)(x 22+1)=a[x 1x 22+x 1-x 2x 21-x 2](x 21+1)(x 22+1)=a (x 2-x 1)(x 1x 2-1)(x 21+1)(x 22+1). ∵x 1<x 2,x 2-x 1>0,又a>0,(x 21+1)(x 22+1)>0. ∴当x 1,x 2∈(0,1)时,x 1x 2-1<0,从而a (x 2-x 1)(x 1x 2-1)(x 21+1)(x 22+1)<0,即f(x 1)-f(x 2)<0⇒f(x 1)<f(x 2),此时f(x)=axx 2+1 (a >0)单调递增; 当x 1,x 2∈(1,+∞)时,x 1x 2-1>0,从而a (x 2-x 1)(x 1x 2-1)(x 21+1)(x 22+1)>0,即f(x 1)-f(x 2)>0⇒f(x 1)>f(x 2),此时f(x)=axx 2+1 (a >0)单调递减. ∴函数f(x)在(0,1)上为增函数,在(1,+∞)上为减函数.方法总结: 1. 判断函数的单调性,通常的方法有:(1)定义法;(2)图像法;(3)利用常见函数的单调性;(4)导数法.而要证明一个函数的单调性,基本方法是利用单调性定义或导数法.2. 应用函数单调性的定义证明函数的单调性,其基本步骤如下:取值→作差→变形→确定符号→得出结论其中,变形是十分重要的一步,其目的是使得变形后的式子易于判断符号,常用的方法是(1)分解因式;(2)配方;(3)通分约分等.考向二 函数的单调区间例1、求下列函数的单调区间(1)y =-x 2+2|x|+1;(2)、.函数y =|x |(1-x )的单调递增区间是________.【解析】(1)由2221,0-x 21,0x x x x x ⎧-++⎪⎨-+⎪⎩≥,<,即22(1)2,0-1)2,0.x x y x x ⎧--+⎪=⎨++⎪⎩≥(<画出函数图像如图所示,单调增区间为(-∞,-1],[0,1],单调减区间为[-1,0],[1,+∞).(2)y =|x |(1-x )=⎩⎨⎧x (1-x ),x ≥0,-x (1-x ),x <0 =⎩⎨⎧-x 2+x ,x ≥0,x 2-x ,x<0,函数的大致图象如图所示.由图易知函数的单调递增区间是⎣⎢⎡⎦⎥⎤0,12.变式1、(2019·河北石家庄二中模拟)函数f (x )=|x 2-3x +2|的单调递增区间是( )A.⎣⎡⎭⎫32,+∞ B.⎣⎡⎦⎤1,32和[2,+∞)C .(-∞,1]和⎣⎡⎦⎤32,2D.⎝⎛⎦⎤-∞,32和[2,+∞)【答案】B【解析】y =|x 2-3x +2|=⎩⎪⎨⎪⎧x 2-3x +2,x ≤1或x ≥2,-x 2-3x +2,1<x <2.如图所示,函数的单调递增区间是⎣⎡⎦⎤1,32和[2,+∞).变式2、 函数f(x)=x +12x +1的单调减区间为________________.【答案】 ⎝⎛⎭⎫-∞,-12,⎝⎛⎭⎫-12,+∞【解析】 因为f(x)=x +12x +1=x +12+122x +1=12+14⎝⎛⎭⎫x +12,且定义域为⎩⎨⎧⎭⎬⎫x|x ≠-12,所以函数f(x)的单调减区间为(-∞,-12),(-12,+∞).方法总结:求函数的单调区间的常用方法与判断函数的单调性的方法类似,有定义法、图像法、利用常见函数的单调性、导数法等.值得引起高度重视的是:(1)函数的单调区间是函数定义域的子区间,所以求单调区间,必须先求出定义域; (2)对于基本初等函数的单调区间,可以直接利用已知结论求解考向三 复合函数的单调区间 例3、求下列函数的单调区间(1)f(x)=x 2-2x -3;(2)212log (32)y x x =-+ 【解析】(2)f(x)=x 2-2x -3的定义域为(-∞,-1]∪[3,+∞).令t =x 2-2x -3,∵t =x 2-12x -3在x ∈(-∞,-1]上是减函数,在x ∈[3,+∞)为增函数,又y =t 在t ∈(0,+∞)上是增函数,∴函数f(x)=x 2-2x -3的单调减区间是(-∞,-1],单调递增区间是[3,+∞).(2)令u =x 2-3x +2,则原函数可以看成12log y u =与u =x 2-3x +2的复合函数.由x 2-3x +2>0,解得x <1或x >2.∴函数的定义域为(-∞,1)∪(2,+∞). 又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是减函数,在(2,+∞)上是增函数.而12log y u =在(0,+∞)上是减函数,∴的单调减区间为(2,+∞),单调增区间为(-∞,1).变式1、函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(),0-∞B .()2,+∞C .()0,+∞D .(),2-∞- 【答案】 D【解析】 根据复合函数的单调性判断.因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2). 变式2、函数f (x )=2x -x 2的单调递增区间为( )A.⎝ ⎛⎦⎥⎤-∞,12B.⎣⎢⎡⎦⎥⎤0,12 C.⎣⎢⎡⎭⎪⎫12,+∞D.⎣⎢⎡⎦⎥⎤12,1【答案】B【解析】令t =x -x 2,由x -x 2≥0,得0≤x ≤1,故函数的定义域为[0,1].因为g (t )=2t 是增函数,所以f (x )的单调递增区间即t =x -x 2的单调递增区间.利用二次函数的性质,得t =x -x 2的单调递增区间为⎣⎢⎡⎦⎥⎤0,12,即原函数的单调递增区间为⎣⎢⎡⎦⎥⎤0,12.故选B.方法总结:求复合函数的单调性,首先要注意复合函数的定义域,其次要确定函数是有哪些基本函数复合而成,根据同增异减的性质确定复合函数的单调性。
