19-4 波函数及其统计解释

合集下载

波函数及其统计解释

波函数及其统计解释

§1、 波函数及其统计解释 1. de Broglie 假说(1923)先回忆Planck 的“光量子假说”: E h p h νλ=⎧⎨=⎩ 换写一下:E ω= 2ωπν=是圆频率p k =k 是波矢量, 2k πλ=是由波动性决定粒子性。

在Planck-Einstein 的光量子论以及Bohr 的原子的量子论的成功与失败的启发下,de Broglie 提出物质波假设。

de Broglie 假说:微观粒子也有波动性,满足关系式:ω=E /,k p =/,注意到: 2ωπν=及2k πλ=时,上面二式变形为:E h ν= h p λ=称为de Broglie 关系。

是由粒子性决定波动性。

它适用于自由粒子和平面波之间的关系。

平面波是()(){},exp r t A i t k r ψω=--⋅,将de Broglie 关系代入得:()(){},exp r t A i Et p r ψ=--⋅,这称为de Broglie 波(是复数波)。

对质量为μ的非相对论粒子:22 E p p μ=⇒=所以h p λ==≈≈近似适用于电子,E 的单位是电子伏特(eV ),λ的单位是埃(Å,即1010-m )。

数量级:E =150 eV 时,λ=1 Å(晶格常数的量级)。

2. 电子衍射实验波动性的体现就是衍射、干涉等等。

通过观察这些现象还可以测量波长。

戴维逊--革末 (Davisson and Germer, P.R. 30(27) 707)当可变电子束(30-600eV )照射到抛光的镍单晶上,发现在某角度ϕ(或πϕ-)方向有强的反射(即有较多电子被接收),而ϕ满足sin a nh p ϕ=。

若取h p λ=,则上式与Bragg 光栅衍射公式相同(sin a n ϕλ=)。

它证明了电子入射到晶体表面,发生散射,具有波动性而相应波长为h p λ=。

Davidsson-Germer 电子衍射实验(1927)的结果证实了电子确实有波动性,而且波长与de Broglie 的预言完全一致。

量子力学的波函数解析

量子力学的波函数解析

量子力学的波函数解析量子力学是一门研究微观世界的科学,波函数是其核心概念之一。

本文将介绍量子力学的波函数解析。

一、波函数的定义和物理意义波函数是量子力学描述微观粒子状态的数学函数。

通常用Ψ来表示波函数,其一般形式为Ψ(x, t),其中x表示位置,t表示时间。

波函数的平方乘以一个常数就是粒子在该位置出现的概率密度。

二、波函数的波动性根据量子力学的原理,粒子在某一位置的运动具有波动性。

这是波函数的一大特征。

当波函数呈现波动性时,可以使用波动方程来描述其演化。

三、波函数的波动方程波函数的演化可以由薛定谔方程描述。

薛定谔方程是一个偏微分方程,描述了波函数随时间变化的规律。

该方程对于理解量子力学的基本性质至关重要。

四、波函数的归一化条件波函数必须满足归一化条件,即波函数的平方在整个空间积分等于1。

这保证了粒子在所有可能位置出现的概率之和等于1。

五、波函数的例子1. 粒子在一维无限深势阱中的波函数:无限深势阱是量子力学中的简化模型,其波函数为正弦函数和余弦函数的线性组合。

这个例子展示了粒子在特定能级上的定态波函数。

2. 粒子在一维谐振子中的波函数:谐振子是量子力学中的经典模型,其波函数为厄密多项式的高斯函数。

这个例子展示了粒子在谐振子势场中的概率分布。

3. 电子双缝干涉的波函数:双缝干涉实验证明了波粒二象性的存在。

电子双缝干涉的波函数可以通过叠加两个点源的波函数得到。

这个例子展示了波函数在干涉实验中的应用。

六、波函数的测量与实验在实验中,波函数的测量通常通过观察粒子的位置、动量或其他物理量得出。

根据波函数坍缩的原理,测量结果将会使波函数发生坍缩,粒子出现在某一确定的状态。

七、波函数的解析解与近似解对于简单的系统,可以通过求解薛定谔方程得到波函数的解析解。

然而,对于复杂的系统,通常需要使用数值计算方法或近似解来描述波函数。

总结:本文介绍了量子力学的波函数解析。

波函数是量子力学中描述微观粒子的数学函数,具有波动性和粒子分布概率的特征。

量子力学专题讲座-1-波函数的统计解释与薛定鄂方程

量子力学专题讲座-1-波函数的统计解释与薛定鄂方程

一、波函数的统计解释在量子力学中,我们用波函数),(t x ψ来描述一个微观粒子的状态,从这个波函数我们可以得到微观粒子的所用信息。

如何从波函数得到微观粒子的信息是量子力学的一个主要内容。

波恩的统计解释:{}2.(,)baa b x t dx t ψ=⎰在时刻发现粒子处于和之间的几率也就是说,ψψ=ψ*2),(t x 是几率密度,它给出在t 时刻粒子处于x 处单位体积内的几率。

