34.中考数学专题 一次函数数学母题题源系列(原卷版)

合集下载

中考数学专题《一次函数与几何综合》高分必刷原卷

中考数学专题《一次函数与几何综合》高分必刷原卷

(培优特训)专项19.3 一一次函数与几何综合高分必刷1.(2023春•普兰店区期中)已知△ABC中,∠C=90°,AC=3,CD=4,BD =AD.点F从点A出发,沿AC﹣CD运动,速度为1cm/s,同时点E从点B 出发,沿BD﹣DA运动,运动速度为1cm/s,一个点到达终点,另一点也停止运动.(1)求BD的长;(2)设△AEF的面积为S,点P、Q运动时间为t,求S与的函数关系式,并写出的取值范围.2.(2023春•鼓楼区期中)如图1,已知直线l1:y=ax﹣6a交x轴于点A,交轴y于点B,直线l2:y=bx﹣18a交x轴于点C,交y轴于点D,交直线l1于点E.(1)求点A的坐标;(2)若点B为线段AE的中点,求证:EC=EA;(3)如图2,已知P(0,m),将线段P A绕点P逆时针方向旋转90°至PF,连接OF,求证:点F在某条直线上运动,并求OF的最小值.3.(2023春•苍南县期中)如图,在平面直角坐标系中,▱OABC的顶点A落在x轴上,点B的坐标为(7,4),AB=2,点D是OC的中点,点E是线段AD上一动点,EF⊥BC于点F,连结DF.(1)求点A、C的坐标.(2)求直线AD的函数表达式.(3)若△DEF是等腰三角形,求CF的长.4.(2023•佳木斯一模)如图,将矩形纸片OABC放在平面直角坐标系中,O为坐标原点.点A在y轴上,点C在x轴上,OA,OB的长是x2﹣16x+60=0的两个根,P是边AB上的一点,将△OAP沿OP折叠,使点A落在OB上的点Q处.(1)求点B的坐标;(2)求直线PQ的解析式;(3)点M在直线OP上,点N在直线PQ上,是否存在点M,N,使以A,C.M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.5.(2023春•顺德区校级月考)如图,请根据图象所提供的信息解答下列问题:(1)当x时,kx+b≥mx﹣n;(2)不等式kx+b<0的解集是;(3)求两个一次函数表达式;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.6.(2023春•北碚区校级期中)如图,在平面直角坐标系中,直线y=2x﹣2与x 轴、y轴分别交于点A、点B,与直线CD:y=kx+b(k≠0)交于点P,OC =OD=4OA.(1)求直线CD的解析式;(2)连接OP、BC,若直线AB上存在一点Q,使得S△PQC =S四边形OBCP,求点Q的坐标;(3)将直线CD向下平移1个单位长度得到直线,直线l与x轴交于点E,点N为直线l上的一点,在平面直角坐标系中,是否存在点M,使以点O,E,N,M为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,请说明理由.7.(2023春•宜兴市期中)如图,在平面直角坐标系中,已知A(0,4),点B、C都在x轴上,BC=12,AD∥BC,CD所在直线的函数表达式为y=﹣x+9,E是BC的中点,点P是BC边上一个动点.(1)当PB=时,以点P、A、D、E为顶点的四边形为平行四边形;(2)点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.8.(2023春•工业园区校级期中)如图,在平面直角坐标系中,点A、点B分别在x轴与y轴上,直线AB的解析式为,以线段AB、BC为边作平行四边形ABCD.(1)如图1,若点C的坐标为(3,7),判断四边形ABCD的形状,并说明理由;(2)如图2,在(1)的条件下,P为CD边上的动点,点C关于直线BP的对称点是Q,连接PQ,BQ.①当∠CBP=°时,点Q位于线段AD的垂直平分线上;②连接AQ,DQ,设CP=x,设PQ的延长线交AD边于点E,当∠AQD=90°时,求证:QE=DE,并求出此时x的值.9.(2023•沈阳一模)如图,在平面直角坐标系中,直线y=kx+b与x轴交于点B(﹣5,0),与y轴交于点A,直线过点A,与x轴交于点C,点P 是x轴上方一个动点.(1)求直线AB的函数表达式;(2)若点P在线段AB上,且S△APC =S△AOB,求点P的坐标;(3)当S△PBC =S△AOB时,动点M从点B出发,先运动到点P,再从点P运动到点C后停止运动.点M的运动速度始终为每秒1个单位长度,运动的总时间为t(秒),请直接写出t的最小值.10.(2023春•鼓楼区期中)如图1,已知函数与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.11.(2023春•顺德区校级期中)一次函数y=kx+b的图象经过点A(﹣2,0)、B(﹣1,1),且和一次函数y=﹣2x+a的图象交于点C,如图所示.(1)填空:不等式kx+b<0的解集是;(2)若不等式kx+b>﹣2x+a的解集是x>1,求点C的坐标;(3)在(2)的条件下,点P是直线y=﹣2x+a上一动点.且在点C上方,当∠P AC=15°时,求点P的坐标.12.(2023春•重庆期中)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)则k=,b=,n=;(2)求四边形AOCD的面积;(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形,请求出点P的坐标.13.(2023春•崇川区校级月考)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:△BEC≌△CDA;(2)模型应用:已知直线l1:y=﹣x﹣4与y轴交于A点.将直线l1绕着A 点逆时针旋转45°至l2,如图2,求l2的函数解析式.14.(2023春•崇川区校级月考)如图,在平面直角坐标系中,直线l1:y=﹣x+4分别与x轴,y轴交于点B,C.直线l2:y=x.(1)直接写出点B,C的坐标:B,C.(2)若D是直线l2上的点,且△COD的面积为6,求直线CD的函数表达式;(3)在(2)的条件下,且当点D在第一象限时,设P是射线CD上的点,在平面内存在点Q.使以O,C,P,Q为顶点的四边形是菱形,请直接求点Q的坐标.15.(2023•城固县模拟)如图,A、B两个长方体水箱放置在同一水平桌面上,开始时水箱A中没有水,水箱B盛满水,现以6dm3/min的流量从水箱B中抽水注入水箱A中,直至水箱A注满水为止.设注水时间为t(min),水箱A 的水位高度为y A(dm),水箱B中的水位高度为y B(dm).(抽水水管的体积忽略不计)(1)分别求出y A,y B与t之间的函数表达式;(2)当水箱A与水箱B中的水的体积相等时,求出此时两水箱中水位的高度差.16.(2022秋•常州期末)在平面直角坐标系中,一次函数的图象l1与x轴交于点A,一次函数y=x+6的图象l2与x轴交于点B,与l1交于点P.直线l3过点A且与x轴垂直,C是l3上的一个动点.(1)分别求出点A、P的坐标;(2)设直线PC对应的函数表达式为y=kx+b,且满足函数值y随x的增大而增大.若△PCA的面积为15,分别求出k、b的值;(3)是否存在点C,使得2∠PCA+∠P AB=90°?若存在,直接写出点C的坐标;若不存在,请说明理由.17.(2023春•靖江市期中)如图,平面直角坐标系中,已知点A(0,a)在y 轴正半轴上,点B(0,b)(a>b),点C(c,0)在x轴正半轴上,且a2﹣2ab+b2(1)如图1,求证:AB=OC;(2)如图2,当a=3,b=1时,过点B的直线与AC成45°夹角,试求该直线与AC交点的横坐标;(3)如图3,当b<0时,点D在OC的延长线上,且CD=OB,连接AD,射线BC交AD于点E.当点B在y轴负半轴上运动时,∠AEB的度数是否为定值?如果是,请求出∠AEB的度数;如果不是,请说明理由.18.(2023春•沙坪坝区校级期中)如图,在平面直角坐标系xOy中,直线AB:与直线CD:y=kx﹣2相交于点M(4,a),分别交坐标轴于点A,(1)求直线CD的解析表达式;(2)如图,点P是直线CD上的一个动点,当△PBM的面积为20时,求点P的坐标;(3)直线AB上有一点F,在平面直角坐标系内找一点N,使得以BF为一边,以点B,D,F,N为顶点的四边形是菱形,请直接写出符合条件的点N的坐标.19.(2023春•揭西县校级月考)在平面直角坐标系中,直线y1=kx+b经过点P (2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.(1)求出直线y1=kx+b的解析式;(2)当m<0时,直接写出y1<y2时自变量x的取值范围;(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△P AB是等腰三角形时,请直接写出符合条件的所有点B的坐标.20.(2023春•溧阳市校级月考)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是由△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是2和4;(1)求直线BD的表达式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.21.(2023春•江都区月考)如图,在平面直角坐标系中,直线y=﹣x+3与x 轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)求点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.22.(2023春•新城区校级月考)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,求出点P的坐标;(2)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M 在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.23.(2022秋•宿豫区期末)如图,直线l分别与x轴、y轴交于点A(4,0)、B (0,5),把直线l沿y轴向下平移3个单位长度,得到直线m,且直线m分别与x轴、y轴交于点C、D.(1)求直线l对应的函数表达式;(2)求四边形ABDC的面积.24.(2022秋•临淄区期末)如图,在直角坐标系中,四边形ABCD的顶点坐标分别为A(﹣1,0),B(0,2),C(2,3),D(4,0).(1)求直线BC的表达式;(2)线段AB与BC相等吗?请说明理由;(3)求四边形ABCD的面积;(4)已知点M在x轴上,且△MBC是等腰三角形,求点M的坐标.25.(2022秋•金牛区期末)如图1,在平面直角坐标系xOy中,直线AB:y=2x+b 与x轴交于点A(﹣2,0),与y轴交于点B.(1)求直线AB的解析式;(2)若直线CD:y=﹣x+与x轴、y轴、直线AB分别交于点C、D、E,求△BDE面积;(3)如图2,在(2)的条件下,点F为线段AC上一动点,将△EFC沿直线EF翻折得到△EFN,EN交x轴于点M.当△MNF为直角三角形时,求点N 的坐标.26.(2022秋•婺城区期末)如图,直线y=x+4与x轴、y轴分别交于点A、点B,点P是射线BO上的动点,过点B作直线AP的垂线交x轴于点Q,垂足为点C,连结OC.(1)当点P在线段BO上时,①求证:△AOP≌△BOQ;②若点P为BO的中点,求△OCQ的面积.(2)在点P的运动过程中,是否存在某一位置,使得△OCQ成为等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.27.(2022秋•郫都区期末)在直角坐标系xOy中,直线l1:y=﹣x+4与x轴、y 轴分别交于点A,点B.直线l2:y=mx+m(m>0)与x轴,y轴分别交于点C,点D,直线l1与l2交于点E.(1)若点E坐标为(,n).ⅰ)求m的值;ⅱ)点P在直线l2上,若S△AEP=3S△BDE,求点P的坐标;(2)点F是线段CE的中点,点G为y轴上一动点,是否存在点F使△CFG 为以FC为直角边的等腰直角三角形.若存在,求出m的值,若不存在,请说明理由.28.(2022秋•市中区期末)如图,直线y=kx+b经过点,点B(0,25),与直线交于点C,点D为直线AB上一动点,过D点作x轴的垂线交直线OC于点E.(1)求直线AB的表达式和点C的坐标;(2)当时,求△CDE的面积;(3)连接OD,当△OAD沿着OD折叠,使得点A的对应点A'落在直线OC 上,直接写出此时点D的坐标.29.(2022秋•新都区期末)如图1,在平面直角坐标系中,点A的坐标为(4,4),点B的坐标为(﹣4,0).(1)求直线AB的表达式;(2)点M是坐标轴上的一点,若以AB为直角边构造Rt△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以A为直角顶点作∠CAD=90°,射线AC交x轴的正半轴于点C,射线AD交y轴的负半轴于点D,当∠CAD绕点A旋转时,求OC﹣OD 的值.30.(2022秋•皇姑区期末)如图,在平面直角坐标系中,直线AD:y=﹣x+4交y轴于点A,交x轴于点D.直线AB交x轴于点B(﹣3,0),点P为直线AB上的动点.(1)求直线AB的关系式;(2)连接PD,当线段PD⊥AB时,直线AD上有一点动M,x轴上有一动点N,直接写出△PMN周长的最小值;(3)若∠POA=∠BAO,直接写出点P的纵坐标.31.(2022秋•新都区期末)如图所示,直线l1:y=x﹣1与y轴交于点A,直线l2:y=﹣2x﹣4与x轴交于点B,直线l1与l2交于点C.(1)求点A,C的坐标;(2)点P在直线l1上运动,求出满足条件S△PBC=S△ABC且异于点A的点P的坐标;(3)点D(2,0)为x轴上一定点,当点Q在直线l1上运动时,请直接写出|DQ﹣BQ|的最大值.32.(2022秋•鸡西期末)如图,直角三角形ABC在平面直角坐标系中,直角边BC在y轴上,AB,BC的长分别是一元二次方程x2﹣14x+48=0的两个根,AB<BC,且BC=2OB,P为BC上一点,且∠BAP=∠C.(1)求点A的坐标;(2)求直线AP的解析式;(3)M为x轴上一点,在平面内是否存在点N,使以A,C,M,N为顶点的四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.33.(2022秋•锦江区校级期末)如图,直线y=kx+b与x轴、y轴分别交于点A 和点B,点C在线段AO上,将△ABC沿BC所在直线折叠后,点A恰好落在y轴上点D处,若OA=4,OD=2.(1)求直线AB的解析式.(2)求S△ABC :S△OCD的值.(3)直线CD上是否存在点P使得∠PBC=45°,若存在,请直接写出P的坐标.34.(2022秋•福田区校级期末)已知:如图,一次函数的图象分别与x 轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D.点D的横坐标为4,直线CD与y轴相交于点E.(1)直线CD的函数表达式为:;(2)点Q为线段DE上的一个动点,连接BQ.①若直线BQ将△BDE的面积分为1:2两部分,求点Q的坐标;②点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的坐标轴上?若存在,请直接写出点Q的坐标;若不存在,请说明理由.35.(2022秋•抚州期末)如图,在平面直角坐标系xOy中,直线AP交x轴于点P(p,0),与y轴交于点A(0,a),且a,p满足=0.(1)求直线AP的解析式;(2)如图1,直线x=﹣2与x轴交于点N,点M在x轴上方且在直线x=﹣2上,若△MAP的面积等于6,请求出点M的坐标;(3)如图2,已知点C(﹣2,4),若点B为射线AP上一动点,连接BC,在坐标轴上是否存在点Q,使△BCQ是以BC为底边,点Q为直角顶点的等腰直角三角形,若存在,请直接写出点Q坐标;若不存在,请说明理由.36.(2022秋•天桥区期末)如图1,在平面直角坐标系xOy中,点O是坐标原点,直线AB:y=kx+与直线AC:y=﹣2x+b交于点A,两直线与x轴分别交于点B(﹣3,0)和C(2,0).(1)求直线AB和AC的表达式.(2)点P是y轴上一点,当P A+PC最小时,求点P的坐标.(3)如图2,点D为线段BC上一动点,将△ABD沿直线AD翻折得到△ADE,线段AE交x轴于点F,若△DEF为直角三角形,求点D坐标.37.(2023•桐乡市校级开学)如图,一次函数y=x+6的图象与x轴交于点A,与y轴交于点B,OC⊥AB于点C,点P在直线AB上运动,点Q在y轴的正半轴上运动.(1)求点A,B的坐标;(2)求OC的长;(3)若以O,P,Q为顶点的三角形与△OCP全等,求点Q的坐标.38.(2022秋•秦都区期末)如图,平面直角坐标系中,直线AB与x轴交于点A (﹣3,0)与y轴交于点B(0,6),点C是直线AB上的一点,它的坐标为(m,4),经过点C作直线CD∥x轴交y轴于点D.(1)求点C的坐标;(2)已知点P是直线CD上的动点,①若△POC的面积为4,求点P的坐标;②若△POC为直角三角形,请求出所有满足条件的点P的坐标.39.(2022秋•南海区期末)如图,在平面直角坐标系中,直线y=x+1分别交x 轴,y轴于点A、B.另一条直线CD与直线AB交于点C(a,6),与x轴交于点D(3,0),点P是直线CD上一点(不与点C重合).(1)求a的值.(2)当△APC的面积为18时,求点P的坐标.(3)若直线MN在平面直角坐标系内运动,且MN始终与AB平行,直线MN 交直线CD于点M,交y轴于点N,当∠BMN=90°时,求△BMN的面积.40.(2023•丰顺县校级开学)问题提出:如图,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;问题探究:如图2,在平面直角坐标系中,一次函数与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,求点C的坐标;问题解决:古城西安已经全面迎来地铁时代!继西安地铁2号线于2011年9月16日通车试运行以来,共有八条线路开通运营,极大促进了西安市的交通运输,目前还有多条线路正在修建中.如图,地铁某线路原计划按OA﹣AB的方向施工,由于在AB方向发现一处地下古建筑,地铁修建须绕开此区域.经实地勘测,若将AB段绕点A顺时针或逆时针方向旋转45°至AC或AD方向,则可以绕开此区域.已知OA长为1千米,以点O为原点,OA所在直线为x轴,1千米为单位长度,建立平面直角坐标系,且射线AB与直线y=﹣2x平行,请帮助施工队计算出AC和AD所在直线的解析式.41.(2022秋•碑林区校级期末)(1)模型建立:如图1,在等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,请直接写出图中相等的线段(除CA=CB);模型应用:(2)如图2,在平面直角坐标系xOy中,直线与x,y轴分别交于A、B两点,C为第一象限内的点,若△ABC是以AB为直角边的等腰直角三角形,请求出点C的坐标和直线BC的表达式;探究提升:(3)如图3,在平面直角坐标系xOy中,A(3,0),点B在y轴上运动,将AB绕点A顺时针旋转90°至AC,连接OC,求CA+OC的最小值,及此时点B坐标.42.(2023•南岸区校级开学)如图,已知直线l1:y=﹣x+b与直线l2:y=kx+3相交于y轴的B点,且分别交x轴于点A、C,已知OC=OA.(1)如图,求点C的坐标及k的值;(2)如图,若E为直线l1上一点,且E点的横坐标为,点P为y轴上一个动点,求当|PC﹣PE|最大时,点P的坐标;(3)若M为x轴上一点,当△ABM是等腰三角形时,直接写出点M的坐标.43.(2022秋•驿城区校级期末)(1)操作思考:如图1,在平面直角坐标系中,等腰直角△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则:①OA的长为;②点B的坐标为.(直接写结果)(2)感悟应用:如图2,在平面直角坐标系中,将等腰直角△ACB如图放置,直角顶点C(﹣1,0),点A(0,4),试求直线AB的函数表达式.(3)拓展研究:如图3,在直角坐标系中,点B(4,3),过点B作BA⊥y 轴,垂足为点A,作BC⊥x轴,垂足为点C,P是线段BC上的一个动点,点Q是直线y=2x﹣8上一动点,存在以点P为直角顶点的等腰直角△APQ,请直接写出点P的坐标.。