函数的单调性
知识点1 函数的单调性(1) 函数()y f x =在区间上的递增与递减即单调区间在函数()y f x =的定义域内的一个区间A 上,如果对于任意的两个数12,x x A ∈,当12x x <时,都有12()()f x f x <,那么,就称函数()y f x =在区间A 上是增加的,也称函数在区间A 上是递增的。
在函数()y f x =的定义域内的一个区间A 上,如果对于任意的两个数12,x x A ∈,当12x x <时,都有12()()f x f x >,那么,就称函数()y f x =在区间A 上是减少的,也称函数在区间A 上是递减的。
如果函数()y f x =在区间A 上是增加的或是减少的,那么称A 为单调区间。
(2) 单调性与单调函数如果函数()y f x =在定义域的某个子集A 上是增加的或是减少的,那么就称()y f x =在这个子集A 上具有单调性,如果函数在整个定义域内是增加的或是减少的,我们分别称这个函数为增函数或减函数,统称为单调函数。
注意:①函数的单调性是函数在定义域的某个子集上的性质。
这个子集可以是整个定义域,也可以是定义域的真子集。
②有的函数不具备单调性③区间端点的写法:在写单调区间时,包括端点也可以,不包括端点也可以,但对于某些点无意义时单调区间就不包括这些点。
【例1】 求下列函数的单调性及其单调区间(1)2,1()2,112,1x x f x x x x ≥⎧⎪=-≤<⎨⎪-<-⎩(2) 2()2||1f x x x =-+变式1:下列说法正确的有( )① 若12,x x I ∈,当12x x <,有12()()f x f x <,则()y f x =在I 上是增函数;② 函数2y x =在R 上是增函数;③函数1y x =-在定义域上是增函数; ③ 1y x =的单调区间是(,0)(0,)-∞+∞ A. 0个 B. 1个 C. 2个 D. 3个2. ()1x f x x =-在( ) A. (,1)(1,)-∞+∞是增函数 B. (,1)(1,)-∞+∞上是减函数C. (,1)(1,)-∞+∞和是增函数D. (,1)(1,)-∞+∞和上是减函数知识点2 函数单调性的判定方法判断函数单调性的方法很多,常见的有直接法、图像法、定义法。
函数的单调性和奇偶性
一 、函数的单调性1、函数的单调性定义:设函数)(x f y =的定义域为A ,区间A I ⊆,如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I上是单调增函数,I 称为)(x f y =的单调增区间;如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I上是单调减函数,I 称为)(x f y =的单调减区间。
2、确定函数的单调性或单调区间的常用方法: (1)①定义法(取值――作差――变形――定号);(2)在选择填空题中还可用数形结合法、特殊值法等等,特别要注意(0by ax a x=+>,0)b >型函数的图象和单调性在解题中的运用:增区间为(,)-∞+∞,减区间为[. 例如:(1)若函数2)1(2)(2+-+=x a x x f在区间(-∞,4] 上是减函数,那么实数a 的取值范围是______ (答:3-≤a));(2)已知函数1()2ax f x x +=+在区间()2,-+∞上为增函数,则实数a 的取值范围_____(答:1(,)2+∞)(3)复合函数法:复合函数单调性的特点是同增异减 (4)若)(x f 与)(x g 在定义域内都是增函数(减函数),那么)()(x g x f +在其公共定义域内是增函数(减函数)。
3、单调性的说明:(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域; (2)函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即)(2121x x x x <<;三是同属于一个单调区间,三者缺一不可; (3)函数的单调性是对某个区间而言的,所以受到区间的限制,如函数xy 1=分别在)0,(-∞和),0(+∞内都是单调递减的,但是不能说它在整个定义域即),0()0,(+∞-∞ 内是单调递减的,只能说函数xy 1=的单调递减区间为)0,(-∞和),0(+∞。
单调性与最大(小)值——单调性 课件
函数单调性与单调区间的定义
一般地,设函数 f(x)的定义域为 I ,区间 D I :
如果x1, x2 D,当x1 x2时,都有f (x1) f (x2 ), 那么就称函数f (x)在区间D上单调递增(如图(1)).
