计算机视觉 形态学 边缘检测
边缘检测算法流程
边缘检测算法流程边缘检测是计算机视觉和图像处理中的一项关键技术。
它通过识别图像中像素强度变化的区域来提取图像的重要特征。
以下是边缘检测算法的主要流程:1.图像预处理预处理是边缘检测的第一步,主要目的是改善图像质量,为后续的边缘检测操作做准备。
预处理步骤可能包括灰度转换、噪声去除、平滑等。
这些步骤可以帮助消除图像中的噪声,并使图像的特征更加突出。
2.滤波处理滤波处理的目的是减少图像中的噪声,同时保留边缘信息。
常用的滤波器包括高斯滤波器、中值滤波器等。
滤波处理有助于提高后续边缘检测的准确性。
3.边缘检测算子边缘检测算子是边缘检测算法的核心。
常见的算子包括Sobel算子、Prewitt 算子、Canny算子等。
这些算子通过特定的数学运算来识别和提取图像中的边缘。
算子将根据图像局部像素的强度变化来确定边缘。
4.后处理后处理是对检测到的边缘进行进一步处理和优化。
这可能包括去除假阳性边缘(即非实际边缘的误检测)、连接断裂的边缘、平滑边缘等。
后处理有助于提高边缘检测结果的准确性和可解释性。
5.阈值处理阈值处理是用来确定哪些边缘是显著的,哪些不是。
通过设置一个阈值,可以将边缘检测结果转化为二值图像,其中显著的边缘被标记为特定值(通常是1),不显著的边缘被标记为0。
这有助于简化分析和降低计算复杂性。
6.边缘特征提取边缘特征提取是提取已检测到的边缘的特征的过程。
这可能包括测量边缘的角度、长度、形状等属性。
这些特征可以用于进一步的图像分析和理解,例如对象识别或场景分类。
7.性能评估性能评估是评估边缘检测算法效果的步骤。
评估指标可能包括边缘检测的准确性、计算效率、鲁棒性等。
评估也可以采用定量方法,如比较人工标定的真实边缘与检测到的边缘的相似性。
此外,还可以通过比较不同算法的检测结果来评估性能。
性能评估有助于改进和优化算法,提高其在实际应用中的表现。
图像边缘检测的方法
图像边缘检测的方法图像边缘检测是在计算机视觉领域中一项重要的任务,它可以用来提取图像中物体的轮廓或边界信息。
常用的图像边缘检测方法包括基于梯度的方法、基于边缘模型的方法和基于机器学习的方法。
1. 基于梯度的方法基于梯度的方法通过计算图像中灰度的梯度来检测图像的边缘。
常用的基于梯度的方法包括Sobel算子、Prewitt算子和Canny算子。
(1)Sobel算子:Sobel算子是一种常用的边缘检测算子,它通过在图像中滑动一个3x3的卷积核来计算图像灰度的梯度。
它分别计算水平和垂直方向上的梯度,并将两个方向上的梯度相加得到最终的边缘强度。
(2)Prewitt算子:Prewitt算子与Sobel算子类似,也是通过计算图像灰度的水平和垂直方向上的梯度来检测边缘。
不同之处在于Prewitt算子使用了不同的卷积核,其效果也有所差异。
(3)Canny算子:Canny算子是一种边缘检测算法,它通过多个步骤来获得较为准确的边缘结果。
首先,它使用高斯滤波器对图像进行平滑处理,然后计算图像灰度梯度的幅值和方向。
接着,通过非极大值抑制来细化边缘。
最后,使用双阈值处理来检测和连接真正的边缘。
2. 基于边缘模型的方法基于边缘模型的方法是利用边缘在图像中的几何特征来进行检测。
常用的基于边缘模型的方法包括Hough变换和边缘跟踪算法。
(1)Hough变换:Hough变换是一种广泛应用于边缘检测的方法,它可以将图像中的边缘表示为参数空间中的曲线或直线。
通过在参数空间中寻找曲线或直线的交点,可以得到图像中的边缘。
(2)边缘跟踪算法:边缘跟踪算法是一种基于像素领域关系的边缘检测方法。
它首先选择一个起始点作为边缘点,然后根据一定的规则选择下一个与当前点相邻的点作为新的边缘点,并将其加入到边缘集合中。
通过不断跟踪边缘点,可以得到完整的边缘。
3. 基于机器学习的方法基于机器学习的方法是近年来较为流行的一种图像边缘检测方法。
它利用大量的已标注的训练数据来训练模型,然后使用训练好的模型对新的图像进行边缘检测。
几种常用边缘检测算法的比较
几种常用边缘检测算法的比较边缘检测是在数字图像上寻找图像亮度变化的过程,它对于图像处理和计算机视觉任务非常重要。
常见的边缘检测算法有Sobel算子、Prewitt算子、Roberts算子和Canny边缘检测算法。
本文将对这几种算法进行比较。
1. Sobel算子:Sobel算子是一种常见的边缘检测算法,它通过计算图像像素点与其邻域像素点之间的差异来检测边缘。
Sobel算子具有简单、快速的优点,可以检测水平和垂直方向的边缘,但对于斜向边缘检测效果较差。
2. Prewitt算子:Prewitt算子也是一种常用的边缘检测算法,它类似于Sobel算子,通过计算图像像素点与其邻域像素点之间的差异来检测边缘。
Prewitt算子可以检测水平、垂直和斜向边缘,但对于斜向边缘的检测结果可能不够精确。
3. Roberts算子:Roberts算子是一种简单的边缘检测算法,它通过计算图像像素点与其对角线方向上的邻域像素点之间的差异来检测边缘。
Roberts算子计算简单,但对于噪声敏感,容易产生干扰边缘。
4. Canny边缘检测算法:Canny边缘检测算法是一种经典的边缘检测算法,它包含多个步骤:高斯滤波、计算梯度、非最大抑制和双阈值处理。
Canny算法具有良好的边缘定位能力,并且对于噪声和细节边缘具有较好的抑制效果。
但Canny算法计算复杂度较高,在处理大规模图像时可能较慢。
综上所述,不同的边缘检测算法具有各自的优缺点。
若要选择适合应用的算法,需要综合考虑图像特点、计算复杂度和应用需求等因素。
如果对图像边缘的方向要求不高,可以选择Sobel或Prewitt算子;如果对图像边缘的方向要求较高,可以选择Canny算法。
另外,为了获得更好的边缘检测结果,通常需要进行适当的预处理,如灰度化、滤波和阈值处理等。
最后,对于不同的应用场景,可能需要使用不同的算法或算法组合来满足特定需求。