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。

中考数学专题复习5一次函数及其运用(原卷版)

中考数学专题复习5一次函数及其运用(原卷版)

一次函数及其运用复习考点攻略考点01 一次函数相关概念1.正比例函数:一般地.形如y=kx(k是常数.k≠0)的函数.叫做正比例函数.其中k叫做正比例系数.2. 一次函数:一般地.形如y=kx+b(k.b为常数.且k≠0)的函数叫做x的一次函数。

特别地.当一次函数y=kx+b中的b=0时.y=kx(k是常数.k≠0).这时.y叫做x的正比例函数.3. 一次函数的一般形式:一次函数的一般形式为y=kx+b.其中k.b为常数.k≠0.一次函数的一般形式的结构特征:(1)k≠0.(2)x的次数是1;(3)常数b可以为任意实数.【注意】(1)正比例函数是一次函数.但一次函数不一定是正比例函数.(2)一般情况下.一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数.就是判断它是否能化成y=kx+b(k≠0)的形式. 【例1】下列函数中.正比例函数是A.y=23xB.y=213xC.y=34x D.y=12(x-1)【例2】下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=1x;(4)y=x2.其中一次函数的个数是()A.1B.2C.3D.4考点2 一次函数的图像和性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0.0)的一条直线.k的符号函数图象图象的位置性质k >0图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限 y 随x 的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象 一次函数y =kx +b (k ≠0)的图象是经过点(0.b )和(-bk.0)的一条直线 图象关系一次函数y =kx +b (k ≠0)的图象可由正比例函数y =kx (k ≠0)的图象平移得到;b >0.向上平移b 个单位长度;b <0.向下平移|b |个单位长度图象确定因为一次函数的图象是一条直线.由两点确定一条直线可知画一次函数图象时.只要取两点即可(2)一次函数的性质 函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0.b >0一、二、三y 随x 的增大而增大k >0.b <0一、三、四y =kx +b (k ≠0)k <0.b >0一、二、四y 随x 的增大而减小k <0.b <0二、三、四(3)两直线y =k 1x +b 1(k 1≠0)与y =k 2x +b 2(k 2≠0)的位置关系:①当k 1=k 2.b 1≠b 2.两直线平行; ②当k 1=k 2.b 1=b 2.两直线重合; ③当k 1≠k 2.b 1=b 2.两直线交于y 轴上一点; ④当k 1·k 2=–1时.两直线垂直.【例3】已知正比例函数y =x 的图象如图所示.则一次函数y =mx +n 图象大致是mnA .B .C .D .【例4】已知一次函数3y kx =+的图象经过点A .且y 随x 的增大而减小.则点A 的坐标可以是( ) A .()1,2- B .()1,2-C .()2,3D .()3,4考点3 待定系数法求一次函数解析式(1)待定系数法:先设出函数解析式.再根据条件确定解析式中未知数的系数.从而得出函数解析式的方法叫做待定系数法.(2)待定系数法求正比例函数解析式的一般步骤: ①设含有待定系数的函数解析式为y =kx (k ≠0).②把已知条件(自变量与函数的对应值)代入解析式.得到关于系数k 的一元一次方程. ③解方程.求出待定系数k .④将求得的待定系数k 的值代入解析式. (3)待定系数法求一次函数解析式的一般步骤: ①设出含有待定系数k 、b 的函数解析式y =kx +b .②把两个已知条件(自变量与函数的对应值)代入解析式.得到关于系数k .b 的二元一次方程组.③解二元一次方程组.求出k .b . ④将求得的k .b 的值代入解析式.【例5】一次函数图象经过(3.1).(2.0)两点. (1)求这个一次函数的解析式; (2)求当x =6时.y 的值.考点4 一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数.且k≠0)y=kx+b(k.b是常数.且k≠0)图象经过原点的一条直线一条直线k.b符号的作用k的符号决定其增减性.同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k.b的符号共同决定直线经过的象限求解析式的条件只需要一对x.y的对应值或一个点的坐标需要两对x.y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样.都是过两点画直线.但画一次函数的图象需取两个不同的点.而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b (k≠0.b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时.y的值随x值的增大而增大;b.当k<0时.y的值随x值的增大而减小.A.y=2x+3B.y=2x﹣3C.y=2(x+3)D.y=2(x﹣3)考点5.一次函数与方程(组)、不等式(1)一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k.b为常数.且k≠0)的形式.从函数的角度来看.解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑.解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.(2)一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a.b为常数.且a≠0)的形式.从函数的角度看.解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看.就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.(3)一次函数与二元一次方程组一般地.二元一次方程mx+ny=p(m.n.p是常数.且m≠0.n≠0)都能写成y=ax+b(a.b为常数.且a ≠0)的形式.因此.一个二元一次方程对应一个一次函数.又因为一个一次函数对应一条直线.所以一个二元一次方程也对应一条直线.进一步可知.一个二元一次方程对应两个一次函数.因而也对应两条直线.从数的角度看.解二元一次方程组相当于考虑自变量为何值时.两个函数的值相等.以及这两个函数值是何值;从形的角度看.解二元一次方程组相当于确定两条直线的交点坐标.一般地.如果一个二元一次方程组有唯一解.那么这个解就是方程组对应的两条直线的交点坐标. 【例7】已知直线y =mx +n (m .n 为常数)经过点(0.–2)和(3.0).则关于x 的方程mx +n =0的解为 A .x =0 B .x =1C .x =–2D .x =3【例8】如图为y =kx +b 的图象.则kx +b =0的解为x = ( )A .2B .–2C .0D .–1【例9】如图.正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m.2).一次函数的图象经过点B (−2.−1). (1)求一次函数的解析式;(2)请直接写出不等式组−1<kx +b <2x 的解集.【例10】如图.函数y =kx +b 与y =mx +n 的图象交于点P (1.2).那么关于x .y 的方程组的解是 y kx by mx n=+=+⎧⎨⎩A .B .C .D .考点6.一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标.或两条直线的交点坐标.进而将点的坐标转化成三角形的边长.或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行.可以采用“割”或“补”的方法.【例11】在平面直角坐标系中.O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B .则△AOB 的面积为( ) A .2B .3C .4D .6考点7.一次函数的实际应用(1)主要题型:①求相应的一次函数表达式;②结合一次函数图象求相关量、求实际问题的最值等. (2)用一次函数解决实际问题的一般步骤为: ①设定实际问题中的自变量与因变量;②通过列方程(组)与待定系数法求一次函数关系式; ③确定自变量的取值范围; ④利用函数性质解决问题; ⑤检验所求解是否符合实际意义; ⑥答.(3)方案最值问题:对于求方案问题.通常涉及两个相关量.解题方法为根据题中所要满足的关系式.通过列不等式.求解出某一个事物的取值范围.再根据另一个事物所要满足的条件.即可确定出有多12x y ==⎧⎨⎩21x y ==⎧⎨⎩23x y ==⎧⎨⎩13x y ==⎧⎨⎩少种方案.(4)方法技巧求最值的本质为求最优方案.解法有两种:①可将所有求得的方案的值计算出来.再进行比较;②直接利用所求值与其变量之间满足的一次函数关系式求解.由一次函数的增减性可直接确定最优方案及最值;若为分段函数.则应分类讨论.先计算出每个分段函数的取值.再进行比较.【例12】某县组织20辆汽车装运食品、药品、生活用品三种扶贫物资共100吨到某乡实施扶贫工作.按计划20辆汽车都要装运.每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息.解答下列问题:物资种类食品药品生活用品每辆汽车运载量(吨) 6 5 4每吨所需运费(元/吨)120 160 100 (1)设装运食品的车辆数为x.装运药品的车辆数为y.求y与x的函数关系式;(2)如果装运食品的车辆数不少于5辆.装运药品的车辆数不少于4辆.那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下.若要求总运费最少.应如何安排车辆?并求出最少总运费.第一部分选择题一、选择题(本题有10小题.每题4分.共40分)1.下列函数①y=﹣2x+1.②y=ax﹣b.③y=﹣6x.④y=x2+2中.是一次函数的有A.①②B.①C.②③D.①④2.一次函数y=–2x+b.b<0.则其大致图象正确的是A.B.C .D .3.一次函数y =kx +b 的图象如图所示.则关于x 的方程kx +b =–1的解为A .x =0B .x =1C .x =12D .x =–24. 如图.一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1.3).则关于x 的不等式x +b >kx +4的解集是A .x >﹣2B .x >0C .x >1D .x <15. 如图.直线(0)y kx b k =+<经过点(1,1)P .当kx b x +≥时.则x 的取值范围为( )A .1x ≤B .1x ≥C .1x <D .1x >6.新龟兔赛跑的故事:龟兔从同一地点同时出发后.兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先.就躺在路边呼呼大睡起来.当它一觉醒来.发现乌龟已经超过它.于是奋力直追.最后同时到达终点.用S 1、S 2分别表示乌龟和兔子赛跑的路程.t 为赛跑时间.则下列图象中与故事情节相吻合的是( )A .B .C .D .7.若一次函数y =ax +b 的图象经过一、二、四象限.则下列不等式中能成立的是( ) A .a >0B .b <0C .a +b >0D .a ﹣b <08.如图.直线y =kx +b 交直线y =mx +n 于点P (1.2).则关于x 的不等式kx +b >mx +n 的解集为( )A .x >1B .x >2C .x <1D .x <29.如图.一束光线从点()4,4A 出发.经y 轴上的点C 反射后经过点()10B ,.则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,210.如图1.点F 从菱形ABCD 的顶点A 出发.沿A →D →B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时.△FBC 的面积y (cm 2)随时间x (s )变化的关系图象.则a 的值为A 5B .2C .52D .5第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11.已知函数y =(m +2)是正比例函数.则m 的值是__________.12.把直线y =2x ﹣1向左平移1个单位长度.再向上平移2个单位长度.则平移后所得直线的解析式为_____. 13.如图.直线542y x =+与x 轴、y 轴分别交于A 、B 两点.把AOB 绕点B 逆时针旋转90°后得到11AO B .则点1A 的坐标是_____.14.如图.直线y =kx +b (k 、b 是常数k ≠0)与直线y =2交于点A (4.2).则关于x 的不等式kx +b <2的解集为_____.15.直线2y x =+经过()11,M y .()23,N y 两点.则1y ______2y (填“>”“<”或“=”). 16.如图.直线AM 的解析式为1y x =+与x 轴交于点M .与y 轴交于点A .以OA 为边作正方形ABCO .点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E .交x 轴于点1O .过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C .点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E .交x 轴于点2O .过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C..则点2020B 的坐标______.23mx-第三部分 解答题三、解答题(本题有6小题.共56分)17. 已知一次函数y =kx +b.当x =3时.y =14.当x =–1时.y =–6.(1)求k 与b 的值;(2)当y 与x 相等时.求x 的值.18. 已知y –3与3x +1成正比例.且x =2时.y =6.5.(1)求y 与x 之间的函数关系式.并指出它是什么函数;(2)若点(a .2)在这个函数的图象上.求a 的值. 19. 如图.直线l 1的函数解析式为y =2x–2.直线l 1与x 轴交于点D .直线l 2:y =kx+b 与x 轴交于点A .且经过点B (3.1).如图所示.直线l 1、l 2交于点C (m .2).(1)求点D 、点C 的坐标;(2)求直线l 2的函数解析式;(3)利用函数图象写出关于x 、y 的二元一次方程组的解.20.某文化用品商店出售书包和文具盒.书包每个定价40元.文具盒每个定价10元.该店制定了两种优惠方案:方案一.买一个书包赠送一个文具盒;方案二:按总价的九折付款.购买时.顾客只能选用其中的一种方案.某学校为给学生发奖品.需购买5个书包.文具盒若干(不少于5个).设文具盒个数为x (个).付款金额为y (元). 22y x y kx b =-=+⎧⎨⎩(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=_________;方案二:y2=__________.(2)若购买20个文具盒.通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品.最多可以买到__________个文具盒(直接回答即可).21.张师傅开车到某地送货.汽车出发前油箱中有油50升.行驶一段时间.张师傅在加油站加油.然后继续向目的地行驶.已知加油前、后汽车都匀速行驶.汽车行驶时每小时的耗油量一定.油箱中剩余油量Q(升)与汽车行驶时间t(时)之间的函数图象如图所示.(1)张师傅开车行驶小时后开始加油.本次加油升.(2)求加油前Q与t之间的函数关系式.(3)如果加油站距目的地210千米.汽车行驶速度为70千米/时.张师傅要想到达目的地.油箱中的油是否够用?请通过计算说明理由.22.某乡A.B两村盛产大蒜.A村有大蒜200吨.B村有大蒜300吨.现将这些大蒜运到C.D两个冷藏仓库.已知C仓库可储存240吨.D仓库可储存260吨.从A村运往C.D两处的费用分别为每吨40元和45元;从B村运往C.D两处的费用分别为每吨25元和32元.设从A村运往C仓库的大蒜为x吨.A.B两村运大蒜往两仓库的运输费用分别为y A元.y B元.(1)请填写下表.并求出y A.y B与x之间的函数关系式;C D总计A x吨200吨B300吨总计240吨260吨500吨(2)当x为何值时.A村的运费较少?(3)请问怎样调运.才能使两村的运费之和最小?求出最小值.。

