浅谈留数及其应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈留数及其应用

徐松松41345053 计1304

1. 留数

留数是复变函数论中重要的概念之一,它与解析函数在孤立奇点处的洛朗展开式、柯西复合闭路定理等都有密切的联系.

(1) 留数的概念及留数定理

定义5.4 设0z 是解析函数)(z f 的孤立奇点,我们把)(z f 在0z 处的洛朗展

开式中负一次幂项的系数1-C 称为)(z f 在0z 处的留数.记作]),([Re 0z z f s ,即]),([Re 0z z f s =1-C .显然,留数1-C 就是积分

dz z f i

C ⎰)(21π的值,其中C 为解析函数)(z f 的0z 的去心邻域内绕0z 的闭曲线.

关于留数,我们有下面定理. 定理5.7(留数定理) 设函数)(z f 在区域D 内除有限个孤立奇点

n z z z z ,,,,321 外处处解析,C 是D 内包围各奇点的一条正向简单闭曲线,那么∑⎰==n

k k C z z f s i dz z f 1]),([Re 2)(π.

一般来说,求函数在其孤立奇点0z 处的留数只须求出它在以0z 为中心的圆环域内

的洛朗级数中101---)(z z C 项系数1-C 就可以了.但如果能先知道奇点的类型,对求留数

更为有利.例如,如果0z 是)(z f 的可去奇点,那么0]),([Re 0=z z f s .如果0z 是本性奇点,那就往往只能用把)(z f 在0z 展开成洛朗级数的方法来求1-C .若0z 是极点的情形,则可用较方便的求导数与求极限的方法得到留数.

(2) 函数在极点的留数

法则1:如果0z 为)(z f 的简单极点,则

)()(lim ]),([Re 000

z f z z z z f s z z -=- (5.4) 法则2:设)

()()(z Q z P z f =,其中)(,)(z Q z P 在0z 处解析,如果0)(≠z P ,0z 为)(z Q 的一阶零点,则0z 为)(z f 的一阶极点,且

)

()(]),([Re 0z Q z P z z f s '=. (5.5)

法则3:如果0z 为)(z f 的m 阶极点,则

)]()[(lim !11]),([Re 011

00z f z z dz

d m z z f s m m m z z --=---)(. (5.6) (3) 无穷远点的留数

定义5.5 设∞为)(z f 的一个孤立奇点,即)(z f 在圆环域+∞<

析,则称

dz z f i

C ⎰)(21π (R z C >=ρ:) 为)(z f 在点∞的留数,记为]),([Re ∞z f s ,这里-C 是指顺时针方向(这个方向很自然地可以看作是绕无穷远点的正向).

如果)(z f 在+∞<

n n n z C z f )(,则有

1],[Re --==∞C f s .

这里,我们要注意,∞=z 即使是)(z f 的可去奇点,)(z f 在∞=z 的留数也未必是0,这是同有限点的留数不一致的地方.

定理5.8 如果)(z f 在扩充复平面上只有有限个孤立奇点(包括无穷远点在内),设为∞,,,21n z z z ,则)(z f 在各点的留数总和为零.

关于在无穷远点的留数计算,我们有以下的规则.

法则4:]0,1)1

([Re ],[Re 2z

z f s z f s ∙-=∞)(. 2.留数在定积分计算中的应用

留数定理为某些类型积分的计算,提供了极为有效的方法.应用留数定理计

算实变函数定积分的方法称为围道积分方法.所谓围道积分方法,概括起来说,就是不求实变函数的积分化为复变函数沿围线的积分,然后应用留数定理,使沿围线的积分计算,归结为留数计算.要使用留数计算,需要两个条件:一是被积函数与某个解析函数有关;其次,定积分可化为某个沿闭路的积分.现就几个特殊类型举例说明.

(1) 形如

θθθπd R )sin ,cos 20(⎰的积分 令θθθd ie dz e z i i ==, ,

iz z i e e i i 212sin 2-=-=-θθθ , iz

z i e e i i 212cos 2+=+=-θθθ )sin ,cos θθ(R 是θθsin ,cos 的有理函数;作为θ的函数,在πθ20≤≤上连续.

当θ经历变程[π20,]时,对应的z 正好沿单位圆1=z 的正向绕行一圈,

⎪⎪⎭

⎫ ⎝⎛-+=iz z z z R z f 21,21)(22在积分闭路1=z 上无奇点,则

⎰⎰=-+=12220)21,21)sin ,cos z iz

dz iz z z z R d R ((π

θθθ ⎰==1

)(z dz z f

∑==n k k z z f s i 1

],)([Re 2π.

(2) 形如dx x R ⎰+∞

∞-)(的积分

令 )2()()()(1111≥-++++++==--n m b z b z a z a z z Q z P z R m

m m n n n , [1] Q(z)比P(z)至少高两次,

[2] Q(z)在实轴上无零点,

[3] R(z)在上半平面Imz>0内的极点为)21(n k z k ,,=,则有

∑⎰=∞

+∞-=n

k k z z R s i dx x R 1],)([Re 2)(π.

(3) 形如)0()(>⎰+∞

∞-a dx e x R iax 的积分

R(x)是真分式,在实轴上无奇点,则 ⎰

⎰∞+∞-∞

+∞-=dx e x Q x P dx e x R iax iax

)()()( ∑==n k k z z f s i 1

],)([Re 2π,

其中iaz e

z R z f )()(=.

相关文档
最新文档