由于这个性质,波函数必须满足1. 是归一化的1),(2=ψ⎰∞∞-dx t x(或者说是可归一化的,dx t x ⎰∞∞-ψ2),( 积分为有限值)2. 满足波函数的标准条件:有限性(不排除在个别点上,ψ和它的微商在保持平方模可积条件下可以趋于无限大。

);单值性(ψ应该是坐标和时间的单值函数,这样才能使粒子的几率密度在时刻t ,坐标x 有唯一确定值);连续性(由于几率密度应当连续,波函数和它的微商也必须连续,不排除微商在势能为无限大处不连续)。

由波函数的统计解释,对处于ψ态的一个粒子,对其坐标多次测量的平均值(期待值)是dx x 2⎰ψ是你所得到结果的平均值。

而是相反:第一次测量(其结果是不确定的)将使波函数坍塌至位于实际获得的测量值处的一个尖峰,以后的测量(如果它们立即进行)将得到同样的结果。

.测量引起波函数的坍塌而x是所有测量都是对处在ψ态的粒子所进行的平均值,这意味着你要么发现某种方法使测量后粒子的状态回到ψ态,要么你准备一个系综,其中每个粒子都处在ψ态,然后测量每个粒子的位置, x是所有结果的平均值。

(你们可以想象在一个书架上放一行瓶子,每个瓶子中放一个处在ψ态(相对瓶子的中心)的粒子,每一个学生被分配拿一把尺子测量一个瓶子中粒子的位置,一声令下他们同时开始测量自己瓶子中粒子的位置。

计算平均值,它应该符合x。

简短而言,期待值是对含有相同体系的一个系综中不同体系的重复测量的平均值,而不是对同一个体系的重复测量的平均值。

波函数的统计解释

波函数的统计解释
有关实验:
子弹 水波 光波
}{ 双缝衍射
子弹:P=P1+P2 波:I≠I1+I2
电子
电子:
1。与宏观粒子运动不同。 2。电子位置不确定。 3。几率正比于强度,即
(rr , t) 2
结论:
波函数的统计解释:波函数在空间某一点的强度(振幅绝对 值的平方)和在该点找到粒子的几率成正比。
数学表达: (r,t) | (r,t) |2
遮住缝1
遮住缝2
双缝都打开
遮住缝1
遮住缝2
双缝都打开
2.2 测不准原理
一. 宏观粒子运动状态确定,各种力学量同时具有确定值。但微观粒子的运动 从根本上讲不具有这种特点。
海森伯 1927年
共轭量
x px
t E
J
二.量子力学中的测量过程
1.海森伯观察实验
2.测量过程 被测对象和仪器,测量过程即相互作用过程,其影响不可控制和预测。
三.一对共轭量不可能同时具有确定的值是微观粒 子具有波动性的必然结果。
并不是测量方法或测量技术的缺陷。而是在本质上它们就不可能同时 具有确定的值
(r , t)
c(
p,
t
)
p
(r )dpx
dpy
dpz
e
p (r )
1
(2) 2 3
i pr
§2.3 态迭加原理
测不准原理和态迭加原理是量子力学的两个基本原理,反映了微观粒子运动的根 本特性,是和量子力学对微观粒子描述的整个数学框架相一致的。
经典物理中,波的迭加只不过是将波幅迭加(波幅代表实际物体的运动 等),并在合成波中出现不同频率的波长的子波成分。微观粒子的波动性的迭加 性其实质是什么呢?

