新人教版八年级数学下册《十七章 勾股定理 17.1.2勾股定理应用 利用勾股定理解决平面几何问题》课件_3
2024八年级数学下册第十七章勾股定理17.1勾股定理第3课时应用勾股定理解数学问题课件新版新人教版
出它的面积;
【解】△ABC如图①,S△ABC= .
探索创新:
(3)若△ABC三边的长分别为 a,2 a, a(a>0),请利
用图③中的正方形网格(每个小正方形的边长均为a)画出相
应的△ABC,并求出它的面积;
【解】△ABC如图②,可得
∵∠ABC=120°,AB=BC,
∴∠BAC=∠BCA=30°, ∵∠AOB=90°,
∴OB= a,
∴OF=OB+BF= ,OA=OC= .
∴AC=CE= a.
易得∠PFO=∠OEM=90°.
∵点P的坐标为(-2 ,3),
∴ =3,即a=2.
∴OE=OC+CE=
=3
( − ) + 的最小值.
【解】如图,作BD=12,过点B作AB⊥BD,过点D作
ED⊥BD,使AB=2,ED=3,连接AE交BD于点C.则AE的长
即为代数式 + + ( − ) + 的最小值.
过点A作AF⊥DE交ED的延长线于点F,得到长方形ABDF,
则AB=DF=2,AF=BD=12,∴EF=ED+DF=3+2=5.
∴AE= + =13,即 +
+ ( − ) + 的最小值为13.
利用勾股定理探求格点三角形面积
11.[新考法 构图求面积法]问题背景:
在△ABC中,AB,BC,AC三边的长分别为 , ,
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个
∴∠CAD=45°=∠ACD.
∴AD=CD=2 cm.
人教版八年级数学下册《勾股定理》勾股定理在实际生活中的应用
第二十一章 一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。本章重点是解一元二次方程的思路及具体方法。
(3)利用勾股定理等列方程; 本章的难点是解一元二次方程。
4.最后,就是冲刺阶段,也称为“备考篇”。在这一阶段,老师会将复习的主动权交给你自己。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是,现在你要直接 、主动的研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向。
小技巧 化非直角三角形为直角三角形 将实际问题转化为直角三角形模型
归纳小结
1、勾股定理: 如__果__直_角__三__角__形_的__两__直__角_边__长__分__别_为__a_,_b_,_斜_边__为__c.
那__么____________________________ 2、勾股定理有广泛的应用.
第十七章 勾股定理
17.1 勾股定理
第2课时 勾股定理在实际生活中的应用
教学目标 1.会用勾股定理解决简单的实际问题. 2.树立数形结合的思想.
勾股定理的应用
例1:一个门框的尺寸如图所示,一块长3m, 宽2.2m的长方形薄木板能否从门框内通过? 为什么?
已知条件有哪些?
C
2m
A 1m B
1.木板能横着或竖着从门框通过吗? 2.这个门框能通过的最大长度是多少? 3.怎样判定这块木板能否通过木框?
3、学习反思:
____________________________ __________________ ____B
拓展迁移
在数轴上作出表示 20的点. 一个门框的尺寸如图所示,一块长3m,宽的长方形薄木板能否从门框内通过?为什么?
2023-2024学年人教版 八年级数学下册17.1勾股定理第2课时勾股定理的应用作业课件
10.如图,一只蚂蚁从点 A 出发,沿底面边长为 10 cm,侧棱长为 16 cm 的正四棱 柱的侧面到点 B 处吃食物,则它需要爬行的最短路径的长是__4___4_1__cm.
二、解答题(共 22 分) 11.(10 分)如图所示,某住宅小区在相邻两楼之间修建了一个上方是一个半圆,下 方是长方形的仿古通道.现有一辆卡车装满家具后高 4 m,宽 2.4 m,请问这辆卡车能 否通过这个通道?
A.17 m B.18 m C.25 m D.26 m 4.(4 分)如图,在水塔 O 的东北方向 32 m 处有一抽水站 A,在水塔的东南方向 24 m 处有一建筑工地 B,现要在 A,B 间建一条直水管,则水管的长度至少应为_4_0__m.
5.(4 分)如图,有两棵树,一棵高 10 m,另一棵高 5 m,两树相距 12 m.一只小 鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少要飞行__1_3_m.
(2)设 BF 上点 D,G,使 AD=AG=200 km,∴△ADG 是等腰三角形,∵AC⊥BF, ∴AC 是 DG 的垂直平分线,∴CD=GC,在 Rt△ADC 中,DA=200 km,AC=160 km, 由勾股定理得,CD= DA2-AC2 = 2002-1602 =120(km),则 DG=2DC=240(km), 遭受台风影响的时间是:t=240÷40=6(小时).
第十七章 勾股定理 17.1 勾股定理
第2课时 勾股定理的应用
1.(3 分)如图所示的是某校的长方形水泥操场,如果一学生要从 A 角走到 C 角, 至少要走( C )
A.70 m B.90 m C.130 m D.180 m
2.(3 分)一个长方形抽屉长 4 cm,宽 3 cm,贴抽屉底面放一根木棒,那么这根木 棒最长(不计木棒粗细)可以是( B )
人教版初中数学八下第十七章 勾股定理 17.1 勾股定理 第2课时 勾股定理的应用
17.1 勾股定理 第2课时 勾股定理的应用
知识点 勾股定理的应用
1.如图,某公园有一块长方形草坪,有极少数人为了避开拐角∠AOB而走“捷 径”,在草坪内走出了一条“路”AB.他们踩伤草坪,仅仅少走了( A )
A.4 m
B.6 m
C.8 m
D.10 m
第1题图
2.如图,一艘轮船以16 n mile/h的速度从港口A出发向东北方向航行,另一艘轮船以 12 n mile/h的速度同时从港口A出发向东南方向航行,离开港口2 h后两船相距 (C)
第4题图
5.如图,若河岸的两边平行,河宽AC=800 m,河岸上B,C两点之间的距离为600 m.一只船由河岸的A处沿直线方向开往对岸的B处,船的速度为200 m/min,求船从 A处到B处所需的时间.
答:船从A处到B处所需的时间为5 min.
