山西省运城市届高考数学二模试卷理(含解析)【含答案】

合集下载

山西省运城市运城中学2023届高三第二次模拟数学试题(3)

山西省运城市运城中学2023届高三第二次模拟数学试题(3)

一、单选题二、多选题1. 复数,则复数的实部和虚部分别是( )A .3,2B .3,2iC .1,2D .1,2i2.已知集合,,,则实数的值为( )A.B.C.D.3. 已知复数z 满足:(2+i )z =1-i ,其中i 是虚数单位,则z 的共轭复数为( )A.-i B.+i C.D.4. P为椭圆上一点,曲线与坐标轴的交点为A ,B ,C ,D ,若,则P 到x 轴的距离为( )A.B.C.D.5. “直播电商”已经成为当前经济发展的新增长点,某电商平台的直播间经营化妆品和服装两大类商品,年前三个季度,该直播间每个季度的收入都比上一季度的收入翻了一番,其前三季度的收入情况如图所示,则下列说法正确的是()A.该直播间第三季度总收入是第一季度总收入的倍B.该直播间第二季度化妆品收入是第三季度化妆品收入的C.该直播间第一季度化妆品收入是第三季度化妆品收入的D .该直播间第三季度服装收入高于前两个季度的服装收入之和6.已知,则( )A.B.C.D.7. 已知抛物线)的焦点为,准线为l ,过的直线与抛物线交于点A 、B ,与直线l 交于点D,若,则p =( )A .1B.C .2D .38. 已知是定义在R上的偶函数,且在区间单递调减,若,,,则a ,b ,c 的大小关系为( )A.B.C.D.9. 设甲袋中有3个红球和4个白球,乙袋中有1个红球和2个白球,现从甲袋中任取1球放入乙袋,再从乙袋中任取2球,记事件A =“从甲袋中任取1球是红球”,记事件B =“从乙袋中任取2球全是白球”,则( )A .事件A 与事件B 相互独立B.山西省运城市运城中学2023届高三第二次模拟数学试题(3)山西省运城市运城中学2023届高三第二次模拟数学试题(3)三、填空题四、解答题C.D.10. 下列命题中正确的是( )A.B .复数的虚部是C .若复数,则复数在复平面内对应的点位于第一象限D.满足的复数在复平面上对应点的轨迹是双曲线11. 某班开展数学文化活动,其中有数学家生平介绍环节.现需要从包括2位外国数学家和4位中国数学家的6位人选中选择2位作为讲座主题人物.记事件“这2位讲座主题人物中至少有1位外国数学家”,事件“这2位讲座主题人物中至少有1位中国数学家”.则下说法正确的是( )A .事件不互斥B .事件相互独立C.D .设,则12. 在三棱锥中,,,则( )A.B.三棱锥的体积为C.三棱锥外接球半径为D .异面直线与所成角的余弦值为13. 已知向量,,若,则实数______.14. 已知,则的值是________.15.如图,在正方体中,,,分别为棱,的中点,过点的平面平面,则平面截该正方体所得截面的面积为______.16.在中,内角,,所对的边分别为,,,已知,.(1)求的值;(2)若,求的面积.17. 已知抛物线E :的焦点关于其准线的对称点为,椭圆C :的左,右焦点分别是,,且与E 有一个共同的焦点,线段的中点是C 的左顶点.过点的直线l 交C 于A ,B 两点,且线段AB 的垂直平分线交x 轴于点M .(1)求C 的方程;(2)证明:.18. 已知数列是公差不为0的等差数列,其前项和为,满足,且,,成等比数列.(1)求数列的通项公式;(2)若,数列的前项和为,实数使得对任意恒成立,求的取值范围.19.已知椭圆的左焦点F为,过椭圆左顶点和上顶点的直线的斜率为.(1)求椭圆E的方程;(2)若为平面上一点,C,D分别为椭圆的上、下顶点,直线NC,ND与椭圆的另一个交点分别为P,Q.试判断点F到直线PQ的距离是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.20. 已知函数.(1)求函数的单调区间;(2)当时,证明:.21. 给定正整数,设集合.对于集合M的子集A,若任取A中两个不同元素,,有,且,,…,中有且只有一个为2,则称A具有性质P.(1)当时,判断是否具有性质P;(结论无需证明)(2)当时,写出一个具有性质P的集合A;(3)当时,求证:若A中的元素个数为4,则A不具有性质P.。

山西省运城市2019-2020学年高考第二次大联考数学试卷含解析

山西省运城市2019-2020学年高考第二次大联考数学试卷含解析

山西省运城市2019-2020学年高考第二次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.一个几何体的三视图如图所示,则这个几何体的体积为( )A 3236π+ B .836πC 323163πD .16833π+【答案】B 【解析】 【分析】还原几何体可知原几何体为半个圆柱和一个四棱锥组成的组合体,分别求解两个部分的体积,加和得到结果. 【详解】由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥半个圆柱体积为:2211123622V r h πππ==⨯⨯= 四棱锥体积为:21143238333V Sh ==⨯⨯⨯=原几何体体积为:12836V V V π=+= 本题正确选项:B 【点睛】本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从而分别求解各部分的体积.2.已知,,,m n l αβαβαβ⊥⊂⊂=I ,则“m ⊥n”是“m ⊥l”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】【分析】构造长方体ABCD ﹣A 1B 1C 1D 1,令平面α为面ADD 1A 1,底面ABCD 为β,然后再在这两个面中根据题意恰当的选取直线为m ,n 即可进行判断. 【详解】如图,取长方体ABCD ﹣A 1B 1C 1D 1,令平面α为面ADD 1A 1,底面ABCD 为β,直线AD =直线l 。

若令AD 1=m ,AB =n ,则m ⊥n ,但m 不垂直于l若m ⊥l ,由平面ABCD ⊥平面11ADD A 可知,直线m 垂直于平面β,所以m 垂直于平面β内的任意一条直线n∴m ⊥n 是m ⊥l 的必要不充分条件. 故选:B . 【点睛】本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m ⊥n ⇒m ⊥l ?和m ⊥l ⇒m ⊥n ?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.3.直角坐标系 xOy 中,双曲线2222 1x y a b -=(0a b ,>)与抛物线2 2?y bx =相交于 A 、B 两点,若△ OAB 是等边三角形,则该双曲线的离心率e =( ) A .43B .54C .65D .76【答案】D 【解析】 【分析】根据题干得到点A 坐标为()33x x ,代入抛物线得到坐标为()63b b ,再将点代入双曲线得到离心率. 【详解】因为三角形OAB 是等边三角形,设直线OA 为33y x =,设点A 坐标为()33x x ,代入抛物线得到x=2b,故点A 的坐标为()6,23b b ,代入双曲线得到22221371.366b b e a a =⇒=+=故答案为:D. 【点睛】求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,结合222b c a =-转化为,a c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 4.复数12ii--的共轭复数对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】 【详解】试题分析:由题意可得:131255i i i -=--. 共轭复数为3155i +,故选A. 考点:1.复数的除法运算;2.以及复平面上的点与复数的关系5.若复数()()2a i 1i (i ++为虚数单位)在复平面内所对应的点在虚轴上,则实数a 为( ) A .2- B .2C .12-D .12【答案】D 【解析】 【分析】利用复数代数形式的乘除运算化简,再由实部为0求得a 值. 【详解】解:()()()()2a i 1i 2a 12a 1i ++=-++Q 在复平面内所对应的点在虚轴上,2a 10∴-=,即1a 2=. 故选D . 【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题. 6.已知i 为虚数单位,实数,x y 满足(2)x i i y i +=-,则||x yi -= ( )A .1B .C D 【答案】D 【解析】()12,2,2x x i i y i xi y i y =-⎧+=-∴-+=-∴⎨=-⎩Q ,则12 5.x yi i -=-+= 故选D.7.一只蚂蚁在边长为4的正三角形区域内随机爬行,则在离三个顶点距离都大于2的区域内的概率为( ) A .31π-B .34C .3π D .14【答案】A 【解析】 【分析】求出满足条件的正ABC ∆的面积,再求出满足条件的正ABC ∆内的点到顶点A 、B 、C 的距离均不小于2的图形的面积,然后代入几何概型的概率公式即可得到答案.【详解】满足条件的正ABC ∆如下图所示:其中正ABC ∆的面积为23443ABC S ∆== 满足到正ABC ∆的顶点A 、B 、C 的距离均不小于2的图形平面区域如图中阴影部分所示, 阴影部分区域的面积为21222S ππ=⨯⨯=. 则使取到的点到三个顶点A 、B 、C 的距离都大于2的概率是31143P π==. 故选:A. 【点睛】本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式的应用,考查计算能力,属于中等题.8.若单位向量1e u r ,2e u u r 夹角为60︒,12a e e λ=-r u r u u r,且3a =r λ=( )A .-1B .2C .0或-1D .2或-1【答案】D【解析】 【分析】利用向量模的运算列方程,结合向量数量积的运算,求得实数λ的值. 【详解】由于3a =r ,所以23a =r ,即()2123e e λ-=u r u u r ,2222112222cos6013e e e e λλλλ-⋅+=-⋅+=o u r u r u u r u u r ,即220λλ--=,解得2λ=或1λ=-.故选:D 【点睛】本小题主要考查向量模的运算,考查向量数量积的运算,属于基础题.9.设集合{}2A x x a =-<<,{}0,2,4B =,若集合A B I 中有且仅有2个元素,则实数a 的取值范围为 A .()0,2 B .(]2,4 C .[)4,+∞ D .(),0-∞【答案】B 【解析】 【分析】由题意知{}02A ⊆,且4A ∉,结合数轴即可求得a 的取值范围. 【详解】由题意知,{}=02A B I ,,则{}02A ⊆,,故2a >, 又4A ∉,则4a ≤,所以24a <≤, 所以本题答案为B. 【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定A B I 中的元素是解题的关键,属于基础题.10.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为( )A .2B .83C .6D .8【答案】A 【解析】 【分析】先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果. 【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2, 所以该四棱锥的体积为()11V 1222232=⨯⨯+⨯⨯=. 故选A 【点睛】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型. 11.《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠, 长五尺在粗的一端截下一尺,重4斤;在细的一端截下一尺,重2斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是( ) A .73斤 B .72斤 C .52斤 D .3斤【答案】B 【解析】 【分析】依题意,金箠由粗到细各尺重量构成一个等差数列,14a =则52a =,由此利用等差数列性质求出结果. 【详解】设金箠由粗到细各尺重量依次所成得等差数列为{}n a ,设首项14a =,则52a =,∴公差5124151512a a d --===---,2172a a d ∴=+=. 故选B 【点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.12.若不等式32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,则实数a 的取值范围是( )A .932,2ln 2ln 5⎡⎤⎢⎥⎣⎦B .932,2ln 2ln 5⎛⎫⎪⎝⎭ C .932,2ln 2ln 5⎛⎤⎥⎝⎦D .9,2ln 2⎛⎫+∞⎪⎝⎭【答案】C 【解析】 【分析】由题可知,设函数()ln(1)f x a x =+,32()2g x x x =-,根据导数求出()g x 的极值点,得出单调性,根据32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,转化为()()f x g x >在区间(0,)+∞内的解集中有且仅有三个整数,结合图象,可求出实数a 的取值范围.【详解】设函数()ln(1)f x a x =+,32()2g x x x =-,因为2()34g x x x '=-, 所以()0g x '=,0x ∴=或43x =, 因为403x << 时,()0g x '<,43x >或0x <时,()0g x '>,(0)(2)0g g ==,其图象如下:当0a „时,()()f x g x >至多一个整数根;当0a >时,()()f x g x >在(0,)+∞内的解集中仅有三个整数,只需(3)(3)(4)(4)f g f g >⎧⎨⎩„,3232ln 4323ln 5424a a ⎧>-⨯∴⎨-⨯⎩„, 所以9322ln 2ln 5a <„. 故选:C. 【点睛】本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.二、填空题:本题共4小题,每小题5分,共20分。

