七年级数学上册2.7.2+有理数乘法的运算律课时作业(含答案)北师大版

合集下载

北师大版数学七年级上册2.7《有理数的乘法》(第2课时)说课稿

北师大版数学七年级上册2.7《有理数的乘法》(第2课时)说课稿

北师大版数学七年级上册2.7《有理数的乘法》(第2课时)说课稿一. 教材分析《有理数的乘法》是北师大版数学七年级上册第2.7节的内容,本节课的主要内容是有理数的乘法法则,以及如何运用这些法则进行计算。

在教材中,学生已经学习了有理数的加法、减法、乘法和除法,这些知识为本节课的学习打下了基础。

二. 学情分析面对七年级的学生,他们对有理数的加减乘除已经有了一定的了解,但对有理数的乘法法则可能还不是很熟悉。

因此,在教学过程中,我需要引导学生通过观察、思考、讨论,从而发现并掌握有理数的乘法法则。

三. 说教学目标1.知识与技能:让学生掌握有理数的乘法法则,能熟练地进行有理数的乘法计算。

2.过程与方法:通过观察、思考、讨论,培养学生发现问题、分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 说教学重难点1.教学重点:有理数的乘法法则及其运用。

2.教学难点:理解有理数乘法法则的推导过程,以及如何运用这些法则进行计算。

五.说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考;通过案例分析,让学生理解并掌握有理数的乘法法则;通过小组合作学习,培养学生的团队合作意识。

六. 说教学过程1.导入:通过复习有理数的加减乘除,引导学生进入本节课的主题——有理数的乘法。

2.新课讲解:讲解有理数的乘法法则,并通过案例进行分析。

3.课堂练习:让学生进行有理数的乘法计算,巩固所学知识。

4.小组讨论:让学生分组讨论,发现并总结有理数乘法法则的推导过程。

5.总结:对本节课的内容进行总结,强调重点知识点。

6.课后作业:布置相关的课后练习,巩固所学知识。

七. 说板书设计板书设计如下:有理数的乘法法则:1.同号相乘,取相同符号,并把绝对值相乘。

2.异号相乘,取相反符号,并把绝对值相乘。

3.任何数乘以0,结果都是0。

八. 说教学评价本节课的教学评价主要从学生的课堂表现、课后作业和小组合作学习三个方面进行。

北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)

北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)
一个数同两个数的和相乘,等于把这个数 分别同这两个数相乘,再把积相加.
乘法分配律:a(b+c)=ab+ac
知2-导
根据分配律可以推出:一个数同几个数的和相 乘,等于把这个数分别同这几个数相乘,再把 积相加.
知2-讲
例3 计算:
(1)

5 6

3 8
-24;
(2)
-7

4 3
5 14
.
解: (1)
倒数的性质: (1)如果a,b互为倒数,那么ab=1; (2)0没有倒数(因为0与任何数相乘都不为1); (3)正数的倒数是正数,负数的倒数是负数; (4)倒数等于它本身的数是±1; (5)倒数是成对出现的.
1.必做: 完成教材P51-52,随堂练习(1)、 (3), 习题T1(1)-(4)、2、3、4
知1-练
(来自《典中点》)
知1-练
3 若五个有理数相乘的积为正数,则五个数中负
数的个数是( D )
A.0 B.2 C.4 D.0或2或4
4
(中考·台湾)算式
-1
1 2
-3
1 4
2 3

值为何?( D )
A. 1 B. 11 C. 11 D. 13
4
12
4
4
(来自《典中点》)
知识点 2 有理数的乘法运算律
知1-讲
要点精析: (1)在有理数乘法中,每个乘数都叫做一个因数. (2)几个有理数相乘,先确定积的符号,然后将绝对
值相乘. (3)几个有理数相乘,如果有一个因数为0,那么积
就等于0;反之,如果积为0,那么至少有一个因 数为0.
知1-讲
例2 计算:
(1)(-5)×(-4)×(-2)×(-2);

北师大版(2024)七年级上册数学第2章 有理数及其运算 达标测试卷(含答案)

北师大版(2024)七年级上册数学第2章 有理数及其运算 达标测试卷(含答案)

北师大版(2024)七年级上册数学第2章有理数及其运算达标测试卷(时间:45分钟。

满分:100分)一、选择题(本大题共8小题,每小题3分,共24分。

每小题只有一个正确选项)1.计算(-7)-(-5)的结果是()。

A.-12B.12C.-2D.22.中国是最早采用正负数表示相反意义的量并进行负数运算的国家。

若收入500元记作+500元,则支出237元记作()。

A.+237元B.-237元C.0元D.-474元3.在3,-7,0,1四个数中,最大的数是()。

9A.3B.-7C.0D.194.近似数5.0×102精确到()。

A.十分位B.个位C.十位D.百位5.“绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿29.47万亩(1亩≈666.67 m2),使得湿地生态环境状况持续向好。

其中数据29.47万用科学记数法表示为()。

A.0.294 7×106B.2.947×104C.2.947×105D.29.47×1046.下列说法,正确的是()。

A.23表示2×3B.-110读作“-1的10次幂”C.(-5)2中-5是底数,2是指数D.2×32的底数是2×37.(2023内蒙古中考)定义新运算“⊗”,规定:a⊗b=a2-|b|。

则(-2)⊗(-1)的运算结果为()。

A.-5B.-3C.5D.3<0。

则其中正8.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a-c<0;④-1<ab确结论的个数是()。

A.1B.2C.3D.4二、填空题(本大题共5小题,每小题4分,共20分)9.(2024重庆奉节期末)若a是最小的正整数,b是最大的负整数,则a+b=。

10.(2023重庆渝中区校级月考)计算:-|-335|-(-225)+45=。

北师版七年级数学上册课件(BS) 第二章 有理数及其运算 有理数的乘法 第2课时 有理数的乘法运算律

北师版七年级数学上册课件(BS) 第二章 有理数及其运算 有理数的乘法 第2课时 有理数的乘法运算律
=1
=4 000×25-5×25(____乘__法__分__配__律_____)
4.(4 分)运用运算律填空:
(1)(-3)×(-6)=-6×___(_-__3_)__;
(2)[(-3)×2]×(-5)=-3×[__2__×(-5)];
1 (3)3
×[(-9)+(-43
)]=31
×__(_-__9_)_+31
数学 七年级上册 北师版
第二章 有理数及其运算
2.7 有理数的乘法
第2课时 有理数的乘法运算律
1.(4 分)算式-54 ×(10-54 +0.05)=-8+1-0.04 这个运算运用了( D ) A.加法结合律 B.乘法交换律
C.乘法结合律 D.乘法分配律
2.(4 分)在算式-57×24+36×24-79×24=(-57+36-79)×24 中,逆用了( D )
15 (3)1916
×(-8)=(20-116
)×(-8)=20×(-8)-116
×(-8)=-160+21
=-
15912
【素养提升】
12.(15 分)计算:(1+21 )×(1-13 )=32 ×32 =1, (1+21 )×(1+14 )×(1-13 )×(1-15 ) =32 ×54 ×32 ×45 =(32 ×23 )×(54 ×45 ) =1×1=1.
8.下列变形不正确的是( C )
A.5×(-6)=(-6)×5 B.(41 -21 )×(-12)=(-12)×(41 -12 ) C.(-16 +13 )×(-4)=(-4)×(-16 )+13 ×4 D.(-25)×(-16)×(-4)=[(-25)×(-4)]×(-16)
9.计算
5 137Βιβλιοθήκη ×_(_-__34__)__.