基于计算机视觉的检测方法与应用
基于计算机视觉的检测方法与应用计算机视觉是指利用计算机技术对图像和视频数据进行处理和分析,从而实现自动化的检测、识别和跟踪等任务。
基于计算机视觉的检测方法与应用涵盖了许多领域,并且正逐渐得到广泛应用。
一、基本原理计算机视觉的基本原理是从图像数据中提取特征并将其与预先定义好的目标进行比较,以判断其是否符合目标要求。
简而言之,就是通过算法对数据进行处理,提取出图像中的特征,在数据中寻找符合要求的特征,然后进行判断。
二、常见的检测方法1、边缘检测边缘检测是一种用来检测图像灰度变化的方法。
它能够识别出图像中物体的轮廓,以及物体之间的边界。
常用的边缘检测算法包括Sobel算法、Prewitt算法、Canny算法等。
2、特征点检测特征点检测是一种用来检测图像中特征点的方法。
它可以检测到图像中的关键点,如角点、边缘交点等,并将其提取出来。
常用的特征点检测算法包括SIFT算法、SURF算法、ORB算法等。
3、目标检测目标检测是一种用来检测图像中目标的方法。
它可以识别图像中的物体和场景,并将它们标记出来。
常用的目标检测算法包括Haar Cascade算法、Faster R-CNN算法、YOLO算法等。
三、常见的应用1、人脸识别人脸识别是利用计算机视觉技术对人脸图像进行处理和分析,从而完成人脸识别的过程。
目前,人脸识别技术已经广泛应用于公共安全、金融、通信等领域。
2、视频监控视频监控是利用计算机视觉技术对视频数据进行处理和分析,从而实现对场景和物体的监控。
通过监测算法对视频流进行分析,可以实现自动检测和跟踪等功能。
3、无人驾驶无人驾驶是一种利用计算机视觉技术对车辆进行自动化控制的车辆。
通过对车辆周围环境的检测,无人驾驶车辆可以自动避免障碍物、保持车道等功能。
四、总结基于计算机视觉的检测方法与应用已经被应用到许多领域。
它将计算机技术、图像处理技术、模式识别技术等技术相结合,为我们提供了许多便利。
随着计算机视觉的发展,应用范围也将不断扩大,并带来更多的创新和进步。
视觉缺陷检测常用算法
视觉缺陷检测常用算法视觉缺陷检测是指通过计算机视觉技术对产品进行检测,以发现产品表面的缺陷,如裂纹、划痕、气泡等。
视觉缺陷检测在工业生产中具有重要的应用价值,可以提高产品质量,降低生产成本。
本文将介绍视觉缺陷检测常用算法。
1. 基于边缘检测的算法边缘检测是指通过计算图像中像素值的变化率来检测图像中的边缘。
在视觉缺陷检测中,边缘检测可以用来检测产品表面的裂纹、划痕等缺陷。
常用的边缘检测算法有Sobel算法、Prewitt算法、Canny算法等。
Sobel算法是一种基于梯度的边缘检测算法,它通过计算像素点周围的像素值的梯度来检测边缘。
Prewitt算法也是一种基于梯度的边缘检测算法,它与Sobel算法类似,但是计算梯度时采用了不同的卷积核。
Canny算法是一种基于多级阈值的边缘检测算法,它可以检测出较细的边缘,并且对噪声有较好的抑制效果。
2. 基于纹理特征的算法纹理特征是指图像中的重复模式或规则性结构。
在视觉缺陷检测中,纹理特征可以用来检测产品表面的气泡、斑点等缺陷。
常用的纹理特征算法有灰度共生矩阵法、小波变换法、Gabor滤波器法等。
灰度共生矩阵法是一种基于灰度共生矩阵的纹理特征提取算法,它通过计算图像中像素之间的灰度共生矩阵来提取纹理特征。
小波变换法是一种基于小波变换的纹理特征提取算法,它可以将图像分解成不同尺度和方向的小波系数,从而提取出不同尺度和方向的纹理特征。
Gabor滤波器法是一种基于Gabor滤波器的纹理特征提取算法,它可以提取出图像中的局部纹理特征。
3. 基于形态学的算法形态学是一种数学方法,它可以用来分析和处理图像中的形状和结构。
在视觉缺陷检测中,形态学可以用来检测产品表面的凸起、凹陷等缺陷。
常用的形态学算法有膨胀、腐蚀、开运算、闭运算等。
膨胀是一种形态学操作,它可以将图像中的物体膨胀成更大的物体。
在视觉缺陷检测中,膨胀可以用来检测产品表面的凸起缺陷。
腐蚀是一种形态学操作,它可以将图像中的物体腐蚀成更小的物体。
边缘检测的发展历程
边缘检测的发展历程
边缘检测是计算机视觉领域中重要的图像处理技术之一,其目的是从图像中提取出物体的轮廓信息。
边缘检测技术的发展经历了多个阶段,包括基于阈值的方法、基于梯度的方法以及基于模型的方法。
1. 基于阈值的方法:早期的边缘检测方法是基于阈值的方法,即将图像像素的灰度值与预先定义的阈值进行比较,将灰度值超过阈值的像素点作为边缘点。
然而,这种方法存在的问题是对图像噪声比较敏感,容易产生边缘断裂和边缘模糊等问题。
2. 基于梯度的方法:为了克服基于阈值的方法的问题,研究者们提出了基于梯度的方法,主要是通过计算图像中像素点的梯度值来确定边缘。
常用的基于梯度的方法有Sobel、Prewitt和Canny等算子。
这些算子通过计算图像中像素点的梯度值和方向,确定图像中的边缘点。
基于梯度的方法相对于基于阈值的方法具有更好的性能,能够更准确地提取边缘。
3. 基于模型的方法:随着计算机视觉领域的不断发展,研究者们提出了更加复杂和先进的边缘检测方法,即基于模型的方法。
这些方法基于图像的统计和几何特征,建立了数学模型来描述和检测边缘。
例如,基于马尔可夫随机场的方法和基于小波变换的方法等。
这些方法能够对图像进行更全面、更准确的边缘提取。
总的来说,边缘检测技术的发展经历了从基于阈值的方法到基于梯度的方法,再到基于模型的方法的演变过程。
随着技术的
不断进步和研究的深入,边缘检测算法的准确性和鲁棒性不断提升,为计算机视觉领域的各种应用提供了强大的支持。
图像识别中的边缘检测方法综述(六)
图像识别中的边缘检测方法综述一、引言在计算机视觉领域中,图像识别是一个重要的研究方向。
而边缘检测作为图像处理的基本技术,对于图像识别起着至关重要的作用。
本文将综述目前常用的边缘检测方法,并对其原理和应用进行分析。