波函数及其统计解释

波函数及其统计解释
却变大了。
根据右图可粗估
与 的关系。


考虑到高于一级 仍会有电子出现

通常也作为不确定关系的一种简明的表达形式,它表明

不可能
同时为零,即微观粒子的位置和动量不可能同时精确测定,这是微观粒子具有波粒二象性的一种
客观反映。不确定关系可用来划分经典力学与量子力学的界限,如果在某一具体问题中,普朗克
常数可以看成是一个小到被忽略的量,则不必考虑客体的波粒二象性,可用经典力学处理。
真 空 或 介 质
电子云
纵向 分辨率 达 0.005 n m
横向
分辨率达 0.1 n m
续上
电 子
沿XY逐行扫描的同时,自控系统根据反馈
测 信号调节针尖到样品表层原子点阵的距离,
控 使 保持不变。针尖的空间坐标的变化
及 反映了样品表面原子阵列的几何结构及起
数 伏情况。经微机编码可显示表面结构图像。
连续 单值 有限
因概率不会在某处发生突变,故波函数必 须处处连续;
因任一体积元内出现的概率只有一种,故 波函数一定是单值的;
因概率不可能为无限大,故波函数必须是 有限的;
以一维波函数为例,在下述四种函数曲线中,只有一种符合标准条件
符合
不符合
不符合
不符合
某粒子的 波函数为
归一化波函数
算例
概率密度 概率密度最大的位置
不考虑物质的波粒二象性 经典质点有运动轨道概念
牛顿力学方程
根据初始条件可求出经典质点的
运动状态
针对物质的波粒二象性 微观粒子无运动轨道概念 是否存在一个
量子力学方程
根据某种条件可求出微观粒子的
运动状态 波函数
量子力学中的

波函数的统计解释

波函数的统计解释

01
02
03
概率幅
波函数描述了一个量子系 统在特定状态下的概率幅, 即系统处于某个状态的可 能性。
概率分布
通过平方模长计算,可以 得到系统处于某个状态的 概率分布,即波函数的模 长的平方。
叠加态
当一个量子系统同时处于 多个状态时,波函数描述 了系统在各个状态下的概 率分布。
波函数的期望值和方差
期望值
通过波函数,可以描述量子纠缠现 象,以及量子纠缠在信息传递和处 理中的应用。
量子密钥分发
波函数可以用于实现量子密钥分发, 提高通信安全性。
05 结论
对波函数统计解释的理解
波函数是描述微观粒子状态的函 数,它包含了粒子的所有信息。
波函数的统计解释认为,在多次 测量中,波函数的描述是有效的, 但在单次测量中,无法确定粒子
THANKS FOR WATCHING
感谢您的观看
通过将波函数与可观测量 算符进行内积运算,可以 得到该可观测量在量子系 统中的期望值。
方差
方差描述了量子系统可观 测量的不确定性,即测量 结果偏离期望值的程度。
测量误差
由于量子系统的波动性, 测量误差与方差有关,方 差越大,测量误差越大。
波函数的测量问题
测量过程
测量不确定性
当对一个量子系统进行测量时,系统 会与测量仪器发生相互作用,导致波 函数发生塌缩。
量子纠缠是量子力学中的一种现象,指两个或多个粒子之间存在一种特殊的关联 ,使得它们的状态是相互依赖的。
波函数可以用来描述纠缠态,即多个粒子之间的关联状态。例如,两个自旋处于 纠缠态的粒子,一个粒子的自旋状态改变,另一个粒子的自旋状态也会立即改变 。
04 波函数的统计解释的应用
在原子和分子物理中的应用

波函数PPT课件

波函数PPT课件
什么是波包?波包是各种波数(长)平面波的迭加。
平面波描写自由粒子,其特点是充满整个空间,这是因为平面波 振幅与位置无关。如果粒子由波组成,那么自由粒子将充满整个空间, 这是没有意义的,与实验事实相矛盾。
实验上观测到的电子,总是处于一个小区域内。例如在一个原子内,其 广延不会超过原子大小≈1 Å 。
)
x
(ax) 1 ( x)
|a|
f ( x) ( x x0 )
f
(
x0
)
(
x
x0
)
.
作代换:px x,px x0,则
(
px
px )
1
2
e dx i (
p
x
px
)
x
14
II 平面波 归一化
p(r , t )
i[
Ae
p•r Et ]
p
(r )e
i
Et
t=0 时的平面波
写成分量形式
Q光

Q
6
结论:衍射实验所揭示的电子的波动性是: 许多电子在同一个实验中的统计结果,或者是一个
电子在许多次相同实验中的统计结果。
波函数正是为了描述粒子的这种行为而引进的,在此基
础上,Born 提出了波函数意义的统计解释。
在电子衍射实验中,照相底片上
r 点附近衍射花样的强度
正比于该点附近感光点的数目, 正比于该点附近出现的电子数目, 正比于电子出现在 r 点附近的几率。
.
12
(4)平面波归一化 I Dirac —函数
定义:
0 ( x x0 )
x x0 x x0
x0 x0
(x
x0 )dx
( x x0 )dx 1

第一讲 波函数及其统计诠释

第一讲 波函数及其统计诠释

E h
h
p
自由粒子平面波函数
Ψ
(
x,t )
i
0e
2π h
(
Et
px )