北师大版七年级数学上册 第2章 有理数 2.7.2 有理数的乘法运算律 同步练习

北师大版七年级数学上册 第2章   有理数    2.7.2 有理数的乘法运算律    同步练习

北师版七年级上册第二章有理数 2.7.2 有理数的乘法运算律同步测试一.选择题(共10小题,3*10=30) 1.算式(16-12-13)×24的值为( )A .-16B .16C .24D .-242. 下列运算过程中,错误的个数是( ) ①(3-412)×2=3-412×2;②-4×(-7)×(-125)=-(4×125×7); ③[3×(-2)]×(-5)=3×2×5. A .0个 B .1个 C .2个 D .3个3.在2×(-9)×5=-9×(2×5)中,运用了( ) A .乘法交换律 B .乘法结合律 C .乘法分配律D .乘法交换律和乘法结合律4.运用分配律计算(-3)×(-8+2-3),有下列四种不同的结果,其中正确的是( ) A .-3×8-3×2-3×3 B .(-3)×(-8)-3×2+3×3 C .(-3)×(-8)+3×2-3×3 D .-3×(-8)-3×2-3×35.计算25×(-4125)时,可转化为下列算式:①25×(-4+125);②-25×(4+125);③-25×(4-125);④25×(-4-125).其中正确的个数是( )A .1个B .2个C .3个D .4个6.利用分配律计算(-1009899)×99时,正确的方案可以是( )A .-(100+9899)×99B .-(100-9899)×99C .(100-9899)×99D .(-101-199)×997.117×(-3)+117×(-7)=117×(-10) 这是应用了________进行简便运算.( ) A .乘法分配律 B .乘法结合律 C.乘法交换律 D .加法结合律 8.下列计算中,错误的是( ) A .(-6)×(-5)×(-3)×(-2)=180 B .(-36)×(16-19-13)=-6+4+12=10C .(-15)×(-4)×(+15)×(-12)=6D .-3×(-5)-3×(-1)-(-3)×2=24 9.算式(-66317)×13可化为( )A .-66×13+317×13B .-66×13-317×13C .-66×3+317×3D .-66×3-317×310.下列变形不正确的是( ) A .5×(-6)=(-6)×5B .(14-12)×(-12)=(-12)×(14-12)C .(-16+13)×(-4)=(-4)×(-16)+13×4D .(-25)×(-16)×(-4)=[(-25)×(-4)]×(-16) 二.填空题(共8小题,3*8=24)11. 计算:(1)3.26×(-5.6)+3.26×3.6=__________;(2)16.8×732+7.6×716=_________ ;12. 计算(-55)×99+(-44)×99-99=__________.13.计算:(1)1.25×(-8120)×(-8)=___________;(2)991213×(-13)=___________.14.式子(13-315+25)×3×5=(13-315+25)×15=5-3+6中,运用的运算律是_________________.15. (-0.25)×21×(-8)×(-17)=[(-0.25)×(_____)]×[____×(-17)].16. 计算:25×(-0.125)×(-4)×(-45)×(-8)×114=____.17. 计算:(1-2)×(2-3)×(3-4)×(4-5)×…×(2 018-2 019)=____.18.如图,是一个简单的数值运算程序,当输入的数值x 为-3时,其输出的结果是__________ . 输入x →×(-4)→×14→×x →输出三.解答题(共6小题,46分) 19. (6分) 用简便方法计算: (1)(-8)×(-5)×(-0.125);(2)(-112-136+16)×(-36);(3)(-5)×(+713)+7×(-713)-(+12)×(-713).20. (6分) 计算下列各题,能简便计算要简便计算: (1)(-12)×(34-78-512);(2)34×(-9)+34×(-28)+34;(3)-991718×9.21. (6分) “⊗”表示一种新运算,它的意义是a ⊗b =ab -(a +b) (1)求(-2)⊗(-3); (2)求(3⊗4)⊗(-5).22. (6分) 某校体育器材室有60个篮球,一天课外活动,有3个班分别计划借篮球总数的12,13,14.请你算一算,这60个篮球够借吗?如果够,还剩几个篮球?如果不够,还缺几个?23. (6分) 对于两个整数a ,b ,有a ⊗b =(a +b)a ,a ⊕b =a·b +1,求[(-2)⊗(-5)]⊕(-4).24. (8分) 学习有理数的乘法后,老师给同学们这样一道题目:计算:492425×(-5),看谁算的又快又对,有两位同学的解法如下:聪聪:原式=-124925×5=-12495=-24945;明明:原式=(49+2425)×(-5)=49×(-5)+2425×(-5)=-24945.(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来; (3)用你认为最合适的方法计算:291516×(-8).25. (8分) 阅读下列材料: 1×2=13(1×2×3-0×1×2);2×3=13(2×3×4-1×2×3);3×4=13(3×4×5-2×3×4);……(1)将以上三个等式相加,可得:_____________________. (2)根据上述现象请你计算: 1×2+2×3+3×4+…+10×11. 参考答案1-5 ABDBB 6-10 AACBC 11. -6.25,7 12. -9900 13.812,-1299 14.乘法结合律及分配律 15. -8,21, 16. 100 17. 118. -919. 解:(1)原式=-(8×0.125)×5=-5(2)原式=(-112)×(-36)-136 ×(-36)+16×(-36)=3+1-6=-2(3)原式=[(-5)-7+(+12)]×(713)=0 ×(-103)=020. 解:(1)原式=(-12)×34-(-12)×78-(-12)×512)=-9+212+5=612(2)原式=34×[(-9)+ (-28)+1]= 34×(-36)=-27(3)原式=-(99+1718)×9=-[(100-1)+ 1718]×9=-[900-9+812]=-8991221. 解:(1)(-2)⊗(-3)=(-2)×(-3)-[(-2)+(-3)]=6-(-5)=6+5=11(2)(3⊗4)⊗(-5)=[3×4-(3+4)]⊗(-5)=(12-7)⊗(-5)=5⊗(-5)=5×(-5)-[5+(-5)]=-25-0=-25. 22. 解:60×(12+13+14)=65,因为65>60,所以不够,65-60=5,故还缺5个23. 解:原式=[(-2-5)×(-2)]⊕(-4)=14⊕(-4)=14×(-4)+1=-55 24. 解:(1)明明解法较好(2)还有更好的解法,如下:原式=(50-125)×(-5)=-250+15=-24945(3)原式=(30-116)×(-8)=-240+12=-2391225. 解:(1)1×2+2×3+3×4=13×3×4×5;(2)原式=13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+…+13(10×11×12-9×10×11)=13(1×2×3-0×1×2+2×3×4-1×2×3+…+10×11×12-9×10×11)=13×10×11×12=440。