山西省运城市高考数学二模试卷理(含解析)

山西省运城市高考数学二模试卷理(含解析)

2015年山西省运城市高考数学二模试卷(理科)一、选择题共12小题,每小题5分,共60分1.“m=±1”是“复数(1﹣m2)+(1+m)i(其中i是虚数单位)为纯虚数”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件2.已知集合M={(x,y)|y=x2+1},N={(x,y)|y=x+1},则M∩N=()A.(0,1),(1,2)B.{(0,1),(1,2)} C.{y|y=1或y=2} D.{y|y≥1} 3.执行如图所示的程序框图,则输出S的值为()A.B.C.0 D.4.一已知函数f(x)=cos(ωx+φ﹣)(ω>0,|φ|<)的部分图象如图所示,则y=f(x+)取得最小值时x的集合为()A.{x|x=kπ﹣,k∈z} B.{x|x=kπ﹣,k∈z}C.{x|x=2kπ﹣,k∈z}} D.{x|x=2kπ﹣,k∈z}}5.设m,n是正整数,多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为﹣16,则含x2项的系数是()A.﹣13 B.6 C.79 D.376.设等差数列{a n}的前n项和为S n,且满足S19>0,S20<0,则,,,…,中最大项为()A.B.C.D.7.棱长为2的正方体被一平面截得的几何体的三视图如图所示,那么被截去的几何体的体积是()A.B.C.4 D.8.设F1、F2分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线某条渐过线于M,N两点,且满足∠MAN=120°,则该双曲线的离心率为()A. B. C.D.9.若函数f(x)=的图象如图所示,则m的范围为()A.(﹣∞,﹣1)B.(﹣1,2)C.(1,2) D.(0,2)10.已知抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A、B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的横坐标为()A.5 B.4 C.3 D.211.一只小球放入一长方体容器内,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4、5、5,则这只小球的半径是()A.3或8 B.8或11 C.5或8 D.3或1112.已知函数f(x)的导函数为f′(x),满足xf′(x)+2f(x)=,且f(e)=,则f(x)在(0,+∞)上的单调性为()A.先增后减 B.单调递增 C.单调递减 D.先减后增二、填空题,共4小题,每小题5分,共20分13.平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则= .14.若x,y满足条件,当且仅当x=y=3时,z=ax﹣y取最小值,则实数a 的取值范围是.15.函数f(x)=min{2,|x﹣2|},其中min{a,b}=,若动直线y=m与函数y=f (x)的图象有三个不同的交点,它们的横坐标分别为x1,x2,x3,则x1•x2•x3最大值为.16.设{a n}是公比为q的等比数列,其前项积为,并满足条件,给出下列结论:(1)0<q<1;(2)T198<1;(3)a99a101<1;(4)使T n<1成立的最小自然数n 等于199,其中正确的编号为.三、解答题,共5小题,满分60分17.在△ABC中,角A,B,C所对的边分别为a,b,c,且8sin2()+3cos2C=3.(1)求cosC;(2)若B=,2=,求tan∠ABM.18.为了搞好某次大型会议的接待工作,组委会在某校招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm)若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高子”才担任“礼仪小姐”.(1)求12名男志愿者的中位数;(2)如果用分层抽样的方法从所有“高个子”“非高个子”中共抽取5人,再从这5个人中选2人,那么至少有一个是“高个子”的概率是多少?(3)若从所有“高个了”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望.19.如图,将边长为2的正六边形ABCDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且AC=.(1)证明:平面ABEF⊥平面BCDE;(2)求平面ABC与平面DEF所成二面角(锐角)的余弦值.20.已知椭圆C: +=1(a>b>0)的离心率为,定点P(,1),直线OP交椭圆C于点Q(其中O为坐标原点),且||=||.(1)求椭圆C的方程;(2)设A(2,0),过点(﹣1,0)的直线l交椭圆C于M、N两点,△AMN的面积记为S,若对满足条件的任意直线l,不等式S≤λtan∠MAN恒成立,求λ的最小值.21.已知常数a>0,函数f(x)=ln(1+ax)﹣.(Ⅰ)讨论f(x)在区间(0,+∞)上的单调性;(Ⅱ)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.四、选考题。