《一次函数》专项练习和中考真题(含答案解析及点睛)

《一次函数》专项练习和中考真题(含答案解析及点睛)

《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。

中考数学:一次函数的性质与应用问题真题+模拟(原卷版北京专用)

中考数学:一次函数的性质与应用问题真题+模拟(原卷版北京专用)

中考数学一次函数的性质与应用问题【方法归纳】(1)一次函数与方程、不等式之间的关系:利用待定系数法确定一次函数的解析式,一次函数与x轴和y轴交点、不等式的解集、一次函数的平移、参数的确定等、(2)一次函数与几何图形的面积问题:首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(3)一次函数的优化问题:通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(4)用函数图象解决实际问题:从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.2.一次函数的应用(1)分段函数问题:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)函数的多变量问题:解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.(3)常见题型:行程问题、表格问题、图象问题、最大利润问题、方案问题常用的解题思路:①建立函数模型的方法;②分段函数思想的应用.【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点(4,3),(−2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图x的图象向下平移1个单位长度得到.象由函数y=12(1)求这个一次函数的解析式;(2)当x>−2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【真题再现】必刷真题,关注素养,把握核心1.(2016·北京·中考真题)如图,在平面直角坐标系xOy中,过点A(−6,0)的直线l1与直线l2:y= 2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.2.(2019·北京·中考真题)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=−k分别交于点A,B,直线x=k与直线y=−k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.3.(2020·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【模拟精练】一、解答题1.(2022·北京房山·二模)已知,在平面直角坐标系xOy中,直线l:y=ax+b(a≠0)经过点A(1,2),与x轴交于点B(3,0).(1)求该直线的解析式;(2)过动点P(0,n)且垂直于y轴的直线与直线l交于点C,若PC≥AB,直接写出n的取值范围.2.(2022·北京朝阳·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,2).(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.3.(2022·北京东城·二模)如图,在平面直角坐标系xOy中,双曲线y=k(k≠0)经过点xA(2,−1),直线l:y=−2x+b经过点B(2,−2).(1)求k,b的值;(2)过点P(n,0)(n>0)作垂直于x轴的直线,与双曲线y=k(k≠0)交于点C,与直线l交于点xD.①当n=2时,判断CD与CP的数量关系;②当CD≤CP时,结合图象,直接写出n的取值范围.4.(2022·北京北京·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=−x的图象平移得到,且经过点(1,1).(1)求这个一次函数的表达式;(2)当x>−1时,对于x的每一个值,函数y=mx−1(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.5.(2022·北京丰台·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移4个单位长度得到.(1)求这个一次函数的解析式;(2)一次函数y=kx+b的图象与x轴的交点为A,函数y=mx(m<0)的图象与一次函数y= kx+b的图象的交点为B,记线段OA,AB,BO围成的区域(不含边界)为W,横、纵坐标都是整数的点叫做整点,若区域W内恰有2个整点,直接写出m的取值范围.6.(2022·北京密云·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(0,−3)和点B(5,2).(1)求这个一次函数的表达式;(2)当x≥2时,对于x的每一个值,函数y=mx+2(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.7.(2022·北京西城·二模)在平面直角坐标系xOy中,一次函数y=−x+b的图象与x轴交于点(4,0),且与反比例函数y=m的图象在第四象限的交点为(n,−1).x(1)求b,m的值;<y p<4,连接OP,结(2)点P(x p,y p)是一次函数y=−x+b图象上的一个动点,且满足mx p合函数图象,直接写出OP长的取值范围.8.(2022·北京平谷·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由x平移得到,且过点(0,−1).函数y=12(1)求这个一次函数y=kx+b(k≠0)的表达式;(2)当x>−2时,对于x的每一个值,函数y=mx+1的值大于一次函数y=kx+b(k≠0)的值,求m的取值范围.9.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.10.(2022·北京昌平·二模)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与直线y=x平行,且过点(2,1).(1)求这个一次函数的解析式;(2)直线y=kx+b(k≠0)分别交x,y轴于点A,点B,若点C为x轴上一点,且S△ABC=2,直接写出点C的坐标.11.(2022·北京顺义·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象平x,且经过点A(2,2).行于直线y=12(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,一次函数y=kx+b(k≠0)的值大于一次函数y=mx−1(m≠0)的值,直接写出m的取值范围.x+b与直线l2:y=2x 12.(2022·北京石景山·一模)在平面直角坐标系xOy中,直线l1:y=12交于点A(m,n).(1)当m=2时,求n,b的值;(2)过动点P(t,0)且垂直于x轴的直线与l1,l2的交点分别是C,D.当t≤1时,点C位于点D上方,直接写出b的取值范围.13.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函.数y=mx(1)当函数y=m的图象经过点Q时,求m的值并画出直线y=-x-m.x(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.14.(2022·北京丰台·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,1).(1)求这个一次函数的解析式;(2)当x>0时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.15.(2022·北京·东直门中学模拟预测)如图,在平面直角坐标系xOy中,点A(1,4),B(3,m).(1)如果点A,B均在反比例函数y1=kx的图象上,求m的值;(2)如果点A,B均在一次函数y2=ax+b的图象上,①当m=2时,求该一次函数的表达式;②当x≥3时,如果不等式mx−1>ax+b始终成立,结合函数图象,直接写出m的取值范围.16.(2022·北京一七一中一模)在平面直角坐标系xOy中,直线l与双曲线y=kx(k≠0)的两个交点分别为A(−3,−1),B(1,m).(1)求k和m的值;(2)求直线l的解析式;(3)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线y=k(k≠0)于点Q.当点Q位x于点P的左侧时,求点P的纵坐标n的取值范围.17.(2022·北京市燕山教研中心一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0) x的图象向上平移3个单位长度得到.的图象由函数y=12(1)求这个一次函数的解析式;(2)当x>2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.18.(2022·北京平谷·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点(﹣1,0),(0,2).(1)求这个一次函数的表达式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值小于一次函数y=kx+b(k≠0)的值,直接写出m的取值范围.19.(2022·北京门头沟·一模)我们规定:在平面直角坐标系xOy中,如果点P到原点O的距离为a,点M到点P的距离是a的整数倍,那么点M就是点P的k倍关联点.(1)当点P1的坐标为(−1.5,0)时,①如果点P1的2倍关联点M在x轴上,那么点M的坐标是;②如果点M(x,y)是点P1的k倍关联点,且满足x=−1.5,−3≤y≤5.那么k的最大值为________;(2)如果点P2的坐标为(1,0),且在函数y=−x+b的图象上存在P2的2倍关联点,求b的取值范围.20.(2022·北京朝阳·一模)在平面直角坐标系xOy中,对于直线l:y≡kx+b,给出如下定义:若直线l与某个圆相交,则两个交点之间的距离称为直线l关于该圆的“圆截距”.(1)如图1,⊙O的半径为1,当k=1,b=1时,直接写出直线l关于⊙O的“圆截距”;(2)点M的坐标为(1,0),①如图2,若⊙M的半径为1,当b=1时,直线l关于⊙M的“圆截距”小于4√5,求k的取值5范围;②如图3,若⊙M的半径为2,当k的取值在实数范围内变化时,直线l关于⊙M的“圆截距”的最小值为2,直接写出b的值.21.(2022·北京房山·一模)如图1,一次函数y=kx+4k(k≠0)的图象与x轴交于点A,与y 轴交于点B,且经过点C(2,m).(1)当m=9时,求一次函数的解析式并求出点A的坐标;2(2)当x>-1时,对于x的每一个值,函数y=x的值大于一次函数y=kx+4k(k≠0)的值,求k 的取值范围.22.(2022·北京房山·一模)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P,Q两点(Q在P,H之间).我们把点P称为⊙I关于直线a的“远点”,把PQ·PH 的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4),半径为1的⊙O与两坐标轴交于点A,B,C,D.①过点E作垂直于y轴的直线m﹐则⊙O关于直线m的“远点”是点__________________(填“A”,“B”,“C”或“D”),⊙O关于直线m的“特征数”为_____________;②若直线n的函数表达式为y=√3x+4,求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy、中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,√3为半径作⊙F.若⊙F与直线l相离,点N(–1,0)是⊙F关于直线l的“远点”,且⊙F关于直线l的“特征数”是6√6,直接写出直线l的函数解析式.23.(2022·北京·中国人民大学附属中学分校一模)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1−x2|⩾|y1−y2|,则点P1与点P2的“非常距离”为|x1−x2|;若|x1−x2|<|y1−y2|,则点P1与点P2的“非常距离”为|y1−y2|.(1)已知点A(−1,0),B为y轴上的一个动点,2①若点A与点B的“非常距离”为4,直接写出点B的坐标:;②求点A与点B的“非常距离”的最小值;(2)已知C是直线y=1x+2上的一个动点,2①若点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②若点E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.24.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.25.(2022·北京通州·一模)已知一次函数y1=2x+m的图象与反比例函数y2=k(k>0)的x图象交于A,B两点.(1)当点A的坐标为(2,1)时.①求m,k的值;②当x>2时,y1______y2(填“>”“=”或“<”).(2)将一次函数y1=2x+m的图象沿y轴向下平移4个单位长度后,使得点A,B关于原点对称,求m的值26.(2022·北京西城·xOy中,直线l1:y=kx+b与坐标轴分别交于A(2,0),B(0,4)两点.将直线l1在x轴上方的部分沿x轴翻折,其余的部分保持不变,得到一个新的图形,这个图形与直线l2:y=m(x−4)(m≠0)分别交于点C,D.(1)求k,b的值;(2)横、纵坐标都是整数的点叫做整点.记线段AC,CD,DA围成的区域(不含边界)为W.①当m=1时,区域W内有______个整点;②若区域W内恰有3个整点,直接写出m的取值范围.27.(2022·北京海淀·一模)在平面直角坐标系xOy中,二次函数y=ax2−2ax(a≠0)的图象经过点A(−1,3).(1)求该二次函数的解析式以及图象顶点的坐标;(2)一次函数y=2x+b的图象经过点A,点(m,y1)在一次函数y=2x+b的图象上,点(m+4,y2)在二次函数y=ax2−2ax的图象上.若y1>y2,求m的取值范围.28.(2022·北京十一学校一分校一模)在平面直角坐标系xOy中,函数y=k的图象与直线yx=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n,且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交(x>0)的图象于点N.函数y=kx①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若0<PN≤3PM,结合函数的图象,直接写出n的取值范围.29.(2022·北京·东直门中学模拟预测)在平面直角坐标系xOy中,对于点P(x1,y1),给出如下定义:当点Q(x2,y2)满足x1+x2=y1+y2时,称点Q是点P的等和点.已知点P(2,0).(1)在Q1(0,2),Q2(−2,−1),Q3(1,3)中,点P的等和点有______;(2)点A在直线y=−x+4上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点B(b,0)和线段MN,对于所有满足BC=1的点C,线段MN上总存在线段PC上每个点的等和点.若MN的最小值为5,直接写出b的取值范围.30.(2022·北京市第五中学分校模拟预测)在平面直角坐标系xOy中,直线l1:y=ax(a≠0)过点A(﹣2,1),直线l2:y=mx+n过点B(﹣1,3).(1)求直线l的解析式;(2)用含m的代数式表示n;(3)当x<2时,对于x的每一个值,函数y=ax的值小于函数y=mx+n的值,求m的取值范围.。

中考数学总复习《一次函数》专项测试卷-附带参考答案

中考数学总复习《一次函数》专项测试卷-附带参考答案

中考数学总复习《一次函数》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题,共40分)1.一次函数y=kx−k(k<0)的图象大致是( )A.B.C.D.2.下列函数中,函数值y随自变量x增大而减小的是( )x−5A.y=4x B.y=12C.y=3x+6D.y=−1.6x+43.如果y=(m−1)x2−m2+3是一次函数,那么m的值是( )A.1B.−1C.+1D.±√24.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )A . x >−2B . x >0C . x >1D . x <15.若一次函数 y =kx +b 的图象如图所示,则 k ,b 的取值范围是 ( )A . k >0,b >0B . k >0,b <0C . k <0,b >0D . k <06.关于 x 的一次函数 y =12x +2,下列说法正确的是 ( )A .图象与坐标轴围成的三角形的面积是 4B .图象与 x 轴的交点坐标是 (0,2)C .当 x >−4 时D . y 随 x 的增大而减小7.如图,OA 和 BA 分别表示甲乙两名学生运动的一次函数的图象,图 s 和 t 分别表示路程和时间,根据图象判定快者比慢者得速度每秒快 ( )A . 2.5 米B . 2 米C . 1.5 米D . 2 米8.若直线 y =3x +6 与直线 y =2x +4 的交点坐标为 (a,b ),则解为 {x =a,y =b 的方程组是 ( )A . {y −3x =6,2x +y =4B . {3x +6+y =0,2x −4−y =0C . {3x +6−y =0,2x +4−y =0D . {3x −y =6,2x −y =4 二、填空题(共5题,共15分)9.已知二元一次方程组 {x −y =−5,x +2y =−2的解为 {x =−4,y =1, 则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=−1x−1的交点坐标为.210.已知函数y=(m−3)x+2m+2,当x=2时y=12,则m=.11.已知直线y=−3x+b与直线y=−kx+1在同一直角坐标系中交于点(3,−√3),则关于x的方程−3x+b=−kx+1的解为x=.12.已知一次函数y=kx+b的图象经过A(1,−1),B(−1,3)两点,则k0(填“>”或“<”).13.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a−b−2的值是.三、解答题(共3题,共45分)14.星期一升旗仪式前,李雷和韩梅梅两位数学课代表因为清查作业耽搁了时间,打算匀速从教室跑到600米外的中心广场参加升旗仪式,出发时李雷发现鞋带松了,停下来系鞋带,韩梅梅继续跑往中心广场,李雷系好鞋带后立即沿同一路线开始追赶韩梅梅,李雷在途中追上韩梅梅后,担心迟到继续以原速度往前跑,李雷到达操场时升旗仪式还没有开始,于是李雷站在广场等待,韩梅梅继续跑往中心广场.设李雷和韩梅梅两人相距s(米),韩梅梅跑步的时间为t(秒),s关于t的函数图象如图所示,则在整个运动过程中,李雷和韩梅梅第一次相距80米后,求再过多少秒钟两人再次相距80米.15.如图,正比例函数y=kx(k≠0)的图象过点A(2,−3).直线y=x+b沿y轴平行移动,与x轴、y轴分别交于点B,C与直线OA交于点D.(1) 若点D在线段OA上(含端点),求b的取值范围.(2) 当点A关于直线BC的对称点Aʹ恰好落在y轴上时,求直线BC的解析式.16.如图,一次函数y=−2x+4的图象与坐标轴分别交于A,B两点,将线段AB绕着点A顺时针旋转90∘至线段AC.(1) 求AB的长;(2) 求过B,C两点的直线的解析式.参考答案1. 【答案】D2. 【答案】D3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】C7. 【答案】C8. 【答案】C9. 【答案】(−4,1)10. 【答案】411. 【答案】312. 【答案】<13. 【答案】−514. 【答案】函数图象可以分段讨论,前10秒李雷没跑,韩梅梅跑了40米∴韩梅梅的速度为40÷10=4(米/秒)∵10秒至30秒,李雷在追赶韩梅梅,设李雷的速度为x米/秒∴(x−4)×20=40,解得x=6,即李雷的速度为6米/秒.∵李雷和韩梅梅相遇后,距离越来越远,当距离为80米时,需要的时间为80÷(6−4)=40(秒).∴此时韩梅梅的跑步时间为:40+30=70(秒).∵李雷在韩梅梅出发110秒后到达目的地,韩梅梅继续前进当距离目的地80米,就是距离李雷80米,此时距离她出发:[(110−10)×6−80]÷4=130(秒)∴李雷和韩梅梅第一次相距80米后,再过130−70=60(秒),两人再次相距80米.15. 【答案】(1) 当点D和点O重合时将点O(0,0)代入y=x+b中,得b=0当点D和点A重合时将点A(2,−3)代入y=x+b中,得−3=2+b,即b=−5∴b的取值范围为−5≤b≤0.(2) 在y=x+b中,令y=0,则x=−b,令x=0,则y=b∴B(−b,0)C(0,b)∴OB=OC∵∠BOC=90∘∴∠OCB=∠OBC=45∘∵点A关于直线BC的对称点Aʹ恰好落在y轴上∴CD垂直平分AAʹ∴CA=CAʹ∴∠ACD=∠OCB=45∘∴∠ACO=90∘∴C(0,−3)∴将点C(0,−3)代入y=x+b中,得−3=0+b∴b=−3∴直线BC的解析式为y=x−3.16. 【答案】(1) 在y=−2x+4中令x=0,则y=4,即点B(0,4)令y=0,得−2x+4=0,解得x=2,即点A(2,0)则AB=√22+42=2√5;(2) 如图,过C点作CD⊥x轴于点D∵线段AB绕点A顺时针旋转90∘∴AB=AC∠BAC=90∘∴∠BAO+∠CAD=90∘而∠BAO+∠ABO=90∘∴∠ABO=∠CAD.∵∠AOB=∠CDA∠ABO=∠CAD AB=CA∴△ABO≌△CAD(AAS)∴AD=OB=4CD=OA=2∴OD=OA+AD=2+4=6∴点C坐标为(6,2)设直线BC解析式为y=kx+4(k≠0)∵点C(6,2)在直线BC上∴6k+4=2∴k=−13x+4.∴直线BC解析式为y=−13。