杜集区九中七年级数学上册第二章有理数及其运算7有理数的乘法第2课时有理数乘法的运算律教案新版北师大版

杜集区九中七年级数学上册第二章有理数及其运算7有理数的乘法第2课时有理数乘法的运算律教案新版北师大版

第2课时有理数乘法的运算律【知识与技能】掌握有理数乘法的运算律,并利用运算律简化乘法运算.【过程与方法】经历探索有理数乘法运算律的过程,发展学生观察、归纳、猜测、验证等能力.【情感态度】结合本课教学特点,向学生进行热爱生活、热爱学习教育,培养学生观察、归纳、概括及运算能力.【教学重点】乘法的运算律.【教学难点】利用运算律简化乘法运算.一、情境导入,初步认识在有理数运算中,加法的交换律、结合律仍然成立.那么乘法的交换律、结合律以及乘法对加法的分配律还成立吗?【教学说明】学生已经知道加法的交换律、结合律在有理数运算中仍然成立,很容易猜想乘法的交换律、结合律、分配律也会成立,激发学生探求新知识的欲望.二、思考探究,获取新知1.有理数乘法的运算律问题1计算下列各题,并比较它们的结果.【教学说明】学生通过观察、分析、计算,与同伴交流,归纳有理数乘法的运算律.【归纳结论】乘法交换律:两个有理数相乘、交换因数的位置,积相等,即ab=ba.乘法结合律:三个有理数相乘,先把前面两个数相乘,或者先把后面两个数相乘,积相等,即(ab)c=a(bc).乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即a(b+c)=ab+ac.注意:同加法的运算律一样,这里的a、b、c表示任意三个有理数.2.运算乘法的运算律进行计算问题2计算:【教学说明】学生通过计算、交流,进一步掌握乘法的运算律.问题3 计算:【教学说明】学生通过计算,与同伴进行交流,熟练地运用乘法的运算律.【归纳结论】运用乘法的交换律和结合律时,一般把①互为倒数的因数,②便于约分的因数,③积为正或末尾产生0的因数先结合起来相乘;运用乘法分配律时,不仅要注意把乘积形式a(b+c)转化为ab+ac,也要注意有时候逆用(即把ab+ac转化为a(b+c))会使运算简便.另外把一个数拆成两个数,再运用分配律也是一种非常重要的方法.注意:在计算时要注意符号问题.3.其他一些简算技巧问题4观察下列各式:用你发现的规律计算:【教学说明】学生通过观察、分析、思考找出规律,再进行计算,进一步掌握一些简算技巧.【归纳结论】有时利用发现的规律也能使运算简便.三、运用新知,深化理解1.5×(-6)=(-6)×5运用的是乘法的律,[(-3)×2]×(-5)=-3×[2×(-5)]运用的是乘法的律.2.计算(-4)×(-91)×(-25)可用乘法的律和律转化成(-91)×[(-4)×(-25)],结果是 .4.计算:5.已知:1+2+3+4+…+33=17×33.计算:1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.【教学说明】学生自主完成,加深对新学知识的理解,检测对有理数乘法运算律的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.交换,结合2.交换,结合,-91005.原式=1+2+3+…+33-3-6-9-…-96-99=17×33-3(1+2+3+…+33)=17×33-3×17×33=17×33×(1-3)=17×33×(-2)=-1122四、师生互动,课堂小结1.师生共同回顾有理数乘法的运算律.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对有理数乘法运算律的理解与运用.【板书设计】1.布置作业:从教材“习题2.11”中选取.2.完成练习册中本课时的相应作业.本节课从学生感受乘法的运算律对于有理数仍然成立,到运用乘法的运算律进行计算,提高了学生的运算能力,对于有疑问的学生还需加强指导.【知识与技能】1.了解近似数的概念.2.会按精确度要求取近似数.3.给一个近似数,会说出它精确到哪一位.【过程与方法】通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.【情感态度】通过师生合作,联系实际,激发学生学好数学的热情.【教学重点】近似数和精确度的意义.【教学难点】由给出的近似数求其精确度,按给出的精确度求近似数.一、情境导入,初步认识我们常会遇到这样的问题:(1)七年级(2)班有42名同学;(2)每个三角形都有3个内角.这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:(3)我国的领土面积约为960万平方千米;(4)王强的体重约是49千克.960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.我们把像960万、49这些与实际数很接近的数称为近似数.近似数产生的主要原因在于:①在计算时,有时只能得到近似数,如10÷3得近似商3.33;②在度量时,由于受测量工具和测量技术的局限性影响,一般只能得到近似数.如现有最小刻度分别是厘米、毫米的尺子各一把,用它们分别测量同一个人的身高就会得到不完全相同的结果;③在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也就是精确度的问题.我们都知道,π=3.14159…….我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01);一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.二、典例精析,掌握新知例1指出下列问题中出现的数,哪些是准确数?哪些是近似数?(1)某中学七年级有897人;(2)小华的身高为1.6m;(3)一本书共有178页;(4)临园口每天的车流量大约有30000辆;(5)地球的平均半径约为6370km;(6)某小区在入冬以后有38户人家向物业部门报修暖气.【分析】在实际生活中,我们会遇到很多数字,在有些实际问题中我们不可能得到准确数字,如(5)中地球的半径,这时我们研究问题时一般都取近似数字.解:(1)(3)(6)中给出的数字是准确数;(2)(4)(5)中给出的数字是近似数.例2按括号内的要求,用四舍五入法对下列各数取近似数:(教材第46页例6)(1)0.0158(精确到0.001);(2)304.35(精确到个位);(3)1.804(精确到0.1);(4)1.804(精确到0.01).解:(1)0.0158≈0.016;(2)304.35≈304;(3)1.804≈1.8;(4)1.804≈1.80.【教学说明】教师提醒学生精确到0.1就是精确到十分位,精确到0.01就是精确到百分位,精确到0.001就是精确到千分位,精确到0.0001就是精确到万分位.试一试教材第46页练习.例3下列由四舍五入法得到的近似数,各精确到哪一位?(1)132.4;(2)0.0572;(3)2.40万解:(1)132.4精确到十分位(精确到0.1);(2)0.0572精确到万分位(精确到0.0001);(3)2.40万精确到百位.【教学说明】教师提醒学生由于2.40万的单位是万,所以不能说它精确到百分位.例4一辆卡车最多能装4吨沙子,现有沙子79吨.(1)至少需要多少辆这样的卡车才能运完沙子?(2)这些沙子能装满多少辆这样的卡车?【分析】题目中所要求的是运沙子的卡车辆数,必须取整数.解:(1)因为79÷4=19.75,所以至少需要20辆这样的卡车才能运完这些沙子.(2)因为79÷4=19.75,所以这些沙子能装满19辆这样的卡车.