特别地,函数 f(x)在它的定义域上单调递增时,我们就称它是增函数.
如果x1, x2 D,当x1 x2时,都有f (x1) f (x2 ), 那么就称函数f (x)在区间D上单调递减(如图(2)).
你能说明为什么 f (x1) f (x2 ) 吗?
x1 x2 0,x1 x2 0.
由不等式性质7可得:( x1)2 ( x2)2.
即x12 x22 , f (x1) f (x2 ).
在初中,我们利用函数图象研究过函数值随自变量的增大而增大(或减小)的性质,这一性质叫 做函数的单调性. 下面进一步用符号语言刻画这种性质.
1)
由x1, x2 (1, ),得x1 1, x2 1.
所以x1x2 1, x1x2 1 0.
又由x1 x2 , 得x1 x2 0.
于是 x1 x2 x1x2
所以,函数
(
y
x1x2
x
1)
1
0,即y1 y2.
在区间(1, )上单调递增.
x
总结:虽然我们可以通过函数的图象判断函数的单调性,但证明函数在某个区间上单调递增(减)
图象在 y 轴左侧部分从左到右是下降的,也就是说当x≤0时, y 随 x 的增大而减小.
用符号语言描述就是:
任意取x1, x2 (,0],得到f (x1) x12 , f (x2 ) x22 ,
那么当x1 x2时,有f (x1) f (x2 ).
这时我们就说,函数 f (x) x2在区间 (,0] 上是单调递减的.
2023年新高考数学大一轮复习专题15 单调性问题(原卷版)
专题15单调性问题【考点预测】知识点一:单调性基础问题 1.函数的单调性函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数.2.已知函数的单调性问题①若()f x 在某个区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);反之,要满足()0f x '>,才能得出()f x 在某个区间上单调递增;②若()f x 在某个区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0);反之,要满足()0f x '<,才能得出()f x 在某个区间上单调递减.知识点二:讨论单调区间问题 类型一:不含参数单调性讨论(1)求导化简定义域(化简应先通分,尽可能因式分解;定义域需要注意是否是连续的区间); (2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)求根做图得结论(如能直接求出导函数等于0的根,并能做出导函数与x 轴位置关系图,则导函数正负区间段已知,可直接得出结论);(4)未得结论断正负(若不能通过第三步直接得出结论,则先观察导函数整体的正负); (5)正负未知看零点(若导函数正负难判断,则观察导函数零点);(6)一阶复杂求二阶(找到零点后仍难确定正负区间段,或一阶导函数无法观察出零点,则求二阶导); 求二阶导往往需要构造新函数,令一阶导函数或一阶导函数中变号部分为新函数,对新函数再求导. (7)借助二阶定区间(通过二阶导正负判断一阶导函数的单调性,进而判断一阶导函数正负区间段);类型二:含参数单调性讨论(1)求导化简定义域(化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)恒正恒负先讨论(变号部分因为参数的取值恒正恒负);然后再求有效根;(4)根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系); (5)导数图像定区间; 【方法技巧与总结】1.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数;(3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性. 注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论:()0f x '>⇒()f x 单调递增;()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减;()f x 单调递减()0f x '⇒≤.【题型归纳目录】题型一:利用导函数与原函数的关系确定原函数图像 题型二:求单调区间题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围 题型四:不含参数单调性讨论 题型五:含参数单调性讨论 情形一:函数为一次函数 情形二:函数为准一次函数 情形三:函数为二次函数型 1.可因式分解 2.不可因式分解型情形四:函数为准二次函数型 题型六:分段分析法讨论 【典例例题】题型一:利用导函数与原函数的关系确定原函数图像例1.(2022·陕西·汉台中学模拟预测(文))设函数()f x 在定义域内可导,()f x 的图象如图所示,则其导函数()'f x 的图象可能是( )A .B .C .D .例2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-例3.(2022·安徽马鞍山·三模(理))已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如图所示,则下列结论正确的是( )A .()()()f b f c f a >>B .()()()f b f c f e >=C .()()()f c f b f a >>D .()()()f e f d f c >>【方法技巧与总结】原函数的单调性与导函数的函数值的符号的关系,原函数()f x 单调递增⇔导函数()0f x '≥(导函数等于0,只在离散点成立,其余点满足()0f x '>);原函数单调递减⇔导函数()0f x '≤(导函数等于0,只在离散点成立,其余点满足0()0f x <).题型二:求单调区间例4.(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .(-∞,0)B .(1,+∞)C .(-∞,1)D .(0,+∞)例5.(2021·西藏·林芝市第二高级中学高三阶段练习(理))函数()()3e xf x x =-的单调增区间是( )A .()2-∞,B .()03,C .()14,D .()2+∞,例6.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.