一次函数-三年中考数学真题分项汇编(原卷版)

一次函数-三年中考数学真题分项汇编(原卷版)

一次函数一、单选题1.(2020年浙江舟山)一次函数21y x =-的图象大致是( )A .B .C .D .2.(2022年浙江绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >3.(2020年浙江杭州)在平面直角坐标系中,已知函数y =ax +a (a ≠0)的图象过点P (1,2),则该函数的图象可能是( )A .B .C .D .4.(2022年浙江温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s 米,所经过的时间为t 分钟,下列选项中的图像,能近似刻画s 与t 之间关系的是( )A .B .C .D .5.(浙江衢州2021年)已知A ,B 两地相距60km ,甲、乙两人沿同一条公路从A 地出发到B 地,甲骑自行车匀速行驶3h 到达,乙骑摩托车.比甲迟1h 出发,行至30km 处追上甲,停留半小时后继续以原速行驶.他们离开A 地的路程y 与甲行驶时间x 的函数图象如图所示.当乙再次追上甲时距离B 地( )A .15kmB .16kmC .44kmD .45km6.(浙江嘉兴2021年)已知点(),P a b 在直线34y x =--上,且250a b -≤,则下列不等式一定成立的是( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 7.(2022·浙江金华)如图是城某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超B .医院C .体育场D .学校8.(2020年浙江湖州)已知在平面直角坐标系xOy 中,直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .则下列直线中,与x 轴的交点不在线段AB 上的直线是( )A .y =x +2B .y 2+2C .y =4x +2D .y 23x +2 9.(2022年浙江舟山)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( )A .52B .2C .32D .110.(2020年浙江台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v (单位:m/s )与运动时间t (单位:s )的函数图象如图2,则该小球的运动路程y (单位:m )与运动时间t (单位:s )之间的函数图象大致是( )A .B .C .D .11.(2022·浙江台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x 之间函数关系的图象中,正确的是( )A .B .C .D .12.(2022年浙江杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在13M ⎛⎫ ⎪ ⎪⎝⎭,()23,1M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( )A .1MB .2MC .3MD .4M二、填空题 13.(2020年浙江金华、丽水)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可)______. 14.(2022年浙江杭州)已知一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组310x y kx y -=⎧⎨-=⎩的解是_________. 15.(2022年浙江丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(3,3),则A 点的坐标是___________.16.(浙江宁波2021年中考数学试卷)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y,我们把点11,Bx y⎛⎫⎪⎝⎭称为点A的“倒数点”.如图,矩形OCDE的顶点C为()3,0,顶点E在y轴上,函数()2=>y xx的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则OBC的面积为_________.三、解答题(共0分)17.(浙江嘉兴2021年)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”(m/s)与路程()mx之间的观测数据(1)y是关于x的函数吗?为什么?(2)“加速期”结束时,小斌的速度为多少?(3)根据如图提供的信息,给小斌提一条训练建议.18.(2022年浙江丽水)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?19.(浙江丽水2021年)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?20.(2022年浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.21.(浙江台州2021年)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R1,R1与踏板上人的质量m之间的函数关系式为R1=km+b(其中k,b为常数,0≤m≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U0 ,该读数可以换算为人的质量m,温馨提示:①导体两端的电压U,导体的电阻R,通过导体的电流I,满足关系式I=UR;①串联电路中电流处处相等,各电阻两端的电压之和等于总电压.(1)求k,b的值;(2)求R1关于U0的函数解析式;(3)用含U0的代数式表示m;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.22.(浙江衢州2020年)2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?①游轮与货轮何时相距12km?23.(浙江绍兴2021年)I 号无人机从海拔10m 处出发,以10m/min 的速度匀速上升,II 号无人机从海拔30m 处同时出发,以a (m/min )的速度匀速上升,经过5min 两架无人机位于同一海拔高度b (m ).无人机海拔高度y (m )与时间x (min )的关系如图.两架无人机都上升了15min .(1)求b 的值及II 号无人机海拔高度y (m )与时间x (min )的关系式.(2)问无人机上升了多少时间,I 号无人机比II 号无人机高28米.24.(2022年浙江绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米). x0 0.5 1 1.5 2 y1 1.52 2.5 3为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x =(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x .25.(浙江杭州2021年)在直角坐标系中,设函数11k y x =(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-,①求1k ,2k 的值.①当12y y <时,直接写出x 的取值范围. (2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值.26.(浙江宁波2021年)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用(元)2056266每月免费使用流量(兆)1024m无限超出后每兆收费(元)n nA,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?27.(浙江温州2021年)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成分每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克规格每包食材含量每包单价A包装1千克45元B包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?①已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?28.(2020年浙江宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?29.(2020年浙江绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?30.(浙江衢州2020年)如图1,在平面直角坐标系中,①ABC的顶点A,C分别是直线y=﹣83x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE①BC于点E,点F在边AB上,且D,F 两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:①线段EF长度是否有最小值.①①BEF能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.(3)小明通过观察,推理,发现①BEF能成为直角三角形,请你求出当①BEF为直角三角形时m的值.31.(浙江金华2021年)在平面直角坐标系中,点A 的坐标为(73,0),点B 在直线8:3l y x =上,过点B作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C . (1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D . ①若BA BO =,求证:CD CO =.①若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.32.(2020年浙江温州)某经销商3月份用18000元购进一批T 恤衫售完后,4月份用39000元购进单批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元. (1)4月份进了这批T 恤衫多少件?(2)4月份,经销商将这批T 恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a 件,然后将b 件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同. ①用含a 的代数式表示b ;①已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.33.(2020年浙江金华、丽水)某地区山峰的高度每增加1百米,气温大约降低0.6①.气温T(①)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温.(2)求T关于h的函数表达式.(3)测得山顶的气温为6①,求该山峰的高度.34.(2022年浙江舟山)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y(cm)…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象. ①观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少? (2)数学思考:请结合函数图象,写出该函数的两条性质或结论. (3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?35.(浙江衢州2021年)如图1,点C 是半圆O 的直径AB 上一动点(不包括端点),6cm AB =,过点C 作CD AB ⊥交半圆于点D ,连结AD ,过点C 作//CE AD 交半圆于点E ,连结EB .牛牛想探究在点C 运动过程中EC 与EB 的大小关系.他根据学习函数的经验,记cm AC x =,1cm EC y =,2cm EB y =.请你一起参与探究函数1y 、2y 随自变量x 变化的规律.通过几何画板取点、画图、测量,得出如下几组对应值,并在图2中描出了以各对对应值为坐标的点,画出了不完整图象. x ... 0.30 0.80 1.60 2.40 3.20 4.00 4.80 5.60 (1)y ... 2.01 2.98 3.46 3.33 2.83 2.11 1.27 0.38 (2)y … 5.60 4.95 3.95 2.96 2.06 1.24 0.57 0.10 …(1)当3x =时,1y = .(2)在图2中画出函数2y 的图象,并结合图象判断函数值1y 与2y 的大小关系.(3)由(2)知“AC 取某值时,有EC EB =”.如图3,牛牛连结了OE ,尝试通过计算EC ,EB 的长来验证这一结论,请你完成计算过程.。

中考专题复习《一次函数》真题练习含答案解析

中考专题复习《一次函数》真题练习含答案解析

中考专题复习《一次函数》真题练习一、选择题1.(2012•南充)下列函数中,是正比例函数的是()A.y=-8x B.8yx-=C.y=5x2+6 D.y=-0.5x-11.A2.(2012•温州)一次函数y=-2x+4的图象与y轴的交点坐标是()A.(0,4)B.(4,0)C.(2,0)D.(0,2)2.A3.(2012•陕西)在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,-3),(-4,6)B.(-2,3),(4,6)C.(-2,-3),(4,-6)D.(2,3),(-4,6)3.A4.(2012•泉州)若y=kx-4的函数值y随x的增大而增大,则k的值可能是下列的()A.-4 B.12-C.0 D.34.D5.(2012•山西)如图,一次函数y=(m-1)x-3的图象分别与x轴、y轴的负半轴相交于A、B,则m的取值范围是()A.m>1 B.m<1 C.m<0 D.m>05.B6.(2012•娄底)对于一次函数y=-2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是(0,4)6.D8.(2012•乐山)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.8.A9.(2012•阜新)如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0 B.x<0 C.x>1 D.x<19.B9.解:由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.10.(2012•河南)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<32B.x<3 C.x>32D.x>310.A10.解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=32,∴点A的坐标是(32,3),∴不等式2x<ax+4的解集为x<32;故选A.11.(2012•陕西)在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为()A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)11.D12.(2012•哈尔滨)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12)B.y=-12x+12(0<x<24)C.y=2x-24(0<x<12)D.y=12x-12(0<x<24)12.B13.(2012•武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③13.A解:甲的速度为:8÷2=4米/秒;乙的速度为:500÷100=5米/秒;b=5×100-4×(100+2)=92米;5a-4×(a+2)=0,解得a=8,c=100+92÷4=123,∴正确的有①②③.故选A.15.(2012•黔东南州)如图,是直线y=x﹣3的图象,点P(2,m)在该直线的上方,则m 的取值范围是()A.m>﹣3B.m>﹣1C.m>0D.m<3考点:一次函数图象上点的坐标特征。

中考数学专项复习《一次函数》练习题(附答案)

中考数学专项复习《一次函数》练习题(附答案)

中考数学专项复习《一次函数》练习题(附答案)一、单选题x+1交x轴于点A,交y轴于点B,点1.如图,在平面直角坐标系中,直线l:y=√33A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上。

若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是A.24√3B.48√3C.96√3D.192√3 2.如图,一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分,则剩余木板的面积(空白部分)y(m2)与x(m)的函数关系式为(0≤x<5)()A.y=10﹣x B.y=5x C.y=2x D.y=﹣2x+103.小明和小亮在同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y(米)与小亮出发的时间x(秒)之间的函数关系如图所示,下列说法错误的是()A.小明的速度是4米/秒;B.小亮出发100秒时到达终点;C.小明出发125秒时到达了终点;D.小亮出发20秒时,小亮在小明前方10米.4.若x=﹣1是关于x的方程2x+5a=3的解,则a的值为()A.15B.4C.1D.﹣1 5.如图,在平面直角坐标系中,△OABC的顶点A在x轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将△OABC分割成面积相等的两部分,则直线l的函数解析式是()A.y=x+1B.y=13x+1C.y=3x﹣3D.y=x﹣16.函数y=ax﹣a 的大致图象是()A.B.C.D.7.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+ k的图象大致是()A.B.C.D.8.甲、乙两名运动员同时从A地出发前往B地,在笔直的公路上进行骑自行车训练如图所示,反映了甲、乙两名运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t=0.5或t=2.其中正确的个数有()A.1个B.2个C.3个D.4个9.对于函数y=ax2+bx+c,以下四种说法中正确的是()A.当a=0时,它是一次函数B.当b=0时,它是二次函数C.当c=0时,它是二次函数D.以上说法都不对10.点P在一次函数y=3x+4的图象上,则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,直线y=−x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x 的不等式−x+m>nx+4n>0的整数解为().A.−1B.−5C.−4D.−3 12.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为()A.x≥m B.x≥2C.x≥1D.y≥2二、填空题13.如图,直角三角形的斜边在轴的正半轴上,点A与原点重合,点B的坐标是(0,4),且∠BAC=30∘,若将ΔABC绕着点O旋转30°后,点B和点C分别落在点E和点F处,那么直线EF的解析式是.14.小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象,则当小帅到达乙地时,小泽距乙地的距离为千米.15.若点(m,n)在函数y=3x−7的图像上,则3m−n的值为. 16.将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是.17.如果一次函数y=x﹣3的图象与y轴交于点A,那么点A的坐标是.18.下列函数:①y=2x-8;②y=-2x+8:③y=2x+8;④y=-2x-8.其中,y随x的增大而减小的函数是(填序号).三、综合题19.已知:一次函数y=mx+(2-m(m#0)与x轴、y轴交于A点,B点。