【教学说明】取近似数常用的是“四舍五入”法,但在实际问题中就不一定能用“四舍五入”法,而要用“去尾法”或“进一法”来取近似数.本例中(1)是采用的“进一法”,(2)是采用的“去尾法”.“进一法”和“去尾法”在小学时曾学过,所以设计本例的目的在于让学生回顾所学知识,并让学生知道取近似数并不是只有“四舍五入”这一种方法.三、运用新知,深化理解1.请你列举出生活中准确值和近似值的实例.2.下列各题中的数,哪些是精确数?哪些是近似数?(1)某中学共有98个教学班;(2)我国约有13亿人口.3.用四舍五入法,按括号里的要求对下列各数取近似值:(1)0.65148(精确到千分位);(2)1.5673(精确到0.01);(3)0.03097(精确到0.0001).4.下列由四舍五入得到的近似数,各精确到哪一位?(1)54.8;(2)0.00204;(3)3.6万.【教学说明】上面4题都是有关近似数的题,比较简单,可由学生口答.【答案】1.略.2.(1)精确值;(2)近似值.3.(1)0.65148≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310.4.(1)精确到十分位;(2)精确到十万分位;(3)精确到千位.四、师生互动,课堂小结引导学生回忆相关概念,并由学生表述,互相指点.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.3.选做题.(1)下列由四舍五入得到的近似数各精确到哪一位?①32;②17.93;③0.084;④7.250;⑤1.35×104;⑥0.45万;⑦2.004;⑧3.1416.(2)23.0是由四舍五入得来的近似数,则下列各数中哪些数不可能是真值?①23.04②23.06③22.99④22.85【答案】3.(1)①精确到个位;②精确到百分位;③精确到千分位;④精确到千分位;⑤精确到百位;⑥精确到百位;⑦精确到千分位;⑧精确到万分位.(2)②和④.本课时教学应多角度选择生活事例作为情境,激发学生参与学习的热情,以学生身边最熟悉的数据引导学生认识概念,再在习题的解答和纠错中准确接受新知识.同时,可鼓励学生积极查阅资料,收集分析数据,形成数感.6.3 实数第1课时实数一、新课导入:1.导入课题:上学期,我们学习了负数之后,就把小学学过的数扩充到了有理数.这节课,我们再来认识一种新的数,从而把有理数继续扩充到实数(板书课题).2.学习目标:(1)知道什么叫无理数,什么叫实数,会对实数进行分类.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想.3.学习重、难点:重点:无理数和实数的概念,知道实数与数轴上的点的一一对应关系.难点:对无理数的认识.二、分层学习1.自学指导:(1)自学内容:课本P53的内容.(2)自学时间:8分钟.(3)自学要求:认真阅读课文,从有理数的不同表现形式中认识无理数,弄清实数的两种分类方法.(4)自学参考提纲:①从探究中可以发现,任何分数都可以写成有限小数或无限循环小数的形式.(还可再举例验证),而有理数包括整数和分数,其中整数可看作是小数点后是0的小数,所以任何有理数都可写成有限小数或无限循环小数的形式,反过来,任何有限小数或无限循环小数也都是有理数.②在前两节中,我们见过像2323…这样的数,它们都是无限不循环小数,无限不循环小数叫做无理数.③有理数和无理数统称为实数.④你能按定义和大小两种不同方式对实数进行分类吗?⑤说出下列各数哪些是有理数,哪些是无理数.5,3.14,0, 3,-43,••750.,4-π,0.1010010001…(相邻两个1之间0的个数逐次加1)2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:对学习有困难和学法不当的学生进行点拨指导.(2)生助生:小组内同学间相互交流和纠错.4.强化:(1)无理数和实数的概念.(2)有理数、无理数的常见表现形式.(3)实数的两种分类.(4)判断正误,并说明理由:①无理数都是无限小数; ②实数包括正实数和负实数;③带根号的数都是无理数; ④不带根号的数都是有理数.1.自学指导:(1)自学范围:课本P54开头至“思考”上面第二行为止的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,思考图6.3-1和图6.3-2的作用,理解实数和数轴上的点一一对应的关系.(4)自学参考提纲:①直径为1的圆的周长是π(这里π不能取近似值),那么如课本中图6.3-1所示,直径为1的圆从原点沿数轴向右(或向左)滚动一周,圆上的点由原点到达点O′,则点O′对应的数是π(或-π).②从课本P41“探究”中知道边长为1的正方形的对角线长为2,那么如课本中图6.3-2所示,在数轴上,以原点为圆心,以单位长度为边长的正方形的对角线长为半径画弧,与正半轴的交点表示的数为2,与负半轴的交点表示的数为-2.③由①和②说明:数轴上的点不仅可用来表示有理数,还可表示无理数.④实数与数轴上的点之间有怎样的对应关系?⑤如何用数轴比较两个实数的大小?2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况(如进度、效果、存在的问题等).②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流、纠错、互助解疑难.4.强化:实数与数轴上的点之间的对应关系.三、评价1.学生的自我评价:学生代表交流学习目标的达成情况和学习的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时应从注重学生认知水平和亲身感受出发,创设学习情境,调动学生主动参与的积极性.强调分类思想的认识,并设计开放性问题引领学生体验知识的形成过程.(时间:12分钟满分:100分)一、基础巩固(70分)1.(20分)判断下列说法是否正确:(1)有限小数都是有理数; (2)无限小数都是无理数;(3)所有有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;(4)所有实数都可以用数轴上的点表示,反过来,数轴上的所有点都表示实数;(5)对于数轴上的任意两个点,右边的点表示的实数总比左边的点表示的实数大.答案:(1)√;(2)×;(3)×;(4)√;(5)√.2.(20分)把下列各数分别填在相应的集合中:22 7,3.141592657-8,20.6,036π3有理数集合{22736}无理数集合72π3…}3.(30分)在0,1,2,3,4,5,6,7,8,9,10的平方根及立方根中,哪些是有理数?哪些是无理数?解:平方根:有理数:0,1,2,3;23567810立方根:有理数:0,1,2无理数:23,45,679,10二、综合运用(20分)4.(10分)在下列各数中:316,-3.14,-π2,0.1010010001,0.121212…,是无理数的有(B)A.1个B.2个C.3个D.4个5.(10分)在数轴上画出表示-2-1的点.解:以单位长度为边长画一个正方形如图,以(-1,0)为圆心,正方形的对角线为半径画弧,与负半轴的交点就表示点-2-1.三、拓展延伸(10分)6.(1)有没有最小的正整数?有没有最小的整数?(2)有没有最小的有理数?有没有最小的无理数?(3)有没有最小的正实数?有没有最小的实数?解:(1)有最小的正整数,没有最小的整数;(2)没有最小的有理数,没有最小的无理数;(3)没有最小的正实数,没有最小的实数.。