二、基于梯度的边缘检测方法1. Sobel算子Sobel算子是一种常用的基于梯度的边缘检测算法。
它利用滤波器对图像进行卷积操作,通过计算每个像素点的梯度值来确定图像中的边缘。
Sobel算子的优点是计算简单快速,但对于噪声敏感。
2. Prewitt算子Prewitt算子也是一种基于梯度的边缘检测算法。
与Sobel算子类似,Prewitt算子同样利用滤波器对图像进行卷积操作,通过计算像素点的梯度值来检测边缘。
Prewitt算子与Sobel算子相比,在计算效果上略有差异,但在挑选合适的算子时能够取得良好的边缘检测效果。
三、基于图像强度变化的边缘检测方法1. Canny边缘检测Canny边缘检测是一种经典的基于图像强度变化的边缘检测算法。
它通过多次滤波和非极大值抑制来提取出图像中的边缘。
Canny边缘检测算法能够有效地抑制噪声,同时还能够精确地检测出边缘。
2. Roberts算子Roberts算子是一种简单而有效的基于图像强度变化的边缘检测算法。
它利用两个2×2的模板对图像进行卷积运算,通过计算像素点之间的差异来检测边缘。
尽管Roberts算子在计算速度上具有优势,但其对噪声较为敏感,因此常与其他滤波算法结合使用。
四、基于模板匹配的边缘检测方法1. Laplacian算子Laplacian算子是一种基于模板匹配的边缘检测算法。
它通过对图像进行二阶微分来检测边缘。
Laplacian算子对噪声不敏感,能够检测出较细微的边缘,但在实际应用中往往需要与其他算子结合使用。
2. Marr-Hildreth算法Marr-Hildreth算法是一种基于模板匹配的边缘检测算法。
它利用高斯滤波器对图像进行平滑处理,然后通过拉普拉斯算子检测图像边缘。
边缘检测的原理
边缘检测的原理概述边缘检测是计算机视觉领域中一种常用的图像处理技术,用于检测图像中的边缘信息。
边缘是指图像中灰度级发生突变的区域,通常表示物体的轮廓或对象的边界。
边缘检测在很多图像处理应用中起着重要的作用,如图像分割、目标检测、图像增强等。
基本原理边缘检测的基本原理是利用像素点灰度值的变化来检测边缘。
在数字图像中,每个像素点都有一个灰度值,范围通常是0到255。
边缘处的像素点灰度值变化较大,因此可以通过检测像素点灰度值的梯度来找到边缘。
常用算法1. Roberts算子Roberts算子是一种基于差分的边缘检测算法。
它通过计算相邻像素点之间的差值来检测边缘。
具体计算方式如下:1.将图像转换为灰度图像。
2.将每个像素点与其相邻的右下方像素点(即(i,j)和(i+1,j+1))进行差值计算。
3.将每个像素点与其相邻的右上方像素点(即(i,j+1)和(i+1,j))进行差值计算。
4.对上述两组差值进行平方和再开方得到边缘强度。
5.根据设定的阈值对边缘强度进行二值化处理。
2. Sobel算子Sobel算子是一种基于滤波的边缘检测算法。
它通过使用两个卷积核对图像进行滤波操作,从而获取图像中每个像素点的梯度信息。
具体计算方式如下:1.将图像转换为灰度图像。
2.使用水平和垂直方向上的两个卷积核对图像进行滤波操作。
3.将水平和垂直方向上的滤波结果进行平方和再开方得到边缘强度。
4.根据设定的阈值对边缘强度进行二值化处理。
3. Canny边缘检测算法Canny边缘检测算法是一种基于多步骤的边缘检测算法,被广泛应用于计算机视觉领域。
它在边缘检测的精度、对噪声的抑制能力和边缘连接性上都有很好的表现。
Canny算法的主要步骤包括:1.将图像转换为灰度图像。
2.对图像进行高斯滤波以减小噪声的影响。
3.计算图像的梯度和方向。
4.对梯度进行非极大值抑制,只保留局部极大值点。
5.使用双阈值算法进行边缘连接和边缘细化。
6.得到最终的边缘图像。
图像处理中的边缘检测和图像分割
图像处理中的边缘检测和图像分割在计算机视觉领域中,图像处理是一项非常重要的技术。
其中,边缘检测和图像分割是两个关键环节。
本文将从边缘检测和图像分割的基本概念入手,详细介绍它们的原理和应用。
一、边缘检测1、基本概念边缘是指图像中亮度、颜色等性质发生突然变化的地方。
边缘检测就是在图像中寻找这些突然变化的地方,并将它们标记出来。
在实际应用中,边缘检测可以用于目标跟踪、物体检测等方面。
2、常见方法常见的边缘检测算法有Canny、Sobel、Laplacian等。
其中,Canny算法是一种广泛使用的边缘检测算法,其基本原理是通过计算图像中每个像素点的梯度值和方向,来判断该点是否为边缘。
Sobel算法则是利用了图像卷积的思想,先对图像进行卷积操作,再计算得到每个像素点的梯度值。
Laplacian算法则是通过计算图像中每个像素点的二阶导数,来寻找亮度突变的地方。
3、应用场景边缘检测常用于在图像中寻找物体的轮廓线,或者分离图像中的前景和背景等方面。
例如在计算机视觉中的人脸识别中,边缘检测可以用于提取人脸的轮廓线,以便于后续的特征提取和匹配。
二、图像分割1、基本概念图像分割是把图像中的像素点分成不同的区域,以便于更好地理解和处理图像。
分割的结果通常是一个二值图像,其中每个像素点被标记为前景或者背景。
在实际应用中,图像分割可以用于目标检测、图像识别等方面。
2、常见方法常见的图像分割算法有阈值分割、聚类分割、边缘分割等。
其中,阈值分割是一种较为简单且常用的分割算法,其原理是为图像中每个像素点设置一个阈值,大于阈值的像素点被标记为前景,小于阈值的则为背景。
聚类分割算法则是通过对图像中像素点进行聚类操作,来划分不同的区域。
边缘分割则是利用边缘检测的结果,将图像分成前景和背景两个部分。
3、应用场景图像分割可以应用于诸如目标检测、图像识别、医学图像分析等方面。
例如在医学图像分析中,图像分割可以用于将CT或MRI图像中的组织分割成肝、肿瘤等不同的部分,以便于医生更好地进行预测和治疗决策。
使用计算机视觉技术进行图像边缘检测的步骤和注意事项
使用计算机视觉技术进行图像边缘检测的步骤和注意事项计算机视觉技术是一门研究如何使机器“看见”并理解图像或视频的技术。