中考数学真题分类函数专题(一次函数)试题及答案详解

中考数学真题分类函数专题(一次函数)试题及答案详解

中考数学真题分类之函数专题——一次函数一.点的坐标(共1小题)1.如图,在平面直角坐标系中,点A 的坐标是 .二.函数关系式(共1小题)2.已知A 、B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/小时,若用x 表示行走的时间(小时),y 表示余下的路程(千米),则y 关于x 的函数解析式是( )A .y =4x (x ≥0)B .y =4x ﹣3(x ≥34)C .y =3﹣4x (x ≥0)D .y =3﹣4x (0≤x ≤34)三.函数的图象(共1小题)3.定义新运算:p ⊕q ={pq(q >0)−p q(q <0),例如:3⊕5=35,3⊕(﹣5)=35,则y =2⊕x (x ≠0)的图象是( )A .B .C .D .四.动点问题的函数图象(共1小题)4.如图,△ABC 为等边三角形,点P 从A 出发,沿A →B →C →A 作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .五.分段函数(共1小题)5.对任意实数a ,b 定义运算“∅”:a ∅b ={a(a >b)b(a ≤b),则函数y =x 2∅(2﹣x )的最小值是( ) A .﹣1 B .0 C .1 D .4六.正比例函数的定义(共1小题) 6.下列函数中,正比例函数是( )A .y =﹣8xB .y =8xC .y =8x 2D .y =8x ﹣4七.一次函数的性质(共1小题)7.函数y =x ﹣2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限八.一次函数图象上点的坐标特征(共3小题) 8.直线y =kx +2过点(﹣1,4),则k 的值是( ) A .﹣2 B .﹣1 C .1 D .2 9.直线y =x +2经过M (1,y 1),N (3,y 2)两点,则y 1 y 2(填“>”“<”或“=”)10.如图,直线l 为y =√3x ,过点A 1(1,0)作 A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心, OB 1长为半径画圆弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画 圆弧交x 轴于点A 3;……,按此作法进行下去,则 点A n 的坐标为( ).九.一次函数图象与几何变换(共1小题)11.直线y =3x +1向下平移2个单位,所得直线的解析式是( ) A .y =3x +3 B .y =3x ﹣2 C .y =3x +2 D .y =3x ﹣1十.待定系数法求一次函数解析式(共1小题)12.如图,四边形ABCD 的顶点坐标分别为A (﹣4,0),B (﹣2,﹣1),C (3,0),D (0,3),当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .y =1110x +65B .y =23x +13C .y =x +1D .y =54x +32十一.一次函数的应用(共5小题)13.某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg;乙店的香蕉价格为5元/kg,若一次购买6kg以上,超过6kg部分的价格打7折.(1)设购买香蕉xkg,付款金额y元,分别就两店的付款金额写出y关于x的函数解析式;(2)到哪家店购买香蕉更省钱?请说明理由.14.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h 共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.15.某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?16.我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A 、B 两种型号的电动自行车共30辆,其中每辆B 型电动自行车比每辆A 型电动自行车多500元.用5万元购进的A 型电动自行车与用6万元购进的B 型电动自行车数量一样. (1)求A 、B 两种型号电动自行车的进货单价;(2)若A 型电动自行车每辆售价为2800元,B 型电动自行车每辆售价为3500元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部销售后可获利润y 元.写出y 与m 之间的函数关系式;(3)在(2)的条件下,该商店如何进货才能获得最大利润?此时最大利润是多少元?17.某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨. (1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a 元/吨(10≤a ≤30),从乙仓库到工厂的运价不变,设从甲仓库运m 吨原料到工厂,请求出总运费W 关于m 的函数解析式(不要求写出m 的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m 的增大,W 的变化情况.十二.一次函数综合题(共1小题)18.如图1,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =﹣2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,△ABC 的面积为s . (1)当t =2时,请直接写出点B 的坐标;(2)s 关于t 的函数解析式为s ={14t 2+bt −54,t <−1或t >5a(t +1)(t −5),−1<t <5,其图象如图2所示,结合图1、2的信息,求出a 与b 的值;(3)在l 2上是否存在点A ,使得△ABC 是直角三角形?若存在,请求出此时点A 的坐标和△ABC 的面积;若不存在,请说明理由.参考答案与试题解析一.点的坐标(共1小题) 1.【解答】解:由坐标系可得:点A 的坐标是(﹣2,3). 故答案为:(﹣2,3).二.函数关系式(共1小题) 2.【解答】解:根据题意得:全程需要的时间为:3÷4=34(小时), ∴y =3﹣4x (0≤x ≤34). 故选:D .三.函数的图象(共1小题)3.【解答】解:∵p ⊕q ={pq(q >0)−p q(q <0),∴y =2⊕x ={2x(x >0)−2x(x <0), 故选:D .四.动点问题的函数图象(共1小题) 4.【解答】解:根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时,y 是x 的一次函数,故选项C 与选项D 不合题意;当点P 从B →C 的过程中,根据勾股定理得 AP =√AD 2+PD 2,则其函数不是一次函数,图象不是线段,且当点P 运动到BC 的中点时有最小值,所以选项B 符合题意,选项A 不合题意.故选:B .五.分段函数(共1小题)5.【解答】解:∵a ∅b ={a(a >b)b(a ≤b),∴y =x 2∅(2﹣x )={x 2(x 2>2−x)2−x(x 2≤2−x), ∵x 2>2﹣x∴x 2+x ﹣2>0,解得x <﹣2或x >1, 此时,y >1无最小值,∵x2≤2﹣x,∴x2+x﹣2≤0,解得:﹣2≤x≤1,∵y=﹣x+2是减函数,∴当x=1时,y=﹣x+2有最小值是1,∴函数y=x2∅(2﹣x)的最小值是1,故选:C.六.正比例函数的定义(共1小题)6.【解答】解:A、y=﹣8x,是正比例函数,符合题意;B、y=8x ,是反比例函数,不合题意;C、y=8x2,是二次函数,不合题意;D、y=8x﹣4,是一次函数,不合题意;故选:A.七.一次函数的性质(共1小题)7.【解答】解:一次函数y=x﹣2,∵k=1>0,∴函数图象经过第一三象限,∵b=﹣2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选:B.八.一次函数图象上点的坐标特征(共3小题)8.【解答】解:∵直线y=kx+2过点(﹣1,4),∴4=﹣k+2,∴k=﹣2.故选:A.9.【解答】解:∵直线y=x+2经过M(1,y1),N(3,y2)两点,∴y1=1+2=3,y2=3+2=5,∴y1<y2,故答案为<.10.【解答】解:∵直线l为y=√3x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=√3,即B1(1,√3),∴tan∠A1OB1=√3,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A 3(4,0),A 4(8,0),…, ∴点A n 的坐标为(2n ﹣1,0), 故答案为:2n ﹣1,0.九.一次函数图象与几何变换(共1小题) 11.【解答】解:直线y =3x +1向下平移2个单位,所得直线的解析式是:y =3x +1﹣2=3x ﹣1. 故选:D .十.待定系数法求一次函数解析式(共1小题) 12.【解答】解:由A (﹣4,0),B (﹣2,﹣1),C (3,0),D (0,3), ∴AC =7,DO =3,∴四边形ABCD 分成面积=12×AC ×(|y B |+3)=12×7×4=14, 可求CD 的直线解析式为y =﹣x +3, 设过B 的直线l 为y =kx +b ,将点B 代入解析式得y =kx +2k ﹣1,∴直线CD 与该直线的交点为(4−2k k+1,5k−1k+1),直线y =kx +2k ﹣1与x 轴的交点为(1−2k k,0),∴7=12×(3−1−2k k)×(5k−1k+1+1),∴k =54,∴直线解析式为y =54x +32; 故选:D .十一.一次函数的应用(共5小题) 13.【解答】解:(1)甲商店:y =4x乙商店:y ={5x ,(x ≤6)5×6+0.7×5(x −6),(x >6).(2)当x <6时, 此时甲商店比较省钱, 当x ≥6时,令4x =30+3.5(x ﹣6), 解得:x =18,此时甲乙商店的费用一样, 当x <18时,此时甲商店比较省钱, 当x >18时,此时乙商店比较省钱. 14.【解答】解:(1)1台A 型机器人和1台B 型机器人每小时各分拣垃圾x 吨和y 吨,由题意可知:{(2x +5y)×2=3.6(3x +2y)×5=8,解得:{x =0.4y =0.2,答:1台A 型机器人和1台B 型机器人每小时各分拣垃圾0.4吨和0.2吨. (2)由题意可知:0.4a +0.2b =20, ∴b =100﹣2a (10≤a ≤45). (3)当10≤a <30时, 此时40<b ≤80,∴w =20×a +0.8×12(100﹣2a )=0.8a +960, 当a =10时,此时w 有最小值,w =968, 当30≤a ≤35时, 此时30≤b ≤40,∴w =0.9×20a +0.8×12(100﹣2a )=﹣1.2a +960, 当a =35时,此时w 有最小值,w =918, 当35<a ≤45时, 此时10≤b <30,∴w =0.9×20a +12(100﹣2a )=﹣6a +1200 当a =45时,w 有最小值,此时w =930,答:选购A 型号机器人35台时,总费用w 最少,此时需要918万元.15.【解答】解:(1)设每袋国旗图案贴纸为x 元,则有150x=200x+5, 解得x =15,经检验x =15时方程的解, ∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b 袋小红旗恰好与a 袋贴纸配套,则有50a :20b =2:1,解得b =54a ,答:购买小红旗54a 袋恰好配套;(3)如果没有折扣,则w =15a +20×54a =40a , 依题意得40a ≤800, 解得a ≤20,当a >20时,则w =800+0.8(40a ﹣800)=32a +160,即w ={40a ,a ≤2032a +160,a >20,国旗贴纸需要:1200×2=2400张, 小红旗需要:1200×1=1200面,则a =240050=48袋,b =54a =60袋,总费用w =32×48+160=1696元.答:需要购买国旗图案贴纸48袋和小红旗各60袋,所需总费用1696元. 16.【解答】解:(1)设A 、B 两种型号电动自行车的进货单价分别为x 元,(x +500)元.由题意:50000x=60000x+500,解得x =2500,经检验:x =2500是分式方程的解.答:A 、B 两种型号电动自行车的进货单价分别为2500元,3000元.(2)y =300m +500(30﹣m )=﹣200m +15000;(3)设购进A 型电动自行车m 辆,∵最多投入8万元购进A 、B 两种型号的电动自行车共30辆, A 、B 两种型号电动自行车的进货单价分别为2500元、3000元, ∴2500m +3000(30﹣m )≤80000,解得:m ≥20, ∴m 的取值范围是:20≤m ≤30,∵y =300m +500(30﹣m )=﹣200m +15000, ∵﹣200<0,∴m =20时,y 有最大值,最大值为11000元. 17.【解答】解:(1)设甲仓库存放原料x 吨,乙仓库存放原料y 吨,由题意,得 {x +y =450(1−0.4)y −(1−0.6)x =30, 解得{x =240y =210,甲仓库存放原料240吨,乙仓库存放原料210吨; (2)由题意,从甲仓库运m 吨原料到工厂,则从乙仓库运原料(300﹣m )吨到工厂, 总运费W =(120﹣a )m +100(300﹣m )=(20﹣a )m +30000;(3)①当10≤a <20时,20﹣a >0,由一次函数的性质,得W 随m 的增大而增大, ②当a =20时,20﹣a =0,W 随m 的增大没变化;③当20≤a ≤30时,则20﹣a <0,W 随m 的增大而减小.十二.一次函数综合题(共1小题) 18.【解答】解:(1)如图1,连接AG ,当t =2时,A (﹣2,2), 设B (x ,x +1),在y =x +1中,当x =0时,y =1, ∴G (0,1), ∵AB ⊥l 1,∴∠ABG =90°, ∴AB 2+BG 2=AG 2,即(x +2)2+(x +1﹣2)2+x 2+(x +1﹣1)2=(﹣2)2+(2﹣1)2,解得:x 1=0(舍),x 2=−12, ∴B (−12,12);(2)如图2可知:当t =7时,s =4,把(7,4)代入s =14t 2+bt −54中得:494+7b −54=4, 解得:b =﹣1,如图3,过B 作BH ∥y 轴,交AC 于H ,由(1)知:当t =2时,A (﹣2,2),B (−12,12), ∵C (0,3),设AC 的解析式为:y =kx +n ,则{−2k +n =2n =3,解得{k =12n =3, ∴AC 的解析式为:y =12x +3, ∴H (−12,114), ∴BH =114−12=94,∴s =12BH ⋅|x C −x A |=12×94×2=94,把(2,94)代入s =a (t +1)(t ﹣5)得:a (2+1)(2﹣5)=94,解得:a =−14;(3)存在,设B (x ,x +1), 分两种情况:①当∠CAB =90°时,如图4,∵AB⊥l1,∴AC∥l1,∵l1:y=x+1,C(0,3),∴AC:y=x+3,∴A(﹣2,1),∵D(﹣2,﹣1),在Rt△ABD中,AB2+BD2=AD2,即(x+2)2+(x+1﹣1)2+(x+2)2+(x+1+1)2=22,解得:x1=﹣1,x2=﹣2(舍),∴B(﹣1,0),即B在x轴上,∴AB=√12+12=√2,AC=√22+22=2√2,∴S△ABC=12AB⋅AC=12⋅√2⋅2√2=2;②当∠ACB=90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵A(﹣2,t),D(﹣2,﹣1),∴(x+2)2+(x+1﹣t)2=(x+2)2+(x+1+1)2,(x+1﹣t)2=(x+2)2,x+1﹣t=x+2或x+1﹣t=﹣x﹣2,解得:t=﹣1(舍)或t=2x+3,Rt△ACB中,AC2+BC2=AB2,即(﹣2)2+(t﹣3)2+x2+(x+1﹣3)2=(x+2)2+(x+1﹣t)2,把t=2x+3代入得:x2﹣3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(﹣2,9),B(3,4),∴AC=√22+(9−3)2=2√10,BC=√32+(4−3)2=√10,∴S△ABC=12AC⋅BC=12⋅√10⋅2√10=10;当x=0时,如图6,此时,A(﹣2,3),AC=2,BC=2,∴S△ABC=12AC⋅BC=12×2×2=2.。

中考数学《一次函数》专题练习(附带答案)

中考数学《一次函数》专题练习(附带答案)