山西省运城市2023-2024学年高三上学期摸底调研测试数学试题含解析

山西省运城市2023-2024学年高三上学期摸底调研测试数学试题含解析

运城市2023-2024学年高三摸底调研测试数学试题(答案在最后)2023.9本试题满分150分,考试时间120分钟.答案一律写在答题卡上.注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.答题时使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一-项是符合题目要求的.1.已知集合{}220A x x x =+<,{}1B x x =>-,则A B ⋃=()A.()2,0-B.()2,-+∞C.()1,-+∞ D.()1,0-【答案】B 【解析】【分析】根据解一元二次不等式的解法,结合集合并集的定义进行运算即可.【详解】由{}()2202,0A x x x =+<=-,而{}1B x x =>-,所以A B ⋃=()2,-+∞.故选:B 2.若复数z 满足()()1i 11z --=,则z=()A.2B.1C.D.2【答案】A 【解析】【分析】根据复数除法运算法则和减法运算法则,给合复数模的运算公式进行运算即可.【详解】()()()()()i 1i 111i 1111i 1111i 1i 1i 1i 1i 1i 22z z z -+----=⇒-=⇒=-===-----+,因此2z ==,故选:A3.已知两条不同的直线m ,n 和平面α满足m α⊥,则“//m n ”是“n α⊥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据充分条件和必要条件的定义结合线面垂直的性质进行判断即可.【详解】解:若//m n ,则由m α⊥,可得n α⊥,充分性成立;反之,若n α⊥,则由m α⊥,可得//m n ,必要性成立.所以“//m n ”是“n α⊥”的充要条件.故选:C .4.甲单位有3名男性志愿者,2名女性志愿者;乙单位有4名男性志愿者,1名女性志愿者,从两个单位任抽一个单位,然后从所抽到的单位中任取2名志愿者,则取到两名男性志愿者的概率为()A.15B.910C.35D.920【答案】D 【解析】【分析】运用古典概型运算公式进行求解即可.【详解】从所抽到的单位中任取2名志愿者,则取到两名男性志愿者的概率为:22342255C C 1192C 2C 20⨯+⨯=,故选:D5.已知()()()2lg2lg 10lg f x x x =⋅+,则()5f =()A.1 B.2C.3D.4【答案】A 【解析】【分析】根据对数运算律计算即可.【详解】()()()()()()()()()()22225lg2lg 50lg5lg2lg5+lg10lg5lg2lg5+lg10lg5lg2lg5lg5+lg2lg5lg2lg5+lg2lg5lg10+lg2===l ====g5+lg2lg10=1f =⋅+⋅+⋅+⋅++故选:A.6.在数列{}n a 中,如果存在非零的常数T ,使得n T n a a +=对于任意正整数n 均成立,那么就称数列{}n a 为周期数列,其中T 叫做数列{}n a 的周期.已知数列{}n x 满足()*21Nn n n x x x x ++=-∈,若11x=,2x a=(1a ≤且0a ≠),当数列{}n x 的周期为3时,则数列{}n x 的前2024项的和2024S 为()A.676B.675C.1350D.1349【答案】C 【解析】【分析】根据题意,求得341,2x a x a =-=-,得到41x =,求得1a =,进而得到1232x x x ++=,结合周期性,即可求解.【详解】因为2111,(x x a a =≤=且0)a ≠,满足()*21N n n n x x x x ++=-∈所以321=11x x x a a =--=-,因为数列{}n x 的周期为3,可得432221x x x a a =-=-=-=,所以1a =,所以1231,1,0x x x ===,所以1232x x x ++=,同理可得4561,1,0x x x ===,所以4562x x x ++=, ,所以20242023202467426742111350S a a =⨯++=⨯++=.故选:C.7.设1F ,2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,O 为坐标原点,过左焦点1F 作直线1F P与圆222x y a +=切于点E ,与双曲线右支交于点P ,且满足()112OE OP OF =+,则双曲线的离心率为()A.B.C.2D.【答案】D 【解析】【分析】由题意OE a =,再结合平面向量的性质与双曲线的定义可得22PF a =,14PF a =,再根据勾股定理列式求解决即可.【详解】∵E 为圆222x y a +=上的点,OE a ∴=,()112OE OP OF =+,∴E 是1PE 的中点,又O 是12F F 的中点,222PF OE a ∴==,且2//PF OE ,又122PF PF a -=,14PF a ∴=,1PF 是圆的切线,1 OE PF ∴⊥,21PF PF ∴⊥又12||2F F c =,22222212416420c PF PF a a a =+=∴=+,故225c a =,离心率ca=故选:D8.已知1sin 0.1a =+,1ln1.1b =+,101.01c =,则()A .a b c<< B.b a c <<C.c<a<b D.b<c<a【答案】B 【解析】【分析】根据二项式展开式,得到 1.1c >,设()sin g x x x =-,利用导数得到()g x 在(0,)+∞上单调递增,根据()()00g x g >=,得到a c <,令()sin ln(1),(0,1)f x x x x =-+∈,得到a b >,即可求解.【详解】由()101012210101101010101.0110.11C 0.01C 0.01C 0.011C 0.01 1.1c ==+=+⋅+⋅++⋅>+⋅+= ,设()sin g x x x =-,可得()1cos 0g x x ='-≥恒成立,函数()g x 在(0,)+∞上单调递增,所以()()00g x g >=,所以sin x x >在在(0,)+∞上恒成立,所以1sin 0.110.1 1.1a =+<+=,所以a c <,设()21cos 1,(0,1)2x x x x ϕ=-+∈,可得()sin 0x x x ϕ'=-+>,所以()()00ϕϕ>=x ,所以211s 2co x x >-设()sin ln(1),(0,1)f x x x x =-+∈,可得()2111(2)(1)cos 101212(1)x x x f x x x x x x -+-'=->--=>+++,所以()f x 在(0,1)上单调递增,所以()()0.100f f >=,可得sin 0.1ln1.1>,即a b >,所以b a c <<.故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()()322R x x a a f x x =-++∈的图像为曲线C ,下列说法正确的有()A.R a ∀∈,()f x 都有两个极值点B.R a ∀∈,()f x 都有零点C.R a ∀∈,曲线C 都有对称中心D.R a ∃∈,使得曲线C 有对称轴【答案】ABC 【解析】【分析】根据函数极值的定义、零点的定义,结合函数的对称性的性质逐一判断即可.【详解】A :()()()()3222341311x x x a f x x x x x f x '=-++⇒=-+=--,当1x >时,()()0,f x f x '>单调递增,当113x <<时,()()0,f x f x '<单调递减,当13x <时,()()0,f x f x '>单调递增,因此13x =是函数的极大值点,1x =是函数的极小值点,因此本选项正确;B :当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞,而函数()f x 是连续不断的曲线,所以一定存在0R x ∈,使得()0f x =,因此本选项正确;C :假设曲线C 的对称中心为(),b c ,则有()()()()()()32322222,f b x f b x c b x b x b x a b x b x b x a c ++-=⇒+-+++++---+-+=化简,得()232322b x c a b b b -=---+,因为x ∈R ,所以有322320320227b b c a b b b c a ⎧=⎪-=⎧⎪⇒⎨⎨---+=⎩⎪-=⎪⎩,因此给定a 一个实数,一定存在唯一的一个实数c 与之对应,因此假设成立,所以本选项说法正确;D :由上可知当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞,所以该函数不可能是关于直线对称,因此本选项说法不正确,故选:ABC10.如图,正方体1111ABCD A B C D -的棱长为2,若点M 在线段1BC 上运动,则下列结论正确的是()A.直线1//A M 平面1ACD B.三棱锥A M BC -与三棱锥1D MCD -的体积之和为43C.AMC的周长的最小值为8+D.当点M 是1BC 的中点时,CM 与平面11AD C 所成角最大【答案】ABD【解析】【分析】根据面面平行、线面平行的判定定理和性质,结合三棱锥的体积公式、线面角的定义、正方体展开图逐一判断即可.【详解】A :如下图所示:因为1111ABCD A B C D -是正方体,所以11//A C AC ,而11A C ⊄平面1ACD ,AC ⊂平面1ACD ,所以11//A C 平面1ACD ,同理由1111ABCD A B C D -是正方体可得11//A B D C ,同理可证明1//A B 平面1ACD ,而1111111,,A C A B A A C A B ⋂=⊂平面11A C B ,所以平面11//A C B 平面1ACD ,而1A M ⊂平面11A C B ,所以直线1//A M 平面1ACD ,因此本选项正确;B :如下图所示:过M 作1//EF BB ,交11BC 、BC 于E 、F ,过M 作//MG BC ,交1CC 于G ,因为11BCC B 是正方形,所以可得ME MG =,111111222222323233A MBC D MCD M ABC M CDD V V V V MF MG MF ME----+=+=⨯⨯⨯⋅+⨯⨯⨯⋅=+2242333EF =⋅=⨯=,因此本选项正确;C :将平面11BCC B 与平面11ABC D展成同一平面,如下图所示:当,,A M C 三点共线时,AM MC +最小,作CN AB ⊥,交AB 延长线于N ,则2CN BN ==,2AN AB BN =+=+,AM MC AC +==,所以AMC的周长的最小值为,因此本选项不正确;D :当点M 是1BC 的中点时,1CM BC ⊥,因为11D C ⊥平面11BCC B ,CM ⊂平面11BCC B ,所以11D C CM ^,而1111111,,BC D C C BC D C =⊂ 平面11AD C ,所以CM ⊥平面11AD C ,CM 与平面11AD C 所成角为π2,因此本选项正确,故选:ABD11.已知函数()()()2222,1log 1,1x x f x x x +⎧≤-⎪=⎨+>-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x 、2x 、3x 、4x (1234x x x x <<<),则下列结论正确的是()A.12m ≤<B.132x -≤<-C.233458122416x x x <++≤D.2212log mx x ++172【答案】BC 【解析】【分析】画图象判断m 和1x 的取值范围,可得A 错误,B 正确;将方程变形,用m 表示1x 、2x 、3x 、4x ,代入原式化简,利用导数求函数最值判断C 正确,利用基本不等式计算判断D 错误.【详解】如图,由函数()f x 的图像可知,12m <≤,A 错误;当2m =时,13x =-,当1m =时,122x x ==-,故132x -≤<-,B 正确;2324log (1)log (1)x x m -+=+=,则321m x -=-,421m x =-,所以2233422(21)2(21)2(21)mm m x x x --++=-+-+-22223m m -=+⨯-令2m t =,则(2,4]t ∈,原式2123y t t=+-,3332222t y t t-=-+=',显然在(2,4]t ∈时,0'>y ,即y 在(2,4]t ∈上单调递增,21522324y >+⨯-=,2181243416y ≤+⨯-=,即233458122416x x x <++≤,C 正确;由图像可知,22122)2)22x x m ++==((,则12x =-,22x =-+,所以221222log 4log 224log 22log m m x x m m ++++⨯⨯+-⨯⨯282log log 8log 8210m m m =++=+≥+=,当且仅当logm =m =错误.故选:BC.12.已知函数()f x 的定义域为()0,∞+,其导函数为()f x ',且()()ln f x f x x x ='+,11e ef ⎛⎫=- ⎪⎝⎭,则()A.()11e 1e 1ef f -⎛⎫⋅> ⎪⎝⎭B.()()e 1e e1f f -⋅>C.()f x 在()0,∞+上是增函数 D.()f x 存在最小值【答案】ABC 【解析】【分析】AB 选项,构造()()1ex F x f x -=,求导得到其单调性,从而判断AB 选项,CD 选项,构造()()1ex F x f x -=,二次求导,得到其单调性,判断CD.【详解】设()()1ex F x f x -=,则()()()()11e e ln x x F x f x f x x x --''=+=,当1x >时,()0F x '>,当01x <<时,()0F x '<,()()1e x F x f x -=在()1,+∞上单调递增,在()0,1上单调递减,A 选项,因为11e <,所以()11e F F ⎛⎫> ⎪⎝⎭,即()11e1e 1e ff -⎛⎫> ⎪⎝⎭,A 正确;B 选项,因为e 1>,所以()()e 1F F >,即()()e 1e e 1f f ->,B 正确;C 选项,()()1ex F x f x -=,则()()()1ex F x F x f x -'-'=,令()()()g x F x F x '=-,则()()()111e ln e ln e 1ln x x x g x x x x x x ---''=-=+,当1e x >时,()0g x '>,当10ex <<时,()0g x '<,故()()()g x F x F x '=-在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e⎛⎫+∞ ⎪⎝⎭单调递增,又11111111e e e e11111111e ln e e +e 0e e e e e e e e g F F f ---⎛⎫⎛⎫⎛⎫⎛⎫'=-=⋅-=-⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故()()()0g x F x F x '=-≥恒成立,所以()()()10ex F x F x f x -'-'=≥在()0,∞+上恒成立,故()f x 在()0,∞+上是增函数,C 正确;D 选项,由C 选项可知,函数()f x 在()0,∞+上单调递增,故无最小值.故选:ABC【点睛】利用函数()f x 与导函数()f x '的相关不等式构造函数,然后利用所构造的函数的单调性解不等式,是高考常考题目,以下是构造函数的常见思路:比如:若()()0f x f x +'>,则构造()()e xg x f x =⋅,若()()0f x f x '->,则构造()()xf xg x =e,若()()0f x xf x '+>,则构造()()g x xf x =,若()()0f x xf x '->,则构造()()f x g x x=.三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 满足:a 5()2a b + ⊥a ,则a b ⋅ =_______【答案】52-## 2.5-【解析】【分析】由向量垂直即可得数量积为0,代入模长即可求解.【详解】由()2a b + ⊥a 可得252=02a ab a b ,+⋅∴⋅=-,故答案为:52-14.已知()()4529012912x x a a x a x a x +-=++++ ,则2468a a a a +++=______________.【答案】24【解析】【分析】利用赋值法进行求解即可.