3、波函数的统计意义 在某一时刻,在空间某处,微观粒子出现的
概率正比于该时刻、该地点波函数模的平方。
——玻恩的统计解释
(1954年玻恩获诺贝尔物理学奖)
在空间一很小区域(以体积元dV=dx dy dz表征)
出现粒子的概率为: 2 dV dV
解:(1)由归一化条件得:
a A2 sin2 ( x a)dx 1 0
A 2 a
(2)粒子的概率密度为:
2 2 sin2 x
aa
在0<x<a/2区域内,粒子出现的概率为:
a 2 2 dx 2 a 2 sin2 xdx 1
0
a0
a2
(3)概率最大的位置应满足
d (x)2 dx 0
第三章
主要内容:
量子物理基础
§3-1 波函数及其统计诠释 §3-2 薛定谔方程 *§3-3 氢原子量子理论简介 *§3-4 电子的自旋和原子的壳层结构
§3.1 波函数及其统计诠释
一、波函数及其统计解释
1、波函数 由于微观粒子具有波粒二象性,其位置与动
量不能同时确定。 所以已无法用经典物理方法去 描述其运动状态。用波函数来描述微观粒子的运 动。
2 x k, k 0,1, 2, 3,
a
因0<x<a, 故得
x a 粒子出现的概率最大。 2
微观粒子的运动状态称为量子态,用波函数
(r ,
t)来描述的,这个波函数所反映的微观粒子波动
性,就是德布罗意波。
(1) 经典的波与波函数

波函数及其统计解释

波函数及其统计解释
上述的解释是对处于同一状态的大量电子而言。
在实验中可以控制电子枪的电压,使发出的电子束的 强度十分微弱,以至电子是一个一个通过。假如时间不 长,则落在屏幕上的是一个个的点,而不是扩散开的衍 射图案。就这个意义而言,电子是粒子而不是扩展开的 波。
但时间一长,则感光点在屏幕上的分布显示衍射图样, 与强度较大的电子束在较短时间内得到的图样相同。可 以认为:尽管不能确定一个电子一定到达照相底片的什 么地方,但它到达衍射图样极大值的几率必定较大,而 到达衍射图样极小值的地方的几率必定较小,甚至为零。
在量子物理中,却将这种波方程的复数表示借用过来, 并不再取它的实部,而赋予它新的物理意义。即 用它表示微观客体的波粒子二象性,它就是波函数。
在量子力学中,粒子的状态用波函数来描写,根据薛 定谔方程得出波函数的变化规律。如果已知波函数,则 可由它求出所有描述粒子状态的物理量。
在量子物理中,波函数常用ψ(x,y,z,t)表示,它的最简 单的一个表示式为
3.3 波函数及其统计解释
一、波函数 二、波函数的统计解释 三、波函数的标准条件和归一化
一、波函数
在经典力学中,我们只要知道了质点的运动 方程及其初始条件,就可以知道它的确切位置 和动量。这种方法在宏观世界取得很大的成功, 但不能适用于具有波粒二象性的微观粒子。
量子力学原理之一:微观粒子的状态可用 波函数来描述。
在经典物理中,为了计算方便,常将波方程表示成 复数,如单色平面波
y( x, t) Acos(t kx)
表示为Y ( x, t ) Aei(tkx)
显然,y(x,t)等于Y(x,t)的实部,这样计算时 用Y(x,t),算完后再取它的实部,这样做在经典物 理中是为了计算的方便,在物理学中并无新意。

波函数及其统计解释

波函数及其统计解释
5
动量分布概率(1)
设子设有平出 动 面pr现 量波 px在的ixip点波的y函pjr概y数j附z率k为近p如,zk的何则为概表(|粒r率示)(子r。?) 的|2eip动|r /量(x,,y, z那) |2么表粒示子粒具
任意粒子的波函数可以按此平面波做傅立叶展开
(r )
1
(2)3
2
( p)eipr / d 3 p
*
(
p)
p
(
p)d
3
p
p
*
(r )

(r )d
3r
,

力学量用算符表示
A
*
(r )

(r )d
3r
20
三、力学量用算符表示(5)
力学量 A 的平均值为
A
*
(r )