【北师大版】七年级上册数学:第二章《有理数及其运算》课时练习(含答案)

【北师大版】七年级上册数学:第二章《有理数及其运算》课时练习(含答案)

第二章 有理数及其运算1 有理数1.下列各数中是负数的是( ) A.-3 B.0 C.1.7 D.122.飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作( ) A.-8米 B.+8米 C.-15米 D.+15米3.下列说法正确的是( )A.非负数包括0和整数B.正整数包括自然数和0C.0是最小的整数D.整数和分数统称为有理数4.在“1,-0.3,+13,0,-3.3”这五个数中,非负有理数是 (写出所有符合题意的数).5.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .6.把下列各数填入表示它所在的数集的圈里.-18,227,3.1416,0,2001,-35,-0.142857,95%.数 轴1.下列所画数轴正确的是( )2.如图,点M 表示的数是( )A.1.5B.-1.5C.2.5D.-2.53.在0,-2,1,12这四个数中,最小的数是( )A.0B.-2C.1D.124.比较下列各组数的大小: (1)-3 1; (2)0 -2.3; (3)-23 -35.5.在数轴上,与表示数-1的点的距离为1的点表示的数是 .6.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .7.在数轴上表示下列各数,并用“〉”连接起来.1.8,-1,52,3.1,-2.6,0,1.3 绝对值第1课时 相反数1.-3的相反数是( ) A.-3 B.3 D.-13 D.132.下列各组数互为相反数的是( )A.4和-(-4)B.-3和13C.-2和-12 D.0和03.若一个数的相反数是1,则这个数是 .4.写出下列各数的相反数:(1)-3.5的相反数为 ; (2)35的相反数为 ;(3)0的相反数为 ; (4)28的相反数为 ; (5)-2018的相反数为 .第2课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )3.比较大小:-5 -2,-12 -23(填“〉”或“〈”).4.计算:(1)|7|= ; (2)⎪⎪⎪⎪⎪⎪-58= ;(3)|5.4|= ; (4)|-3.5|= ; (5)|0|= .4 有理数的加法第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2016)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某运动员在东西走向的公路上练习跑步,跑步情况记录如下(向东为正,单位:m):1000,-1200,1100,-800,1400,该运动员跑完后位于出发点的什么位置?有理数的减法1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?有理数的加减混合运算第1课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( )A .7+3-5-2B .7-3-5-2C .7+3+5-2D .7+3-5+22.计算8+(-3)-1所得的结果是( )A .4B .-4C .2D .-23.算式“-3+5-7+2-9”的读法正确的是( )A .3、5、7、2、9的和B .减3正5负7加2减9C .负3,正5,减7,正2,减9的和D .负3,正5,负7,正2,负9的和4.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c 的值为( )A .-1B .0C .1D .25.计算下列各题:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713.6.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.第2课时 有理数加减混合运算中的简便运算1.下列各题运用加法结合律变形错误的是( )A .1+(-0.25)+(-0.75)=1+[(-0.25)+(-0.75)]B .1-2+3-4+5-6=(1-2)+(3-4)+(5-6)C .34-16-12+23=⎝ ⎛⎭⎪⎫34+12+⎝ ⎛⎭⎪⎫-16+23 D .7-8-3+6+2=(7-3)+(-8)+(6+2)2.计算-256+15-116的结果是( )A .-345 B .345 C .-415 D .4153.计算:(1)27+18-(-3)-18; (2)23-18-⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫-38;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718;(5)7.54+(-5.72)-(-12.46)-4.28; (6)0.125+⎝ ⎛⎭⎪⎫-418+⎝ ⎛⎭⎪⎫-234+0.75.第3课时有理数加减混合运算的应用1.下表是某种股票某一周每天的收盘价情况(收盘价:股票每天交易结束时的价格):(1)填表,并回答哪天的收盘价最高,哪天的收盘价最低;(2)最高价与最低价相差多少?2.某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,低于80分的分数记为负,成绩记录如下:+10,-2,+15,+8,-13,-7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测该小组成员中得分最高与最低相差多少分?7 有理数的乘法第1课时 有理数的乘法法则1.计算-3×2的结果为( )A .-1B .-5C .-6D .12.-74的倒数是( )A .-74B .74C .-47D .473.下列运算中错误的是( )A .(+3)×(+4)=12B .-13×(-6)=-2 C .(-5)×0=0 D .(-2)×(-4)=84.下列计算结果是负数的是( )A .(-3)×4×(-5)B .(-3)×4×0C .(-3)×4×(-5)×(-1)D .3×(-4)×(-5)5.填表(想法则,写结果):6.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 有理数乘法的运算律1.用简便方法计算(-27)×(-3.5)+27×(-3.5)时,要用到( )A .乘法交换律B .乘法结合律C .乘法交换律、结合律D .乘法对加法的分配律2.计算(-4)×37×0.25的结果是( ) A .-37 B .37 C .73 D .-733.下列计算正确的是( ) A .-5×(-4)×(-2)×(-2)=80B .-9×(-5)×(-4)×0=-180C .(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0 D .-2×(-5)+2×(-1)=(-2)×(-5-1)=12 4.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A .(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B .(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12C .2×3-(-2)×⎝ ⎛⎭⎪⎫-12D .(-2)×3+2×⎝ ⎛⎭⎪⎫-125.填空: (1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10) =21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16) =14× +18× +12× (分配律) = = .1计算(-18)÷6的结果是( )A .-3B .3C .-13D .132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A .-64 B .64 C .1 D .-13.下列运算错误的是( )A .13÷(-3)=3×(-3)B .-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C .8÷(-2)=-8×12D .0÷3=04.下列说法不正确的是( ) A .0可以作被除数 B .0可以作除数C .0的相反数是它本身D .两数的商为1,则这两数相等5.(1)6的倒数是 ;(2)-12的倒数是 . 6.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.1.计算(-3)2的结果是( ) A .-6 B .6 C .-9 D .92.下列运算正确的是( )A .-(-2)2=4B .-⎝ ⎛⎭⎪⎫-232=49C .(-3)4=34D .(-0.1)2=0.13.把34×34×34×34写成乘方的形式为 ,读作 . 4.计算:(1)(-2)3; (2)-452; (3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.10 科学记数法1.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A .1.3×104B .1.3×105C .1.3×106D .1.3×1072.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( ) A .182000千瓦 B .182000000千瓦C .18200000千瓦D .1820000千瓦3.用科学记数法表示下列各数:(1)地球的半径约为6400000m ;(2)赤道的总长度约为40000000m .11 有理数的混合运算1.计算-5-3×4的结果是( )A .-17B .-7C .-8D .-322.下列各式中,计算结果是负数的是( )A .(-1)×(-2)×(-3)×0B .5×(-0.5)÷(-0.21)C .(-5)×|-3.25|×(-0.2)D .-(-3)2+(-2)23.计算(-8)×3÷(-2)2的结果是( ) A .-6 B .6 C .-12 D .124.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x 平方乘以2减去5输出5.计算: (1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32.6.室温是32℃,小明开空调后,温度下降了6℃,关掉空调后,空气温度每小时回升2℃,求关掉空调2小时后室内的温度.12 用计算器进行运算1.用完计算器后,应该按( )A .DEL 键B .=键C .ON 键D .OFF 键2.用计算器求(-3)5的按键顺序正确的是( ) A .(-)()3x ■5= B .3x ■5()(-)= C .()(-)3x ■5= D .()(-)35x ■= 3.按键顺序1-3x ■2÷2×3=对应下面算式( )A .(1-3)2÷2×3B .1-32÷2×3C .1-32÷2×3D .(1-3)2÷2×34.用计算器计算7.783+(-0.32)2≈ (精确到0.01).第二章 有理数及其运算1 有理数1.A2.C3.D4.1,+13,0 5.中国队输1场 6.解:2 数 轴1.C2.D3.B4.(1)〈 (2)〉 (3)〈5.0或-26.-1,0,1,27.解:在数轴上表示如下:由数轴可得3.1〉52〉1.8〉1〉0〉-1〉-2.6.3 绝对值第1课时 相反数1.B2.D3.-14.(1)3.5 (2)-35(3)0 (4)-28 (5)2018 第2课时 绝对值1.C2.B3.〈 〉4.(1)7 (2)58(3)5.4 (4)3.5 (5)0 4 有理数的加法第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2016.(4)原式=0.(5)原式=4.(6)原式=-59. 第2课时 有理数加法的运算律1.D2.交换 结合 -17 +19 23.解:(1)原式=(-6)+(-4)+8+12=-10+20=10.(2)原式=147+37+⎝ ⎛⎭⎪⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:1000+(-1200)+1100+(-800)+1400=(1000+1100+1400)+[(-1200)+(-800)]=3500+(-2000)=1500(m).答:该运动员跑完后位于出发点的东边1500m 远处.有理数的减法1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15.(2)原式=-5+(-2)=-7.(3)原式=0+(-9)=-9.(4)原式=-812-112+312=-12. 5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.有理数的加减混合运算第1课时 有理数的加减混合运算1.A2.A3.D4.C5.解:(1)原式=-3.5+1.7+2.8+(-5.3)=-4.3.(2)原式=⎝ ⎛⎭⎪⎫-312+523+713=912. 6.解:-2+5-8=-5(℃).答:该地清晨的温度是-5℃.第2课时 有理数加减混合运算中的简便运算1.C2.A3.解:(1)原式=27+3+18-18=30.(2)原式=23+13+⎝ ⎛⎭⎪⎫-18+⎝ ⎛⎭⎪⎫-38=12. (3)原式=⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12+(-14)+234=32. (4)原式=314+534+⎝ ⎛⎭⎪⎫-718+718=9. (5)原式=7.54+12.46+(-5.72)+(-4.28)=10.(6)原式=18+⎝ ⎛⎭⎪⎫-418+⎝⎛⎭⎪⎫-234+34=-6. 第3课时 有理数加减混合运算的应用1.解:(1)13.8 13.15 星期三的收盘价最高,星期五的收盘价最低.(2)13.8-13.15=0.65(元),即最高价与最低价相差0.65元.2.解:(1)80+15=95(分).答:成绩最好为95分.(2)10-2+15+8-13-7=11(分).答:该小组实际总成绩与计划相比超过11分.(3)最高分为80+15=95(分),最低分为80-13=67(分),95-67=28(分).答:最高分与最低分相差28分.有理数的乘法第1课时 有理数的乘法法则1.C2.C3.B4.C5.从左往右、从上往下依次填:- 48 -48 - 80 -80 + 36 36 + 160 1606.解:(1)原式=-5.(2)原式=0.(3)原式=-125. (4)原式=356. 第2课时 有理数乘法的运算律1.D2.A3.A4.A5.(1)-621 -45 -621-10 -6 8 -48 (2)(-16) (-16) (-16) -4-2-8 -14有理数的除法1.A2.B3.A4.B5.(1)16(2)-2 6.解:(1)原式=(-6)×4=-24.(2)原式=0.(3)原式=⎝ ⎛⎭⎪⎫-53÷⎝ ⎛⎭⎪⎫-52=53×25=23. (4)原式=-34×73×67=-32. 有理数的乘方1.D2.C3.⎝ ⎛⎭⎪⎫344 34的4次方⎝ ⎛⎭⎪⎫或34的4次幂 4.解:(1)原式=-8.(2)原式=-425. (3)原式=-949.(4)原式=-827.科学记数法1.C2.C3.解:(1)6.4×106m.(2)4×107m. 有理数的混合运算1.A2.D3.A4.135.解:(1)原式=9×1-8=1.(2)原式=-3+12×12-23×12+9=-3+6-8+9=4. 6.解:32-6+2×2=30(℃).答:关掉空调2小时后室内的温度为30℃.用计算器进行运算1.D2.C3.B4.471.01。

2024年秋新北师大七年级数学上册 3 有理数的乘除运算第2课时 有理数乘法的运算律(课件)