7.(教材P25例2变式)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时, 梯子底端B到左墙脚C的距离为0.7 m,顶端A距离地面2.4 m.如果保持梯子底端位置 不动,将梯子斜靠在右墙时,顶端A'距离地面2 m,求小巷的宽度.
答:小巷的宽度为2.2 m.
8.如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,则至少需要地毯( A ) A.17 m B.18 m C.25 m D.26 m
9.如图,小明将一张长为20 cm,宽为15 cm的长方形纸(AE>DE)剪去了一角,量 得AB=3 cm,CD=4 cm,则剪去的直角三角形的斜le
C.40 n mile
D.50 n mile
第2题图
3.已知一根竹子原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地, 抵地处离竹子底部6尺远,则折断处离地面的高度为 3.2 尺.
17.1 勾股定理(2)勾股定理的应用 参考解析
17.1 勾股定理第2课时勾股定理的应用课前预习1.应用勾股定理的前提条件是在直角三角形中.如果三角形不是直角三角形,要先构建直角三角形,再利用勾股定理求未知边的长.2.利用勾股定理可以解决与直角三角形有关的计算和证明,其主要应用如下:(1)已知直角三角形的任意两边求第三边;(2)已知直角三角形的任意一边,确定另外两边的关系;(3)证明包含平方关系的几何问题;(4)构造方程(或方程组)计算有关线段的长.3.一般地,n为正整数),通常是利用勾股定理作图.课堂练习知识点1 勾股定理的实际应用1.如图,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=___2___.2.【核心素养·数学抽象】如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要___7___米.3.(教材改编)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑___0.5___米.【解析】在Rt△ACB中,根据勾股定理,得AC=22-=2.在2.5 1.5AB CB-=22Rt△ECD中,根据勾股定理,得CE=22-=1.5.∴AE=AC -ED CD2.52-=22CE=2-1.5=0.5.即滑竿顶端A下滑0.5米.故答案为0.5.4.如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度﹒于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线未端刚好接触地面.请你帮小旭求出风筝距离地面的高度AB.解:根据题意,得AC=AB+1,BC=5米.在Rt△ABC中,BC2+AB2=(1+AB)2.解得AB=12(米).答:风筝距离地面的高度AB 为12米.5.放学以后,小东和晓晓从学校分手,分别沿东南方向和西南方向回家,若小东和晓晓行走的速度都是40米/分钟,小东用15分钟到家,晓晓用20分钟到家,求小东和晓晓家的直线距离.解:根据题意作图,由图可知△ABO是直角三角形,OA=40×20=800(米),OB=40×15=600(米).在Rt△OAB中,根据勾股定理,得(米).答:小东和晓晓家的直线距离为1 000米.知识点2 在数轴上表示无理数6.(2020玉溪红塔区期末)如图,数轴上的点A表示的数是-2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为(C).7.用直尺和圆规在如图所示的数轴上作出表示解:∵32+22=13,3和2的直角三角形的斜边长.∴课时作业练基础1.如图是由4个边长为1的正方形构成的“田字格”,只用没有刻度的直尺在这___8___条.30°,则以它的腰长为边2.有一个面积为的正方形的面积为___20___.3.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树顶飞到另一棵树的树顶,小鸟至少飞行(B)A.8米B.10米C.12米D.14米4.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1,图2,推开双门,双门间隙C,D的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10 寸),则AB的长是(C)A.50.5寸B.52寸C.101寸D.104寸5.(2020盘龙区期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为 1.5米,则小巷的宽为(C)A.2.5米B.2.6米C.2.7米D.2.8米【解析】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B2,∴BD2+1.52=6.25.∴BD2=4.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.故选C.6.如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标在(B)A.-3和-2之间B.-4和-3之间C.-5和-4之间D.-6和-5之间7.如图,在边长为1的正方形网格中,△ABC的三边a,b,c的大小关系是(B)A.c<b<aB.c<a<bC.a<c<bD.a<b<c8.(教材改编)小明拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿的长和门的高. 解:根据题意作图,由图可知AD=4尺.设门高AB为x尺,则竹竿的长BD为(x+1)尺.在Rt△ABD中,由勾股定理得AB2+AD2=BD2,即x2+42=(x+1)2,解得x=7.5.则x+1=8.5.答:竹竿的长为8.5尺,门高为7.5尺.9.【核心素养·数学抽象】一根直立的旗杆AB长 8 m,一阵大风吹过,旗杆从C点处折断,顶部(B)着地,离杆脚(A)4 m,如图.工人在修复的过程中,发现在折断点C的下面1.25 m 的D处,有一明显伤痕,如果下次大风将旗杆从D 处刮断,则杆脚周围多大范围内有被砸伤的危险?解:在Rt △ABC 中,设AC 的长为x m ,则BC 的长为(8-x )m.根据勾股定理,得AC 2+AB 2=BC 2,即x 2+42=(8-x )2.解得x=3,即AC=3.当从点D 处折断时,AD=AC-CD=3-1.25=1.75,∴BD=8-1.75=6.25.∴AB=3675.125.62222=-=-AD BD =6 (m ).答:杆脚周围6 m 范围内有被砸伤的危险.10.如图,铁路上A ,B 两站(视为直线上的两点)相距25 km ,DA ⊥AB 于点A ,CB ⊥AB 于点B ,DA=15 km ,CB=10 km ,现要在铁路上建设一个土特产收购站E ,使得C ,D 两村到收购站E 的距离相等,则收购站E 应建在距离A 站多少km 处?解:∵C ,D 两村到E 点的距离相等,∴CE=DE.在Rt △DAE 和Rt △CBE 中,根据勾股定理,得DE 2=AD 2+AE 2,CE 2=BE 2+BC 2,∴AD 2+AE 2=BE 2+BC 2.设AE=x km ,则BE=(25-x )km.x 2+152=(25-x)2+102.解得x=10.答:收购站E 应建在距离A 站10 km 处.提能力11.如图,小正方形的边长为1,连接小正方形的三个顶点,可得△ABC ,则BC 边上的高是( A )A.223 B.1055 C.553 D.554【解析】由图形,根据勾股定理可得ABC 的面积为2×2-12×1×1-12×1×2-12×1×2=4-12-2=32,再根据△ABC 面积的不同计算方法得32=12BC 边上的高.故选A. 12.有一辆装满货物的卡车,高5 m ,宽3.2 m (货物的顶部是水平的),要通过如图所示的截面的上半部分是半圆,下半部分是长方形的隧道,已知半圆的直径为4 m ,长方形竖直的一条边长是4.6 m.这辆卡车能否通过此隧道?请说明理由.解:能通过. 理由如下:如图,设O 为半圆的圆心,AB 为半圆的直径,在OB 上截取OE=3.2÷2=1.6(m ),过点E 作EF ⊥AB 交半圆于点F ,连接OF.在Rt △OEF 中,OF 2=OE 2+EF 2,即22=1.62+EF 2,解得EF=1.2 m.因为1.2+4.6=5.8(m )>5 m ,所以这辆卡车能通过此隧道.。
2024八年级数学下册第十七章勾股定理17.1勾股定理第2课时应用勾股定理解实际问题课件新版新人教版
【解】(1)如图,过点A作AE⊥CD于点E,
则∠AEC=∠AED=90°.