其中一项重要的任务是图像边缘检测。
图像边缘是图像中像素灰度值变化明显的区域,边缘检测是在图像中找到这些边缘的过程。
本文将介绍使用计算机视觉技术进行图像边缘检测的步骤和注意事项。
图像边缘检测的步骤通常包括以下几个关键步骤:1. 预处理:首先,对输入的图像进行预处理。
预处理的目的是消除噪声、增强图像的对比度,以便更好地检测边缘。
常用的预处理方法包括高斯滤波、中值滤波和直方图均衡化等。
2. 灰度转换:将彩色图像转换为灰度图像。
这是因为大多数边缘检测算法在灰度图像上运行。
可以使用加权平均法或者取红、绿、蓝三个通道的平均值的方法将彩色图像转换为灰度图像。
3. 计算梯度:通过计算图像中每个像素点的梯度来确定边缘的位置。
梯度指的是图像灰度值的变化程度。
常用的方法有Sobel、Prewitt和Laplacian等算子。
这些算子可以检测水平、垂直和对角线方向上的边缘。
4. 非极大值抑制:在计算梯度之后,可能会出现多个边缘候选点。
非极大值抑制的目的是在提取出的边缘候选点中选取局部最大值,以得到更准确的边缘。
5. 双阈值处理和边缘连接:通过设置合适的阈值将边缘分为强边缘和弱边缘。
强边缘即明显的边缘,而弱边缘则可能是噪声或非边缘。
通常选择两个阈值进行分割,边缘像素灰度值大于高阈值的被标记为强边缘,灰度值介于低阈值和高阈值之间的被标记为弱边缘。
然后可以使用边缘连接的方法将弱边缘连接到强边缘,得到完整的边缘。
6. 后处理:根据应用需求进行后处理,如边缘修复、边缘精化等。
在进行图像边缘检测时,还需要注意以下几个事项:1. 选择合适的边缘检测算法:根据不同应用的需求选择适合的边缘检测算法。
常用的边缘检测算法包括Canny算法、Sobel算子、Laplacian算子等。
2. 调整算法参数:不同的边缘检测算法有不同的参数需调整。
图像的边缘检测实验报告
图像的边缘检测实验报告
《图像的边缘检测实验报告》
图像的边缘检测是计算机视觉领域中的重要技术之一,它可以帮助我们识别图
像中物体的边缘和轮廓,从而实现图像分割、特征提取和目标识别等应用。
在
本次实验中,我们将对几种常用的边缘检测算法进行比较和分析,以评估它们
在不同场景下的性能和适用性。
首先,我们使用了Sobel算子进行边缘检测。
Sobel算子是一种基于梯度的边缘检测方法,它通过对图像进行卷积操作来寻找像素值变化最大的地方,从而找
到图像中的边缘。
实验结果显示,Sobel算子在一些简单场景下表现良好,但
在复杂背景和噪声干扰较大的情况下效果不佳。
接着,我们尝试了Canny边缘检测算法。
Canny算法是一种多阶段的边缘检测
方法,它通过对图像进行高斯滤波、计算梯度、非极大值抑制和双阈值处理等
步骤来检测图像中的边缘。
实验结果显示,Canny算法在复杂场景下表现出色,能够有效地抑制噪声并找到图像中的真实边缘。
最后,我们还尝试了Laplacian算子和Prewitt算子等其他边缘检测算法,并对
它们的性能进行了比较和分析。
实验结果显示,不同的边缘检测算法在不同场
景下表现出各自的优势和劣势,需要根据具体的应用需求来选择合适的算法。
总的来说,本次实验对图像的边缘检测算法进行了全面的比较和分析,为我们
进一步深入理解和应用这些算法提供了重要的参考和指导。
希望通过这些实验
结果,我们能够更好地利用边缘检测技术来解决实际的图像处理问题,为计算
机视觉领域的发展做出更大的贡献。
计算机图形学中边缘检测算法的改进与研究
计算机图形学中边缘检测算法的改进与研究在计算机图形学中,边缘检测是一项重要的任务,它在许多应用领域中发挥着重要作用,如图像处理、目标检测和计算机视觉等。
边缘是图像中不同区域之间的界限,通过检测这些边缘,可以从图像中提取出有用的信息,并进行后续的分析和处理。
然而,边缘检测算法在实际应用中常常存在一些问题,如噪声干扰、边缘断裂以及边缘模糊等。
为了解决这些问题,研究者们一直在努力改进边缘检测算法,使其更加准确和鲁棒。
最早的边缘检测算法是基于微分的方法,如Sobel算子和Canny算子。
这些算法通过计算图像中像素值的梯度来确定边缘的位置。
然而,这些方法对于噪声比较敏感,常常会产生大量的假阳性和假阴性。
为了改进这一问题,研究者们提出了许多基于统计学和机器学习的方法。
其中,基于局部像素统计信息的方法表现出了优秀的性能。
例如,基于区域增长的算法可以通过像素之间的相似性来判断是否属于同一边缘。
这种方法能够抑制噪声的影响,提高边缘检测的准确性。
除了基于统计学和机器学习的方法,研究者们还尝试了其他一些创新的思路。
例如,基于深度学习的边缘检测算法近年来备受关注。
通过构建深度神经网络模型,并使用大量标定好的图像数据进行训练,可以获得更加精确的边缘检测结果。
此外,近年来,研究者们还开始关注边缘检测算法在实时应用中的性能问题。
实时应用对边缘检测算法的计算速度和效率提出了更高的要求。
为了解决这一问题,研究者们提出了一些基于GPU并行计算的边缘检测算法,通过充分利用硬件资源,实现了实时边缘检测的可能。
除了以上提到的改进方法,研究者们还在很多其他方面进行了探索和创新。
例如,基于多尺度分析的算法、基于结构信息的算法以及基于形态学操作的算法等。
这些方法的出现,极大地丰富了边缘检测算法的研究领域,也为解决实际问题提供了更多的选择。
综上所述,边缘检测算法的改进与研究在计算机图形学领域中是一个具有重要意义的课题。
随着技术的不断发展,新的算法和方法不断涌现,为边缘检测算法的实际应用提供了更多的可能性。
边缘检测的原理
边缘检测的原理
边缘检测是一种图像处理技术,它的原理是通过分析和识别图像中颜色、灰度或纹理的突变部分,提取出图像中物体轮廓的技术。
边缘检测的基本原理是基于图像的梯度变化。
在一幅图像中,物体的边缘往往表现为像素灰度值的变化。
利用这种像素灰度值的变化可以找到图像中的边缘。