(r )d
3r
其 问中 题,:Aˆ坐为标力r学的量平A均的值算符r 。
*
(r )r
(r )d
该如何理解波函数的物理意义?为此,人们
提出了波函数的统计诠释来作为对波函数物
理意义的一种理解。
4
量子力学的基本假定之一
基本假定Ⅰ:波函数假定 微观粒子的状态可以被一个波函数完全 描述,从这个波函数可以得出体系的所 有性质。波函数一般满足连续性、有限 性和单值性三个条件。 说明:波函数一般是粒子坐标和时间的 复函数,波函数的模方代表粒子空间分 布的概率密度。
量子力学
波函数及其统计解释 粒子的动量分布 不确定度关系——进一步讨论
1
简短回顾
1、自由粒子的波函数 既然粒子具有波动性,那么就应该用一
个反映波动的函数来加以描述。 由平面波公式 Asin(kxt)

波函数及其统计解释资料课件

波函数及其统计解释资料课件
特点
柱面波函数具有恒定的振幅和相位,并且传播方向与波数 k垂直。
应用
柱面波函数在声学、电磁学和天文学等领域都有广泛的应 用。
04
波函数的物理意义
波函数的粒子性
粒子位置与波函数的关联
波函数可以被视为一个概率幅,描述了粒子在空间中的概率分布 。
粒子动量与波函数的关联
波函数的傅里叶变换描绘了粒子的动量分布。
相干性是波动性质的重要表现之 一,它可以产生明暗相间的条纹
,即干涉现象。
波函数的对称性
波函数的对称性是指波函数在空间上的 分布是否具有某种对称性。
常见的对称性包括:轴对称、面对称、 旋转对称等。
波函数的对称性与其波动性质密切相关 ,不同的对称性会导致不同的干涉现象

03
波函数的分类
平面波函数
定义
象。
波函数是一种复数函数,其模方 表示粒子在某个位置出现的概率
密度。
波函数的统计解释的重要性
波函数的统计解释是理解量子力学的基础之一,它提供了从概率角度描述粒子的方 法。
通过波函数的统计解释,我们可以计算出粒子在某个位置出现的概率,以及测量某 个物理量的期望值和方差等统计性质。
波函数的统计解释还与量子纠缠、量子计算等重要概念密切相关。
波函数与量子态的关系
描述量子态的函数
波函数是描述量子态的函 数,它可以表示出量子态 的叠加原理和相干性。
波函数的模平方
波函数的模平方可以表示 出某个物理量的概率分布 ,如位置、动量等。
测量问题
波函数与测量问题密切相 关,测量会导致波函数塌 缩,进而影响后续的测量 结果。
波函数与测量问题
测量导致波函数塌缩
06
结论与展望

量子力学波函数的统计解释

量子力学波函数的统计解释

波由粒子组成的看法仅注意到了粒子性的一面,而抹杀了 粒子的波动性的一面,具有片面性。
(2) 粒子由波组成
电子是波包。把电子波看成是电子的某种实际结构,是三维
空间中连续分布的某种物质波包。因此呈现出干涉和衍射等
波动现象。波包的大小即电子的大小,波包的群速度即电子
的运动速度。
3
§2.1 波函数的统计解释(续3)
必须注意
称为几率密度(概率密度)
(1)“微观粒子的运动状态用波函数描述,描写粒子的波是概 概波”,这是量子力学的一个基本假设(基本原理)。
知道了描述微观粒子状态的波函数,就可知道粒子在空间各 点处出现的概率,以后的讨论进一步知道,波函数给出体系的一 切性质,因此说波函数描写体系的量子状态(简称状态或态)
设粒子状态由波函数 (r , t) 描述,波的强度是
(r ,t) 2 *(r ,t)(r ,t)
则微观粒子在t 时刻出现在 r 处体积元dτ内的概率
dW (r ,t) C2 (r ,t) 2 d
这表明描写粒子的波是几率波(概率波),反映微观客体运
动的一种统计规律性,波函数 r,t 有时也称为概率幅。
实验上观测到的电子,总是处于一个小区域内。例如一个
原子内的电子,其广延不会超过原子大小≈1
0
A

电子究竟是什么东西呢?是粒子?还是波?
“ 电子既不是粒子也不是波 ”,既不是经典的粒子也不是 经典的波,但是我们也可以说,“ 电子既是粒子也是波,它 是粒子和波动二重性矛盾的统一。”
这个波不再是经典概念的波,粒子也不是经典概念中的粒子。
Chapter 2 The wave function and Schrödinger Equation

波函数与统计解释

波函数与统计解释

它的波函数 所满足的方程为
它反映微观粒子运动状态随时间变化 的力学规律,又称含时薛定谔方程。
式中, 为哈密顿算符,
获1933年诺贝尔物理学奖
含时薛定谔方程
定态薛定谔方程
若粒子所在的
势场只是空间函数