∵∠ACD=60°,∴∠CAE=90°-60°=30°.
∴CE= AC=
DE=
km.∴AE=
km,
km.
∴AE=DE.∴△ADE是等腰直角三角形.∴AD=
+ = = AE= ×
度为x尺,则可列方程为( D )
A.x2-3=(10-x)2
B.x2-32=(10-x)2
C.x2+3=(10-x)2
D.x2+32=(10-x)2
【点拨】
如图,已知折断处离地面的高度为x尺,即AC=x尺,
则AB=(10-x)尺,BC=3尺.在Rt△ABC中,AC2+BC2=
AB2,即x2+32=(10-x)2.故选D.
2.[2023·岳阳 新考向·传承数学文化]我国古代数学名著《九章
算术》中有这样一道题:“今有圆材,径二尺五寸,欲为
方版,令厚七寸,问广几何?”结合如图,其大意是:今
有圆形材质,直径BD为25寸,要做成方形板材,使其厚
度CD达到7寸,则BC的长是( C )
A. 寸
B.25寸
C.24寸
D.7寸
选B.
4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙
时,梯子底端到左墙脚的距离为0.7 m,顶端距离地面2.4
m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶
端距离地面2 m,那么小巷的宽度为( C )
A.0.7 m
B.1.5 m
C.2.2 m
D.2.4 m
【点拨】
如图,BC=2.4 m,AC=0.7 m,DE=
新人教版第十七章勾股定理教案
新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。
2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。
3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。
教学重点:知道勾股定理的结果,并能运用于解题。
教学难点:进一步发展学生的说理和简单推理的意识及能力。
教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。
教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。
今天我们就来一同探索勾股定理。
二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
这个事实是我国古代3000多年前有一个叫XXX的人发现的。
他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。
下面这个古老的精彩的证法出自我国古代无名数学家之手。
已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
人教版数学八年级下册17.1.2《勾股定理的应用》教案
3.数学抽象:理解勾股定理的数学表达,提高学生的数学抽象思维能力。
4.问题解决:培养学生遇到问题时能主动运用所学知识进行解决的能力,提高数学问题解决技巧。
5.数据分析:通过实际案例分析,使学生能够从数据中提炼信息,培养数据分析素养。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,小组讨论的环节也让我有所启发。学生们在讨论中表现出了很高的热情,能够积极发表自己的观点,但有时候讨论的主题偏离了课程内容。为了使讨论更加有效,我应该在设置讨论主题时更加明确,同时在讨论过程中加强对学生的引导,确保讨论的方向与课程目标相符。
还有一个值得注意的问题是,在课堂总结环节,部分学生提出了疑问,但我没有足够的时间一一解答。我意识到在以后的教学中,需要合理安时间,预留出更多的时间来解答学生的疑问,确保他们对所学知识的掌握。
最后,针对本节课的教学,我认为在以下几个方面进行改进:
1.增加课堂互动,让学生多参与,提高他们的学习兴趣和积极性。
2.加强对学生的个别辅导,关注他们的学习进度,及时发现并解决问题。
3.丰富教学手段,利用多媒体、实物等资源,使抽象的概念更加直观易懂。
4.注重培养学生的动手操作能力,让他们在实际操作中感受数学的魅力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
人教8年级下册数学17.1.2勾股定理的实际应用
第1节 勾股定理 第2课时 勾股定理的实际应用
1
2
3
4
5
6
7
8
9
10
11
12
13
14
知识点 1 求实际中长(高)度的应用
1.建立实际问题的数学模型时,关键是画出符合题意 的图形,把实际问题转化为几何中的直角三角形问 题,运用__勾__股____定理求解.
返回
2.如图,在校园内有两棵树,相距12 m,一棵树高13 m, 另一棵树高8 m,一只小鸟从一棵树 的顶端飞到另一棵树的顶端,小鸟 至少要飞___1_3____m.
返回
方程思想 14.如图,在一棵树的10 m高的B处有两只猴子,其中一
只猴子爬下树,走到离树20 m处的池塘A处,另一只 猴子爬到树顶D后直接跃向池塘A处(假设它经过的路 线为直线).如果两只猴子所经过的路 程相等,求这棵树的高.
解: 设BD=x m,由题意知BC+AC=BD+AD, ∴AD=(30-x)m. ∴(10+x)2+202=(30-x)2, 解得x=5,∴x+10=15. 答:这棵树的高为15 m.
点拨 返回
【思路点拨】 通过设未知数,根据两只猴子经过的路程相等表示 出AD的长度,再利用勾股定理列方程求解.
返回
(2)当把该隧道改为双向二车道时, 4÷2=2(m)<3.2 m, 所以这时这辆卡车不能通过这条隧道.
返回
题型 2 勾股定理在求圆柱上两点最短距离中的应用
12.为筹备迎接新生晚会,同学们设计了一个圆柱形灯 罩,底色漆成白色,然后缠绕红色油纸,如图所示. 已知圆柱的高为108 cm,其横截面周长为 36 cm,如果在侧面上均匀缠绕油纸4圈, 应裁剪多长的油纸?