常用的边缘检测算法包括Sobel算子、Prewitt算子和Canny算子。
Sobel算子是一种基于图像灰度梯度的边缘检测算法。
它将图像中每个像素的灰度值与其周围像素的灰度值进行卷积运算,得到图像的梯度值。
通过设置阈值来提取出图像中的边缘。
Prewitt算子是一种类似于Sobel算子的边缘检测算法。
它也是通过对图像中的每个像素进行卷积运算来计算梯度值,然后通过设定阈值来提取边缘。
Canny算子是一种比较高级的边缘检测算法,它结合了图像梯度和非极大值抑制技术。
对图像中每个像素进行梯度计算,并在梯度最大值处绘制边缘。
然后利用阈值来筛选出符合条件的边缘。
边缘检测在计算机视觉、图像处理等领域都有广泛的应用。
通
过边缘检测,可以提取图像中的特征信息,例如物体的轮廓、边界等,从而实现目标检测、图像分割、图像修复等任务。
计算机视觉中的特征提取技术方法
计算机视觉中的特征提取技术方法计算机视觉是现代科技中的一个重要分支,它让计算机能够模仿人类视觉系统,从而实现感知、识别、分析等一系列视觉相关的任务。
在计算机视觉中,特征提取是一项基础技术,它是将图像中重要的信息提取出来的过程,是图像处理和分析的关键步骤之一。
在本文中,将详细介绍计算机视觉中的特征提取技术方法,包括传统的方法和近年来广泛应用的深度学习方法。
一、传统特征提取方法1、边缘检测边缘是图像中最基本的特征之一,可以通过检测图像中相邻的像素之间的强度变化来识别。
传统的边缘检测方法包括Sobel、Canny和Laplacian等,其中Sobel方法使用Sobel算子来检测垂直和水平方向的边缘,Canny算法则是将非极大值抑制和双阈值处理结合起来,可以得到更为准确的边缘。
2、角点检测角点是指在图像中两条边缘交汇的点,其具有高度稳定性和可重复性,因此在很多应用场景下,角点检测比较有用。
常见的角点检测方法包括Harris、Shi-Tomasi和FAST等,其中Harris方法通过对图像像素灰度值的偏导数进行计算,来判断像素点是否为角点;FAST算法则是通过计算像素周围的灰度变化来选出特征点。
3、尺度空间分析一张图像的尺度空间包括了多个尺度下的图像,不同尺度下的图像有着不同的特征和表示方式。
尺度空间分析旨在在多个尺度下找到特征点,常见的方法有尺度空间极值检测、高斯金字塔和拉普拉斯金字塔等。
二、深度学习特征提取方法1、卷积神经网络(CNN)近年来深度学习在计算机视觉领域中的应用越来越广泛。
卷积神经网络是其中一种特别受欢迎的模型,它可以从原始图像中直接学习特征,极大地简化了图像处理过程。
通过在多层神经元之间共享参数,CNN可以自动学习出图像中的特定特征,这些特征可以用于分类、目标检测、图像搜索等任务。
2、循环神经网络(RNN)RNN是一种可以捕捉序列信息的深度学习模型,在计算机视觉领域中也得到了广泛应用。
在图像描述生成、视频理解等任务中,RNN模型可以将输入序列映射为输出序列,从而实现目标识别和描述的功能。
计算机视觉技术中常见的图像识别方法
计算机视觉技术中常见的图像识别方法在计算机视觉领域,图像识别是一项重要的技术,它使得计算机能够理解和识别图像中的内容。
图像识别方法包括了很多不同的技术和算法,本文将介绍一些常见的图像识别方法。
1. 特征提取方法:特征提取是图像识别的关键步骤,它能将图像中的关键信息提取出来,以便后续的识别和分类。
常见的特征提取方法包括:- 边缘检测:边缘是图像中明显颜色或灰度值变化的地方,边缘检测方法可以通过计算像素灰度值的一阶或二阶导数来检测并标记出边缘。
常用的边缘检测方法包括Sobel算子、Canny算子等。
- 尺度不变特征变换(SIFT):SIFT是一种对图像局部特征进行提取和描述的算法。
它通过寻找图像中的关键点,并计算关键点周围的局部特征描述子来实现图像的特征提取。
SIFT算法具有尺度不变性和旋转不变性等优点,被广泛应用于目标识别和图像匹配领域。
- 主成分分析(PCA):PCA是一种统计学方法,用于将高维数据转变为低维数据,并保留原始数据的主要特征。
在图像识别中,可以使用PCA方法将图像像素矩阵转换为特征向量,从而实现图像的特征提取和降维。
2. 分类器方法:分类器方法是图像识别中常用的方法之一,它通过训练一个分类器来预测图像的类别。
常见的分类器方法包括:- 支持向量机(SVM):SVM是一种监督学习算法,它通过将数据映射到高维空间中,构建一个能够将不同类别分开的超平面来实现分类。
在图像识别中,可以利用SVM方法通过给定的特征来训练一个分类器,再用该分类器对新的图像进行预测。
- 卷积神经网络(CNN):CNN是一种前馈神经网络,它通过多层卷积和池化层来自动学习和提取图像中的特征。
CNN在图像识别领域取得了很大的成功,被广泛应用于图像分类、目标检测和图像分割等任务中。
- 决策树:决策树是一种基于树形结构的分类方法,它通过根据特征的不同取值来对样本进行分类。
在图像识别中,可以构建一棵决策树来实现对图像的分类和识别。
了解计算机视觉技术中的形状识别算法
了解计算机视觉技术中的形状识别算法计算机视觉是一门研究计算机和摄像机之间的交互,目标是让计算机能够通过摄像机来获取图像信息,并进行处理和理解。
形状识别算法是计算机视觉中一种重要的技术,它可以帮助计算机识别和理解图像中的各种形状。
形状识别算法的目标是根据输入的图像数据,找出其中的各种形状并进行分类。
形状识别算法可以用于许多实际应用中,比如工业检测、智能交通、医疗诊断等领域。
下面将介绍一些常见的形状识别算法。
首先,最简单的形状识别算法是基于图像的边缘检测。
边缘是图像中两个不同区域的交界处,通常是明显的灰度或颜色值变化。
图像中的边缘可以通过一些算法来识别,比如经典的Canny边缘检测算法。
该算法通过对图像进行平滑、计算梯度和非极大值抑制等步骤,能够准确地检测出图像中的边缘。
其次,还有一种常见的形状识别算法是基于图像轮廓的识别。
轮廓是图像中一个连续的边界,可以通过对图像进行边缘检测并进行形态学处理得到。