【详解】在()()4529012912x x a a x a x a x +-=++++ 中,令1x =,得()()450129111216a a a a +-=++++=- ①,令=1x -,得()()45012911120a a a a -+--=-++-= ②,令0x =,得()()450010232a +-==-①+②,得()()024682468221616232242a a a a a a a a a ++++=-⇒+--⨯-==++,故答案为:2415.已知函数()22π()2sin cos ()sin 024x f x x x ωωωω=-->,现将该函数图象向右平移π4ω个单位长度,得到函数()g x 的图象,且()g x 在区间3(,)24ππ上单调递增,则ω的取值范围为______________.【答案】711(0,1][,23【解析】【分析】根据给定条件,化简函数()f x ,结合图象平移求出函数()g x ,进而求出单调递增区间,再列出不等式求解作答.【详解】函数22π()sin [1cos()]sin sin (1sin )sin sin 2f x x x x x x x x ωωωωωωω=+--=+-=,因此ππ)sin())44((g x x f x ωω==--,0ω>,由πππ2π2π,Z 242k x k k ω-≤≤+∈-,解得2ππ2π3π,Z 44k k x k ωωωω-≤≤+∈,即函数()g x 在2ππ2π3π[,](Z)44k k k ωωωω-+∈上单调递增,于是)π3π(2,2πππ3π[,](Z 4244k k k ωωωω-∈⊆+,即2πππ42,Z 2π3π3π44k k k ωωωω⎧-≤⎪⎪∈⎨⎪+≥⎪⎩,解得142,Z 813k k k ωω⎧≥-⎪⎪∈⎨⎪≤+⎪⎩,由811432,Z 8103k k k k ⎧+≥-⎪⎪∈⎨⎪+>⎪⎩,得3988k -<≤,而Z k ∈,即0k =或1k =,当0k =时,01ω<≤,当1k =时,71123ω≤≤,所以ω的取值范围为711(0,1][,23.故答案为:711(0,1][,2316.已知抛物线C :()220y px p =>的焦点F 到其准线的距离为2,圆M ;()2211x y -+=,过F 的直线l与抛物线C 和圆M 从上到下依次交于A ,P ,Q ,B 四点,则94AP BQ +的最小值为______________.【答案】12【解析】【分析】根据已知条件先求出抛物线的方程,然后将问题转化为计算“9||4||13AF BF +-”的最小值,通过抛物线的焦半径公式将9||4||13AF BF +-表示为坐标的形式,采用直线与抛物线联立的思想,根据韦达定理和基本不等式求解出最小值.【详解】因为抛物线的焦点到准线的距离为2,所以2p =,所以抛物线方程为24y x =,如下图,1PF QF ==,因为()()9||4||9||||4||||9||4||13AP BQ AF PF BF QF AF BF +=-+-=+-,设()()1122,,,A x y B x y ,所以1122||1,||122p pAF x x BF x x =+=+=+=+,所以129||4||94AP BQ x x +=+,因为直线l 水平时显然不合题意,故可设:1l x my =+,因为直线所过定点()1,0F 在抛物线内部,则直线l 必然与抛物线有两交点,同样与圆也有两交点,联立241y x x my ⎧=⎨=+⎩,()222410x m x -++=,所以121=x x ,所以129||4||9412AP BQ x x +=+≥,当且仅当1294x x =,即1223,32x x ==时取等号,所以9||4||AP BQ +的最小值为12.故答案为:12.【点睛】结论点睛:本题考查圆与抛物线的综合应用,其中涉及抛物线的焦半径公式的运用.常见抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02pPF x =+;(2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+;(3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02pPF y =+;(4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02pPF y =-+.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在等比数列{}n a 中,12a =,24a ,32a ,4a 成等差数列.(1)求数列{}n a 的通项公式;(2)若2log n n n b a a =⋅,求数列{}n b 的前n 项和n S .【答案】(1)2n n a =(2)()1122n n S n +=-+【解析】【分析】(1)由题意设等比数列的公比为q ,根据题意,列出方程组求得2q =,进而得到数列的通项公式;(2)由(1),得到2nn b n =⋅,利用乘公比错位相减法求和,即可求解.【小问1详解】解:由题意设等比数列的公比为()0q q >,因为12a =,且24a ,32a ,4a 成等差数列,可得32444a a a =+,则2311144a q a q a q =+,即32440q q -+=,解得2q =,所以数列{}n a 的通项公式为111222n n n n a a q --==⨯=.【小问2详解】解:由(1)可得222log 2log 22n n nn n n b a a n =⋅=⋅=⋅,则()231122232122n n n S n n -=⋅+⋅+⋅++-⋅+⋅ ,()23412122232122n n n S n n +=⋅+⋅+⋅++-⋅+⋅ ,两式相减,可得2311222222n n n n S n -+-=+++++-⋅ ()1122n n +=--所以()1122n n S n +=-+.18.在①222sin 3b c a ac B +-=;②222sin sin sin sin sin B C A B C +-=这两个条件中任选一个,补充在下面的问题中并作答.在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,.(1)求角A ;(2)若a =,求ABC 周长的范围.【答案】(1)π3A =(2)a b c <++≤【解析】【分析】(1)正弦定理结合余弦定理求解即可;(2)先根据正弦定理把边转化为角表示,结合辅助角公式计算值域即可得出周长范围.【小问1详解】选择①:因为222sin 3b c a ac B +-=,由余弦定理可得232cos sin 3bc A ac B =,cos sin sin B A A B =.因为()0,πB ∈,则sin 0B >,sin A A =,即tan A =,因为()0,πA ∈,所以π3A =;选择②:因为222sin sin sin sin sin B C A B C +-=,由正弦定理得222b c a +-=,由余弦定理得2221cos 22b c a A bc +-==.因为()0,πA ∈,所以π3A =;【小问2详解】由(1)知π3A =,又已知a =,由正弦定理得:∵8sin sin sin a b c A B C===,∴8sin b B =,8sin c C =,∴2π18sin 8sin 8sin sin 8sin sin +cos 322b c B C B B B B B ⎡⎤⎡⎤⎛⎫+=+=+-=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎣⎦1cos sin22B B ⎫=+⎪⎪⎭π6B ⎛⎫=+ ⎪⎝⎭,∵2π03B <<,∴1πsin 126B ⎛⎫<+≤ ⎪⎝⎭,∴b c <+≤,∴a b c <++≤19.在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩、防护服、消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上赢得一片赞誉.我国某口罩生产厂商在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,该厂质检人员从某日所生产的口罩中随机抽取了100个,将其质量指标值分成以下五组:[)100,110,[)110,120,[)120,130,[)130140,,[]140,150,得到如图所示的频率分布直方图.(1)规定:口罩的质量指标值越高,说明该口罩质量越好,其中质量指标值低于130的为二级口罩,质量指标值不低于130的为一级口罩.现利用分层随机抽样的方法从样本口罩中随机抽取8个口罩,再从抽取的8个口罩中随机抽取3个,记其中一级口罩的个数为X ,求X 的分布列及均值.(2)甲计划在该型号口罩的某网络购物平台上参加A 店的一个订单“秒杀”抢购,乙计划在该型号口罩的某网络购物平台上参加B 店的一个订单“秒杀”抢购,其中每个订单均由()*2,n n n ≥∈N个该型号口罩构成.假定甲、乙两人在A ,B 两店订单“秒杀”成功的概率均为()212n +,记甲、乙两人抢购成功的订单总数量、口罩总数量分别为Y ,Z .①求Y 的分布列及均值;②求Z 的均值取最大值时,正整数n 的值.【答案】(1)分布列答案见解析,34EX =;(2)①分布列答案见解析,()222EX n =+;②n 的值为2.【解析】【分析】(1)可得X 的可能取值为0,1,2,求出X 取不同值的概率,即可得出分布列,求出期望;(2)①可得Y 的可能取值为0,1,2,求出X 取不同值的概率,即可得出分布列;②利用基本不等式可求出.【详解】(1)结合频率分布直方图,得用分层随机抽样抽取8个口罩,其中二级、一级口罩的个数分别为6,2,所以X 的可能取值为0,1,2.()306238C C C 5014P X ===,()216238C C C 15128P X ===,()126238C C C 3228P X ===,所以X 的分布列为X012P5141528328所以515330121428284=⨯+⨯+⨯=EX .(2)①由题意,知Y 的可能取值为0,1,2.()()()()222244310122n n P Y n n ⎡⎤++==-=⎢++⎢⎥⎣⎦,()()()()()222411221212222P Y n n n n ⎡⎤==-⨯=⎢⎥++++⎢⎥⎣⎦,()()4122P Y n ==+,所以Y 的分布列为Y012P()()224432nn n +++()()242222n n -++()412n +所以()()()()()()224244243221201222222n n EY n n n n n ⎡⎤++=⨯+⨯-+⨯=⎢⎥+++++⎢⎥⎣⎦.因为Z nY =,所以()22214424n EZ nEY n n n===≤+++,当且仅当2n =时取等号.所以EZ 取最大值时,n 的值为2.20.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,CD AB ∥,1===AD DC CB ,2AB =,直线PB 与平面ABCD 所成的角为45︒.(1)证明:BD PA ⊥;(2)求二面角D PB C --的余弦值.【答案】(1)证明见解析(2)5【解析】【分析】(1)作DM AB ⊥于点M ,CN AB ⊥于点N ,通过余弦定理角解得BD =,再通过勾股数得BD AD ⊥,再利用线面垂直的性质得到BD PD ⊥,从而得到BD ⊥平面PAD ,再利用线面垂直的性质即可证明结果;(2)建立空间直角坐标,利用向量法即可求出二面角的大小.【小问1详解】作DM AB ⊥于点M ,CN AB ⊥于点N ,因为1===AD DC CB ,2AB =,则1MN CD ==,12AM BN ==,所以1cos 2DAB ∠=,又(0,π)DAB ∠∈,所以60DAB ∠=︒,由余弦定理可知22212cos 1421232BD AD AB AD AB DAB =+-⋅∠=+-⨯⨯⨯=,得到BD =,所以222AD BD AB +=,所以BD AD ⊥,又PD⊥底面ABCD ,BD ⊂面ABCD ,所以BD PD ⊥,又AD PD D =I ,,AD PD ⊂面PAD ,所以BD ⊥平面PAD ,又PA ⊂面PAD ,所以BD PA ⊥.【小问2详解】以D 点为原点,DA 为x 轴,DB 为y 轴,DP 为z 轴,建立如图坐标系因为PD⊥平面ABCD ,所以PB 与平面ABCD 所成的角就是PBD∠所以45PBD ∠=︒,PBD △为等腰直角三角形,所以PD=(P,()B,1,22C ⎛⎫- ⎪ ⎪⎝⎭,(PB =,1,,22PC ⎛=- ⎝ 设平面PBC 的法向量(),,n x y z = ,则则由00n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩,得到013022x y =⎨-+=⎪⎩,取1x y z ===-,得)1,1n =--,又易知,平面DPB 的一个法向量()1,0,0m =,cos ,||||5n m n m n m ⋅===⋅,由图知二面角为锐角所以二面角D PB C --的余弦值为5.21.已知函数3()2cos ,()(1),[0,1]2x f x x x g x a x x ==--∈.(1)当2a =时,求证:()2()f x g x ;(2)若()()f x g x 对[0,1]x ∈恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2),)[3a ∈+∞.【解析】【分析】(1)由2a =得到3()2x g x x =-,然后作差2()2()2cos 12x f x g x x x ⎛⎫-=-+ ⎪⎝⎭,构造函数2()cos 12x h x x =-+,用导数法证明.(2)将()()f x g x 对[0,1]x ∈成立,转化212cos 2x a x -+ 对[0,1]x ∈成立,令2()2cos 2xn x x =+,用导数法求得其最大值即可.【详解】(1)2a =时,3()2x g x x =-,23()2()2cos 22cos 1,[0,1]2x f x g x x x x x x x x ⎛⎫-=-+=-+∈ ⎪⎝⎭令2()cos 1,()sin 2x h x x h x x x =-+=-+',令()()m x h x '=,则()cos 10m x x =+'- ,∴()m x 在[0,1]上是增函数,∴()()(0)0h x m x m ='= ,∴()h x 在[0,1]上是增函数,∴()(0)0h x h = ,∴[0,1]x ∈时,()2()2()0f x g x xh x -= ,∴()2()f x g x ;(2)∵()()f x g x 对[0,1]x ∈成立,∴212cos 2x a x -+ 对[0,1]x ∈成立,令2()2cos 2x n x x =+,则()2sin n x x x '=-+,令()()t x n x '=,则()2cos 1t x x ='-+,∵[0,1]0,3x π⎡⎤∈⊆⎢⎥⎣⎦,∴1cos 2x >,∴()0t x '<,∴()t x 在[0,1]上是减函数,∴()()(0)0n x t x t ='= ,∴()n x 在[0,1]上是减函数,∴()(0)2n x n = ,∴12a - ,∴3a ,即,)[3a ∈+∞.【点睛】方法点睛:求解不等式恒成立时参数的取值范围问题,一般常用分离参数的方法,但是如果分离参数后对应的函数不便于求解其最值,或者求解其函数最值繁琐时,可采用直接构造函数的方法求解.22.已知椭圆22221,(0)x y a b a b +=>>,离心率3e =,且过点1)3,(1)求椭圆方程;(2)Rt ABC △以(0,)A b 为直角顶点,边,AB BC 与椭圆交于,B C 两点,求ABC 面积的最大值.【答案】(1)2219x y +=;(2)278.【解析】【分析】(1)根据离心率及所给的点可得方程,解之即得椭圆方程;(2)不妨设AB 的方程1(0)y kx k =+>,与椭圆方程联立,求出,B C 两点的坐标,结合弦长公式及三角形面积公式得到关于k 的函数,然后利用换元法及基本不等式求函数的最值.【小问1详解】由3c e a ==,222a b c =+,得3a b =,把点1)3带入椭圆方程可得22221()(22)319b b +=,解得1b =,所以3a =,所以椭圆方程为:2219x y +=;【小问2详解】由题可知()0,1A ,不妨设AB 的方程1(0)y kx k =+>,则AC 的方程为11y x k =-+,由22119y kx x y =+⎧⎪⎨+=⎪⎩,得22(19)180k x kx ++=,所以21819B k x k -=+,k 用1k -代入,可得218,9C k x k=+从而有22,1818199k k AB AC k k==++,于是2222211(1)16216212(19)(9)9(82ABC k k k k S AB AC k k k k++==⋅=⋅++++ ,令12t k k =+³,有2162162276496489ABC t S t t t ==≤++ ,当且仅当823t =>时,ABC 面积的最大值为278.。