中考数学《一次函数》专题练习(附带答案)一、单选题1.如图,函数y 1=ax+b 与y 2=bx+a 的图像为( )A .B .C .D .2.我们知道,若ab >0.则有{a >0b >0或{a <0b <0.如图,直线y =kx +b 与y =mx +n 分别交x 轴于点A (-0.5,0)、B (2,0),则不等式(kx +b )(mx +n )>0的解集是( )A .x >2B .-0.5<x <2C .0<x <2D .x <-0.5或x >23.如图,函数 y=2x 和 y=ax+2b 的图像相交于点A (m ,2),则不等式 2x≤ax+2b 的解集为( )A .x<1B .x>1C .x≥1D .x≤14.“清明节”期间,小海自驾去某地祭祖,如图是他们汽车行驶的路程y (千米)与汽车行驶时间x (小时)之间的函数图象.汽车行驶2小时到达目的地,这时汽车行驶了( )千米.A.120B.130C.140D.1505.在同平面直角坐标系中,函数y=x﹣1与函数y=1x的图象大致是()A.B.C.D.6.已知一次函数y=kx+b(k,b为常数,k≠0)的图象经过一、三、四象限,则下列结论正确的是() A.kb>0B.kb<0C.k+b>0D.k+b<07.如图,周长为定值的平行四边形ABCD中,∠B=65°,设AB的长为x,AD的长为y,平行四边形ABCD的面积为S.当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x 满足的函数关系分别是()A.反比例函数关系,一次函数关系B.反比例函数关系,二次函数关系C.一次函数关系,反比例函数关系D.一次函数关系,二次函数关系8.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是()A.k≠2B.k>2C.0<k<2D.0≤k<29.一次函数y=-5x+3的图象经过()A.一、二、三象限B.二、三、四象限C.一、二、四象限D.一、三、四象限10.下列式子中,表示y是x的正比例函数的是()A.y=2x B.y=x+2C.y=x2D.y=2x11.对于函数y=−4x+3,下列结论正确的是()A.它的图象必经过点(−1,1)B.它的图象不经过第三象限C.当x>0时,y>0D.y随x的增大而增大12.表为小洁打算在某电信公司购买一支MA T手机与搭配一个门号的两种方案.此公司每个月收取通话费与月租费的方式如下若通话费超过月租费,只收通话费若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x元,x为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x至少为多少才会使得选择乙方案的总花费比甲方案便宜?()甲方案乙方案门号的月租费(元)400600MA T手机价格(元)1500013000注意事项以上方案两年内不可变更月租费二、填空题13.一次函数y=kx+b的图象经过点(0,2),且与直线y=12x平行,则该一次函数的表达式为14.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,则快递车从乙地返回时的速度为千米/时.15.如图,直线y=√3x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A n的坐标为16.《庄子▪天下篇》记载“一尺之锤,日取其半,万世不竭.”如图,直线l1:y=12x+1与y轴交于点A,过点A作x轴的平行线交直线l2:y=x于点O1,过点O1作y轴的平行线交直线l1于点A1,以此类推,令OA=a1,O1A1=a2,⋯,O n−1A n−1=a n,若a1+a2+⋯+a n≤S对任意大于1的整数n恒成立,则S 的最小值为.17.直线y=kx+b如图,则关于x的不等式kx+b≤﹣2的解集是.18.已知直线y=2x−3经过点(2+m,1+k),其中m≠0,则k m的值为.三、综合题19.如图,直线l1经过A(-2,0),B(0,2)两点,直线l2:y=−4x+14交l1于点C.(1)求直线l1的函数解析式(2)求点C的坐标.20.如图,已知二次函数y=ax2+2ax−3的图象与x轴交于点A,点B,与y轴交于点C,其顶点为D,直线DC的函数解析式为y=kx−3.已知sin∠OBC=√22(1)求二次函数的函数解析式和直线DC的函数解析式(2)连接BD,求△BCD的面积.21.如图,在平面直角坐标系中,直线l与x轴相交于点M,与y轴相交于点N,Rt△MON的外心为点A(32,﹣2),反比例函数y=kx(x>0)的图象过点A.(1)求直线l的解析式(2)在函数y= kx(x>0)的图象上取异于点A的一点B,作BC△x轴于点C,连接OB交直线l于点P.若△ONP的面积是△OBC面积的3倍,求点P的坐标.22.某县盛产苹果,春节期问,一外地经销商安排15辆汽年装运A、B、C三种不同品质的苹果120吨到外地销售,按计划15辆汽年都要装满且每辆汽车只能装同一种品质的苹果,每辆汽车的运载量及每吨苹果的获利如下表苹果品种A B C每辆汽车运载数987每吨获利(元)6001000800y辆,据上表提供的信息,求出y与x之间的函数关系式(2)为了减少苹果的积压,县林业局制定出台了促进销售的优惠政策,在外地经销商原有获利不变情况下,政府对外地经销商按每吨50元的标准实行运费补贴若A种苹果的车辆数x满足3≤x≤6.若要使该外地经销商所获利W(元)最大,应采用哪种车辆安排方案?并求出最大利润W(元)的最大值.23.已知一次函数y=kx+5的图象经过点A(2,-1).(1)求k的值(2)在平面直角坐标系中画出这个函数的图象.24.为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例药物释放结束后,y与x成反比例如图所示,根据图中提供的信息,解答下列问题(1)写出从药物释放开始,y与x之间的两个函数解析式(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?参考答案1.【答案】A2.【答案】B3.【答案】D4.【答案】C5.【答案】C6.【答案】B 7.【答案】D 8.【答案】D 9.【答案】C 10.【答案】D 11.【答案】B 12.【答案】C 13.【答案】y=12x+214.【答案】90 15.【答案】(2n ﹣1,0) 16.【答案】2 17.【答案】x≥﹣1 18.【答案】219.【答案】(1)解设直线 l 1 的函数解析式为y =ax +b∵直线 l 1 经过A (-2,0),B (0,2)两点 ∴{−2a +b =0b =2 ,解得 {a =1b =2 ∴直线 l 1 的函数解析式为y =x +2. (2)解∵直线 l 1 与直线 l 2 相交于点C∴{y =x +2y =−4x +14,解得 {x =125y =225 ∴点C 的坐标为 (125,225) .20.【答案】(1)解∵二次函数y =ax 2+2ax −3的图象与x 轴交于点A ,点B ,与y 轴交于点C∴点C(0,−3),则OC =3∵sin∠OBC =√22∴∠OBC =45°,OB =OC =3 ∴点B(−3,0)将点B(−3,0)代入y =ax 2+2ax −3,得a =1 ∴二次函数的解析式为y =x 2+2x −3 ∵y =x 2+2x −3=(x +1)2−4 ∴点D(−1,−4)将点D(−1,−4)代入y =kx −3,得k =1 ∴直线CD 的解析式为y =x −3(2)解∵点B(−3,0),C(0,−3),D(−1,−4) ∴S △BCD =12×(1+3)×4−12×3×3−12×1×1=321.【答案】(1)解∵Rt△MON 的外心为点A ( 32 ,﹣2) ∴A 为MN 中点,即M (3,0),N (0,﹣4)设直线l 解析式为y=mx+n (m≠0)将M 与N 代入得 {3m +n =0n =−4解得m= 43,n=﹣4则直线l 解析式为y= 43x ﹣4(2)解将A ( 32 ,﹣2)代入反比例解析式y= k x得k=﹣3∴反比例解析式为y=﹣ 3x∵B 为反比例函数图象上的点,且BC△x 轴 ∴S △OBC = 32∵S △ONP =3S △OBC ∴S △ONP = 92设P 横坐标为a (a >0)∴12 ON•a= 92 ,即a= 94把x=a= 94 代入y= 43x ﹣4,得y=﹣1.则P坐标为(94,﹣1).22.【答案】(1)由题意可得9x+8y+7(15-x-y)=120化简,得y=15-2x即y与x之间的函数关系式为y=15-2x(2)设装运A种苹果的车辆数为x辆W=9x×600+8(15-2x)×1000+7[15-x-(15-2x)]×800+120×50=-5000x+126000∵3≤x≤6∴x=3时,W取得最大值,此时W=111000答装运A、B、C三种不同品质的车辆分别是3辆、9辆、3辆,利润W(元)的最大值是111000元. 23.【答案】(1)解将点A(2,-1)代入y=kx+5,可得−1=2k+5解得k=−3(2)解如图所示,直线即为所求24.【答案】(1)解药物释放过程中,y与x成正比,设y=kx(k≠0)∵函数图象经过点A(2,1)∴1=2k,即k=1 2∴y=1 2x当药物释放结束后,y与x成反比例,设y=k ′x(k'≠0)∵函数图象经过点A(2,1)∴k'=2×1=2∴y=2 x(2)解当y=0.25时,代入反比例函数y=2x,可得x=8∴从药物释放开始,至少需要经过8小时,学生才能进入教室.。

2023年中考数学一轮复习之必考点题型全归纳与分层精练-一次函数(原卷版)

2023年中考数学一轮复习之必考点题型全归纳与分层精练-一次函数(原卷版)

专题12 一次函数【专题目录】技巧1:一次函数常见的四类易错题技巧2:一次函数的两种常见应用技巧3:一次函数与二元一次方程(组)的四种常见应用【题型】一、正比例函数的定义【题型】二、正比例函数的图像与性质【题型】三、一次函数的定义求参数【题型】四、一次函数的图像【题型】五、一次函数的性质【题型】六、求一次函数解析式【题型】七、一次函数与一元一次方程【题型】八、一次函数与一元一次不等式【题型】九、一次函数与二元一次方程(组)【题型】十、一次函数的实际应用【考纲要求】1、理解一次函数的概念,会画一次函数的图象,掌握一次函数的基本性质.2、会求一次函数解析式,并能用一次函数解决实际问题.【考点总结】一、一次函数和正比例函数的定义一次函数与正比例函数一次函数与正比例函数的定义如果y=kx+b(k≠0),那么y叫x的一次函数,当b=0时,一次函数y=kx也叫正比例函数.正比例函数是一次函数的特例,具有一次函数的性质.一次函数与正比例函数的关系一次函数y=kx+b(k≠0)的图象是过点(0,b)与直线y=kx平行的一条直线。

它可以由直线y=kx平移得到.它与x轴的交点为⎪⎭⎫⎝⎛-0,kb,与y轴的交点为(0,b).【考点总结】二、一次函数的图象与性质【注意】1、确定一次函数表达式用待定系数法求一次函数表达式的一般步骤: (1)由题意设出函数的关系式;(2)根据图象所过的已知点或函数满足的自变量与因变量的对应值列出关于待定系数的方程组; (3)解关于待定系数的方程或方程组,求出待定系数的值; (4)将求出的待定系数代回到原来设的函数关系式中即可求出. 2、y =kx +b 与kx +b =0直线y =kx +b 与x 轴交点的横坐标是方程kx +b =0的解,方程kx +b =0的解是直线y =kx +b 与x 轴交点的横坐标.3、y =kx +b 与不等式kx +b >0从函数值的角度看,不等式kx +b >0的解集为使函数值大于零(即kx +b >0)的x 的取值范围;从图象一次函数的图象与性质函数系数取值大致图象经过的象限函数性质y =kx(k ≠0)k >0一、三y 随x 增大而增大k <0二、四y 随x 增大而减小 y =kx +b(k ≠0)k >0b >0一、二、三 y 随x 增大而增大 k >0b <0一、三、四 k <0b >0一、二、四 y 随x 增大而减小 k <0 b <0二、三、四的角度看,由于一次函数的图象在x 轴上方时,y >0,因此kx +b >0的解集为一次函数在x 轴上方的图象所对应的x 的取值范围. 4、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点. 【技巧归纳】技巧1:一次函数常见的四类易错题【类型】一、忽视函数定义中的隐含条件而致错1.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值. 2.已知关于x 的函数y =kx-2k +3-x +5是一次函数,求k 的值.【类型】二、忽视分类或分类不全而致错3.已知一次函数y =kx +4的图像与两坐标轴围成的三角形的面积为16,求这个一次函数的表达式. 4.一次函数y =kx +b ,当-3≤x≤1时,对应的函数值的取值范围为1≤y≤9,求k +b 的值. 5.在平面直角坐标系中,点P(2,a)到x 轴的距离为4,且点P 在直线y =-x +m 上,求m 的值. 【类型】三、忽视自变量的取值范围而致错6.若等腰三角形的周长是80 cm ,则能反映这个等腰三角形的腰长y(cm )与底边长x(cm )的函数关系的图像是( )7.若函数y =⎩⎪⎨⎪⎧x 2+6(x≤3),5x (x>3),则当y =20时,自变量x 的值是( )A .±14B .4C .±14或4D .4或-148.现有450本图书供给学生阅读,每人9本,求余下的图书本数y(本)与学生人数x(人)之间的函数表达式,并求自变量x 的取值范围.【类型】四、忽视一次函数的性质而致错9.若正比例函数y =(2-m)x 的函数值y 随x 的增大而减小,则m 的取值范围是( )A .m<0B .m>0C .m<2D .m>210.下列各图中,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 是常数,且mn≠0)的大致图像的是( )11.若一次函数y =kx +b 的图像不经过第三象限,则k ,b 的取值范围分别为k________0,b________0. 技巧2:一次函数的两种常见应用 【类型】一、利用一次函数解决实际问题 题型1:行程问题1.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距离y(km )与甲车行驶的时间t(h )之间的函数关系如图所示,则下列结论:①A ,B 两城相距300 km ;②乙车比甲车晚出发1 h ,却早到1 h ; ③乙车出发后2.5 h 追上甲车;④当甲、乙两车相距50 km 时,t =54或154.其中正确的结论有( )A .1个B .2个C .3个D .4个2.甲、乙两地相距300 km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y(km )与时间x(h )之间的函数关系,折线BCDE 表示轿车离甲地的距离y(km )与时间x(h )之间的函数关系,根据图像,解答下列问题:(1)线段CD 表示轿车在途中停留了________h ; (2)求线段DE 对应的函数表达式;(3)求轿车从甲地出发后经过多长时间追上货车.题型2:工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)之间的函数图像如图所示.(1)求甲组加工零件的数量y与时间x之间的函数表达式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?题型3:实际问题中的分段函数4.某种铂金饰品在甲、乙两个商场销售.甲标价为477元/g,按标价出售,不优惠;乙标价为530元/g,但若买的铂金饰品质量超过3 g,则超出部分可打八折.(1)分别写出到甲、乙两个商场购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数表达式;(2)李阿姨要买一个质量不少于4 g且不超过10 g的此种铂金饰品,到哪个商场购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10 t以内(包括10 t)的用户,每吨收水费a元;一个月用水超过10 t的用户,10 t水仍按每吨a元收费,超过10 t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8 t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数表达式.【类型】二、利用一次函数解决几何问题题型4:利用图像解几何问题6.如图①所示,正方形ABCD 的边长为6 cm ,动点P 从点A 出发,在正方形的边上沿A→B→C→D 运动,设运动的时间为t(s ),△APD 的面积为S(cm 2),S 与t 的函数图像如图②所示,请回答下列问题:(1)点P 在AB 上运动的时间为________s ,在CD 上运动的速度为________cm /s ,△APD 的面积S 的最大值为________cm 2;(2)求出点P 在CD 上运动时S 与t 之间的函数表达式; (3)当t 为何值时,△APD 的面积为10 cm 2?题型5:利用分段函数解几何问题(分类讨论思想、数形结合思想)7.在长方形ABCD 中,AB =3,BC =4,动点P 从点A 开始按A→B→C→D 的方向运动到点D.如图,设动点P 所经过的路程为x ,△APD 的面积为y.(当点P 与点A 或D 重合时,y =0)(1)写出y 与x 之间的函数表达式; (2)画出此函数的图像.技巧3:一次函数与二元一次方程(组)的四种常见应用 【类型】一、利用两直线的交点坐标确定方程组的解1.已知直线y =-x +4与y =x +2如图所示,则方程组⎩⎪⎨⎪⎧y =-x +4,y =x +2的解为( )A .⎩⎪⎨⎪⎧x =3y =1B .⎩⎪⎨⎪⎧x =1y =3C .⎩⎪⎨⎪⎧x =0y =4D .⎩⎪⎨⎪⎧x =4y =0 2.已知直线y =2x 与y =-x +b 的交点坐标为(1,a),试确定方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解和a ,b 的值.3.在平面直角坐标系中,一次函数y =-x +4的图像如图所示.(1)在同一坐标系中,作出一次函数y =2x -5的图像;(2)用作图像的方法解方程组⎩⎪⎨⎪⎧x +y =4,2x -y =5;(3)求一次函数y =-x +4与y =2x -5的图像与x 轴所围成的三角形的面积.【类型】二、利用方程(组)的解求两直线的交点坐标4.已知方程组⎩⎪⎨⎪⎧-mx +y =n ,ex +y =f 的解为⎩⎪⎨⎪⎧x =4,y =6,则直线y =mx +n 与y =-ex +f 的交点坐标为( )A .(4,6)B .(-4,6)C .(4,-6)D .(-4,-6)5.已知⎩⎪⎨⎪⎧x =3,y =-2和⎩⎪⎨⎪⎧x =2,y =1是二元一次方程ax +by =-3的两组解,则一次函数y =a x +b 的图像与y 轴的交点坐标是( )A .(0,-7)B .(0,4)C .⎝⎛⎭⎫0,-37D .⎝⎛⎭⎫-37,0 【类型】三、方程组的解与两个一次函数图像位置的关系6.若方程组⎩⎪⎨⎪⎧x +y =2,2x +2y =3没有解,则一次函数y =2-x 与y =32-x 的图像必定( )A .重合B .平行C .相交D .无法确定7.直线y =-a 1x +b 1与直线y =a 2x +b 2有唯一交点,则二元一次方程组⎩⎪⎨⎪⎧a 1x +y =b 1,a 2x -y =-b 2的解的情况是( )A .无解B .有唯一解C .有两个解D .有无数解 【类型】四、利用二元一次方程组求一次函数的表达式8.已知一次函数y =kx +b 的图像经过点A(1,-1)和B(-1,3),求这个一次函数的表达式. 9.已知一次函数y =kx +b 的图像经过点A(3,-3),且与直线y =4x -3的交点B 在x 轴上.(1)求直线AB 对应的函数表达式;(2)求直线AB 与坐标轴所围成的△BOC(O 为坐标原点,C 为直线AB 与y 轴的交点)的面积. 【题型讲解】【题型】一、正比例函数的定义例1、若一次函数y=(m ﹣3)x+m 2﹣9是正比例函数,则m 的值为_______.【题型】二、正比例函数的图像与性质 例2、若正比例函数12y x =经过两点(1,1y )和(2,2y ),则1y 和2y 的大小关系为( ) A .12y y <B .12y y >C .12y y =D .无法确定【题型】三、一次函数的定义求参数例3、已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .()1,2-B .()1,2-C .()2,3D .()3,4【题型】四、一次函数的图像例4、若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【题型】五、一次函数的性质例5、设k 0<,关于x 的一次函数2y kx =+,当12x ≤≤时的最大值是( ) A .2k +B .22k +C .22k -D .2k -【题型】六、求一次函数解析式例6、直线y kx b =+在平面直角坐标系中的位置如图所示,则不等式2kx b +≤的解集是( )A .2x -≤B .4x ≤-C .2x ≥-D .4x ≥-【题型】七、一次函数与一元一次方程例7、一次函数3y kx =+(k 为常数且0k ≠)的图像经过点(-2,0),则关于x 的方程()530k x -+=的解为( ) A .5x =-B .3x =-C .3x =D .5x =【题型】八、一次函数与一元一次不等式例8、如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为( )A .1x ≤B .1≥xC .1x <D .1x >【题型】九、一次函数与二元一次方程(组)例9、在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为( ) A .2B .3C .4D .6【题型】十、一次函数的实际应用例10、A ,B 两地相距200千米.早上8:00货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示.(通话等其他时间忽略不计) (1)求货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式.(2)因实际需要,要求货车乙到达B 地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B 地的速度至少为每小时多少千米?一次函数(达标训练)一、单选题1.已知一次函数4y kx =+经过()11,y ,()22,y ,且12y y <,它的图象可能是( )A .B .C .D .2.已知一次函数1y kx =-经过()11,A y -,()22,B y 两点,且12y y >,则k 的取值范围是( ) A .0k >B .0k =C .0k <D .不能确定3.一次函数2y x m =-+的图象经过第一、二、四象限,则m 可能的取值为( ) A .-1B .34C .0D .124.一次函数31y x =-+的图象经过( ) A .一、二、四象限 B .一、三、四象限 C .一、二、三象限D .二、三、四象限5.若23y x b =+-,y 是x 的正比例函数,则b 的值是( ) A .0 B .23-C .23D .32二、填空题6.请写出一个图象经过点()2,0A 的函数的解析式:______.7.将直线y =2x -1向下平移3个单位后得到的直线表达式为________.三、解答题8.某中学积极响应“双减”政策,为了丰富学生的课外活动,激发学生参加体育活动的兴趣,准备购买一批新的羽毛球拍.已知甲、乙两商店销售同一种羽毛球拍,但两个商店的原价和销售方式均不同.在甲商店,无论一次性购买多少支羽毛球拍,一律按原价出售;在乙商店,一次性购买羽毛球拍的数量不超过20支,按原价销售,若一次性购买球拍数量超过20支,超出的部分打八折.设该学校购买了x 支羽毛球拍,在甲商店购买所需的费用为1y 元,在乙商店购买所需的费用为2y 元,1y ,2y 关于x 的函数图像如图所示.(1)分别求出1y ,2y 关于x 的函数解析式.(2)请求出m 的值,并说明m 的实际意义.(3)若该学校一次性购买羽毛球拍的数量超过80支,但不超过120支,到哪家商店购买更优惠?一次函数(提升测评)一、单选题1.一次函数()32y k x k =++-()011k k +-有意义的k 的值可能为( )A .-3B .-1C .-2D .22.已知直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点,若将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,若△ABC 的面积为6,则m 的值为( )A .1B .2C .3D .43.已知一次函数y =-kx +k ,y 随x 的增大而减小,则在直角坐标系内大致图象是( )A .B .C .D . 4.在平而直角坐标系中,一次函数32y x m =-+的图像关于直线1y =对称后经过坐标原点,则m 的值为( ) A .1 B .2 C .1- D .2-5.甲、乙两自行车运动爱好者从A 地出发前往B 地,匀速骑行.甲、乙两人离A 地的距离y (单位:km )与乙骑行时间x (单位:h )之间的关系如图所示.下列说法正确的是( )A .乙骑行1h 时两人相遇B .甲的速度比乙的速度慢C .3h 时,甲、乙两人相距15kmD .2h 时,甲离A 地的距离为40km二、填空题6.如图,直线3y x =和2y kx =+相交于点(),3P a ,则关于x 的不等式32≤+x kx 的解集是______.7.如图,直线l 的函数表达式为1y x =-,在直线l 上顺次取点2341(2,1),(3,2),4,3),(5,4),,(1,)(n A A A A A n n ⋅⋅⋅+,构成形如“┐”的图形的阴影部分面积分别表示为123,,,,n S S S S ⋅⋅⋅,则2022S =__________.三、解答题8.如图,在平面直角坐标系中,点A (﹣5,m ),B (m ﹣3,m ),其中m >0,直线y =kx ﹣1与y 轴相交于C 点.(1)求点C 坐标 .(2)若m =2,△求△ABC 的面积;△若点A 和点B 在直线y =kx ﹣1的两侧,求k 的取值范围;(3)当k=﹣1时,直线y=kx﹣1与线段AB的交点为P点(不与A点、B点重合),且AP<2,求m的取值范围.。