【方法技巧与总结】求函数的单调区间的步骤如下: (1)求()f x 的定义域 (2)求出()f x '.(3)令()0f x '=,求出其全部根,把全部的根在x 轴上标出,穿针引线.(4)在定义域内,令()0f x '>,解出x 的取值范围,得函数的单调递增区间;令()0f x '<,解出x 的取值范围,得函数的单调递减区间.若一个函数具有相同单调性的区间不只一个,则这些单调区间不能用“”、“或”连接,而应用“和”、“,”隔开.题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围例7.(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m的取值范围为( ) A .(),1-∞-B .[]1,1-C .[]1,3D .[]1,3-例8.(2021·河南·高三阶段练习(文))已知函数()()41x f x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭例9.(2022·全国·高三专题练习)若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,3),则b +c =( ) A .-12B .-10C .8D .10例10.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______.例11.(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.例12.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.例13.(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.例14.(2022·全国·高三专题练习(文))若函数h (x )=ln x -12ax 2-2x (a ≠0)在[1,4]上存在单调递减区间”,则实数a 的取值范围为________.例15.(2020·江苏·邵伯高级中学高三阶段练习)若函数3y x ax =-+在[)1,+∞上是单调函数,则a 的最大值是______.例16.(2022·全国·高三专题练习(文))已知函数f (x )=3xa-2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则实数a 的取值范围是________.【方法技巧与总结】(1)已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于或恒小于等于零求解,先分析导函数的形式及图像特点,如一次函数最值落在端点,开口向上的抛物线最大值落在端点,开口向下的抛物线最小值落在端点等.(2)已知区间上函数不单调,转化为导数在区间内存在变号零点,通常用分离变量法求解参变量范围. (3)已知函数在区间上存在单调递增或递减区间,转化为导函数在区间上大于零或小于零有解. 题型四:不含参数单调性讨论例17.(2022·山东临沂·三模)已知函数()21ln ax f x x-=,其图象在e x =处的切线过点()22e,2e .(1)求a 的值;(2)讨论()f x 的单调性;例18.(2022·天津·模拟预测)已知函数()()()1ln 10x f x x x++=>.试判断函数()f x 在()0+∞,上单调性并证明你的结论;例19.(2022·天津市滨海新区塘沽第一中学三模)已知函数()()ln 1x a x a f x x+++=(1)若函数()f x 在点()()e,e f 处的切线斜率为0,求a 的值.(2)当1a =时.设函数()()()xf x G x f x '=,求证:()y f x =与()y G x =在[]1,e 上均单调递增;例20.(2022·浙江·杭州高级中学模拟预测)已知函数()()ln ln e1,,0x af x x a x a a +=+-+>->. 当1a =时,求()f x 的单调区间题型五:含参数单调性讨论 情形一:函数为一次函数例21.(2022·江西·二模(文))己知函数()ln 1(),()e 1x f x ax x a R g x x =++∈=-. 讨论()f x 的单调性;例22.(2022·北京八十中模拟预测)已知函数()axf x=. (1)当1a =时,求函数()f x 在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例23.(2022·广东·模拟预测)已知函数()ln(1)(),()22f x x mx m g x x n =--∈=+-R . 讨论函数()f x 的单调性;情形二:函数为准一次函数例24.(2022·全国·模拟预测(文))设函数()1ln a xf x x+=,其中R a ∈. 当0a ≥时,求函数()f x 的单调区间;例25.(2022·江苏·华罗庚中学三模)已知函数()()2e 3x R f x ax a =-+∈ ,()ln e x g x x x =+(e 为自然对数的底数,25e 9<). 求函数()f x 的单调区间;例26.(2022·云南师大附中模拟预测(理))已知函数()()21ln 12f x x x ax a x =-+-,其中0a .讨论()f x 的单调性;例27.(2022·云南师大附中高三阶段练习(文))已知函数()ln f x x x ax =-. 讨论()f x 的单调性;情形三:函数为二次函数型 1.可因式分解例28.(2022·全国·模拟预测)已知函数[]21()2ln ln(1),02=-+-≠f x k x x kx k . 讨论()f x 的单调性;例29.(2022·天津·二模)已知函数221()2ln ()2f x a x x ax a R =-++∈. (1)当1a =时,求曲线()y f x =在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例30.(2022·安徽师范大学附属中学模拟预测(文))已知函数()()2ln 21f x x ax a x =+++讨论f (x )的单调性;例31.(2022·浙江省江山中学模拟预测)函数2()ln 1(,0)x f x x a R a a=-+∈≠.讨论函数()y f x =的单调性;例32.(2022·广东·潮州市瓷都中学三模)已知函数()()()322316R f x x m x mx x =+++∈.