山西省运城市2024届高三下学期二模试题 数学含答案

山西省运城市2024届高三下学期二模试题 数学含答案

运城市2024年高三第二次模拟调研测试数学(答案在最后)试卷类型:A考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效...........................。

4.本卷命题范围:高考范围。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z 满足()43i 12i z -=+,则z =()A.5B.15C.25D.52.已知圆锥的侧面积为12π,它的侧面展开图是圆心角为23π的扇形,则此圆锥的体积为()A. B.3 C. D.33.已知向量a 和b 满足3a = ,2b = ,a b += ,则向量b 在向量a上的投影向量为()A.13a- B.a- C.13a D.a4.已知双曲线()222210,0x y a b a b-=>>的两条渐近线均和圆C :22870x y x +++=相切,且双曲线的左焦点为圆C 的圆心,则该双曲线的方程为()A.22197x y -= B.2244197x y -=C.2244179x y -= D.22179x y -=5.将函数()2sin 34f x x π⎛⎫=+⎪⎝⎭的图象向右平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 在区间()0,ϕ上恰有两个零点,则ϕ的取值范围是()A.53,124ππ⎡⎫⎪⎢⎣⎭B.313,412ππ⎡⎫⎪⎢⎣⎭C.53,124ππ⎛⎤⎥⎝⎦ D.313,412ππ⎛⎤⎥⎝⎦6.“五一”假期将至,某旅行社适时推出了“晋祠”“五台山”“云冈石窟”“乔家大院”“王家大院”共五条旅游线路可供旅客选择,其中“乔家大院”线路只剩下一个名额,其余线路名额充足.现有小张、小胡、小李、小郭这四人前去报名,每人只选择其中一条线路,四人选完后,恰好选择了三条不同的线路.则不同的报名情况总共有()A.360种B.316种C.288种D.216种7.已知等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则21a a 的取值范围是()A.67,78⎛⎫⎪⎝⎭B.613,715⎛⎫⎪⎝⎭C.67,,78⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭D.613,,715⎛⎫⎛⎫-∞+∞ ⎪⎪⎝⎭⎝⎭8.已知正方形ABCD 的边长为2,点P 在以A 为圆心,1为半径的圆上,则222PB PC PD ++最小值为()A.18-B.18-C.19-D.19-二、选择题:本题共3小题,每小题6分,共18分。

山西省运城市2019-2020学年高考数学第二次调研试卷含解析

山西省运城市2019-2020学年高考数学第二次调研试卷含解析

山西省运城市2019-2020学年高考数学第二次调研试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.一个几何体的三视图如图所示,则该几何体的体积为( )A .103B .3C .83D .73【答案】A 【解析】 【分析】根据题意,可得几何体,利用体积计算即可. 【详解】由题意,该几何体如图所示:该几何体的体积11110222222323V =⨯⨯⨯-⨯⨯⨯=. 故选:A. 【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题.2.已知函数()log (|2|)(0a f x x a a =-->,且1a ≠),则“()f x 在(3,)+∞上是单调函数”是“01a <<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】 【分析】先求出复合函数()f x 在(3,)+∞上是单调函数的充要条件,再看其和01a <<的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案. 【详解】()log (|2|)(0a f x x a a =-->,且1a ≠),由20x a -->得2x a <-或2x a >+,即()f x 的定义域为{2x x a <-或2}x a >+,(0,a >且1a ≠) 令2t x a =--,其在(,2)a -∞-单调递减,(2,)a ++∞单调递增,()f x 在(3,)+∞上是单调函数,其充要条件为2301a a a +≤⎧⎪>⎨⎪≠⎩即01a <<. 故选:C. 【点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题. 3.已知纯虚数z 满足()122i z ai -=+,其中i 为虚数单位,则实数a 等于( ) A .1- B .1C .2-D .2【答案】B 【解析】 【分析】先根据复数的除法表示出z ,然后根据z 是纯虚数求解出对应的a 的值即可. 【详解】因为()122i z ai -=+,所以()()()()()21222421212125ai i a a iai z i i i ++-+++===--+, 又因为z 是纯虚数,所以220a -=,所以1a =. 故选:B. 【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数z a bi =+为纯虚数,则有0,0a b =≠.4.向量1,tan 3a α⎛⎫= ⎪⎝⎭r ,()cos ,1b α=r,且//a b r r ,则cos 2πα⎛⎫+=⎪⎝⎭( )A .13B .3-C .3-D .13-【答案】D 【解析】 【分析】根据向量平行的坐标运算以及诱导公式,即可得出答案. 【详解】//a b ∴r r1cos tan sin 3ααα∴=⋅= 1cos sin 23παα⎛⎫∴+=-=- ⎪⎝⎭故选:D 【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.5.已知(2sin,cos ),,2cos )2222x x x x a b ωωωω==r r ,函数()f x a b =r r ·在区间4[0,]3π上恰有3个极值点,则正实数ω的取值范围为( )A .85[,)52B .75[,)42C .57[,)34D .7(,2]4【答案】B 【解析】 【分析】先利用向量数量积和三角恒等变换求出()2sin()16f x x πω=++ ,函数在区间4[0,]3π上恰有3个极值点即为三个最值点,,62x k k Z ππωπ+=+∈解出,,3k x k Z ππωω=+∈,再建立不等式求出k 的范围,进而求得ω的范围. 【详解】解: ()22cos cos 12xf x x x x ωωωω=+=++ 2sin()16x πω=++令,62x k k Z ππωπ+=+∈,解得对称轴,3k x k Z ππωω=+∈,(0)2f =,又函数()f x 在区间4[0,]3π恰有3个极值点,只需 243333πππππωωωω+≤<+ 解得7542ω≤<. 故选:B .【点睛】本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成()++y A x t ωϕsin =或()++y A x t ωϕcos = 的形式; (2)根据自变量的范围确定+x ωϕ的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围. 6.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( ) A .14种 B .15种C .16种D .18种【答案】D 【解析】 【分析】采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起 【详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有2×7=14种; 情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种. 综上所述,共有14+4=18种. 故选:D 【点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题7.设双曲线22221y x a b-=(0a >,0b >)的一条渐近线与抛物线213y x =+有且只有一个公共点,且椭圆22221x y a b+=的焦距为2,则双曲线的标准方程为( ) A .22143x y -= B .22143y x -=C .22123x y -=D .22132y x -=【答案】B 【解析】 【分析】设双曲线的渐近线方程为y kx =,与抛物线方程联立,利用0∆=,求出k 的值,得到ab的值,求出,a b 关系,进而判断,a b 大小,结合椭圆22221x y a b+=的焦距为2,即可求出结论.【详解】设双曲线的渐近线方程为y kx =, 代入抛物线方程得2103x kx -+=, 依题意240,3k k ∆=-==,a ab b ∴==>,∴椭圆22221x y a b +=的焦距2=,22222411,3,433b b b b a -====, 双曲线的标准方程为22143y x -=.故选:B. 【点睛】本题考查椭圆和双曲线的标准方程、双曲线的简单几何性质,要注意双曲线焦点位置,属于中档题.8.已知12,F F 是双曲线222:1(0)x C y a a-=>的两个焦点,过点1F 且垂直于x 轴的直线与C 相交于,A B 两点,若AB =2ABF ∆的内切圆半径为( )A .3 B .C .3D 【答案】B 【解析】 【分析】首先由AB =的半径即可求解. 【详解】由题意1b =将x c =-代入双曲线C 的方程,得1y a =±则2a c a===由21212AF AF BF BF a -=-==得2ABF ∆的周长为2211||22||42||AF BF AB a AF a BF AB a AB ++=++++=+=设2ABF ∆的内切圆的半径为r ,则11362232,223r r ⨯=⨯⨯=, 故选:B【点睛】本题考查双曲线的定义、方程和性质,考查三角形的内心的概念,考查了转化的思想,属于中档题. 9.已知三棱锥,2,1,P ABC AC BC AC BC -==⊥且2,PA PB PB =⊥平面ABC ,其外接球体积为( ) A .43πB .4πC .323πD .43π【答案】A 【解析】 【分析】由AC BC ⊥,PB ⊥平面ABC ,可将三棱锥P ABC -还原成长方体,则三棱锥P ABC -的外接球即为长方体的外接球,进而求解. 【详解】 由题,因为2,1,AC BC AC BC ==⊥,所以223AB AC BC =+=,设PB h =,则由2PA PB =,可得232h h +=,解得1h =, 可将三棱锥P ABC -还原成如图所示的长方体,则三棱锥P ABC -的外接球即为长方体的外接球,设外接球的半径为R ,则22221(2)12R =++=,所以1R =,所以外接球的体积34433V R ππ==. 故选:A本题考查三棱锥的外接球体积,考查空间想象能力.10.一个几何体的三视图如图所示,则该几何体的表面积为( )A .24π+B .24π-C .242π-D .243π-【答案】B 【解析】 【分析】由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积. 【详解】由三视图可知,该几何体为边长为2正方体ABCD A B C D ''''-挖去一个以B 为球心以2为半径球体的18, 如图,故其表面积为2124342248πππ-+⨯⨯⨯=-, 故选:B.(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和. 11.中,如果,则的形状是( ) A .等边三角形 B .直角三角形C .等腰三角形D .等腰直角三角形【答案】B 【解析】 【分析】 化简得lgcosA =lg=﹣lg2,即,结合, 可求,得代入sinC=sinB ,从而可求C ,B ,进而可判断.【详解】 由,可得lgcosA ==﹣lg2,∴,∵,∴,,∴sinC =sinB ==,∴tanC =,C=,B =.故选:B 【点睛】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.12.若2332a b a b +=+,则下列关系式正确的个数是( ) ①0b a << ②a b = ③01a b <<< ④1b a << A .1 B .2C .3D .4【答案】D 【解析】 【分析】a ,b 可看成是y t =与()23=+x f x x 和()32x g x x =+交点的横坐标,画出图象,数形结合处理. 【详解】令()23=+xf x x ,()32xg x x =+, 作出图象如图,由()23=+x f x x ,()32xg x x =+的图象可知,()()001f g ==,()()115f g ==,②正确;(,0)x ∈-∞,()()f x g x <,有0b a <<,①正确;(0,1)x ∈,())(f x g x >,有01a b <<<,③正确; (1,)x ∈+∞,()()f x g x <,有1b a <<,④正确.故选:D. 【点睛】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题. 二、填空题:本题共4小题,每小题5分,共20分。