17.1.2勾股定理在实际生活中的应用(教案)
四、教学流程
(一)导入新课(用时5分钟)ห้องสมุดไป่ตู้
同学们,今天我们将要学习的是《勾股定理在实际生活中的应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量距离或计算物体体积的情况?”(如测量房间的对角线长度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理在实际生活中的奥秘。
4.培养学生的观察能力、解决问题的能力和合作交流的能力。
具体内容包括以下案例:
1.利用勾股定理测量房屋墙壁的长度;
2.计算不规则立体图形的体积,如斜放的长方体、四棱锥等;
3.分析实际生活中存在的勾股定理问题,如道路宽度、桥梁长度等;
4.探讨勾股定理在建筑设计、地理测量等领域的应用。
二、核心素养目标
1.知识与技能:通过勾股定理在实际生活中的应用,使学生在掌握勾股定理的基础上,提高解决实际问题的能力,培养运用数学知识解决实际问题的素养;
2.过程与方法:培养学生观察、分析、解决问题的能力,学会运用勾股定理进行实际测量和计算,提高数学思维和逻辑推理素养;
3.情感态度与价值观:激发学生对数学学习的兴趣,认识到数学知识在实际生活中的重要性,培养他们用数学眼光看待世界的观念,增强对数学学科的价值认同。
具体包括:
1.能够运用勾股定理解决实际问题,形成数学应用意识;
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的应用步骤和计算方法这两个重点。对于难点部分,我会通过实际案例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2023-2024学年人教版八年级数学下册课件17.1 勾股定理第2课时 勾股定理的应用
=________,
=__________.
典例分享
例 某条道路限速80 km/h,如图17.1-12,一辆小汽
车在这条道路上沿直线行驶,某一时刻刚好行驶到
路对面车速检测仪处的正前方30 m的处,过了2 s,
小汽车到达处,此时测得小汽车与车速检测仪间的
图17.1-12
距离为50 m.
∵ 72 km/h < 80 km/h,
∴ 这辆小汽车没有超速.
方法感悟
在运用勾股定理解决实际问题时,要从实际问题中抽象出数学问题,
即建立直角三角形模型,把实际的量抽象成线段的长度,进而转化为求
直角三角形的边长.如果没有直角三角形,可以添加辅助线构造出直角
三角形.
轻松达标
1.如图17.1-13,,之间隔有一湖,在与方向成
图17.1-14
( C ) .
A. 5
B.2 2
C. 2
D.2.5
3.图17.1-15(a)是第七届国际数
学教育大会(ICME-7)的会徽,在其
主体图案中选择两个相邻的直角
三角形,恰好能组合成如图17.1-
图17.1-15
15 b 所示的四边形.若
= = 1,∠ = 30∘ ,则的长为( D ) .
图17.1-20
(1)该城市是否受到台风的影响?请说明理由.
[答案] 该城市会受到这次台风的影响.理由:如答图1,过作 ⊥
于点.在Rt △ 中,∵ ∠ = 30∘ , = 240 km,
∴ =
ቤተ መጻሕፍቲ ባይዱ
1
2
= 120 km . ∵ 城市所受风力达到或超过四级就会受台风影
在周围数十千米范围内形成气旋风暴,有极强的
人教版数学八年级下册17.1《勾股定理的应用》(第2课时)说课稿
人教版数学八年级下册17.1《勾股定理的应用》(第2课时)说课稿一. 教材分析《勾股定理的应用》是人教版数学八年级下册第17.1节的内容,属于几何学的范畴。
本节内容是在学生已经掌握了勾股定理的基础上进行学习的,主要是让学生能够运用勾股定理解决实际问题。
教材通过引入古希腊数学家毕达哥拉斯的故事,让学生了解勾股定理的发现过程,进而引导学生运用勾股定理解决实际问题。
教材内容丰富,既有理论知识的讲解,又有实际问题的应用,能够激发学生的学习兴趣,提高学生的数学素养。
二. 学情分析学生在学习本节内容前,已经掌握了勾股定理的基本知识,能够熟练地运用勾股定理进行计算。
但是,对于如何将实际问题转化为数学问题,如何运用勾股定理解决实际问题,学生的掌握情况参差不齐。
因此,在教学过程中,我将会注重引导学生将实际问题转化为数学问题,培养学生运用勾股定理解决实际问题的能力。
三. 说教学目标1.知识与技能目标:让学生掌握勾股定理的应用,能够将实际问题转化为数学问题,运用勾股定理解决实际问题。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生合作学习的能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、探索问题的习惯。
四. 说教学重难点1.教学重点:让学生掌握勾股定理的应用,能够将实际问题转化为数学问题,运用勾股定理解决实际问题。
2.教学难点:如何引导学生将实际问题转化为数学问题,如何运用勾股定理解决实际问题。
五. 说教学方法与手段在教学过程中,我将采用讲授法、提问法、小组合作法、讨论交流法等教学方法,结合多媒体课件、教学道具等教学手段,引导学生主动探究,提高学生的学习效果。
六. 说教学过程1.导入:通过回顾勾股定理的知识,引导学生进入本节内容的学习。
2.知识讲解:讲解勾股定理的应用,引导学生将实际问题转化为数学问题,运用勾股定理解决实际问题。
3.例题解析:分析并解析典型例题,让学生掌握解题思路和方法。
人教版八年级数学下册17.1勾股定理(第2课时)勾股定理的应用一等奖优秀教学设计
如果在箱内的 A 处有一只昆虫,它要在箱壁上爬行到 B
处,至少要爬多远?
B
B
40
40
C
50 A 30 D 50
C
A
30
师:你能找到解决问题的方法吗? 师:如何把没学过的立体图形求长度转化为学过的平面
图形? 同桌讨论后汇报思路,老师画出展开后的平面图, 学生独立解决 总结:注意把立体图形转化为平面图形求线段长.