2024年秋新北师大七年级数学上册 3 有理数的乘除运算第2课时 有理数乘法的运算律(课件)


1 4

1 6
)×24
时,使用哪种运算
律可避免通分
( A)
A. 乘法对加法的分配律 B. 乘法交换律
=
30
(2)30
1 2
1 3
=
30
1 2
30
1 3
=
5
(3)
0.25
2 3
36
=
1 4
2 3
36
1 36 2 36
4
3
= 15
(4)8
4 5
1 16
=
8
4 5
1 16
= 2 5
例 计算: (1) 49×(-4) ×(-17) ×(-12);
(2) 313×(-1114) ×(-1 13) ×(-0.3);
56
=[+( 3 5)] (2) 56
= 1 (2) 2
=-1
问题1 对例1(1)式子进行改编,得到下面一些式子, 观察这些式子,判断它们的积的符号。
式子 4×5×(-0.25)×1 (-4)×(-5)×0.25×1 (-4)×(-5)×0.25×(-1) (-4)×(-5)×(-0.25)×(-1) (-4)×(-5)×(-0.25)×(-1)×0
比如(-3)×5×(-2),它的积的符号是什么呢?
探索新知
探究点1 多个有理数相乘
例1 计算:
(1) (4 )×5×(- 0.25) 解:(-4)×5×(- 0.25)
= [-(4×5)]×(- 0.25) = (-20) ×(- 0.25) = +(20×0.25)
=5
(2) (-35) ×(-56) × (-2) 解:( 3) ( 5) (2)

2.7第2课时有理数的乘法运算律(教案)2022秋七年级上册初一数学北师大版(安徽)

2.7第2课时有理数的乘法运算律(教案)2022秋七年级上册初一数学北师大版(安徽)
五、教学反思
在今天的有理数乘法运算律教学中,我发现学生们对于乘法交换律和结合律的理解较为顺利,他们能够通过具体的例子快速掌握这些概念。然而,在涉及到乘法分配律时,明显感觉到学生们的理解上出现了一些困难。我意识到,可能需要通过更多的实际例题和直观演示来帮助他们理解这一概念。
在讲授过程中,我尝试了用生活中的例子来解释有理数乘法的应用,比如购物时计算总价,或者计算长方形的面积。这样的做法似乎能够让学生们更加直观地感受到数学与生活的联系,有助于提高他们对数学的兴趣。
2.7第2课时有理数的乘法运算律(教案)2022秋七年级上册初一数学北师大版(安徽)
一、教学内容
2.7第2课时有理数的乘法运算律,本节课将深入探讨北师大版(乘法运算的基本概念;
2.有理数乘法运算的交换律、结合律;
3.有理数乘法的分配律;
4.乘法运算律在解决实际问题中的应用。
二、核心素养目标
1.培养学生运用有理数乘法运算律进行问题分析、解决的能力,强化数学运算素养;
2.培养学生在实际情境中发现数学规律,增强数学抽象和逻辑推理素养;
3.培养学生运用乘法运算律进行数学表达和交流,提升数学表达和数据分析素养;
4.引导学生体会数学在生活中的应用,增强数学应用意识和创新意识。
三、教学难点与重点
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数乘法的基本概念。有理数乘法是指两个或多个有理数相乘的运算。它是数学中非常基础且重要的运算,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了有理数乘法在计算长方形面积中的应用,以及它如何帮助我们解决问题。
此外,在总结回顾环节,我鼓励学生们提出疑问,发现他们对于乘法分配律的应用还是有一些模糊的地方。我打算在下一节课的前几分钟,再次对这部分内容进行巩固,确保学生能够彻底理解并掌握。

2.7.2 有理数的乘法(第2课时)北师大版数学七年级上册同步作业(含答案)

2.7.2 有理数的乘法(第2课时)北师大版数学七年级上册同步作业(含答案)

2.7.2 有理数的乘法一.选择题。

1.计算×的结果是( )A .B .C .D .2.下列说法正确的是A .任何一个有理数的绝对值都是正数B .0既不是正数也不是负数C .有理数可以分成正有理数,负有理数D .0的绝对值等于它的倒数3.如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m ,再下沉10m ,然后上升7m ,此时潜艇的海拔高度可记为( )A .15mB .7mC .﹣18mD .﹣25m 4.如果两个有理数的积是负数,和是正数,那么这两个有理数()A .同号,且都为正数B .异号,且正数的绝对值较大C .同号,且都为负数D .异号,且负数的绝对值较大5.小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12元,存进25元,取出12.5元,取出2元,这时银行现款增加了( )A .12.25元B .﹣12.25元C .10元D .﹣12元6.已知abc >0,a >0,ac <0,则下列结论判断正确的是( )A .a >0,b >0,c >0B .a >0,b >0,c <0C .a >0,b <0,c >0D .a >0,b <0,c <07.a 、b 、c 是有理数且abc <0,则++的值是( )A .﹣3B .3或﹣1C .﹣3或1D .﹣3或﹣18.用一张纸表示1亩地,要求亩的是多少?下面有三种表示法,其中正确的是( )A.①②B.①③C.②③D.①②③二.填空题。

9.的倒数是_________,的倒数是_________.10.一个数的因数一定小于它的倍数. (判断对错)11.若x,y互为相反数,且3x﹣y=4,则xy的值为 .12.已知|x|=3,y2=4,且x×y<0,则x+y的值是 .13.若a、b互为相反数,、互为倒数,且m是绝对值最小的数,则=_______.三.解答题。

14.用简便方法计算下列各题:(1);(2).15.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?16.在数轴上,我们把表示数2的点定为核点,记作点C,对于两个不同的点A和B,若点A,B到点C的距离相等,则称点A与点B互为核等距点.如图,点A表示数﹣1,点B 表示数5,它们与核点C的距离都是3个单位长度,我们称点A与点B互为核等距点.(1)已知点M表示数3,如果点M与点N互为核等距点,那么点N表示的数是 1 ;(2)已知点M表示数m,点M与点N互为核等距点,①如果点N表示数m+8,求m的值;②对点M进行如下操作:先把点M表示的数乘以2,再把所得数表示的点沿着数轴向左移动5个单位长度得到点N,求m的值.2.7.2 有理数的乘法参考答案与试题解析一.选择题。

2.9.2 有理数的乘方(第2课时)北师大版数学七年级上册同步作业(含答案)

2.9.2 有理数的乘方(第2课时)北师大版数学七年级上册同步作业(含答案)

2.9.2 有理数的乘方一.选择题。

1.在,﹣(﹣2),﹣|﹣5|,(﹣3)2,0,π中,正有理数的个数是( )A.1个B.2个C.3个D.4个2.下列各组中,两数相等的组数有( )组.①(﹣3)2与﹣32;②(﹣3)2与32;③(﹣2)3与﹣23;④|﹣2|3与|﹣23|.A.1B.2C.3D.43.若a为有理数,则下列说法正确的是( )A.﹣(a﹣2)2是负数B.|a2+3|是正数C.﹣1+(1﹣a)4是负数D.以上说法都不对4.代数式(a﹣2)2+5取最小值时,a值为( )A.a=0B.a=2C.a=﹣2D.无法确定5.一台计算机在104秒内做了1016次运算,则该计算机平均每秒能做( )次运算.A.10﹣12B.10﹣4C.104D.10126.已知实数x,y满足|x﹣3|+(y+4)2=0,则代数式(x+y)2020的值为( )A.1B.﹣1C.2020D.﹣20207.2020年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.根据2月初发布的中央一号文件,我国目前还有近300万农村贫困人口没有脱贫,假设贫困人口月平均下降率为75%,则4月初我国还未脱贫的农村贫困人口数量约为( )A.17万B.19万C.21万D.23万二.填空题。