山西省运城市2024年数学(高考)部编版第二次模拟(综合卷)模拟试卷

山西省运城市2024年数学(高考)部编版第二次模拟(综合卷)模拟试卷

山西省运城市2024年数学(高考)部编版第二次模拟(综合卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题已知复数z 满足,则z 的虚部为( )A.B .C .D .第(2)题已知,在圆上任取一点,则的概率为( )A.B .C .D .第(3)题集合,,则集合( )A .B .C .D .第(4)题已知集合,,则( )A .B .C .D .第(5)题设是定义域为的偶函数,且为奇函数.若,则( )A.B .C .D .第(6)题已知,则( )A .B .C .D .第(7)题在空间立体几何中,“两条直线平行”是“两条直线都垂直于直线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件第(8)题在中,,且满足该条件的有两个,则的取值范围是( )A.B .C .D .二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知函数,则( )A .函数在区间上单调递增B .直线是函数图象的一条对称轴C.函数的值域为D .方程最多有8个根,且这些根之和为第(2)题关于函数,下列判断正确的是( )A .是的极小值点B .函数有且只有1个零点C .存在正实数k ,使得恒成立D .对任意两个正实数,且,若,则第(3)题同时投掷甲、乙两枚质地均匀的硬币,记“甲正面向上”为事件,“乙正面向上”为事件,“甲、乙至少一枚正面向上”为事件,则下列判断正确的是( )A.与相互独立B.与互斥C.D.三、填空(本题包含3个小题,每小题5分,共15分。

请按题目要求作答,并将答案填写在答题纸上对应位置) (共3题)第(1)题高斯是德国著名的数学家,享有“数学王子”之称,以他的名字“高斯”命名的成果达110个,设,用表示不超过的最大整数,并用表示的非负纯小数,则称为高斯函数,已知数列满足:,则__________.第(2)题无穷数列的前项和,存在正整数,使恒成立,则__________.第(3)题甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80 的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.四、解答题(本题包含5小题,共77分。

山西省运城市2022届高三二模数学(理)试题(1)

山西省运城市2022届高三二模数学(理)试题(1)

一、单选题二、多选题1. 立德学校于三月份开展学雷锋主题活动,某班级5名女生和2名男生,分成两个小组去两地参加志愿者活动,每小组均要求既要有女生又要有男生,则不同的分配方案有( )种.A .20B .4C .60D .802. “”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 设,,,则a ,b ,c 的大小关系为( )A.B.C.D.4. 下列函数中,既是奇函数又在区间上单调递增的是( )A.B.C.D.5.已知集合,,,则( )A.B.C.D.6. 已知等腰直角三角形的斜边,沿斜边的高线AD将折起,使二面角为,则四面体ABCD 的外接球的体积为( )A.B.C.D.7.将函数的图象向右平移个单位得到函数的图象,则“”是“函数为偶函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. 如图所示的粮仓可近似为一个圆锥和圆台的组合体,且圆锥的底面圆与圆台的较大底面圆重合.已知圆台的较小底面圆的半径为1,圆锥与圆台的高分别为和3,则此组合体的外接球的表面积是()A.B.C.D.9. 已知随机变量X 服从正态分布,定义函数为X 取值不超过x 的概率,即.若,则( )A.B.C .在上是减函数D.10. 复数,其中,设在复平面内对应点为,则下列说法正确的是( )A .点在第一象限B.点在第二象限C.点在直线上D .的最大值为11. 已知,e 是自然对数的底,若,则的取值可以是( )山西省运城市2022届高三二模数学(理)试题(1)山西省运城市2022届高三二模数学(理)试题(1)三、填空题四、解答题A .1B .2C .3D .412. 椭圆的左、右焦点分别为,,点是上一点,满足,,且的面积为,则的值可能为( )A .3B.C .4D.13.已知函数的部分图象如图所示,则在上的最大值为______.14. 已知非零向量,的夹角为,,,则___________.15. 若曲线与曲线有公切线,则的取值范围是_____________.16. 已知无穷数列A :,,…满足:①,,…且;②,设为所能取到的最大值,并记数列:,,….(1)若数列A为等差数列且,求其公差d ;(2)若,求的值;(3)若,,求数列的前100项和.17.已知数列的前项和为,且满足,,,数列满足.(1)求数列,的通项公式;(2)设,若不等式对一切成立,求实数的取值范围.18. 已知向量,.设.(1)求函数的最小正周期;(2)在中,角、、所对的边分别为、、.若,,三角形的面积为,求边的长.19. 2020年,国庆“遇上”中秋,中国人把这个“超长黄金周”过出了年味.假期期间,各国各大旅游景点、车站、机场人头攒动的场景也吸引了世界的目光.外国媒体、专家和网友“实名羡慕”,这一派热闹景象证明了中国抗疫的成功,也展示了中国经济的复苏劲头.抗疫的成功离不开国家强大的医疗卫生条件,下表示某省2013年至2019年医疗卫生机构数(单位:万个):年份2013201420152016201720182019年份代号1234567医疗卫生机构/万个4.24.34.54.74.84.84.9(1)求关于的线性回归方程(保留两位小数).(2)规定:若某年的实际医疗卫生机构数与估计值的差的绝对值不超过500个,则称该年是“吻合”年.现从2013—2019年这7年中任选2年,试求这2年中“吻合年”的个数恰好为1的概率.参考数据:,.参考公式:,20. 如图,已知四边形和都是直角梯形,,,,,,,且二面角的大小为.(1)证明:平面平面;(2)在线段上是否存在点,使得二面角的大小为,若存在,请求出点的位置;若不存在,请说明理由.21. 在平面直角坐标系中,动圆过点且与直线相切,设该动圆圆心的轨迹方程为曲线.(1)求曲线的方程;(2)设是曲线上的动点,点的横坐标为,点在轴上,的内切圆的方程为,将表示成的函数,并求面积的最小值.。

山西省运城市高考数学二模试卷(理科)

山西省运城市高考数学二模试卷(理科)

山西省运城市高考数学二模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2018高一上·新余月考) 已知为虚数单位,则复数的共轭复数为()A .B .C .D .2. (2分)(2018·梅河口模拟) 已知全集,集合,,则()A .B .C .D .3. (2分) (2019高三上·天津月考) “ 成立”是“ 成立”的()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件4. (2分)(2020·日照模拟) 两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A .B .C .D .5. (2分) (2017高三上·定西期中) 已知函数f(x)=sin(x+θ)+ cos(x+θ)(θ∈[﹣,))是偶函数,则θ的值为()A . 0B .C .D .6. (2分) (2016高一上·重庆期中) 设函数f(x)= ,则f(f(3))=()A .B . 3C .D .7. (2分)(2018·恩施模拟) 已知函数的最小正周期为,且其图象向右平移个单位后得到函数的图象,则()A .B .C .D .8. (2分)(2017·云南模拟) 若x,y满足约束条件则z=ax+y的最小值为1,则正实数a的值为()A . 10B . 8C . 3D . 29. (2分)(2017·邯郸模拟) 执行如图所示的程序框图,则输出的结果是()A . 8B . 13C . 21D . 3410. (2分)若某空间几何体的三视图如图所示,则该几何体的表面积是()A . 60B . 54C . 48D . 2411. (2分)设P是椭圆+=1上一点,M、N分别是两圆:(x+4)2+y2=1和(x﹣4)2+y2=1上的点,则|PM|+|PN|的最小值、最大值的分别为()A . 9,12B . 8,11C . 8,12D . 10,1212. (2分) (2020高一上·苏州期末) 如果函数在其定义域内存在实数,使得 f(k ) = f(k)f()(k 为常数) 成立,则称函数为“对 k 的可拆分函数”. 若为“对 2 的可拆分函数”,则非零实数 a 的最大值是()A .B .C .D .二、填空题: (共4题;共4分)13. (1分) (2019高三上·临沂期中) 已知a>0,b>0,2a+b=1,则的最小值为________.14. (1分)(2018·山东模拟) 已知G为△ABC的重心,点M,N分别在边AB,AC上,满足其中则△ABC和△AMN的面积之比为________.15. (1分) (2017高二上·乐山期末) 如图,正方形BCDE的边长为a,已知AB= BC,将△ABE沿边BE 折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:①AB与DE所成角的正切值是;②AB∥CE③VB﹣ACE体积是 a3;④平面ABC⊥平面ADC.其中正确的有________.(填写你认为正确的序号)16. (1分) (2020高二上·徐州期末) 已知数列满足,则数列的通项公式为 ________三、解答题:. (共7题;共70分)17. (10分) (2015高三上·苏州期末) 在△ABC中,三个内角A,B,C所对的边分别为a,b,c,且满足=2cosC.(1)求角C的大小;(2)若△ABC的面积为2 ,a+b=6,求边c的长.18. (10分)某市直小学为了加强管理,对全校教职工实行新的临时事假制度:“每位教职工每月在正常的工作时间,临时有事,可请假至多三次,每次至多一小时”.现对该制度实施以来50名教职工请假的次数进行调查统计,结果如下表所示:请假次数0123人数5102015根据上表信息解答以下问题:(1)从该小学任选两名教职工,用η表示这两人请假次数之和,记“函数f(x)=x2﹣ηx﹣1在区(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;(2)从该小学任选两名职工,用ξ表示这两人请假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.19. (10分) (2015高三上·太原期末) 已知平行四边形ABCD中,∠A=45°,且AB=BD=1,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示:(1)求证:AB⊥CD;(2)若M为AD的中点,求二面角A﹣BM﹣C的余弦值.20. (10分)(2017·南京模拟) 在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆(0<b<2)的焦点.(1)求椭圆E的标准方程;(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(﹣1,0),N(1,0),记直线TM,TN 的斜率分别为k1,k2,当2m2﹣2k2=1时,求k1•k2的值.21. (10分) (2018高二下·赣榆期末) 已知函数,其中(1)当时,求函数在上的值域;(2)若函数在上的最小值为3,求实数的取值范围.22. (10分)(2017·四川模拟) 已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.23. (10分)设 .(1)解不等式;(2)若不等式在上恒成立,求实数的取值范围.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9、答案:略10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题:. (共7题;共70分) 17-1、17-2、18、答案:略19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、。

2022年山西省高考数学二模试卷(理科)+答案解析(附后)

2022年山西省高考数学二模试卷(理科)+答案解析(附后)