A A
C
C
OB
C
师:怎样转化为几何问题?你能否画出图形? 师:独立思考、小组交流合作完成 师:小组互评,答案见课本 26 页
独立思考
检测学生
小组交流 对方法的掌握
小组互评 情况
2.勾股定理拓展探究
(1)例 2:我国《九章算术》中记载了一道有趣的问题,
大意是:有一个边长为 10 尺的正方形水池,在水池的中
新人教版八年级数学下册 17.1 勾股定理(第 2 课时)教学设计
一、 教材分析 1、 地位作用:
勾股定理是本章的重要内容,也是几何计算必备的知识基础.它从直角三角形的三 边关系入手,在直角三角形中进行边的计算,为今后几何计算打下基础。
勾股定理的应用是用勾股定理解决实际问题的重要一环,要让学生通过学习感受需 要把实际问题转化为数学问题,建立几何模型进行实际问题数学化.
3、4 题练 习学生应用方 程方法解决问 题的能力
5.如图,一个圆柱形纸筒的底面周长是 40cm,高是 30cm,一只小蚂蚁在圆筒底的 A 处,它想吃到上底与 下底面中间与 A 点相对的 B 点处的蜜糖,试问蚂蚁爬
行的最短的路程是多少?
独立思考 独立完成
第 5 题练 习学生立体图 形转化为平面 图形的能力
新人教版:八年级数学下册第十七章勾股定理 勾股定理第2课时勾股定理的实际应用课件
图 17-1-19
解:在 Rt△ABC 中,AC=30 m,AB=50 m,∠C=90° . 由勾股定理,得 BC= AB2-AC2= 502-302=40(m), 40 ∴小汽车的速度为 v= =20(m/s)=72(km/h). 2 ∵72>70, ∴这辆小汽车超速了.
6.如图 17-1-20,甲、乙两艘轮船同时从港口 O 出发,甲轮船以 20 海里/ 时的速度向南偏东 45° 方向航行,乙轮船向南偏西 45° 方向航行.已知它们离开港 口 O2 h 后,两艘轮船相距 50 海里,则乙轮船平均每小时航行多少海里?
图 17-1-13
解:(1)根据题意,得 AC=25 m,BC=7 m, ∴AB= 252-72=24(m). 答:这个梯子的顶端距地面有 24 m. (2)根据题意,得 A′B=24-4=20(m), ∴BC′= 252-202=15(m), ∴CC′=15-7=8(m). 答:梯子的底端在水平方向滑动了 8 m.
图 17-1-18
【解析】 已知直角三角形的一条直角边长是 3 m,斜边长是 5 m,根据勾股 定理,得水平的直角边长是 4 m. 故购买这种地毯的长是 3+4=7(m),面积是 2×7=14(m2),价格是 14×30= 420(元).
5.据规定,小汽车在城市街道上行驶的速度不得超过 70 km/h.如图 17-1- 19,一辆小汽车在一条城市街道上直行,某一时刻刚好行驶到路边车速检测仪 A 处的正前方 30 m 的 C 处, 过了 2 s 后, 测得小汽车与车速检测仪间的距离为 50 m. 这 辆小汽车超速了吗?
例 1 答图
【点悟】利用勾股定理解决实际问题的关键是构造含所求线段的直角三角形.
飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方 4 000 m 处,过 20 s 飞机距离这个男孩头顶 5 000 m,飞机每小,AB=5 000 m,∠C=90° . ∵BC2=AB2-AC2=5 0002-4 0002=9 000 000,BC>0, ∴BC=3 000 m.
2022年八年级数学下册第十七章勾股定理17.1勾股定理第2课时勾股定理的应用习题课件新版新人教版
4.小军发现学校旗杆上端的绳子垂到地面
还多了1 m,他把绳子斜着拉直,使下端 解:设旗杆的高AB为x m,则绳子AC的长为(x+1)m.
刚好触地,如图.此时绳子下端距旗杆底 在Rt△ABC中,AB2+BC2=AC2, ∴x2+52=(x+1)2,解得x=12.
部答:5旗m杆的,高那度为么12 m旗. 杆的高度为多少米?
45
”.已知点P,Q是线段AB的“勾股分割点 ”,若AP=8,PQ=12(PQ>BQ),那么 BQ的长为________.
13.(2019·扬州江都区月考)一种拉杆箱的示 意图如图所示,箱体长AB为65 cm,拉杆最 大伸长距离BC为35 cm,在箱体的底端装有 一圆形滚轮,其直径为6 cm.当拉杆拉到最
3600
(秒).答:学校会受到噪音影响,受影响的时间为24秒.
【方法归纳】
1.应用勾股定理解决实际问题时,关键是画出符合题意的 图形,再利用直角三角形求解.若不是直角三角形,可以 通过添加辅助线构造直角三角形,将已知条件化归到直 角三角形中求解. 2.当题目所给的直角三角形的两边存在和差或倍分关系时
7.(2019·南京)无盖圆柱形杯子的展开图如 图所示.将一根长为20 cm的细木5 筷斜放在 该杯子内,木筷露在杯子外面的部分至少
有________cm.
8.(课本P29习题T10改编)印度数学家什迦
逻(1141~1225年)曾提出过“荷花问题”
:“平平湖水清可鉴,面上半尺生红莲; 解:如图,由题意,可知
八年级数学下册人教版
第十七章 勾股定理
17.1 勾股定理 第2课时 勾股定理的应用
知识点一 利用勾股定理解决实际问题
1.如图,某养殖场有一个长2米、宽1.5米的长方形栅栏, 现在要在相对角的顶点间加固一2.5条木板,则木板的长 应为________米.
新人教版八年级数学下册《十七章 勾股定理 17.1 勾股定理 17.1.2勾股定理应用 数轴表示根号13》课件_24
A
6
6E x
4
x 8-x C
D D
第8题图
B
通过本节课的学习你有那些收获:
1.能用勾股定理证明直角三角形全等 的“斜边、直角边”判定定理;
2.能应用勾股定理在数轴上画出表示 无理数的点;
3.能运用勾股定理解决直角三角形相 关问题。
1、在数轴上画出表示 20的点。
2、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点
数轴交于C点l ,则点C即为表示 13 的点。
B
∴点C即为表示 13 的点
0 1 2 A3 C 4
你能在数轴上画出表示 17 的点吗?
数学海螺图:
利用勾股定理作出长为 1, 2 , 3, 4 , 5 的线段.
1
12
34 5
数学海螺图:
(三)、利用勾股定理解决有关的折叠问题
例3、一张长方形纸片宽AB=8cm,长
B C′ B′
证明“HL”
已知:如图,在Rt△ABC 和Rt△A′B′C′中,∠C= ∠C′=90°,AB=A′B′,AC=A′C′.