在得到轮廓后,可以通过计算轮廓的形状特征来进行分类。
比如,可以计算轮廓的长度、宽度、面积等特征,然后使用机器学习算法训练分类模型进行识别。
另外,还有一种常见的形状识别算法是基于特征描述子的。
特征描述子是一种用来描述图像中局部特征的向量,可以通过检测图像中的关键点,并对这些关键点进行描述来得到。
常见的特征描述子算法有SIFT、SURF和ORB等。
这些算法能够提取出图像中的关键点,并计算出关键点的特征向量,然后可以通过比较特征向量的相似度来进行形状匹配和识别。
此外,还有一些基于深度学习的形状识别算法也被广泛应用。
深度学习是一种通过训练大量数据和多层神经网络来学习特征和分类模型的方法。
在形状识别中,可以使用深度学习来学习形状的特征表示和分类模型。
比如,可以使用卷积神经网络(CNN)来提取图像的特征表示,然后通过全连接层进行形状分类。
在实际应用中,根据具体的任务需求可以选择不同的形状识别算法或者将它们结合起来使用。
图像处理中的边缘检测与分割
图像处理中的边缘检测与分割随着现代科技的发展,人们对于图像处理和分析的要求越来越高。
其中,边缘检测和分割是非常重要的技术手段。
边缘检测指的是从一张图片中提取出它的轮廓线,主要用于计算机视觉、医学影像学等领域;而分割则是指将一张图片按照其内部的颜色、亮度等特征划分成若干个区域,以便于分析和处理。
边缘检测一般是从数字图片中寻找点的集合,这些点具有图像中明显的灰度变化或者是颜色变化,这些点就被称为图像的边缘。
通过边缘检测,我们可以得到很多的轮廓线,这些轮廓线能够反映出图像的形状和特征。
边缘检测主要有基于梯度的方法、基于滤波器的方法、基于模型的方法、基于神经网络的方法等。
其中,基于梯度的方法常用的有Sobel算子、Canny算法等;基于滤波器的方法常用的有拉普拉斯滤波器、SIFT算法等;基于模型的方法常用的有Hough变换、Active Contours等;基于神经网络的方法常用的有卷积神经网络等。
边缘检测有时候会受到图像本身的噪声和模糊性等因素的影响,为了能够去除这些因素的影响,我们可以加入一些降噪和增强方法,比如2D小波变换。
分割技术主要是为了将一张图片中的目标区域分割出来,从而便于后续分析和处理。
在分割之前,我们需要对图像进行预处理,比如去噪、灰度变换、二值化等。
在这个过程中,计算机会对图像中的像素点根据它们的灰度值进行聚类,然后生成一个类别图。
常用的图像分割方法有基于区域的分割方法、基于边缘的分割方法、基于阈值的分割方法等。
基于区域的分割方法可以将图像按照其空间位置和灰度信息进行分块,并采用颜色、纹理等特征来将区域分离。
基于边缘的分割方法以边缘为切入点,将图像分割成若干个部分。
基于阈值的分割方法,则是将图像中的像素点分成若干个集合,并对其进行聚类,然后按照某一特定的阈值进行分割。
分割方法的效果受到图像本身的复杂度和噪声等因素的影响,在处理之前,我们需要进行训练和优化,常常采用深度学习等技术。
在实际的应用中,边缘检测和分割技术常常是相辅相成的。
基于形态学的边缘特征提取算法
基于形态学的边缘特征提取算法基于形态学的边缘特征提取算法1. 引言边缘检测是计算机视觉领域中一个重要的任务,其在图像分割、目标识别和图像重建等领域具有广泛的应用。
而边缘特征提取算法作为边缘检测的关键环节之一,其目标是从图像中提取出能够准确反映目标边界的特征信息。
在这篇文章中,我们将探讨基于形态学的边缘特征提取算法,介绍其原理和算法流程,并分享我对这一主题的观点和理解。
2. 形态学基础形态学是一种基于图像形状和结构的数学理论,常用于图像处理和分析中。
形态学操作主要包括腐蚀(erosion)和膨胀(dilation)两种基本操作。
腐蚀操作可以将目标边界向内部腐蚀,而膨胀操作则相反,可以将目标边界向外扩展。
这两种操作的结合可以产生一系列形态学操作,如开操作、闭操作、形态学梯度等。
基于这些形态学操作,我们可以利用形态学算法来提取图像中感兴趣的边缘特征。
3. 基于形态学的边缘特征提取算法基于形态学的边缘特征提取算法主要分为两步:预处理和特征提取。
3.1 预处理在进行形态学边缘检测之前,我们需要进行一些预处理操作,以克服图像噪声对结果的影响。
常见的预处理方法包括图像平滑和二值化。
图像平滑可以通过应用高斯滤波或中值滤波等技术来减少图像中的噪声。
而二值化操作将图像转换为二值图像,将目标物体与背景分离出来,为后续的形态学操作做准备。
3.2 特征提取在预处理之后,我们可以开始进行形态学的边缘特征提取。
常用的形态学边缘特征提取算法包括基于腐蚀和膨胀操作的梯度算法、基于掩膜操作的边缘算子算法等。
3.2.1 基于腐蚀和膨胀操作的梯度算法该算法通过对原始图像进行腐蚀和膨胀操作,并计算两幅结果图像的差值,得到图像中的边缘特征。
具体步骤如下:1) 对原始图像进行腐蚀操作,得到腐蚀图像;2) 对原始图像进行膨胀操作,得到膨胀图像;3) 计算膨胀图像和腐蚀图像的差值,得到边缘特征图像。
3.2.2 基于掩膜操作的边缘算子算法该算法通过定义一种特殊的掩膜模板,对原始图像进行卷积操作,从而得到图像中的边缘特征。
边缘检测的名词解释
边缘检测的名词解释边缘检测是计算机视觉领域中一项重要的图像处理技术,其目的是识别和提取图像中各个物体或场景的边缘信息。
边缘是指图像中颜色或亮度发生明显变化的地方,它标志着物体之间的分界线或者物体与背景之间的过渡区域。
边缘检测能够帮助我们理解图像中的结构,更好地分析图像内容并进行后续的图像处理和分析。
在计算机视觉应用中,边缘检测有着广泛的应用。
例如在目标识别中,边缘检测可以帮助我们找到物体的轮廓,从而进行物体的识别和分类。
在图像分割方面,边缘检测可以用来分割图像中的不同区域,提取感兴趣的物体。
此外,边缘检测还可以用于图像增强、图像压缩等领域。
常用的边缘检测算法包括Sobel算子、Laplacian算子、Canny算子等。