专题09 一次函数及反比例函数-中考数学母题题源系列(第01篇)(原卷版及解析版)

专题09 一次函数及反比例函数-中考数学母题题源系列(第01篇)(原卷版及解析版)

(原卷版【母题来源一】2017江苏宿迁第23题【母题原题】小强与小刚都住在安康小区,在同一所学校读书.某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速.当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点.他们乘坐的车辆从安康小区站出发所行驶路程y (千米)与行驶时间x (分钟)之间的函数图象如图所示.(1)求点A 的纵坐标m 的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.【答案】(1)92m =;(2)当小刚乘坐出租车出发后经过5分钟追到小强所乘坐的校车,此时他们距学校站点的路程32千米. 【解析】试题分析:试题解析:(1)因为校车的速度为:3÷4=34(千米/分钟), 所以m=39(82)42⨯-=. (2)因为92m = ,所以A(8,92),B(10,92)因为39124÷= ,所以C(16,9),E(15,9),F(9,0)设线段BC 的解析式为11BC y k x b =+(10≤x ≤16),所以11119102169k b k b ⎧+=⎪⎨⎪+=⎩ ,解得:11343k b ⎧=⎪⎨⎪=-⎩,所以334BCy x =-(10≤x ≤16) 设线段EF 的解析式为22EF y k x b =+(9≤x ≤15),所以222215990k b k b +=⎧⎨+=⎩ ,解得:2232272k b ⎧=⎪⎪⎨⎪=-⎪⎩,所以32722EF y x =-(9≤x ≤15)联立得:33432722y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得214152x b =⎧⎪⎨=⎪⎩因为14-9=5(分钟),153922-=(千米) 答:当小刚乘坐出租车出发后经过5分钟追到小强所乘坐的校车,此时他们距学校站点的路程32千米. 【母题来源二】2017天津第23题【母题原题】用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表: 一次复印页数(页) 510 20 30 … 甲复印店收费(元) 5.0 2… 乙复印店收费(元)6.04.2…(2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式; (3)当70>x 时,顾客在哪家复印店复印花费少?请说明理由.【答案】(1)1,3,1.2,3.3.(2)1y =0.1x (x ≥0);当0≤x ≤20时,2y =0.12x ,当x>20时,2y =0.12×20+0.09(x-20),即2y =0.09x+0.6.(3) 当x>70时,顾客在乙复印店复印花费少,理由见解析. 【解析】试题分析:(1)根据在甲复印店不管一次复印多少页,每页收费0.1元和在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元计算填空即可;(2)根据在甲复印店不管一次复印多少页,每页收费0.1元和在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元,直接写出函数关系式即可;(3)当x>70时,有1y =0.1x ,2y =0.09x+0.6,计算出1y -2y 的结果,利用一次函数的性质解决即可.试题解析:(1)1,3,1.2,3.3. (2)1y =0.1x (x ≥0); 当0≤x ≤20时,2y =0.12x ,当x>20时,2y =0.12×20+0.09(x-20),即2y =0.09x+0.6. (3)顾客在乙复印店复印花费少. 当x>70时,有1y =0.1x ,2y =0.09x+0.6 ∴1y -2y ==0.1x-(0.09x+0.6)=0.01x-0.6 记y= =0.01x-0.6由0.01>0,y 随x 的增大而增大, 又x=70时,有y=0.1. ∴x>70时,有y>0.1,即y>0 ∴1y >2y∴当x>70时,顾客在乙复印店复印花费少.【命题意图】母题1主要考查利用待定系数法求一次函数的解析式,能够正确地从图中获取信息是解题关键.母题2主要考查了一次函数不等式的关系,这是基础题,较为简单,同时考查了学生的分析能力,体会数学的数形结合思想,树立数学建模思想的能力.【方法、技巧、规律】解决与函数相关的问题时,要结合图形进行解答,而且对于有待定系数时,要考虑可能出现的情况。

中考数学专题练习一次函数(含解析)

中考数学专题练习一次函数(含解析)

一次函数一、选择题1.若y=kx-4的函数值y随x的增大而增大,则k的值可能是下列的()A.-4 B.-错误!C.0 D.3解析∵在一次函数y=kx-4中,y随x的增大而增大,∴k>0.故选D。

答案D2.在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为()A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)解析由错误!解得错误!因此交点坐标是(2,1).故选D。

答案D3.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b〉1的解集是( )A.x〉0 B.x<0C.x〉1 D.x<1解析不等式kx+b>1,就是一次函数y=kx+b的函数值大于1,这部分图象在(0,1)的上方,此时,x〈0.故选B。

答案B4.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1 cm的速度从点A出发,沿折线AC-CB运动,到点B停止,过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x (秒)的函数图象如图2所示,当点P运动5秒时,PD的长是()A.1.5 cm B.1.2 cmC.1.8 cm D.2 cm图1 图2解析由图2可得,AC=3,BC=4,当t=5时,如图所示:此时AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B=错误!=错误!,∴PD=BP sin∠B=2×35=错误!=1.2 cm。

答案B5.对于一次函数y=kx+b(k≠0),两个同学分别作出了描述,小刚说:y随x的增大而增大;小亮说:b<0;则与描述相符的图象是( )解析∵y随x的增大而增大,∴k>0,图象经过第一、三象限.∵b<0,∴图象与y轴的交点在y轴负半轴上.故选A.答案A二、填空题6.如果一次函数y=mx+n的图象经过第一、二、四象限,则一次函数y=nx+m不经过第________象限.解析∵y=mx+n的图象经过第一、二、四象限,∴m<0,n>0.∴y=nx+m的图象经过第一、三、四象限,不经过第二象限.答案二7.直线y=3x+2沿y轴向下平移5个单位,则平移后直线与y轴的交点坐标为________.解析直线y=3x+2与y轴的交点坐标为(0,2),向下平移5个单位后,直线与y轴交点坐标为(0,-3).答案(0,-3)8.已知点A(1,5),B(3,1),点M在x轴上,当AM+BM最小时,点M的坐标为________.解析作点B关于x轴的对称点B′,则B′(3,-1).过A,B′作直线,交x轴于点M,则此时AM+BM最小.设AB′的解析式为y=kx+b,把A(1,5),B′(3,-1)代入,得错误!解得错误!∴该函数的解析式为y=-3x+8。

中考数学专题复习题一次函数(含解析)(2021年整理)

中考数学专题复习题一次函数(含解析)(2021年整理)

2017-2018年中考数学专题复习题一次函数(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018年中考数学专题复习题一次函数(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018年中考数学专题复习题一次函数(含解析)的全部内容。

2017—2018年中考数学专题复习题:一次函数一、选择题1.已知下列函数:,其中是一次函数的是A. B。

C。

D.2.一次函数的图象经过原点,则k的值为A. 2 B。

C. 2或D。

33.已知函数是正比例函数,且图象在第二、四象限内,则m的值是A。

2 B. C. D.4.如图,直线与直线的交点的横坐标为,则关于x的不等式的整数解为A. ,,B。

, C. ,,D。

,5.已知方程的解是,则一次函数的图象可能是A. B。

C。

D.6.已知变量y与x的关系满足下表,那么能反映y与x之间的函数关系的解析式是x0 1 2y4 3 2 1 0A. B。

C。

D。

7.如图,已知正比例函数与一次函数的图象交于点有四个结论:;; 当时,;当时,其中正确的是A。

B。

C. D.8.如图,一次函数的图象分别与x轴、y轴交于点A 、B,以线段AB为边在第一象限内作等腰,则过B、C两点直线的解析式为A. B.C。

D。

9.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了甲车休息前后的速度相同,甲、乙两车行驶的路程与行驶的时间的函数图象如图所示根据图象的信息有如下四个说法:甲车行驶40千米开始休息乙车行驶小时与甲车相遇甲车比乙车晚小时到到B地两车相距50km时乙车行驶了小时其中正确的说法有A. 1个B. 2个C。

中考数学考点大串讲(北师大版):专题04 一次函数 必刷基础50题(原卷版)

中考数学考点大串讲(北师大版):专题04 一次函数 必刷基础50题(原卷版)