讨论函数()f x 的单调性;例33.(2022·湖南·长沙县第一中学模拟预测)已知函数()()()21ln 2a f x x a x x a R =+--∈. 求函数()f x 的单调区间;例34.(2022·陕西·宝鸡中学模拟预测(文))已知函数()()()21212ln R 2f x ax a x x a =-++∈ (1)当1a =-时,求()f x 在点()()1,1f 处的切线方程; (2)当0a >时,求函数()f x 的单调递增区间.2.不可因式分解型例35.(2022·江苏徐州·模拟预测)已知函数2()4ln ,f x x x a x a =-+∈R ,函数()f x 的导函数为()'f x . 讨论函数()f x 的单调性;例36.(2022·天津南开·三模)已知函数()()()211ln 2f x x ax ax x a R =+-+∈,记()f x 的导函数为()g x 讨论()g x 的单调性;【方法技巧与总结】1.关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2.需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段.3.利用草稿图像辅助说明. 情形四:函数为准二次函数型例37.(2022·安徽·合肥市第八中学模拟预测(理))设函数23ln 2()2,()2,e e x xx x f x ax ax g x ax a x =+-=++∈R . 讨论()f x 的单调性;例38.(2022·全国·二模(理))已知函数()()2x e 2e xf x a ax =+++.讨论()f x 的单调性;例39.(2022·安徽·合肥一六八中学模拟预测(理))已知函数()e e x x f x ax -=--(e 为自然对数的底数),其中R a ∈.试讨论函数()f x 的单调性;例40.(2022·浙江·模拟预测)已知函数()()2e 2e x x f x a a x =+--.讨论()f x 的单调性;题型六:分段分析法讨论例41.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()()12211ln x f x a x x x a -+=+-++-(0a >,且1a ≠)求函数()f x 的单调区间;【方法技巧与总结】1.二次型结构2ax bx c ++,当且仅当0a =时,变号函数为一次函数.此种情况是最特殊的,故应最先讨论,遵循先特殊后一般的原则,避免写到最后忘记特殊情况,导致丢解漏解.2.对于不可以因式分解的二次型结构2ax bx c ++,我们优先考虑参数取值能不能引起恒正恒负. 3.注意定义域以及根的大小关系.【过关测试】 一、单选题1.(2022·江西·上饶市第一中学模拟预测(理))已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥B .22a -≤≤C .2a ≥-D .0a ≥或2a ≤-2.(2022·全国·哈师大附中模拟预测(理))已知()21cos 4f x x x =+,()f x '为()f x 的导函数,则()y f x '=的图像大致是( )A .B .C .D .3.(2022·江西师大附中三模(理))下列函数中既是奇函数又是增函数的是( )A .1()f x x x=-B .122()xxf x ⎛+⎫⎪⎝⎭= C .3()tan f x x x =+ D .)()lnf x x =4.(2022·北京·首都师范大学附属中学三模)下列函数中,既是偶函数又在()0,2上单调递减的是( ) A .2x y = B .3y x =- C .cos 2x y =D .2ln2xy x-=+ 5.(2022·陕西·西北工业大学附属中学模拟预测(文))已知函数()3ln 2f x x x =--,则不等式()()2325f x f x ->-的解集为( )A .()4,2-B .()2,2-C .()(),22,∞∞--⋃+D .()(),42,-∞-+∞6.(2022·江西宜春·模拟预测(文))“函数sin y ax x =-在R 上是增函数”是“0a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2022·江西宜春·模拟预测(文))已知函数()()1e x f x x mx =--在区间[]2,4上存在单调减区间,则实数m 的取值范围为( )A .()22e ,+∞B .(),e -∞C .()20,2eD .()0,e8.(2022·江苏·南京市天印高级中学模拟预测)已知1,1a b >>,且1(1)e e (e a b b a a ++=+为自然对数),则下列结论一定正确的是( )A .ln()1a b +>B .ln()0-<a bC .122a b +<D .3222a b +< 二、多选题9.(2022·广东·信宜市第二中学高三开学考试)已知()ln x f x x =,下列说法正确的是( ) A .()f x 在1x =处的切线方程为1y x =+ B .()f x 的单调递减区间为(),e +∞C .()f x 的极大值为1eD .方程()1f x =-有两个不同的解 10.(2022·全国·模拟预测)已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',对于任意,()0x ∈+∞,都有()ln ()0x xf x f x '+>,则使不等式1()ln 1f x x x +>成立的x 的值可以为( ) A .12 B .1 C .2 D .311.(2022·全国·高三专题练习)下列函数在区间(0,+∞)上单调递增的是( )A .y =x ﹣(12)x B .y =x +sin x C .y =3﹣x D .y =x 2+2x +112.(2022·广东·模拟预测)已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为( )A .B .1-C .1D 三、填空题13.(2022·山西运城·模拟预测(理))若命题3:[1,1],2p x x a x ∀∈-≥-为假命题,则实数a 的取值范围是___________.14.(2022·重庆八中模拟预测)写出一个具有性质①②③的函数()f x =____________.