这些算法基于图像的灰度值和亮度变化来检测边缘。
Sobel算子通过计算图像中每个像素点的梯度幅值来确定边缘的位置和方向。
Laplacian算子则通过计算像素值的二阶导数来检测边缘。
而Canny算子则是一种综合性的边缘检测算法,它综合了Sobel 算子和Laplacian算子的优点,在性能上更加稳定和准确。
边缘检测并不是一项简单的任务,它受到噪声、光照变化、图像分辨率等因素的影响。
因此,在进行边缘检测前,通常需要进行预处理,比如图像平滑、灰度化等步骤,以减少这些干扰因素对边缘检测结果的影响。
边缘检测并非完美,它仍然存在一些问题和挑战。
例如,边缘检测往往会产生一些不连续和不完整的边缘,这需要通过进一步的处理和分析来解决。
此外,在图像中存在复杂的背景和纹理时,边缘检测的准确性也会受到影响。
因此,为了获得更好的边缘检测效果,我们需要结合其他的图像处理和分析技术,如图像分割、特征提取等。
总结起来,边缘检测是计算机视觉中一项重要的图像处理技术,其通过识别和提取图像中的边缘信息来帮助我们理解图像结构、进行目标识别和图像分割等应用。
虽然边缘检测还存在一些问题和挑战,但随着技术的不断进步和研究的不断深入,相信边缘检测在图像处理领域将发挥更大的作用。
介绍计算机视觉技术的基本概念与原理
介绍计算机视觉技术的基本概念与原理计算机视觉技术是一种模仿人类视觉系统的人工智能技术,通过使用计算机和相应的算法来处理和理解图像和视频数据。
它涉及图像处理、模式识别、机器学习和人工智能等领域,旨在让计算机能够“看”和“理解”图像,并从中提取有用的信息。
计算机视觉技术的基本概念包括图像获取、图像预处理、特征提取、目标检测与识别以及图像分析和理解。
首先,图像获取是计算机视觉的起点。
计算机视觉系统需要通过摄像头或其他图像采集设备获得图像或视频数据。
随着技术的发展,现在许多智能设备都具备了图像采集功能,例如手机、安防摄像头等。
然后,图像预处理是对图像进行处理和去噪以减少图像中的噪声和失真。
常见的预处理方法包括图像去噪、图像增强、图像缩放和图像去除背景等。
这些预处理方法能够提高图像质量,并为后续的处理步骤提供更好的基础。
接下来,特征提取是计算机视觉技术中的一个重要环节。
通过提取图像中的特征,可以将复杂的图像数据转换为计算机可以处理的数值数据。
常用的特征包括边缘、纹理、颜色、形状等。
特征提取方法可以有很多种,如直方图、SIFT(尺度不变特征转换)、HOG(方向梯度直方图)等。
在目标检测与识别方面,计算机视觉技术通过训练模型来自动识别和检测图像中的目标物体。
目标检测是在图像中找到感兴趣的目标的位置和边界,而目标识别则是确定目标物体的类别。
这一步骤可以通过机器学习和深度学习等方法来实现,如支持向量机(SVM)、卷积神经网络(CNN)等。
最后,图像分析和理解是计算机视觉技术的最终目标。
通过对图像进行分析和理解,计算机可以获得更高层次的理解和推理能力。
这包括图像语义分割、目标跟踪、行为识别等。
图像分析和理解可以应用在许多领域,如自动驾驶、人脸识别、图像搜索等。
计算机视觉技术的原理是基于图像的数学表示和计算机算法的结合。
图像可以看作是二维像素矩阵,每个像素点上都有一个灰度或颜色值。
计算机视觉算法通过对图像矩阵的分析和处理来实现图像的识别和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二形态算子
一、实验目的与要求
目的:学习常见的数学形态学运算基本方法,了解腐蚀、膨胀、开运算、闭运算取得的效果,培养处理实际图像的能力。
要求:上机运行,调试通过。
二、实验设备:
计算机、Matlab软件、VC++或C语言软件
三、实验内容:
利用VC++/C或MatLab工具箱中关于数学形态学运算的函数,对二值图像进行膨胀、腐蚀和开运算、闭运算处理。
四、实验原理:
膨胀:
腐蚀:
开运算:
闭运算:
五、实验报告内容
(1)描述实验的基本步骤,用数据和图片给出各个步骤中取得的实验结果,并进行必要的讨论,必须包括原始图像及其计算/处理后的图像。
(2)结合实验内容,评价腐蚀、膨胀以及开运算、闭运算的效果,并说明它们各自适用条件。
%对二值图像做腐蚀、膨胀以及开运算和闭运算
close all;
clc;
clear;
I=imread('C:\Documents and Settings\Owner\My
Documents\MATLAB\road3.jpg');
I2=im2bw(I); %对读入图像做二值化处理
[m,n]=size(I2);
subplot(2,3,1),imshow(I)
title('原始图像');
subplot(2,3,2),imshow(I2)
title('二值图像');
s=[1 1;1 0]; %腐蚀膨胀算子
%腐蚀运算
for i=1:m-1
for j=1:n-1
if (I2(i,j)==1)&&(I2(i+1,j)==1)&&(I2(i,j+1)==1) I3(i,j)=1;
end
end
end
subplot(2,3,3),imshow(I3)
title('图像腐蚀1次');
%膨胀运算
for i=1:m-1
for j=1:n-1
if (I2(i,j)==1)||(I2(i+1,j)==1)||(I2(i,j+1)==1) I4(i,j)=1;
end
end
end
subplot(2,3,4),imshow(I4)
title('图像膨胀1次');
%开运算
for i=1:m-2
for j=1:n-2
if (I3(i,j)==1)||(I3(i+1,j)==1)||(I3(i,j+1)==1) I5(i,j)=1;
end
end
end
subplot(2,3,5),imshow(I5)
title('开运算');
%闭运算
for i=1:m-2
for j=1:n-2
if (I4(i,j)==1)&&(I4(i+1,j)==1)&&(I4(i,j+1)==1) I6(i,j)=1;