2022年山西省高考数学二模试卷(理科)一、单选题:本题共12小题,每小题5分,共60分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.( )A. B. C. D.2.若,则( )A. B. C. D.3.已知集合,,若有2个元素,则实数a的取值范围是( )A. B.C. D.4.2022年北京冬奥会开幕式各个代表团所身着的运动鞋服品牌一度成为热议话题,运动鞋服是近年来新消费市场中规模相当庞大的品类,如图为2021年中国消费者运动鞋服购置品牌偏好调查,根据该图,下列说法错误的是( )A. 2021年中国运动鞋服消费者为父母长辈购买运动鞋服时选择国产品牌的占比超过B. 2021年中国运动鞋服消费者没有为孩子购买运动鞋服的占比低于C. 2021年中国运动鞋服消费者在为自己购买运动鞋服时选择国外品牌的占比不超过D. 2021年中国运动鞋服消费者在为朋友购买运动鞋服时选择国产品牌的人数超过选择国外品牌人数的2倍5.的展开式中的常数项为( )A. 13B. 17C.D.6.已知圆柱的高,圆,都在球O 的表面上,且球O 的表面积是圆柱侧面积的2倍,则球O 的半径为( )A. 4B. 32C.D.7.已知,若对任意,关于x 的方程无实根,则实数a 的范围是( )A.B.C. D.8.我们把短边与长边之比为的矩形称为黄金分割矩形,黄金分割矩形看起来比较“和谐”,日常生活中的矩形用品如书本、课桌、衣柜和建筑物中的一些矩形结构如窗户、房间等,都常设计成黄金分割的样式,若一面积为的黄金分割矩形一条短边的两个顶点在抛物线C :的准线上,另一条短边的中点为抛物线C 的焦点F ,则该黄金分割矩形与抛物线C 的一个交点到F 的距离为( )A.B.C.D.9.若存在实数x ,y ,使得成立,且对任意a ,,,则实数t的取值范围是( )A.B.C. D.10.下面关于函数的结论,其中错误的是( )A. 的值域是B. 是周期函数C.的图象关于直线对称 D. 当时,11.在菱形ABCD 中,,点P 在菱形ABCD 所在平面内,则的最小值为( )A.B.C.D.12.已知a 是的一个零点,b 是的一个零点,,则( )A. B.C.D.或二、填空题:本题共4小题,每小题5分,共20分。

山西省运城市数学高考理数二模试卷

山西省运城市数学高考理数二模试卷

山西省运城市数学高考理数二模试卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)设集合U={1,2,3,4},A={1,2},B={2,4},则(∁UA)∪(∁UB)=()A . {1,4}B . {3}C . {1,3}D . {1,3,4}2. (2分) (2017高二下·宜春期末) 已知,则复数z的虚部为()A .B .C .D .3. (2分)(2020·重庆模拟) 已知AB是圆的任意一条直径,点P在直线上运动,若的最小值为4,则实数a的值为()A . 2B . 4C . 5D . 64. (2分)已知cos(x﹣)=﹣(<x<),则sinx﹣cos2x=()A .B .C .D .5. (2分)(2018·禅城模拟) 下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为y=0.8x-155,后因某未知原因第五组数据的y值模糊不清,此位置数据记为m(如下所示),则利用回归方程可求得实数m的值为()x196197200203204y1367mA . 8.3B . 8C . 8.1D . 8.26. (2分) (2018高二下·黄陵期末) 已知命题“若p ,则q”为真,则下列命题中一定为真的是()A . 若 p ,则 qB . 若 q ,则 pC . 若q ,则pD . 若 q ,则p7. (2分) (2018高一下·南阳期中) 执行如图所示的程序框图,若输入,输出的,则空白判断框内应填的条件为()A .B .C .D .8. (2分) (2016高二上·大庆期中) 双曲线方程为 =1,那么k的取值范围是()A . k>5B . 2<k<5C . ﹣2<k<2D . ﹣2<k<2或k>59. (2分)有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为正视图侧视图俯视图A .B .C .D .10. (2分) (2015高一下·嘉兴开学考) 已知函数,若g(x)=[f(x)]2+bf(x)+c (其中b,c为常数)恰有5个不同的零点x1 , x2 , x3 , x4 , x5 ,则f(x1+x2+x3+x4+x5)=()A . 3lg2B . 2lg2C . 0D . 1二、填空题 (共5题;共6分)11. (1分) (2017高一上·沙坪坝期中) 若关于x的不等式的解集不是空集,则实数k的取值范围是________.12. (1分)(2017·湖南模拟) 若a和b是计算机在区间(0,3)上产生的随机数,那么函数f(x)=lg(ax2+4x+4b)的值域为R的概率为________.13. (1分)若x,y满足约束条件, z=x﹣2y,则z的取值范围是________14. (1分) (2017高三上·浦东期中) 在一个圆周上有10个点,任取3个点作为顶点作三角形,一共可以作________个三角形(用数字作答).15. (2分) (2019高三上·烟台期中) 已知函数,对于任意的,存在,使,则实数的取值范围为________;若不等式有且仅有一个整数解,则实数的取值范围为________.三、解答题 (共6题;共55分)16. (10分) (2019高一下·佛山月考) 在中,内角、、所对的边分别是、、,不等式对一切实数恒成立.(1)求的取值范围;(2)当取最大值,且的周长为9时,求面积的最大值,并指出面积取最大值时的形状.17. (10分) (2016高二下·南城期中) 数列{an}满足Sn=2n﹣an(n∈N*).(1)计算a1,a2,a3,a4,并由此猜想通项公式an;(2)用数学归纳法证明(Ⅰ)中的猜想.18. (5分)如图,在直角三角形BMC中,∠BCM=90°,∠MBC=60°,BM=5,MA=3,且MA⊥AC,AB=4.求MC 与平面ABC所成角的正弦值.19. (10分)(2012·陕西理) 某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如表:办理业务所需的时间12345(分)频率0.10.40.30.10.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2) X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.20. (15分) (2016高三上·苏州期中) 已知f(x)=ax3﹣3x2+1(a>0),定义h(x)=max{f(x),g(x)}=.(1)求函数f(x)的极值;(2)若g(x)=xf'(x),且存在x∈[1,2]使h(x)=f(x),求实数a的取值范围;(3)若g(x)=lnx,试讨论函数h(x)(x>0)的零点个数.21. (5分)(2017·南充模拟) 已知直线l:x+y+8=0,圆O:x2+y2=36(O为坐标原点),椭圆C: =1(a>b>0)的离心率为e= ,直线l被圆O截得的弦长与椭圆的长轴长相等.(I)求椭圆C的方程;(II)过点(3,0)作直线l,与椭圆C交于A,B两点设(O是坐标原点),是否存在这样的直线l,使四边形为ASB的对角线长相等?若存在,求出直线l的方程,若不存在,说明理由.参考答案一、选择题. (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共55分) 16-1、16-2、17-1、17-2、18-1、19-1、19-2、20-1、20-2、20-3、21-1、。

山西省运城市2022届高三二模数学(理)试题(2)

山西省运城市2022届高三二模数学(理)试题(2)

一、单选题二、多选题1. 设复数满足,则( )A .B.C.D.2. 已知,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知函数,则下列结论正确的是( )A.函数的图象关于点对称B.函数的图象关于直线对称C .函数在区间上单调递增D.函数的图象与直线的交点间的最小距离为4.函数在区间[2,8]上的值域为A .(-∞,1]B .[2,4]C .[1,3]D .[1, +∞)5.已知椭圆及圆O :,如图,过点与椭圆相切的直线l 交圆O 于点A,若,则椭圆离心率的为()A.B.C.D.6. 已知集合,集合,则( )A.B.C.D.7.若双曲线的一条渐近线被圆所截得的弦长为2,则的离心率为 ( )A .2B.C.D.8. 已知,,,若,则正数可以为( )A .4B .23C .8D .179. 下表是某地从2019年至2023年能源消费总量近似值(单位:千万吨标准煤)的数据表:年份20192020202120222023年份代号12345山西省运城市2022届高三二模数学(理)试题(2)山西省运城市2022届高三二模数学(理)试题(2)三、填空题四、解答题能源消费总量近似值(单位:千万吨标准煤)44.244.646.247.850.8以为解释变量,为响应变量,若以为回归方程,则决定系数0.9298,若以为回归方程,则,则下面结论中正确的有( )A .变量和变量的样本相关系数为正数B.比的拟合效果好C .由回归方程可准确预测2024年的能源消费总量D.10.已知正项的等比数列中,,设其公比为,前项和为,则( )A.B.C.D.11. 已知,,且,则( )A.B.C.D.12.已知函数满足,且函数与的图象的交点为,,,,则( )A.B.C.D.13. 设,分别是椭圆的左、右焦点,过点的直线交椭圆于两点,,若,则椭圆的离心率为___________.14. 已知四棱锥的顶点均在球的球面上,底面是矩形,,,,二面角大小为120°,当面积最大时,球的表面积为______.15.已知正项数列满足,若的前项和为,且,则__________16.已知圆:,直线:.(1)求圆的圆心及半径;(2)求直线被圆截得的弦的长度.17.已知数列满足,,.(1)求证:数列是等比数列;(2)设数列的前项的和为,求证:.18.已知数列的前项和为,满足对任意的恒成立.数列为等差数列,它的前项和为,满足,.(1)求与;(2)若,对任意的恒成立,求.19. 如图,在四棱台中,平面,下底面是菱形,,,.(1)求四棱锥的体积;(2)求平面与平面所成角的余弦值.20. 在中,内角所对的边长分别为,是1和的等差中项.(1)求角;(2)若的平分线交于点,且,求的面积.21. 已知过点的直线与双曲线:的左右两支分别交于、两点.(1)求直线的斜率的取值范围;(2)设点,过点且与直线垂直的直线,与双曲线交于、两点.当直线变化时,恒为一定值,求点的轨迹方程.。

山西省运城市数学高三下学期理数第二次模拟试卷

山西省运城市数学高三下学期理数第二次模拟试卷

山西省运城市数学高三下学期理数第二次模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·日照模拟) 已知集合M={0,1,2},N={x|﹣1≤x≤1,x∈Z},则()A . M⊆NB . N⊆MC . M∩N={0,1}D . M∪N=N2. (2分)若复数满足(为虚数单位),则的共轭复数为()A .B .C .D .3. (2分)若,则()A .B .C .D .4. (2分)我国的人口普查每十年进行一次,在第五次(2000年11月1日开始)人口普查时我国人口约为13亿,并发现我国人口的年平均增长率约为1%,如果按照这种速度增长,在我国开始第七次(2020年11月1日开始)普查时的人口数约为()亿.A . 13(1+20×1%)B . 13(1+19×1%)C . 13(1+1%)20D . 13(1+1%)195. (2分) (2017高二下·廊坊期末) 下列说法中,正确的个数是()①函数f(x)=2x﹣x2的零点有2个;②函数y=sin(2x+ )sin(﹣2x)的最小正周期是π;③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;④ dx= .A . 0B . 1C . 2D . 36. (2分) (2015高二下·登封期中) 如果命题p(n)对n=k成立,则它对n=k+2也成立,若p(n)对n=2成立,则下列结论正确的是()A . p(n)对所有正整数n都成立B . p(n)对所有正偶数n都成立C . p(n)对大于或等于2的正整数n都成立D . p(n)对所有自然数都成立7. (2分)设向量,则下列结论中正确的是()A .B .C .D .8. (2分)(2017·赤峰模拟) 某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直,则该几何体的表面积是()A .B .C .D .9. (2分) (2018高一下·合肥期末) 已知向量,,要得到函数的图象,只需将的图象()A . 向左平移个单位B . 向右平移个单位C . 向左平移个单位D . 向右平移个单位10. (2分)在△ABC中,若,则△ABC的形状是()A . 直角三角形B . 等腰或直角三角形C . 不能确定D . 等腰三角形11. (2分) (2017高三上·赣州期中) 已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:①当x>0时,f(x)=﹣e﹣x(x﹣1);②函数f(x)有2个零点;③f(x)<0的解集为(﹣∞,﹣1)∪(0,1),④∀x1 ,x2∈R,都有|f(x1)﹣f(x2)|<2.其中正确命题的个数是()A . 4B . 3C . 2D . 112. (2分)(2019高二上·丽水期中) 已知椭圆与双曲线有相同的左、右焦点,,若点P是与在第一象限内的交点,且,设与的离心率分别为,,则的取值范围是A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2018高三上·重庆期末) 二项式的展开式中常数项为________。