①()f x 的定义域为()0,+∞;②()()()1212f x x f x f x =+;③当()0,x ∈+∞时,()0f x '>.15.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈ ,则θ的取值范围是___________.16.(2022·江西萍乡·二模(文))已知函数()f x 是R 上的奇函数,且()33f x x x =+,若非零正实数,m n 满足()()20f m mn f n -+=,则11m n+的小值是_______.四、解答题17.(2022·北京工业大学附属中学三模)已知函数()ln R k f x x k k x =--∈, (1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e) 内无零点,求k 的取值范围.18.(2022·青海·大通回族土族自治县教学研究室二模(文))已知函数()21ln 2f x x a x ax =--()0a >. (1)讨论()f x 的单调性;(2)若()f x 恰有一个零点,求a 的值.19.(2022·全国·高三专题练习)已知函数2()(1)=--x f x k x e x ,其中k ∈R.当k 2≤时,求函数()f x 的单调区间;20.(2022·全国·高三专题练习)已知函数()e x f x ax -=+.讨论()f x 的单调性;21.(2022·全国·高三专题练习)已知函数()ln e xx a f x +=.当1a =时,判断()f x 的单调性;22.(2022·全国·高三专题练习)讨论函数2(x)e 2x x f x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>.。
函数专题:利用函数单调性与奇偶性解不等式的6种常见考法-【题型分类归纳】
函数专题:利用函数单调性与奇偶性解不等式的6种常见考法一、单调性定义的等价形式(1)函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x f x f x x .(2)函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x f x f x x .二、定义法判断函数奇偶性判断()f x -与()f x 的关系时,也可以使用如下结论:如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数; 如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数. 三、利用单调性、奇偶性解不等式原理 1、解()()<f m f n 型不等式(1)利用函数的单调性,去掉函数符号“f ”,将“抽象”的不等式问题转化为“具体”的不等式问题求解;(2)若不等式一边没有函数符号“f ”,而是常数(如()<f m a ),那么我们应该将常数转化带有函数符号“f ”的函数值再解。
函数的单调性和奇偶性精品讲义
第三讲 函数的单调性、奇偶性一、知识点归纳函数的单调性〔1〕定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)〔f (x 1)>f (x 2)〕,那么就说f (x )在区间D 上是增函数〔减函数〕,区间D 为函数y =f (x )的增区间〔减区间〕概括起来,即1212121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ⎧⎧<>⎧⎪⎪⎨⎨<>⎪⎩⎪⎩⎨⎧<>⎧⎪⎪⎨⎨⎪><⎪⎩⎩⎩增函数或“同增异减”减函数或 〔2〕函数单调性的证明的一般步骤:①设1x ,2x 是区间D 上的任意两个实数,且12x x < ②作差12()()f x f x -,并通过因式分解、配方、通分、有力化等方法使其转化为易于判断正负的式子;③确定12()()f x f x -的符号;④给出结论证明函数单调性时要注意三点:①1x 和2x 的任意性,即从区间D 中任取1x 和2x ,证明单调性时不可随意用量额特殊值代替;②有序性,即通常规定12x x <;③同区间性,即1x 和2x 必须属于同一个区间。
〔3〕设复合函数()[]x g f y =是定义区间M 上的函数,假设外函数f(x)与内函数g(x)的单调性相反,那么()[]x g f y =在区间M 上是减函数;假设外函数f(x)与内函数g(x)的单调性相同,那么()[]x g f y =在区间M 上是增函数。
概括起来,即“同增异减II 号〞 〔4〕简单性质: ①()f x()f x 与()f x -及1()f x 单调性相反 ②在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。
函数的单调性
函数的单调性1.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
(3)设复合函数y = f [g(x )],其中u =g(x ) , A 是y = f [g(x )]定义域的某个区间,B 是映射g:x →u =g(x ) 的象集:①若u =g(x ) 在A 上是增(或减)函数,y = f (u )在B 上也是增(或减)函数,则函数y = f [g(x )]在A 上是增函数;②若u =g(x )在A 上是增(或减)函数,而y = f (u )在B 上是减(或增)函数,则函数y = f [g(x )]在A 上是减函数。
(4)判断函数单调性的方法步骤利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f (x 1)-f (x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f (x 1)-f (x 2)的正负);○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。
(5)简单性质①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华中科技大学管理学院
8
例4. 证明 证: 令
1 2 f ( x) x x ( x 1) ln( 1 x) , 2
因此,当 x > 0 时, f ( x) 0 ,从而 f ( x) 严格单调增,
这说明 f (x)严格单调增,故
得证。
华中科技大学管理学院
9
例5. 证明 证: 令
的单调区间.