专题04一次函数(基础50题4种题型)一、函数1.(2023秋·安徽六安·八年级六安市第九中学校考阶段练习)函数1y x 中,自变量x 的取值范围是()A .1xB .1xC .1xD .1x 2.(2022春·河北石家庄·八年级校考阶段练习)如果每盒笔售价16元,共有10支,用y (元)表示笔的售价,x 表示笔的支数,那么y 与x 的关系式为()A .10y x B .85y x C .16y xD .58y x 3.(2023秋·安徽蚌埠·八年级统考阶段练习)下列图象中,表示y 是x 的函数的是()A .B .C .D .4.(2023秋·全国·八年级专题练习)圆面积公式2S r ,下列说法正确的是()A .S 、 是变量,r 是常量B .S 是变量, 、r 是常量C .r 是变量,S 、 是常量D .S 、r 是变量, 是常量5.(2023秋·全国·八年级专题练习)已知函数()21f x x ,如果()3f a ,那么 a .6.(2023秋·全国·八年级专题练习)函数73y x 自变量x 的取值范围是.7.(2023秋·甘肃武威·八年级校考开学考试)小明沿街心公园的环形跑道从起点出发按逆时针方向跑步,他用软件记录了跑步的轨迹,他每跑1km 软件会在运动轨迹上标注相应的路程,前5km 的记录如图所示.已知该环形跑道一圈的周长大于1km .小明恰好跑3圈时,路程5km ?(填“超过”或“不超过”)8.(2022秋·黑龙江哈尔滨·八年级校考期中)函数32y x ,当1x 时,函数值y .9.(2022春·河北邯郸·八年级校考期中)为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过37m 时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过37m 的部分每立方米收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为 3m x ,应交水费为y (元).(1)写出用水未超过37m 时,y 与x 之间的函数关系式;(2)写出用水多于37m 时,y 与x 之间的函数关系式.10.(2023春·山东济南·七年级校考期中)如图是某市一天的气温变化图,在这一天中,气温随着时间变化而变化,请观察图象,回答下列问题:(1)在这一天中,(凌晨0时到深夜24时均在内)气温在什么时候达到最高,最高温度是多少摄氏度?(2)什么时间气温达到最低?(3)上午10时,下午20时的气温各为多少摄氏度?(4)如果某旅行团这天想去爬山,登山的气温最好在18℃以上,请问该旅行团适宜登山的时间从几点开始,共有多长时间适宜登山?11.(2023春·江西抚州·七年级统考期中)风是由空气流动引起的一种自然现象,一般是由太阳辐射热引起的,风的测量多用电接风向风速计、轻便风速表、达因式风向风速计,以及用于测量农田中微风的热球微风仪等仪器,小星同学使用轻便风速表观测了某天连续12个小时风力变化的情况,并绘制下图:(1)A点表示______;(2)风力最大为______;(3)简要描述8~12时风力变化的情况.12.(2023春·北京·九年级专题练习)某条客运线试运行期间,一列动车从甲地开往乙地,下图中的线段表示这列动车到乙地的距离与时间之间的关系.根据图象,解答下列问题:(1)甲地与乙地相距______km ,这列动车从甲地到乙地用了______h ;(2)这列动车的速度是多少km/h ?二、一次函数与正比例函数13.(2022秋·安徽芜湖·八年级统考阶段练习)若y 关于x 的函数(4)y a x b 是正比例函数,则a ,b 应满足的条件是()A .4a 且0bB .4a 且0bC .4a 且0bD .4a 且0b 14.(2022春·河北廊坊·八年级校考期末)下列式子中,哪个表示y 是x 的正比例函数()A .0.1y x B .2y x C .22y x D .24y x15.(2023秋·全国·八年级专题练习)下列函数:①y x ;②1y x ;③5x y ;④2112y x ,其中一次函数的个数是()A .1个B .2个C .3个D .4个16.(2023秋·全国·八年级专题练习)下列函数中,是一次函数的是()A .1y x B .1y x C .1y kx D .21y x 17.(2022秋·广西梧州·八年级统考期末)一次函数21y x 的图象经过点 P a b ,,则24b a 的值为.18.(2023秋·全国·八年级专题练习)若m 1(2)4y m x m 为一次函数,则m.19.(2022秋·陕西咸阳·八年级校考期中)已知函数 236k y k x 是一次函数,则k.20.(2023春·黑龙江哈尔滨·八年级统考期末)若点 12,A y , 21,B y 都在直线34y x 上,则1y 与2y 的大小关系是.21.(2022秋·安徽安庆·八年级校考阶段练习)已知函数1012y m x m ().(1)m 为何值时,这个函数是一次函数;(2)m 为何值时,这个函数是正比例函数.22.(2023·上海·八年级假期作业)已知点(60)A ,,并且点(1)B m ,在直线3y x 上,求OAB 的面积.23.(2023春·吉林长春·八年级校考阶段练习)已知一次函数的图象经过2,0A (),B (0,4)两点.(1)求此一次函数表达式;(2)试判断点 16,是否在此一次函数的图象上.24.(2023春·全国·八年级专题练习)已知y 与x 的函数解析式是23y x ,(1)求当4x 时,函数y 的值;(2)求当=2y 时,函数自变量x 的值.三、一次函数的图像25.(2022春·福建福州·八年级校联考期中)一次函数21y x 的图象经过()A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限26.(2022秋·北京海淀·九年级校考开学考试)若点1(4,)y ,B 2(2,)y 都在直线13y x t 上,则1y 与2y 的大小关系是()A .12y y B .12y y C .12y y D .无法确定27.(2022秋·广西梧州·八年级统考期末)若一个正比例函数的图象经过点 1,2O ,则它的表达式为()A .2y x B .2y x C .12y x D .12y x 28.(2022春·湖北武汉·八年级校考阶段练习)将直线23y x 向左平移2个单位长度后的对应直线的解析式为()A . 223y x B . 223y x C .25y x D .21y x 29.(2021春·上海宝山·八年级校考期中)如图,一次函数y kx b 的图象经过 1,3, 2,0两点,那么当3y 时,x 的取值范围是.30.(2022春·陕西安康·八年级统考期末)将函数22y x 的图象向下平移4个单位长度,则平移后的图象对应的函数解析式是.31.(2022秋·湖南长沙·九年级长沙市北雅中学校考开学考试)在平面直角坐标系中,已知一次函数1y x 的图象经过 111,P y 、 222,P y 两点,则1y 2y (填“ ”,“ ”或“ ”)32.(2021春·上海崇明·八年级校考期中)直线 21y x 在y 轴上截距为.33.(2023春·山东聊城·八年级统考期末)已知一次函数 21+13y k x k ;(1)求该一次函数的图象与x 轴交于 20,时的k 值?(2)当k 为何值时,y 随x 的增大而减小?(3)当k 为何值时,该一次函数的图象经过一、三、四象限?34.(2023春·江西赣州·八年级统考期末)已知直线 0y kx b k 经过点 0,4A ,且平行于直线2y x .(1)求该直线的函数关系式;(2)如果这条直线经过点 ,2P m ,求m 的值.35.(2022·全国·八年级假期作业)已知y 与x 成正比例,且当x =1时,y =2,求当x =3时,y 的值.36.(2021秋·安徽亳州·八年级校考期中)(1)当b >0时,函数y =x +b 的图象经过哪几个象限?(2)当b <0时,函数y =-x +b 的图象经过哪几个象限?(3)当k >0时,函数y =kx +1的图象经过哪几个象限?(4)当k <0时,函数y =kx +1的图象经过哪几个象限?37.(2023秋·甘肃平凉·八年级校考期末)已知直线3y kx 经过点(2,1)M ,求此直线与x 轴,y 轴的交点坐标.38.(2023春·全国·八年级专题练习)根据一次函数y =kx +b 的图象,直接写出下列问题的答案:(1)关于x 的方程kx +b =0的解;(2)当1x 时,代数式k +b 的值;(3)关于x 的方程kx +b =-3的解.四、一次函数的应用39.(2023春·陕西汉中·七年级校考期中)一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶路程随时间变化的图象如图所示,下列结论错误的是()A .轮船的速度为20km/hB .轮船比快艇先出发2hC .快艇的速度为30km/hD .快艇比轮船早到2h40.(2023春·吉林长春·八年级长春市解放大路学校校考期末)汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间x (时)之间的函数关系式为()A .405y xB .540y xC .540y xD .405y x 41.(2023春·全国·八年级专题练习)一蓄水池中有350m 的水,打开排水阀门开始放水后水池中的水量与放水时间有如下关系:放水时间/分1234…水池中的水量/3m 48464442…下列说法不正确的是()A .蓄水池每分钟放水32m B .放水18分钟后,水池中的水量为314m C .放水25分钟后,水池中的水量为30m D .放水12分钟后,水池中的水量为324m 42.(2023春·上海·八年级专题练习)从北京到天津的高速公路长120km ,一辆汽车在高速公路上以80km/h 的速度从北京出发,开出x h 时距离天津y km ,则y (km )与x (h )之间的函数关系式是()A .31200802x y xB .31208002y x xC .38012002y x xD .31200802x y x43.(2023秋·陕西西安·八年级西安市铁一中学校考开学考试)一支原长为12cm 的蜡烛,点燃后其剩余长度与燃烧时间之间的关系如下表:燃烧时间/分1020304050…剩余长度/cm 11.210.49.68.88…44.(2023·河南安阳·统考一模)请你写出一个函数,使其过点 02,,且使得当自变量0x 时,函数y 随x增大而增大,则这个函数的解析式可以是.45.(2023春·上海·八年级专题练习)A、B两地相距50千米,小张骑自行车从A地到B地,车速为13千米/小时,骑了t小时后,小张离B地s千米,那么s关于t的函数解析式是.46.(2022秋·八年级课前预习)一次函数y=kx+b的图象是一条,因此画一次函数的图象时只要确定了个点,再作过两点的直线就可以了.一次函数y=kx+b的图象也称为直线y=kx+b.h处的气温t(℃)与地面气温T(℃)47.(2023春·浙江杭州·七年级校联考阶段练习)据研究,地面上空 m有如下关系:t T kh.现用气象气球测得某时离地面150m处的气温为8.8℃,离地面400m处的气温为6.8℃.(1)求T,k的值.(2)求地面上空1000m处的气温.48.(2023春·江西九江·七年级统考期中)如图所示的图像反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图像回答下列问题.(1)体育场距文具店多远?(2)小强在文具店逗留了多长时间?(3)小强从文具店回家的平均速度是多少?49.(2023春·云南·九年级专题练习)某批发商欲将一批水产品委托货运公司由A地运往B地销售,已知A、B两地相距120km,货运车辆的平均速度是60km/h,货运公司的收费项目及收费标准如下表:运输量单价(元/吨 千米)冷藏费单价(元/吨 时)过路过桥费(元)25200(1)若该批发商有t x水产品要运输,货运公司收取的总费用为y元,写出y与x之间的函数表达式.(2)如果该批发商想运送5t水产品,支付运费1500元,货运公司愿意运送这批水产品吗?50.(2023春·上海·九年级专题练习)某汽车行驶时油箱中余油量(升)与行驶时间(小时)的关系如下表:行驶时间t/小时余油量Q/升155250345440535观察表格解答下列问题(1)汽车行驶之前油箱中有多少升汽油?(2)写出用时间表示余油量的代数式;(3)当142t 时,求余油量的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【母题原题一】【2019·广西梧州】下列函数中,正比例函数是 A .y =–8x B .y =8xC .y =8x 2D .y =8x –4【命题意图】这类试题主要考查正比例函数的定义及性质等. 【方法总结】1.正比例函数的概念:一般地,形如y =kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做正比例系数.2.正比例函数的图象特征与性质:正比例函数y =kx (k ≠0)的图象是经过原点(0,0)的一条直线.专题06 一次函数【母题原题二】【2019·辽宁辽阳】若ab<0且a>b,则函数y=ax+b的图象可能是A.B.C.D.【答案】A【解析】∵ab<0,且a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限.故选A.【名师点睛】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).【母题原题三】【2019·贵州毕节】已知一次函数y=kx+b(k,b为常数,k≠0)的图象经过一、三、四象限,则下列结论正确的是A.kb>0 B.kb<0C.k+b>0 D.k+b<0【答案】B【解析】y=kx+b的图象经过一、三、四象限,∴k>0,b<0,∴kb<0;故选B.【名师点睛】本题考查一次函数的图象及性质;熟练掌握函数图象及性质是解题的关键.【母题原题四】【2019•浙江绍兴】若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于A.﹣1 B.0 C.3 D.4 【答案】C【解析】设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴472k bk b=+⎧⎨=+⎩,∴31kb=⎧⎨=⎩,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选C.【名师点睛】本题考查一次函数上点的特点;熟练待定系数法求函数解析式是解题的关键.【母题原题五】【2019·江苏南京】已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.【答案】(1)x<35;(2)当﹣4≤k<0时,y1>y2;当0<k≤1时,y1>y2.【解析】(1)k=﹣2时,y1=﹣2x+2,根据题意得﹣2x+2>x﹣3,解得x<35;(2)当x=1时,y=x﹣3=﹣2,把(1,﹣2)代入y1=kx+2得k+2=﹣2,解得k=﹣4,当﹣4≤k<0时,y1>y2;当0<k≤1时,y1>y2.【名师点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.【命题意图】这类试题主要考查一次函数的定义,图象与性质,用待定系数法确定一次函数的解析式等.【方法总结】1.一次函数的图象特征与性质(1)一次函数的图象2(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.【母题原题六】【2019•湖北孝感】一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是A.B.C.D.【答案】A【解析】∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选A.【名师点睛】本题考查了函数的图象的知识,解题的关键是能够将实际问题与函数的图象有机的结合起来,难度不大.【母题原题七】【2019·浙江绍兴】如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【答案】(1)蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为6(千米);(2)当150≤x≤200时,函数表达式为y=–0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【解析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:15066035=-(千米);(2)当150≤x≤200时,设y关于x的函数表达式为y=kx+b(k≠0),把点(150,35),(200,10)代入表达式,得1503520010k bk b+=⎧⎨+=⎩,∴0.5110kb=-⎧⎨=⎩,∴y=–0.5x+110,当x=180时,y=–0.5×180+110=20.答:当150≤x≤200时,函数表达式为y=–0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【名师点睛】本题考查了一次函数的应用,需要学生熟练运用待定系数法确定函数解析式;根据函数解析式确定剩余电量.本题属于基础题,难度不大,解决该类问题应结合图形,理解图形中点的坐标代表的意义.【母题原题八】【2019·山东济宁】小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.【答案】(1)小王和小李的速度分别是10km/h、20km/h;(2)线段BC所表示的y与x之间的函数解析式是y=30x﹣30(1≤x≤1.5).【解析】(1)由图可得,小王的速度为:30÷3=10km/h,小李的速度为:(30﹣10×1)÷1=20km/h,答:小王和小李的速度分别是10km/h、20km/h;(2)小李从乙地到甲地用的时间为:30×20=1.5(h),当小李到达甲地时,两人之间的距离为:10×1.5=15km,∴点C的坐标为(1.5,15),设线段BC所表示的y与x之间的函数解析式为y=kx+b,01.515k b k b +=⎧⎨+=⎩,得3030k b =⎧⎨=-⎩, 即线段BC 所表示的y 与x 之间的函数解析式是y =30x ﹣30(1≤x ≤1.5).【名师点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.【命题意图】这类试题主要考查一次函数的应用等. 【方法总结】解决这类问题时,首先需要从实际问题中抽象出一次函数模型,并求出一次函数的解析式,再利用一次函数的性质解决有关问题.1.【2019年海南省三亚市中考数学模拟】一次函数y =–2x +5不经过 A .第一象限B .第二象限C .第三象限D .第四象限2.【2019年辽宁省沈阳市法库县中考数学模拟】在下列四个函数中,y 随x 的增大而减小的函数是 A .y =3x B .y =–3xC .y =5x +2D .y =x 2(x >0)4.【福建省厦门市翔安区2019年九年级适应性考试】如果将直线l 1:y =2x –2平移后得到直线l 2:y =2x ,那么下列平移过程正确的是 A .将l 1向左平移2个单位 B .将l 1向右平移2个单位 C .将l 1向上平移2个单位D .将l 1向下平移2个单位5.【2018年吉林省长春市南关区中考数学二模试卷】如图,向四个形状不同高同为h 的水瓶中注水,注满为止.如果注水量V (升)与水深h (厘米)的函数关系图象如图所示,那么水瓶的形状是A .B .C .D .6.【2019年黑龙江省哈尔滨市南岗区中考数学三模】甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的函数关系如图所示,下列说法中正确的是A .甲步行的速度为80米/分B .乙走完全程用了34分钟C .乙用16分钟追上甲D .乙到达终点时,甲离终点还有360米7.【天津市五区2019届中考一模数学试题】若一次函数的图象与直线3y x =-平行,且经过点()1,2,则一次函数的表达式为___________.8.【2019年上海市杨浦区中考数学三模试卷】一次函数y =kx +b (k ≠0)的图象如图所示,如果y ≤0,那么x 的取值范围___________.9.【浙江省台州市温岭市天台县2019年中考数学一模试卷】一项工程,先由甲独做,后乙加入合作直至完成,工程剩余工作量y 与甲工作时间x (天)的函数关系如图所示,若要使工程提前4天完成,那么乙应该在甲工作第___________天后加入合作.10.【2019年河北省唐山市古冶区中考数学一模试卷】如图,在平面直角坐标系xOy中,过点A(–6,0)的直线l1与直线l2:y=2x相交于点B(m,6)(1)求直线l1的表达式(2)直线l1与y轴交于点M,求△BOM的面积;(3)过动点P(m,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D下方时,写出n的取值范围.11.【吉林省长春市南关区2019届九年级中考6月二模数学试题】甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距离A地的距离为y(km).甲车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)甲车从A地前往B地的速度为__________km/h.(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围.(3)当甲、乙两车相距50km时,直接写出甲车行驶的时间.12.【2019年湖北省武汉市武昌区中考数学模拟】某水果零售商店,通过对市场行情的调查,了解到两种水果销路比较好,一种是冰糖橙,一种是睡美人西瓜.通过两次订货购进情况分析发现,买40箱冰糖橙和15箱睡美人西瓜花去2000元,买20箱冰糖橙和30箱睡美人西瓜花去1900元.(1)请求出购进这两种水果每箱的价格是多少元?(2)该水果零售商在五一期间共购进了这两种水果200箱,冰糖橙每箱以40元价格出售,西瓜以每箱50元的价格出售,获得的利润为w元.设购进的冰糖橙箱数为a箱,求w关于a的函数关系式;(3)在条件(2)的销售情况下,但是每种水果进货箱数不少于30箱,西瓜的箱数不少于冰糖橙箱数的5倍,请你设计进货方案,并计算出该水果零售商店能获得的最大利润是多少?。

相关文档
最新文档