求证:△ABC≌△A′B′C′.
证明:
A
∵ AB=A′B′,
AC=A′C′,
∴ BC=B′C′.
∴ △ABC≌△A′B′C′
(SSS). C
A′ B C′ B′
(一)、勾股定理与三角形全等综合的证明题:
C
B
练习1:
如图,△ACB和△ECD都是等腰直角三角形, ∠ACB =∠ECD =90°,D为AB边上一点.求证:AD2 + DB2 =DE2.
证明:∴ ∠B =∠CAE=45°,
∠DAE =∠CAE+∠BAC =45°+45°=90°.
新人教版八年级数学下《117.1.2勾股定理应用 利用勾股定理解决平面几何问题》优质课教学设计_52
教学设计教学目标:能说出勾股定理,能使用勾股定理的数学模型解决现实世界的实际问题.1.通过从实际问题中抽象出直角三角形这个模型,强化转化思想,培养学生解决现实问题的意识和水平.2.经历探究勾股定理在实际问题中的应用过程,进一步体会勾股定理的应用方法.在例题分析和解决过程中,让学生感受勾股定理在实际生活中的应用.同时在学习过程中体会获得成功的喜悦,提升学生学习数学的兴趣和信心.教学重点:【重点】使用勾股定理解决实际问题.【难点】勾股定理的灵活使用.教学准备:【教师准备】教学中出示的教学插图和例题.【学生准备】三角板、三角形模型.教学过程:一、新课导入:导入一:电视的尺寸是屏幕对角线的长度.小华的爸爸买了一台29英寸(74 cm)的电视机,小华量电视机的屏幕后,发现屏幕只有58 cm长和46 cm宽.他觉得一定是售货员搞错了,你同意他的想法吗?你能解释是为什么吗?引导学生回忆勾股定理的内容,学生再尝试解决上面的问题.[设计意图]让学生回忆勾股定理的内容,并注意文字语言、图形语言、符号语言的规范统一,尝试解决生活中的实际问题,以激发学生学习的兴趣和探究的欲望.导入二:?上节课,我们学习了勾股定理,它的具体内容是什么呢?它有什么作用呢教师出示问题:求出下列直角三角形中未知的边.提出问题后让一位学生板演,剩下的学生在课堂作业本上完成.教师巡视指导答疑,在活动中重点注重:(1)学生能否准确应用勾股定理实行计算;(2)在解决直角三角形的问题时,需知道直角三角形的两个条件且至少有一个条件是边;(3)让学生了解在直角三角形中斜边最长.[设计意图]通过简单的提问协助学生回顾勾股定理,加深定理的记忆理解,为学习新课做好准备.二、新知建构:[过渡语] 勾股定理应用比较广泛,我们一起来看看下面几个问题.1.木板进门问题思路一(1)分析导入一提出的问题.教师在学生讨论基础上明确解决问题的方法:计算电视机对角线的长度,看是否为74 cm.解:根据勾股定理,得≈74(cm).所以,这台电视机符合规格.(2)自学教材第25页例1.教师提问:门框能通过薄木板的最大宽度是多少?学生带着问题阅读题目,试写解答过程.(3)变式练习:长方体盒内长、宽、高分别为3 cm,2.4 cm和1.8 cm,盒内可放的棍子最长为 cm.本题需先求出长和宽组成的长方形的对角线长,为=(cm).这根最长的棍子和长方体的高,以及长和宽组成的长方形的对角线组成了直角三角形,则棍子最长为=3(cm).教师引导学生小结:遇到求木板进门或将物体放入立体图形内的问题,常常需要找到能通过(放入)物体的最大长度,与物体的长度比较大小,从而判断是否能够通过(放入).[设计意图]通过讲练结合,引导学生独立分析,自主学习,提升学生使用勾股定理解决简单问题的水平.思路二(教材例1)一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形薄木板能否从门框内通过?为什么?逐步引导提问:(1)木板的短边比门的高还要长,是否一定不能通过?还能够分析比较哪两个长度?(2)这两个长度一个是木板的短边长,另一个是长方形的对角线的长,能求吗?如何求?学生先尝试后发现:木板横着进,竖着进,都不能从门框内通过.再试一试斜着能否通过.门框对角线AC的长度是斜着能通过的最大长度.求出AC,再与木板的宽比较,就能知道木板能否通过.解:如图所示,在Rt△ABC中,根据勾股定理,得AC2=AB2+BC2=12+22=5.AC=≈2.24.因为AC大于木板的宽2.2 m,所以木板能从门框内通过.[解题策略]在遇到木板进门或将物体放入立体图形内的问题,常常需要找到能通过(放入)物体的最大长度,与物体的长度比较大小,从而判断是否能够通过(放入).[设计意图]使用转化思想,将求门框的对角线的长转化为已知两直角边长求斜边长,从而用勾股定理解决.2.梯子靠墙问题如图所示,一架2.6 m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4 m.如果梯子的顶端A沿墙下滑0.5 m,那么梯子底端B也外移0.5 m吗?引导学生分析:利用勾股定理算出梯子底端B外移多少即可,转化为BD=OD-OB,需要根据勾股定理先计算OD,OB的长度.解:能够看出,BD=OD-OB.在Rt△AOB中,根据勾股定理,得OB2=AB2-OA2=2.62-2.42=1,OB==1.在Rt△COD中,根据勾股定理,得OD2=CD2-OC2=2.62-(2.4-0.5)2=3.15,OD=≈1.77.BD=OD-OB≈1.77-1=0.77.所以梯子的顶端沿墙下滑0.5 m时,梯子底端并不是也外移0.5 m,而是外移约0.77 m. [解题策略]已知直角三角形的两边长,能够根据勾股定理求出第三边长.已知直角三角形的一边长及两边之间的关系,也能够求出各边长.在求锐角三角形或钝角三角形的边长时,能够将其转化为直角三角形,应用勾股定理求解.[设计意图]巩固性练习,本题涉及已知斜边长和一直角边长求另一直角边长,也用勾股定理解决.3.表面距离最短问题(补充)如图所示,一只蚂蚁沿棱长为a的正方体表面从顶点A爬到顶点B,则它走过的最短路程为 ()A.aB.(1+)aC.3aD.a解析:将正方体侧面展开,部分展开图如图所示.由图知AC=2a,BC=a.根据勾股定理,得AB===a.故选D.[解题策略]平面图中,能够直接用勾股定理求两点之间的距离,而在求表面距离最短的问题时,需要将立体图形展开后,将实际问题转化成能够用勾股定理实行计算的问题.[设计意图]通过例题分析解决,建立数学模型,提升学生分析问题和解决问题的水平.[知识拓展]勾股定理应用的条件必须是直角三角形,所以要应用勾股定理必须构造直角三角形.常见的应用类型为:①化非直角三角形为直角三角形;②将实际问题转化为直角三角形模型.三、课堂小结:用勾股定理计算时,要先画好图形,并标好图形,理清各边之间的关系,再灵活使用勾股定理计算.在利用勾股定理实行相关计算和证明时,要注意使用方程的思想;求直角三角形相关线段的长,有时还要使用转化的数学思想,或利用添加辅助线的方法构造直角三角形,再使用勾股定理求解.四、检测反馈:1.小明用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,他摆完这个直角三角形共用火柴棒 ()A.20根B.14根C.24根D.30根解析:∵摆两直角边分别用了6根、8根长度相同的火柴棒,∴由勾股定理,得摆斜边需用火柴棒=10(根),∴他摆完这个直角三角形共用火柴棒6+8+10=24(根).故选C.2.为迎接新年的到来,同学们做了很多花布置教室,准备召开新年晚会.