end
end
end
subplot(2,3,6),imshow(I6)
title('闭运算');
由上图易知,原图像经1次腐蚀后,图像中的一些不连续点或线被腐蚀掉;而原图像经1次膨胀后,图像中的一些不连续点或线被连接在一起或膨胀。
原图像经开运算(先腐蚀后膨胀),图像原先那些不完全连续部分,边缘孤点等被去掉,主体部分得以加强,因而图像特征明显,且清晰。
原图像经闭运算(先膨胀后腐蚀),图像原先那些不完全连续部分,大部分被去掉,只保留最基本特征部分,因而图像特征被明显削弱。
实验三边缘检测
一、实验目的与要求
目的:熟悉采用Roberts算子、Sobel算子、Prewitt算子、Laplacian算子和LOG 算子检测数字图像的边缘。
要求:上机运行,调试通过。
二、实验设备:
计算机、Matlab软件、VC++或C语言软件
三、实验内容
利用VC++/C或MatLab中关于边缘检测的函数,分别采用Roberts算子、Sobel算子、Prewitt算子、Laplacian算子和LOG算子检测数字图像的
边缘。
四、实验原理
两个具有不同灰度值的相邻区域之间总存在边缘,边缘是灰度值不连续的结果,这种不连续性通常可以利用求导数的方法方便地检测到。
常用的边缘检测算子有Roberts算子、Sobel算子、Prewitt算子、LOG算子和Laplacian算子。
Roberts算子是一种利用局部差分算子寻找边缘的算子,其模板如图:
Sobel算子的两个卷积计算核如图:
Prewitt算子的两个卷积计算核如图:
LOG算子=高斯滤波+拉普拉斯边缘检测。
Laplacian算子是二阶导数的二维等效式,卷积核如图:
五、实验报告内容
(1)描述实验的基本步骤,给出各个算子取得的实验。
(2)结合实验内容,简述各个算子的效果、特点和适用范围。
ps=('C:\Documents and Settings\Owner\My Documents\MATLAB\road3.jpg'); %读取图像
subplot(1,3,1)
imshow(ps);
title('原图像');
ps=rgb2gray(ps);
[m,n]=size(ps); %用Sobel微分算子进行边缘检测
pa = edge(ps,'sobel');
subplot(1,3,2);
imshow(pa);
title('sobel边缘检测得到的图像');
ps=('C:\Documents and Settings\Owner\My Documents\MATLAB\road3.jpg'); %读取图像
subplot(1,3,1)
imshow(ps);
title('原图像');
ps=rgb2gray(ps);
[m,n]=size(ps); %用Roberts微分算子进行边缘检测pa = edge(ps,'Roberts');
subplot(1,3,2);
imshow(pa);
title('Roberts边缘检测得到的图像');
ps=('C:\Documents and Settings\Owner\My Documents\MATLAB\road3.jpg'); %读取图像
subplot(1,3,1)
imshow(ps);
title('原图像');
ps=rgb2gray(ps);
[m,n]=size(ps); %用Prewitt微分算子进行边缘检测pa = edge(ps,'Prewitt');
subplot(1,3,2);
imshow(pa);
title('Prewitt边缘检测得到的图像');
ps=('C:\Documents and Settings\Owner\My Documents\MATLAB\road3.jpg '); %读取图像
subplot(1,3,1)
imshow(ps);
title('原图像');
ps=rgb2gray(ps);
[m,n]=size(ps); %用Sobel微分算子进行边缘检测pa = edge(ps,'LOG');
subplot(1,3,2);
imshow(pa);
title('LOG边缘检测得到的图像');
实验四边缘检测
一、实验目的与要求
目的:加深对Canny边缘检测的原理的理解。
要求:上机运行,调试通过。
二、实验设备:
计算机、Matlab软件、VC++或C语言软件
三、实验内容
用Matlab语言(或C语言),编写Canny边缘检测器的Matlab(或C语言)函数;利用上述函数,对一副图像进行边缘检测;利用Matlab自带的Canny边缘检测函数对同一副图像进行边缘检测;比较上述两个结果。
四、实验步骤
步1. 图像与高斯平滑滤波器卷积:
步2. 使用一阶有限差分计算偏导数阵列P与Q:
步3. 计算梯度幅值与方向角:
步4. 非极大值抑制(NMS ):
去掉幅值局部变化非极大的点.
* 将梯度角离散为圆周的四个扇区之一,以便用3×3的窗口作抑制运算
* 方向角离散化:
* 抑制,得到新幅值图:
步5. 阈值化
取高低两个阈值作用于幅值图N[i,j],得到两个边缘图:高阈值和低阈值边缘图。
连接高阈值边缘图,出现断点时,在低阈值边缘图中的8邻点域搜寻边缘点。
五、实验报告内容
(1)描述实验的基本步骤,给出实验程序代码及必要说明。
ps=imread('C:\Documents and Settings\Owner\My Documents\MATLAB\road3.jpg'); %读取图像subplot(1,3,1)
imshow(ps);
title('原图像');
ps=rgb2gray(ps);
[m,n]=size(ps);
pa = edge(ps,'canny');
subplot(1,3,2);
imshow(pa);
title('canny边缘检测得到的图像');
(2)结合实验内容,给出实验结果的分析和总结。