2 解: f ( x) 6 x 18 x 12 6( x 1)( x 2)
令 f ( x) 0 , 得 x 1, x 2
x
f ( x) f ( x)
故
( , 1)
1
0
(1 , 2)
2 0 1
( 2 , )
y
2
2 的单调增区间为 ( , 1) , (2 , ); 1
1
2 3 1
所以三个拐点共线.
1 3 8 4 3
1
2 3 1
华中科技大学管理学院
机动 目录 上页 下页 返回 结束
xx xx x x 1 x x 1 22 x 1 x 1 22 x 22
12
等价定义 . 若连接曲线y = f (x)上任意两点A,B的 弦恒在曲线段 AB 的上侧(或下侧),则称 f (x) 为凹(凸)函数;而称曲线为凹(凸)曲线。
由于连接点A,B的弦可以表示为
等价定义:若对任给 有
为[A,B]上的凹函数。若将 ≤换成<,则 称为严格凹函数。若将≤换成≥,则称为凸函数。
例2: 证明数列 {n2e-n} (n≥2) 单调减。 证: 令
6
可见 f (x) 在[2,∞)上单调减,从而{n2e-n}单调减.
某些不等式与单调性有关,因而可用定理1来证明。 例如
华中科技大学管理学院
7
例3. 证明不等式
证: 令
要证明不等式成立,只需证明 f (x) >1 即可。因
同理当x < 0 时,由
(2 2 x) ( x 2 1) 2 (1 2 x x 2 ) 2( x 2 1) 2 x y ( x 2 1) 4 2( x 3 3x 2 3x 1) ( x 2 1) 3 2( x 1)( x 2 3)( x 2 3) ( x 2 1) 3
单调,故必要性成立。 其次若条件满足但 f (x)不严格单调,即存在
x1 x2 , 使
f ( x1 ) f ( x2 ) ,
则由单调性得出 f (x) 于[ x1 , x2 ]上为常数,从而于 其上 f ( x) 0 , 这与条件矛盾。故充分性成立。
华中科技大学管理学院
4
例1. 确定函数
x1 x2 f ( x1) f ( x2 ) 2 f ( ) 2
f ( x1 ) f ( x2 ) 2
(
1 2!
x2 x1 2 [f 2
)
(1 ) f ( 2 )]
当 f ( x) 0时,
x1 x2 f( ), 2
说明 (1) 成立; (2) 证毕
华中科技大学管理学院
则称
定理2.(凹凸判定法) 设函数
13
在区间I 上有二阶导数 在 I 内图形是凹的 ;
(1) 在 I 内 (2) 在 I 内 证:
则
则 在 I 内图形是凸的 . 利用一阶泰勒公式可得
f (1 ) x1 x2 x1 x2 x1 x2 2 x1 x2 f ( x1 ) f ( ) f ( ) ) ( x1 ) 2 ! ( x1 2 2 2 2 x1 x2 x1 x2 f ( 2 ) x1 x2 x1 x2 2 )( x2 f ( x2 ) f ( ) f ( ) ) 2 ! ( x2 2 2 2 2 两式相加
机动 目录 上页 下页 返回 结束
华中科技大学管理学院
14
几何解释:当曲线为凹的时,当 x 增大,曲线上的点 P 的切线斜率 亦随之增大,在 f (x) 二次
可微的条件下,这等价于 f ( x) 0 . 定理3:若 f (x) 在[a , b] 上严格凸(或严格凹) 的充要条件是:在 (a , b) 内
常用此来判定方程根的唯一性。 例6:设 (0,1/a) 内有唯一根。 证明方程 aeax = x 在区间
证:原方程等价于 xe-ax-a = 0 .令f (x) = xe-ax-a , 则 f (0) = -a , f (1/a) = (ae)-1-a > 0 , 由介值定理, 方程 f (x) = 0 在(0,1/a)内至少有一根,另一方面,由 知f (x)在(0,1/a)内严格单调增,因此原方程恰有一根。
例9. 求曲线 解: 1) 求 y
17
的凹凸区间及拐点.