小刘搬来一架高2.5米的木梯,木梯放好后,顶端与地面的距离为2.4米,则梯脚与墙脚的距离应为 ()A.0.7米B.0.8米C.0.9米D.1.0米解析:仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解即可.梯脚与墙脚距离为=0.7(米).故选A.3.(2019·厦门中考节选)已知A,B,C三地的位置如图所示,∠C=90°,A,C两地相距4 km,B,C两地相距3 km,则A,B两地的距离是km.解析:∵∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,∴AB===5(km).故填5.4.(2019·潍坊中考)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是尺.解析:将圆柱平均分成五段,将最下边一段圆柱的侧面展开,并连接其对角线,即为每段的最短长度,为=5,所以葛藤的最短长度为5×5=25(尺).故填25.5.如图(1)所示,两点A,B都与平面镜CD相距4米,且A,B两点相距6米,一束光由A点射向平面镜,反射之后恰好经过B点,求B点与入射点间的距离.解:如图(2)所示,作出B点关于CD的对称点B',连接AB',交CD于点O,则O点就是光的入射点,连接OB.因为AC=BD,∠ACO=∠BDO=90°,∠AOC=∠BOD,所以△AOC≌△BOD.所以OC=OD=AB=3米.在Rt△ODB中,OD2+BD2=OB2,所以OB2=32+42=25,所以OB=5米.五、板书设计:第2课时1.木板进门问题例12.梯子靠墙问题例23.表面距离最短问题例3六、作业布置:一、教材作业【必做题】教材第26页练习第1,2题;教材第28页习题17.1第2,3,4,5题.【选做题】教材第29页习题17.1第9,10,11题.二、课后作业【基础巩固】1.如图所示,有两棵树,一棵高10 m,另一棵高4 m,两树相距8 m.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行 ()A.8 mB.10 mC.12 mD.14 m2.如图所示的是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤133.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.4.如图所示,在长方形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A 落在对角线BD上的点A'处,则AE的长为 .【水平提升】5.(2019·龙东中考)一圆锥体形状的水晶饰品,母线长是10 cm,底面圆的直径是5 cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用(接头处重合部分忽略不计) ()A.10π cmB.10 cmC.5π cmD.5 cm6.如图所示,某会展中心准备在高5 m,长13 m,宽2 m的楼梯上铺地毯,已知地毯每平方米18元,请你协助计算一下,铺完这个楼梯至少需要元钱.7.如图所示,要制作底边BC的长为44 cm,顶点A到BC的距离与BC长的比为1∶4的等腰三角形木衣架,则腰AB的长至少需要 cm.(结果保留根号的形式)8.甲、乙两位探险者到沙漠实行探险,没有了水,需要寻找水源.为了不至于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?还能保持联系吗?9.如图所示,有一块直角三角形的绿地,量得两直角边长分别为6 m,8 m.现在要将绿地扩充成等腰三角形,且扩充部分是以8 m为直角边长的直角三角形,求扩充后等腰三角形绿地的周长.六、教学反思:本节课使用勾股定理解决实际问题,整节课注重基础,通过度类探索,由浅入深,注重讲练结合,引导学生独立分析,自主学习,提升学生使用勾股定理解决简单问题的水平;虽然仅仅勾股定理的实际应用这个知识点,但是涉及生产生活的各个方面,受时间约束无法一一列举,本课中的三个例子缺乏开放性.。
17.1 第2课时 勾股定理的应用
第17章勾股定理17.1勾股定理第2课时勾股定理的应用1.熟练运用勾股定理解决实际问题;(重点)2.掌握勾股定理的简单应用,探究最短距离问题.(难点)一、情境导入如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理的实际应用【类型一】勾股定理在实际问题中的应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC,AC长度即可求得AB的值,然后解答即可.解:在Rt△ABC中,BC=13米,AC=5米,则AB=BC2-AC2=12米.6秒后,B′C=13-0.5×6=10米,则AB′=B′C2-AC2=53(米),所以船向岸边移动的距离为(12-53)米.方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.【类型二】利用勾股定理解决方位角问题如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了1003km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.解析:根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.解:∵AD∥BE,∴∠ABE=∠DAB=60°.∵∠CBF=30°,∴∠ABC=180°-∠ABE-∠CBF=180°-60°-30°=90°.在Rt△ABC中,AB=1003km,BC=100km,∴AC=AB2+BC2=(1003)2+1002=200(km),∴A、C两点之间的距离为200km.方法总结:先确定△ABC是直角三角形,再根据各边长,用勾股定理可求出AC的长.【类型三】利用勾股定理解决立体图形最短距离问题如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图①所示,蚂蚁爬行最短路线为AM,AM=102+(20+5)2=529(cm),如图②所示,蚂蚁爬行最短路线为AM,AM=202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】运用勾股定理解决折叠中的有关计算如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,则AM的长是()A.1.5B.2C.2.25D.2.5解析:连接BM,MB′.设AM=x,在Rt△ABM中,AB2+AM2=BM2. 在Rt△MDB′中,MD2+DB′2.∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2.故选B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】勾股定理与方程思想、数形结合思想的应用如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.