8.5的相反数是 ,平方等于49的数是 .9.数轴上A点表示的数是(﹣3)2,将点A向左平移2个单位得到点B,则B点表示的数是 .10.已知a,b,c表示3个互不相等的整数,这3个数的绝对值都大于1,且满足|a|+10b2+100c2=2020,则a+b+c的最小值是 .11.已知|x+2y+3|与(2x+y)2的值互为相反数,则x﹣y= .12.一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折2次后,可以得3条折痕,那么对折5次可以得到 条折痕.三.解答题。

13.计算题:(1)﹣×(+3)÷(﹣)3(2)﹣17÷×(﹣3)14.已知a是绝对值最小的有理数,b是倒数等于本身的数,c的平方等于4,求a+b+c的值.15.看过《西游记》的同学一定都知道孙悟空会分身术,他摇身一变,就变成了2个孙悟空;这2个摇身一变,各变成2个孙悟空,一共有4个孙悟空;这4个孙悟空再变,变成8个孙悟空…假设孙悟空一共变了80次.(1)一共有多少个孙悟空?(2)若已知地球重约5.9×1024kg,假设每个孙悟空的体重为50kg,请你列出算式来估计一下:这些孙悟空体重总和相当于地球重量的多少倍?(280≈1.2×1024)2.9.2 有理数的乘方参考答案与试题解析一.选择题。

七年级数学北师大版上册2.7-2.8 有理数的乘法、除法(含答案)

七年级数学北师大版上册2.7-2.8 有理数的乘法、除法(含答案)

2.7-2.8 有理数的乘法、除法专题一有理数的乘除法运算1.在﹣2,3,4,﹣5这四个数中,任取两个数相乘,所得积中最大的是()A.20 B.﹣20 C.12 D.102.计算(﹣1000)×(5﹣10)的值为()A.1000B.1001C.4999D.50013.(-6)÷3⨯13的值为()A.-6 B.6 C.-23D.234.下列说法正确的是()A.零除以任何数都得零B.小于﹣1的数的倒数大于其本身C.两数相除等于把它们颠倒相乘D.商小于被除数5.如果ab=0,那么一定有()A. a=b=0 B. a=0 C. a、b中至少有一个为0 D.a、b中最多有一个为0 6.某种药品的说明书上,贴有如下图所示的标签,一次服用这种药品的剂量范围是()A.15mg~30mg B.20mg~30mg C.15mg~40mg D.20mg~40mg7.在数轴上A点表示﹣6,B点表示6,在A、B两点之间表示的所有整数的积是.8.若=1,则m0.1.如果某中学生的步行速度是每小时6km,他家距离学校3km,学校要求早晨7:30前到校,则他最晚从家出发才能不迟到.10.计算下列各题:(1)-10.5×(16-0.5)×37÷(-12); (2)(13-521+314-27)÷(-142);(3)(16-14)×(16+14)÷16×(-14).11.当a=-2,b=-5,c=3时,求下列各式的值:(1)a bb--; (2)b ca-+-.12.有理数a,b,c,d在数轴上的位置如图所示:试确定下列代数式的符号:(1)a d b +;(2) b c d b--×ab .13.在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.8 ℃,已知山脚的温度是24 ℃,山顶的温度是4 ℃,试求这座山的高度.14.已知||||||a b c a b c ++=1,求)(acab bc ac ac bc abc abc ⨯⨯÷的值.状元笔记:【知识要点】1.理解有理数乘法的符号法则、除法法则和乘法的运算律.2.会进行有理数的乘除法运算,会求有理数的倒数.【温馨提示】几个有理数相乘时积的符号法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个有理数相乘,有一个因数为0,积就为0.两个有理数相除, 同号得正,异号得负,并把绝对值相除;0除以任何非0数都得0.【方法技巧】在进行有理数乘法运算时需注意:先确定符号再确定绝对值,常利用“除以一个数等于乘以这个数的倒数”把除法运算改写成乘法运算, 再利用乘法法则来计算.参考答案:1.C b d c a2.D 解析:原式=﹣(1000+)×(﹣5)=(1000+)×5=1000×5+×5=5000+1=5001.3.C4.B5.C6.C 解析:当每天60 mg ,分4次服用时,一次服用这种药品的剂量是60÷4=15(mg );当每天120 mg ,分3次服用时,一次服用这种药品的剂量是120÷3=40(mg ).所以一次服用这种药品的剂量范围是15 mg ~40 mg .7.0 解析:∵在A 、B 两点之间有表示整数0的点,∴它们的积一定为0.8.> 解析:若m >0,|m|=m ,则=1;若m <0,|m|=﹣m ,则=﹣1; m 为分母,不能等于0.9. 7:00 解析:3÷6=0.5(小时)=30(分钟),即最晚7:00出发才不会迟到.10.(1)-3.(2)-1.(3)596. 11.(1)-125.(2)4. 12.(1)正号.(2)•正号.13.解:根据题意得,这座山的高度为100×[(24-4)÷0.8]=100×25=2500(米).14.解:由||||||a b c a b c++=1可知,每个加数只有两种可能:1或-1,且必有两个1和一个-1,•即分三种情况讨论:(1)a<0,b>0,c>0;(2)b<0,a>0,c>0;(3)c<0,a>0,b>0.而不论哪种情况都有abc<0,所以原式=1222222-=÷-cb ac b a abc abc .。

七年级数学上册2.7.2+有理数乘法的运算律课时作业(含答案)北师大版

七年级数学上册2.7.2+有理数乘法的运算律课时作业(含答案)北师大版

2.7.2 有理数乘法的运算律1.两个有理数的积是负数,和为零,那么这两个有理数( )A .一个为零,另一个为正数B .一个为零,另一个为负数C .一个为正数,另一个为负数D .互为相反数且都不为零2.若ab >0,则下列结论正确的是( )A .a >0,b >0B .a <0,b <0C .a ,b 同号D .以上答案都不对3.绝对值小于6的所有整数的积是________. 4.判断下列各个乘积的符号: ①(-2)×(-3)×4×(-5)×3;②4×(-2)×(-3.4)×(-6.7)×5×(-9)×3; ③4×7×(-5)×9×(-4.6)×9×13; ④(-2)×0×7×(-4);⑤(-2.1)×(-6)×(-9)×(-6.7)× (-5.8)×(-4.7).其中积为正数的有________,积为负数的有______,另外________的乘积既不是正数也不是负数(只填序号即可).5.计算(-2.5)×0.37×1.25×(-4)×(-8)的值为________. 6.计算:(1)(-4)×(-0.07)×(-25); (2)(47-118+314)×56.7.先阅读提供的材料,再解答相关问题: (1+12)×(1-13)=32×23=1.(1+12)×(1+14)×(1-13)×(1-15)=32×54×23×45=(32×23)×(54×45)=1×1=1.请你求(1+12)×(1+14)×(1+16)×(1-13)×(1-15)×(1-17)的结果.8.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是1,求(a +b)cd -2 009m 的值.9.刘亮的妈妈每天早上要送新鲜蔬菜到市场去卖,下面是她一周送出的20筐菜的重量记录表,每筐以25 kg 为标准重量.(2013·台州模拟)计算(-1 00015)×(5-10)的值为( )A .1 000B .1 001C .1 999D .5 001课后作业1.D 两数互为相反数且不为0. 2.C 同号得正. 3.04.②③⑤ ① ④ 积的符号由负因数的个数决定 5.-37 6.解:(1)-7 原式=-4×25×0.07 =-100×0.07=-7;(2)-19 原式=47×56-98×56+314×56=32-63+12 =-19.7.解:原式=32×54×76×23×45×67=1.8.解:2 009或-2 009 ∵a,b 互为相反数,∴a+b =0,∵c,d 互为倒数,∴cd=1,∵|m|=1,∴m=±1,当m =1时, (a +b)cd -2 009m =0×1-2 009×1 =-2 009;当m =-1时,原式=0×1-2 009×(-1)=2 009.9.解:501.3 kg 25×20+(-0.8×2+0.6×5-0.5×3+4×0.4+2×0.5+4×(-0.3)=500+(-1.6+3-1.5+1.6+1-1.2) =500+1.3 =501.3(kg ). 中考链接D 原式=-(1 000+15)×(-5)=(1 000+15)×5=1 000×5+15×5=5 000+1=5 001,所以选D .。