36 x( x 2 ) y 12 x3 12 x 2 , 3 2) 求拐点可疑点坐标 (0,1) ( 2 , 11 ) 3 27 2 11 x 0 , x , y 1 , y 对应 令y 0 得 1 2 3 1 2 27
3) 列表判别
2 3
x ( , 0) y y 凹
0 0 1
(0 , 2 ) 3
(2 , ) 3 0
2 3 11 27
凸
凹
2) 上 2 在 ( 0 , ( , 0 ) 上向上凹 , 故该曲线在 及 ( 3 , ) 3 2 , 11 ) 均为拐点. ( 点 ( 0 , 1 ) 及 向上凸 , 3 27
华中科技大学管理学院
11
二、曲线的凹凸与拐点
定义1 . 设函数 (1) 若恒有 图形是凹的(下凸的); (2) 若恒有 在区间 I 上连续 ,
B
则称
则称
A 图形是凸的 (上凸的). y y y 连续曲线上有切线的凹凸分界点
称为拐点 .
华中科技大学管理学院
机动 目录 上页 下页 返回 结束
o o o
因而只需证明 f ( x) 在 (0 , ) 内严格向上凹,而
1 f ( x) ln x 1 , f ( x) 0 ( x 0) x 故不等式得证.
华中调性判别 f ( x) 0 , x I 在 I 上单调递增 在 I 上单调递减
且使
的点 x 不充满 (a , b) 的任何子区间。 (证明略去)
华中科技大学管理学院
例7. 判断曲线
3 解: y 4 x ,
15
的凹凸性.
y
故曲线
在
上是向上凹的.
o
x
说明: 1) 若在某点二阶导数为 0 , 在其两侧二阶导数不变号, 则曲线的凹凸性不变 .
2) 根据拐点的定义及上述定理, 可得拐点的判别法如下: 若曲线 或不存在, 但 f ( x) 在 x0 两侧异号, 则点( x0 , f ( x0 )) 是曲线 的一个拐点.
1
第四章 第四节 函数的单调性与 曲线的凹凸性
一、函数单调性的判定法
二、曲线的凹凸与拐点
华中科技大学管理学院
机动 目录 上页 下页 返回 结束
2
一、 函数单调性的判定法
在开区间 I 内可导, (1)若 在 I 内单调递增 (递减) .(反之亦然) (2) f (x)在[a,b]上严格单调增(或严格单调减)的充要条 定理 1. 设函数 ( f ( x) 0) , 则
1
;
) .
提示: y 2 e
x2
(1 2 x 2 )
华中科技大学管理学院
第五节 目录 上页 下页 返回 结束
备用题
22
x 1 求证曲线 y 2 有位于一直线的三个拐点. x 1 1 2x x2 ( x 2 1) ( x 1)2 x 证明:y 2 2 ( x 1) ( x 2 1) 2
华中科技大学管理学院
机动 目录 上页 下页 返回 结束
18
例10. 设
证明
x y ( x y ) ln x ln x y ln y . 2
证:令 f ( x) x ln x ( x 0) ,
x y 1 则要证的不等式可改写成 f f ( x) f ( y ) 2 2
华中科技大学管理学院
机动 目录 上页 下页 返回 结束
23
令 y 0 得
x1 1 , x2 2 3 ,
从而三个拐点为
x3 2 3
(1 , 1) , (2 3 , 1 3 ) , (2 3 , 1 3 ) 84 3 84 3
因为
1 3 8 4 3
( A) ( B) (C ) ( D)
f (1) f (0) f (1) f (0) f (1) f (1) f (0) f (0) f (1) f (0) f (1) f (0) f (1) f (0) f (1) f (0)
提示: 利用 f ( x) 单调增加 , 及
f (1) f (0) f ( ) (0 1)
华中科技大学管理学院
机动 目录 上页 下页 返回 结束
21
2. 曲线 y 1 e
x2
1 , ( 的凹区间是 2 1 , ) 2
1 ) 2
;
) 及 ( 凸区间是 ( , 1 2
拐点为 (
1 2 , 1 e 2
( f ( x) 0) , 且使f ( x) 0的点x 件是:在(a,b)内 不充满(a, b)的子区间(即f ( x)不会在某个子区间上为常数)
证: 无妨设 由拉格朗日中值定理得 任取
0
故 这说明 在 I 内单调递增.
机动 目录 上页 下页 返回 结束
华中科技大学管理学院