,则
对应于一个可能态
有一个能量定值
定态薛定谔方程
定态 波函数
解释: 若 故
时间的函数


可分离变量,写成
却变大了。
根据右图可粗估
与 的关系。


考虑到高于一级 仍会有电子出现

通常也作为不确定关系的一种简明的表达形式,它表明

不可能
同时为零,即微观粒子的位置和动量不可能同时精确测定,这是微观粒子具有波粒二象性的一种
客观反映。不确定关系可用来划分经典力学与量子力学的界限,如果在某一具体问题中,普朗克
常数可以看成是一个小到被忽略的量,则不必考虑客体的波粒二象性,可用经典力学处理。
连续,


又因

以及
时阱内
不合理 舍去
同一 的负值和正值概率密度相同。


求归一化定态波函数
由上述结果 阱外 阱内
及 得
续求解
积分
得 归一化定态波函数
应满足归一化条件
概率密度
势阱问题小结 一维无限深势阱中的微观粒子 (小结)
能量 量子化
波函数
概率密度
能量量子化是微观世界的固有现象
称 基态能 或 零点能
引言
量子力学是描述微观粒子运动规律 的学科。它是现代物理学的理论支柱 之一,被广泛地应用于化学、生物学、 电子学及高新技术等许多领域。

波函数的统计解释

波函数的统计解释

波函数的统计解释
在波函数的统计解释中,波函数的平方(ψ^2)被解释为找到某个特
定状态的概率。

换句话说,ψ^2描述了一个量子系统存在于某个特定状
态的可能性。

以一个粒子的波函数为例,假设该粒子的波函数为ψ(某),描述了
位置某上粒子的状态。

则ψ(某)^2表示在位置某上找到该粒子的概率。

这意味着在测量时,粒子出现在位置某的概率正比于ψ(某)^2、这类似
于经典物理中的概率分布函数。

波函数的统计解释还可以扩展到描述多个粒子系统。

例如,对于一个
由两个粒子组成的体系,波函数可以写为ψ(某1,某2),其中某1和某2
分别表示第一个和第二个粒子的位置。

则ψ(某1,某2)^2表示在位置(某1,某2)同时找到这两个粒子的概率。

需要注意的是,波函数的统计解释是概率性的,并不意味着该粒子一
定会出现在波函数ψ(某)^2所描述的某个位置。

测量时,粒子只会选择
一个位置出现,但在模拟大量实验的统计平均下,粒子出现在该位置的概
率就是ψ(某)^2。

值得一提的是,波函数的统计解释并不适用于所有的量子物理现象。

在一些特殊情况下,例如量子叠加态和量子纠缠态,波函数的统计解释可
能不足以完全描述系统的行为。

这些情况涉及到更复杂的概念,如量子态
的叠加和观测等。

总而言之,波函数的统计解释是量子力学中描述量子系统状态和行为
的重要概念。

它通过平方波函数得到一个量子系统在某个状态的概率分布。

这一解释提供了量子力学研究和实验预测的基础,为我们更好地理解量子世界提供了工具。

波函数及其统计解释

波函数及其统计解释

波函数及其统计解释波函数是量子力学中用来描述物质的状态和性质的数学工具。

它是由薛定谔方程得到的解析函数,通常用Ψ来表示。

波函数提供了关于一个粒子的位置、动量以及其他物理量的概率分布信息。

在量子力学中,波函数与粒子的运动有着密切的关系,它可以用来预测实验结果并解释量子现象。

波函数的统计解释是一种基于概率的解释方法,用来解释波函数的实际物理含义。

根据波函数的统计解释,波函数描述的是一个粒子处于不同状态的概率振幅。

具体而言,波函数的模的平方给出了在某一位置或某一状态下找到粒子的概率密度。

因此,波函数提供了一种对于微观粒子行为的统计描述。

以一维自由粒子为例,其波函数可以表示为Ψ(x,t),其中x为位置,t为时间。

根据波函数的统计解释,粒子出现在某一位置x上的概率密度为|Ψ(x,t)|^2。

因此,波函数的平方模的积分应等于1,代表粒子一定存在于某个位置上。

波函数还可以表示粒子的动量状态。