七年级数学上册第二章有理数及其运算2.7有理数的乘法2.7.2有理数的乘法运算律练习北师大版(20

七年级数学上册第二章有理数及其运算2.7有理数的乘法2.7.2有理数的乘法运算律练习北师大版(20

七年级数学上册第二章有理数及其运算2.7 有理数的乘法2.7.2 有理数的乘法运算律同步练习(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第二章有理数及其运算2.7 有理数的乘法2.7.2 有理数的乘法运算律同步练习(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第二章有理数及其运算2.7 有理数的乘法2.7.2 有理数的乘法运算律同步练习(新版)北师大版的全部内容。

第2课时有理数的乘法运算律1.算式3.14×(-2.5)×4=3.14×(-2.5×4)运用了( )A.乘法交换律 B.乘法结合律C.乘法交换律和结合律 D.乘法对加法的分配律2.算式(错误!-错误!+错误!)×12=错误!×12-错误!×12+错误!×12运用了()A.乘法交换律 B.乘法结合律C.乘法交换律和结合律 D.乘法对加法的分配律3.算式-25×14+18×14-39×(-14)=(-25+18+39)×14逆用了( )A.加法交换律 B.乘法交换律C.乘法结合律 D.乘法对加法的分配律4.计算:(1)1.6×(-1错误!)×(-2。

5)×(-错误!); (2)(错误!+错误!-错误!)×(-81).5.算式(-0.125)×15×(-8)×(-错误!)=[(-0。

125)×(-8)]×[15×(-错误!)]运用了()A.乘法结合律 B.乘法交换律C.乘法对加法的分配律 D.乘法交换律和结合律6.④写出下列运算中每一步所依据的运算律或法则:(-0.4)×(-0。

【精品】北师大版七年级数学上册2.7 第2课时 有理数乘法的运算律 一课一练

【精品】北师大版七年级数学上册2.7 第2课时  有理数乘法的运算律 一课一练

2.7 有理数的乘法第1课时有理数的乘法法则一、选择题(每小题4分,共12分)1.下面计算正确的是( )A.(-0.25)×(-8)=B.16×(-0.125)=-2C.(-)×(-1)=-D.(-3)×(-1)=-42.(2012·黔西南中考)-1的倒数是( )A.-B.C.-D.3.如果五个有理数相乘,积为负,那么其中正因数有( )A.2个B.3个C.4个D.2个或4个或0个二、填空题(每小题4分,共12分)4.甲、乙两同学进行数学猜谜游戏:甲说,一个数a的相反数是它本身;乙说,一个数b的倒数也等于它本身,请你算一下,a×b= .5.在-2,3,4,-5这四个数中,任取两个数相乘,所得的积最大的是.6.绝对值小于8的所有的整数的积是.三、解答题(共26分)7.(8分)计算:(1)(-)×(+2).(2)(-3.25)×(-16).(3)(-0.75)×(+1.25)×(-40)×(-2).(4)(+1)×(-2)-(-1)×(-1).8.(8分)某货运公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?【拓展延伸】9.(10分)观察下列等式:第1个等式:a1==×(1-);第2个等式:a2==×(-);第3个等式:a3==×(-);第4个等式:a4==×(-);……请回答下列问题:(1)按以上规律列出第5个等式:a5= .(2)用含n的式子表示第n个等式:a n= = (n为正整数).(3)求a1+a2+a3+a4+…+a100的值.答案解析1.【解析】选B.A中结果错误;C,D中积的符号错;B正确.2.【解析】选C.-1=-,所以-1的倒数是-.3.【解析】选 D.五个有理数相乘积为负,则必有奇数个负因数,即1个或3个或5个,故正因数为4个或2个或0个.4.【解析】数a的相反数是它本身,则a=0.数b的倒数也等于它本身,则b=1或b=-1,所以a×b=0.答案:05.【解析】因为正数大于负数,所以同号两数相乘一定大于异号两数相乘.又因为(-2)×(-5)=10,3×4=12,所以所得的积最大的是12. 答案:126.【解析】绝对值小于8的整数有±7,±6,±5,±4,±3,±2,±1,0.故其积为0.答案:07.【解析】(1)(-)×(+2)=-(×)=-3.(2)(-3.25)×(-16)=3.25×16=52.(3)(-0.75)×(+1.25)×(-40)×(-2)=-××40×=-100.(4)(+1)×(-2)-(-1)×(-1)=-(×)-(×)=-4-2=-6.8.【解析】记盈利额为正数,亏损额为负数,公司去年全年盈亏额为(-1.5)×3+2×3+1.7×4+(-2.3)×2=-4.5+6+6.8-4.6=3.7(万元),所以这个公司去年全年盈利3.7万元.9.【解析】(1)a5==×(-).(2)a n==×(-).(3)a1+a2+a3+a4+…+a100=×(1-+-+-+…+-+-)=×(1-)=×=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.7.2 有理数乘法的运算律
1.两个有理数的积是负数,和为零,那么这两个有理数( )
A .一个为零,另一个为正数
B .一个为零,另一个为负数
C .一个为正数,另一个为负数
D .互为相反数且都不为零
2.若ab >0,则下列结论正确的是( )
A .a >0,b >0
B .a <0,b <0
C .a ,b 同号
D .以上答案都不对
3.绝对值小于6的所有整数的积是________. 4.判断下列各个乘积的符号: ①(-2)×(-3)×4×(-5)×3;
②4×(-2)×(-3.4)×(-6.7)×5×(-9)×3; ③4×7×(-5)×9×(-4.6)×9×13; ④(-2)×0×7×(-4);
⑤(-2.1)×(-6)×(-9)×(-6.7)× (-5.8)×(-4.7).
其中积为正数的有________,积为负数的有______,另外________的乘积既不是正数也不是负数(只填序号即可).
5.计算(-2.5)×0.37×1.25×(-4)×(-8)的值为________. 6.计算:
(1)(-4)×(-0.07)×(-25); (2)(47-118+3
14)×56.
7.先阅读提供的材料,再解答相关问题: (1+12)×(1-13)=32×2
3
=1.
(1+12)×(1+14)×(1-13)×(1-15)=32×54×23×45=(32×23)×(54×4
5)=1×1=1.
请你求(1+12)×(1+14)×(1+16)×(1-13)×(1-15)×(1-1
7)的结果.
8.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是1,求(a +b)cd -2 009m 的值.
9.刘亮的妈妈每天早上要送新鲜蔬菜到市场去卖,下面是她一周送出的20筐菜的重量记录表,每筐以25 kg 为标准重量.
(2013·台州模拟)计算(-1 0001
5
)×(5-10)的值为( )
A .1 000
B .1 001
C .1 999
D .5 001
课后作业
1.D 两数互为相反数且不为0. 2.C 同号得正. 3.0
4.②③⑤ ① ④ 积的符号由负因数的个数决定 5.-37 6.解:(1)-7 原式=-4×25×0.07 =-100×0.07=-7;
(2)-19 原式=47×56-98×56+3
14×56
=32-63+12 =-19.
7.解:原式=32×54×76×23×45×6
7
=1.
8.解:2 009或-2 009 ∵a,b 互为相反数,∴a+b =0,∵c,d 互为倒数,∴cd=1,
∵|m|=1,∴m=±1,当m =1时, (a +b)cd -2 009m =0×1-2 009×1 =-2 009;
当m =-1时,原式=0×1-2 009×(-1)=2 009.
9.解:501.3 kg 25×20+(-0.8×2+0.6×5-0.5×3+4×0.4+2×0.5+4×(-0.3)
=500+(-1.6+3-1.5+1.6+1-1.2) =500+1.3 =501.3(kg ). 中考链接
D 原式=-(1 000+15)×(-5)=(1 000+15)×5=1 000×5+15
×5=5 000+1=5 001,
所以选D .。

相关文档
最新文档