解析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2. 设AD=x m,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:在Rt△ABC中,∠B=90°,设AD=x m.∵两猴子所经过的路程都是15m,则10+BC=x+AC=15.∴ BC=5,AC=15-x,AB=x+10.又∵在Rt△ABC中,由勾股定理得(10+x)2+52=(15-x)2,解得x=2,即AD=2米.∴AB=AD+DB=2+10=12(米).答:树高AB为12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.探究点二:勾股定理与数轴如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1 B .-5+1 C.5-1 D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A 点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A 的距离是 5.那么点A 所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A 的位置,再根据A 的位置来确定a 的值.➢ 练习1 如图,有两棵树,一棵高10m ,另一棵高4m ,两树相距8m.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )A.8mB.10mC.12mD.14m【解析】如图,设大树高为AB =10m ,小树高为CD =4m ,过C 点作CE ⊥AB 于E ,四边形EBDC 是长方形,连接AC ,⊥EB =4m ,EC =8m ,AE =AB -EB =6 m ,在Rt⊥AEC 中,m 1022=+=EC AE AC . 故选B.➢ 练习2 如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1m 处折断,树尖B恰好碰到地面,经测量AB =2m ,则树高为( ) A.5m B.3m C.(5+1)m D.3m【解析】在Rt △ABC 中,AC=1m ,AB=2m ,由勾股定理,得m 522=+=EC AE BC ;∴树的高度为AC+BC=(5+1)m. 故选C.➢ 练习3 如图,图中有一长、宽、高分别为5cm ,4cm ,3cm 的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )A.41cmB.34cmC.25cmD.35cm【解析】如图,连接BC ,BD ,在Rt △ABC 中,AB=5cm ,AC=4cm ,根据勾股定理,m 25222=++=CD AC AB 体对角线. 故选C.➢ 练习4 如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB于B ,已知DA =15km ,CB =10km ,现在要在铁路AB 附近建一个土特产收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在距A 站多少千米处?【解析】设AE =x km ,则AE =(25-x ) km ,因为C ,D 两村到E 站的距离相等,所以DE =CE ,即DE 2=CE 2,由勾股定理,得152+x 2=102+(25-x )2,解得x =10.故E 点应建在距A 站10km 处.➢ 练习5 如图所示,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P是母线BC 上一点且PC=32BC. 一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是 ( ) A.⎪⎭⎫ ⎝⎛+π64cm B.5 cm C.53cm D.7 cm【解析】圆柱的侧面展开图如图所示,则蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离为线段AP 的长. 在Rt⊥ACP 中,AC=621⨯=3(cm),PC=32BC=4cm ,所以AP=√32+42=5(cm). 故选B.【归纳整合】应用勾股定理解决实际问题(1) 解决两点间距离问题:正确画出图形,已知直角三角形两边,利用勾股定理求第三边.(2) 解决折叠问题:正确画出折叠前、后的图形,运用勾股定理及方程思想解题.(3) 解决梯子问题:梯子架到墙上,梯子、墙、地面可构成直角三角形,利用勾股定理等知识解题.(4) 解决侧面展开问题:将立体图形的侧面展开成平面图形,利用勾股定理解决表面距离最短的问题.三、板书设计1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.经历探索勾股定理的过程,会应用勾股定理进 行简单的计算。
2.能从实际问题中抽象出直角三角形这一几何模 型,会用勾股定理解决实际问题。
重点与难点:
(1)重点:会应用勾股定理进行简单的计算。 (2)难点:勾股定理的应用。
第二步:自学自研(独学)
阅读教材P25~26,根据所学内容, 完成导学案相应内容。各小组组长循 环检查并打分。(注:一半以上没做 或不认真的扣1分/人,一个小题以上 未做一半以下的扣0.5分/人)
合学
利用8分钟对疑难部分进行合学。 (先展示 [(A)展(B)板]
①第 组 ②第 组 ③第 组 ④第 组 ⑤第 组
知识模块二 学习“例1”部分 知识模块二 学习“例2”部分 知识模块二 范例(同展) 知识模块二 教材P26练习1 知识模块二 教材P26练习2
第四步:检测反馈
1、在直角三角形ABC中,∠C=900,∠A、 ∠B、∠C所对的边分别为a、b、c (1) 已知a=1,b=2,求c (2) 已知a=10,c=15,求b
A
bc
C
aB
2、下列说法正确的是( D )
A.若a、b、c是△ABC的三边,则: a2 b2 c2
B.若a、b、c是Rt△ABC的三边,则 a2 b2 c2 C.若a、b、c是Rt△ABC的三边,A 90 , 则 a2 b2 c2
S1
S3
S2
第4题图
5、一个直角三角形的两边长分别为5cm和12cm,则第 三边的长为 。
第五步:学教反思
1、通过这堂课我学会了什么? 2、这堂课我们需要注意的是什么?
作业
课本28页 复习巩固 第1、2题.
第十七章 勾股定理 17.1 勾股定理(二)
历史因你而改变 学习因你而精彩
复习提问
1、任意三角形三边满足怎样的关系?
2、对于直角三角形,三边之间存在 怎样的特殊关系?
如图,受台风“麦莎”影响,一棵树在离地 面4米处断裂,树的顶部落在离树跟底部3米处,
这棵树折断前有多高?
4米
3米
小结
第一步:目标导学
D.若a、b、c是Rt△ABC的三边,C 90 ,
则 a2 b2 c2
3、一个直角三角形中,两直角边长分别为3和4,下
列说法正确的是( C )
A.斜边长为25 B.三角形周长为25 C.斜边长为5 D.三角形面积为20 4、如图,三个正方形中,S1=25,S2=144,则另一个
的面积S3为__1_6_9____.