动量算符是p = -iħ(d/dx),其中ħ为约化普朗克常数。

粒子的动量可以由波函数Ψ(x,t)通过动量算符作用得到:pΨ(x,t) = -iħ(dΨ(x,t)/dx)。

通过这种方式,波函数提供了一种描述粒子动量的方法。

根据波函数的统计解释,波函数Ψ(x,t)也可以用来描述一个粒子的位置和动量的不确定性。

根据不确定性原理,位置的不确定度Δx和动量的不确定度Δp满足ΔxΔp ≥ ħ/2。

因此,波函数的宽度与位置不确定性和动量不确定性之间存在着一种平衡关系。

除了一维自由粒子,波函数还可以应用于描述不同势场下的粒子行为。

例如,谐振子势能场下的波函数具有特定的形式,可以用来描述谐振子的能量和态。

原子的波函数由薛定谔方程得到,它可以描述电子在原子核周围的运动状态。

总之,波函数是量子力学中一个重要的概念,它提供了对微观粒子行为的统计描述和预测。

波函数的统计解释使我们能够理解量子力学中的各种现象,并通过测量结果来验证理论的准确性。

通过适当的数学和物理推导,我们可以获得波函数的具体形式,并利用它来解释和预测量子系统的行为。

波函数的统计解释

波函数的统计解释

波函数的统计解释波函数是量子力学中描述粒子状态的数学函数。

它包含了粒子的可能位置、动量等信息,但并不直接表示物理实体。

波函数的统计解释是指通过波函数计算出的统计规律,用来预测大量粒子的行为。

1.概率解释:波函数的模的平方表示在一些空间点找到粒子的概率。

例如,对于一维运动的粒子,在其中一时刻,波函数的模的平方在一些位置上的积分就给出了粒子在该位置出现的概率。

这一概率解释使得波函数的统计解释与经典物理中的概率概念有了相似之处。

2.叠加解释:波函数的叠加原理使得多个波函数之间可以相互叠加。

这意味着多个波函数所代表的可能状态同时存在,并以一定的概率进行叠加。

这种叠加解释可以用来解释干涉和衍射等现象,这些现象是波粒二象性的体现。

3.线性解释:波函数的时间演化可以通过薛定谔方程进行描述。

根据薛定谔方程,波函数的演化是线性的,即满足叠加率和线性性质。

这一线性解释意味着多个波函数之间可以相互干涉和叠加,形成新的波函数。

4.统计解释:波函数可以用来确定粒子的期望值和方差等统计量。

例如,位置算符对应的期望值可以表示粒子的平均位置,动量算符对应的期望值可以表示粒子的平均动量。

通过对波函数进行数学计算,可以得到这些统计量,并与实验结果进行比较。

5.状态解释:波函数可以表示粒子的状态,包括其位置、动量和自旋等特征。

通过对波函数进行适当的测量,可以得到特定的物理量。

测量过程会导致波函数的坍缩,从而使得粒子的状态变为测量得到的特定值。

这一解释与量子力学的测量原理密切相关。

需要注意的是,波函数的统计解释并不是完美的,它依赖于量子力学中的一些基本假设和数学工具。

例如,波函数的坍缩是一个不可逆的过程,且测量结果具有一定的不确定性。

波函数的统计解释只能给出概率分布等统计规律,而无法提供关于单个粒子行为的具体预测。

总而言之,波函数的统计解释通过描述波函数的数学属性,从而预测大量粒子的行为。

它包括概率解释、叠加解释、线性解释、统计解释和状态解释等多个方面,为我们理解量子力学中的粒子行为提供了重要的物理和数学工具。

波函数的统计诠释

波函数的统计诠释

w
1 0 (x) dx
0
0 (x) dx .
33
0(x)
1/2
ex p1(2x2)
2
exp(2)d
w
1
exp(2)d
16%
0
经典允许区
.
34
n=10时线性谐振子的位. 置几率分布
35
习题 P52~53 1、3、4、5、7、8
.
36
2m 2
定态薛定谔方程
2 m 2d d2 2x(x.)1 2m2x2
(x)E(x)
27

m xx,
m
d2 d2
(2)
0
2E
首先考虑方程的渐近解
dd22 20,
~ e 2 / 2
.
28
因为波函数在无穷远处为有限,
~ e 2 / 2
2
e 2 H()
代入薛定谔方程,得
dd2H 2 2ddH(1)H0
n(r,t)n(r)eiEnt
(r,t) cn n(r)eiEnt
n
.
22
2.6 一维无限深势阱
在一维空间运动的粒子,其势场满足
U(x)
0
x a
x a
(1)阱外(xa, x -a)
因为势壁无限高,粒子不能穿透阱壁,按照波函数的统计解 释,在阱壁和阱外粒子的波函数为零。
0, xa
.
23
(2)阱内(a> x > -a)
c1 1c2 2 c1,c2是复数
含义:当粒子处于态 1 和态 2 的线性叠加态时,粒子既处 在态 1 ,又处在态 2 。
2 c 1 1 c 2 2 2 ( c 1 1 c 2 2 )c 1 (1 c 2 2 ) c 1 12 c 1 22 c . 1 c 2 1 2 c 1 c 2 1 2 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章 物质波理论 一 波函数 1)经典的波与波函数 ) 机械波
19-4 19-
波函数及其统计解释
λ x E ( x , t ) = E 0 cos 2π (νt − )
y ( x , t ) = A cos 2π (ν t −
x
)
电磁波
λ
H ( x , t ) = H 0 cos 2π (ν t − )
某一时刻在整个空间内发现粒子的概率为 某一时刻在整个空间内发现粒子的概率为 归一化条件
∫ Ψ dV = 1
2
( 束缚态 )
几率波与经典波的区别: 几率波与经典波的区别: 经典波幅代表的是可测量物理量,有物理意义。 经典波幅代表的是可测量物理量,有物理意义。 2 物质波幅不可测量, 有几率意义! 物质波幅不可测量,只有 Ψ 有几率意义! 描述同一状态。 物质波Ψ 和cΨ 描述同一状态。经典波幅变化意味 着能量等发生变化,即状态也发生了变化。 着能量等发生变化,即状态也发生了变化经典波为实函数
y ( x , t ) = Re[ A e
− i 2 π (ν t −
x
λ
)
]
第十九章 物质波理论
19-4 19-
波函数及其统计解释
2)量子力学波函数(复函数) )量子力学波函数(复函数) 描述微观粒子运动的波 描述微观粒子运动的波函数 微观粒子运动的 微观粒子的波粒二象性 微观粒子的波粒二象性
Ψ( x, y , z , t ) h E λ= ν= p h
Ψ (x , t ) = Ψ 0 e
2π −i ( Et− px) h
第十九章 物质波理论
19-4 19-
波函数及其统计解释
v 自由粒子平面波函数 三维, 粒子平面波函数(三维 方向运动) 自由粒子平面波函数 三维,沿 r 方向运动
v Ψ (r , t) = Ψ 0e
2
波函数的标准条件:单值的, 波函数的标准条件:单值的,有限的和连续的 。 标准条件 1)Ψ ( x , y , z , t ) 为有限的、单值函数; ) 为有限的、单值函数; 2) Ψ 和 )
∂Ψ ∂Ψ ∂Ψ 连续 。 , , ∂x ∂y ∂z
第十九章 物质波理论
19-4 19-
波函数及其统计解释
2
19-4 19-
波函数及其统计解释
v 处的单 解释为在给定时间 在给定时间t, 解释为在给定时间 ,在 r
2
位体积内发现一个粒子的几率(几率密度 。 位体积内发现一个粒子的几率 几率密度)。 几率密度
2 p ∝ Ψ = ΨΨ * = Ψ 0
电子的双缝衍射实验结果可以波函数分析, 电子的双缝衍射实验结果可以波函数分析,得 到同样的结论: 到同样的结论: 在某处发现一个电子的几率与电子的波函数的 平方成正比! 平方成正比! 统计性: 统计性: 微观粒子用波函数描述。波函数在空间分布, 微观粒子用波函数描述。波函数在空间分布,但 粒子仍以整体出现。 粒子仍以整体出现。波函数的几率解释把两者统一起 给出的是统计规律。 来,给出的是统计规律。
v 自由粒子能量 粒子能量E和动量 确定的 自由粒子能量 和动量 p 是确定的,其德布罗意
可认为它是一平面单色波。 平面单色波 频率和波长均不变 , 可认为它是一平面单色波。 与经典的平面单色波函数相比较, 与经典的平面单色波函数相比较,取复函数形式 自由粒子平面波函数 一维 方向运动) 自由粒子平面波函数(一维,沿x方向运动 粒子平面波函数 一维, 方向运动
二 波函数的统计解释 回顾电磁波的情况: 回顾电磁波的情况:
2π vv −i ( Et− p⋅r ) h
总光子数
一个光子出 现的几率
I ∝ E ∝ N′
2
N′ = N ⋅ p
p∝ E
2
在某处发现一个光子的几率与光波的波函数的 平方成正比! 平方成正比!
第十九章 物质波理论 意义: 意义:波恩把 Ψ
第十九章 物质波理论
19-4 19-
波函数及其统计解释
表示在某处单位体积内粒子出现的概率 单位体积内粒子出现的概率. 概率密度 表示在某处单位体积内粒子出现的概率
Ψ
2
= ΨΨ
*
正实数
某一时刻出现在某点附近在体积元dV中的粒子 某一时刻出现在某点附近在体积元 中的粒子 的概率为
P = Ψ (x , y , z , t ) dV = Ψ (x , y , z , t )Ψ ∗ (x , y , z , t )dxdydz
相关文档
最新文档