运城市2024-2025学年高三摸底调研测试数学试题与答案

运城市2024-2025学年高三摸底调研测试数学试题与答案

运城市2024-2025学年高三摸底调研测试数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.已知复数112iz =+,则z 的虚部是()A .2B .2iC .2i 5-D .25-2.命题2:3,2x p x x ∃>≥的否定为()A .23,2xx x ∃><B .23,2x x x ∀><C .23,2xx x ∃≤≥D .23,2xx x ∀≤<3.已知向量()()1,3,2,a b m == ,若()a b a -∥,则m =()A .1B .2C .3D .64.已知()1sin ,tan 5tan 2αβαβ+==,则()sin αβ-=()A .13B .3C .34D .125,其侧面展开图为一个半圆,则该圆锥的体积为()A .6π3B .26π3C .46π3D .86π36.下列说法错误的是()A .某校高一年级共有男女学生500人,现按性别采用分层抽样的方法抽取容量为50人的样本,若样本中男生有30人,则该校高一年级女生人数是200B .数据1,3,4,5,7,9,11,16的第75百分位数为10C .在一元线性回归方程中,若线性相关系数r 越大,则两个变量的线性相关性越强D .根据分类变量X 与Y 的成对样本数据,计算得到2 3.937χ=,根据小概率0.05α=值的独立性检验()0.05 3.841x =,可判断X 与Y 有关联,此推断犯错误的概率不大于0.057.曲线()()22e 2xf x x x x =--+在2x =处的切线方程是()A .()()2e 22y x =--B .()2e 22y x =--C .2e 4y x =-D .2e 4y x =+8.已知π1cos 63α⎫⎛-= ⎪⎝⎭,则πsin 26α⎫⎛+= ⎪⎝⎭()A .429B .79C .79-D .429-二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知()π23f x x ⎛⎫=+ ⎪⎝⎭,则()A .()()πf x f x +=B .()f x 的图象关于直线π6x =对称C .()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称D .()f x 在5ππ,1212⎛⎫- ⎪⎝⎭单调递增10.设函数()321f x x x ax =-+-,则()A .当1a =-时,()f x 有三个零点B .当13a ≥时,()f x 无极值点C .a ∀∈R ,曲线()y f x =对称中心的横坐标为定值D .a ∃∈R ,使()f x 在R 上是减函数11.到两个定点的距离之积为大于零的常数的点的轨迹称为卡西尼卵形线.设()1,0F c -和()2,0F c 且0c >,动点M 满足212(0)MF MF a a ⋅=>,动点M 的轨迹显然是卡西尼卵形线,记该卡西尼卵形线为曲线C ,则下列描述正确的是()A .曲线C 的方程是()()222222442x y c x y a c +--=-B .曲线C 关于坐标轴对称C .曲线C 与x 轴没有交点D .12MF F △的面积不大于212a 三、填空题:本题共3小题,每小题5分,共15分.12.已知正项等比数列{}n a 的前n 项和为n S ,公比为q ,若4215,3S S ==,则q =____________.13.双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为____________.14.若曲线xx ay e +=有两条过坐标原点的切线,则a 的取值范围是____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)记ABC △中的内角,,A B C 所对的边分别是,,a b c ,已知2222sin sin c Cb c a B=+-,(1)求A ;(2)若a =ABC △的面积为332,求ABC △的周长.16.(本小题满分15分)已知函数()e 2xf x ax =--.(1)讨论函数()f x 的单调性;(2)若()2f x ≥-在10,2⎛⎫⎪⎝⎭恒成立,求实数a 的取值范围.17.(本小题满分15分)如图,在四棱锥P ABCD -中,PA ⊥平面,,ABCD AD BC AB BC ⊥∥,E 为PD 的中点.(1)若EA EC =,证明:CD ⊥平面ACP ;(2)已知2244AD PA BC AB ====,求平面ACE 和平面PCD 所成的二面角的正弦值.18.(本小题满分17分)学习小组设计了如下试验模型:有完全相同的甲、乙两个袋子,袋子里有形状和大小完全相同的小球,其中甲袋中有2个红球和8个白球,乙袋中有6个红球和4个白球.从这两个袋子中选择1个袋子,再从该袋子中随机摸出1个球,称为一次摸球.多次摸球直到摸出白球时试验结束.假设首次摸球选到甲袋或乙袋的概率均为12.(1)求首次摸球就试验结束的概率;(2)在首次摸球摸出红球的条件下,①求选到的袋子为乙袋的概率;②将首次摸球摸出的红球放回原来袋子,继续进行第二次摸球时有如下两种方案:方案一,从原来袋子中摸球:方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案使得第二次摸球就试验结束的概率更大.19.(本小题满分17分)已知点()11,P t t +在抛物线2:4C x y =上,按照如下方法依次构造点()2,3,4n P n = ,过点1n P -作斜率为1-的直线与抛物线C 交于另一点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)求t 的值;(2)求证:数列{}n x 是等差数列,并求,n n x y ;(3)求12n n n P P P ++△的面积.运城市2024-2025学年高三摸底调研测试数学试题答案一、1.D 2.B3.D4.A 5.B 6.C7.A 8.C二、9.AD 10.BC 11.ABD三、13.214.22128x y -=15.()(),04,-∞+∞ 四、答案:15.解:(1)在ABC △中,由正弦定理得,sin sin C cB b=,因为2222sin sin c C b c a B =+-,所以2222c cb c a b=+-,化简得,222b c a bc +-=,在ABC △中,由余弦定理得,2221cos 22b c a A bc +-==,又因为0πA <<,所以π3A =(2)由1333sin 242ABC S bc A ===△,得6bc =,由2222cos a b c bc A =+-,得2276b c =+-,所以2213b c +=所以222()225b c b c bc +=++=,所以5b c +=所以ABC △的周长5a b c ++=+16.解:(1)由题可得:()xf x e a '=-,当0a ≤时,()()0,f x f x >'∴在R 上单调递增.当0a >时,()0f x '=可得ln x a =,若(),ln x a ∈-∞时,()()0,f x f x '<单调递减,若()ln ,x a ∈+∞时,()()0,f x f x '>单调递增,综上可得:当0a ≤时()f x 在R 上单调递增.当0a >时()f x 在(),ln a -∞单调递减,()f x 在()ln ,a +∞单调递增.(2)由()2f x ≥-得xe ax ≥,而10,,2x e x a x ⎛⎫∈∴≤⎪⎝⎭令()()()()21,0,x x e x e g x g x g x x x =<'-=∴在10,2⎛⎫⎪⎝⎭上单调递减,()12g x g ⎛⎫∴>= ⎪⎝⎭,a ∴≤17.(1)证明:因为PA ⊥平面,,ABCD AD AP ⊂平面ABCD ,可知,PA AD PA CD ⊥⊥,且E 为PD 的中点,则12EA PD =,若EA EC =,即12EC PD =,则PC CD ⊥,且,,PA PC P PA PC =⊂ 平面ACP ,所以CD ⊥平面ACP .(2)由题意可知:PA ⊥平面,ABCD AB AD ⊥,以A 为坐标原点,,,AB AD AP 为,,x y z轴,建立空间直角坐标系,如图所示:因为2244AD PA BC AB ====则()()()()()0,0,0,1,2,0,0,4,0,0,0,2,0,2,1A C D P E ,可得()()()()0,2,1,1,2,0,0,4,2,1,2,0AE AC PD CD ===-=-,设平面ACE 的法向量为()111,,m x y z = ,则11112020m AE y z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令12x =,可得()2,1,2m =-;设平面PCD 的法向量为()222,,n x y z = ,则222242020n PD y z n CD x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令22x =,可得()2,1,2n =;由题意可得:cos ,m n m n m n⋅=⋅79==所以平面ACE 和平面PCD 所成二面角的正弦值为42918.解:设摸球一次,“取到甲袋”为事件1A ,“取到乙袋”为事件2A ,“摸出白球”为事件1B ,“摸出红球”为事件2B (1)()()()()()1111212P B P A P B A P A P B A =+181432102105=⨯+⨯=所以摸球一次就实验结束的概率为35(2)①因为12,B B 是对立事件,()()21215P B P B =-=,所以()()()22222163210245P A B P A B P B ⨯===所以选到的袋子为乙袋的概率为34②由①可知()()1222311144P A B P A B =-=-=所以方案一种取到白球的概率为()()()()112112212183414104102P P A B P B A P A B P B A =+=⨯+⨯=方案二种取到白球的概率为()()()()2221112123814741041010P P A B P B A P A B P B A =+=⨯+⨯因为71102>,所以方案二中取到白球的概率更大,即选择方案二使得第二次摸球就实验结束的概率更大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年山西省运城市高考数学二模试卷(理科)一、选择题共12小题,每小题5分,共60分1.“m=±1”是“复数(1﹣m2)+(1+m)i(其中i是虚数单位)为纯虚数”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件2.已知集合M={(x,y)|y=x2+1},N={(x,y)|y=x+1},则M∩N=()A.(0,1),(1,2)B.{(0,1),(1,2)} C.{y|y=1或y=2} D.{y|y≥1} 3.执行如图所示的程序框图,则输出S的值为()A.B.C.0 D.4.一已知函数f(x)=cos(ωx+φ﹣)(ω>0,|φ|<)的部分图象如图所示,则y=f(x+)取得最小值时x的集合为()A.{x|x=kπ﹣,k∈z} B.{x|x=kπ﹣,k∈z}C.{x|x=2kπ﹣,k∈z}} D.{x|x=2kπ﹣,k∈z}}5.设m,n是正整数,多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为﹣16,则含x2项的系数是()A.﹣13 B.6 C.79 D.376.设等差数列{a n}的前n项和为S n,且满足S19>0,S20<0,则,,,…,中最大项为()A.B.C.D.7.棱长为2的正方体被一平面截得的几何体的三视图如图所示,那么被截去的几何体的体积是()A.B.C.4 D.8.设F1、F2分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线某条渐过线于M,N两点,且满足∠MAN=120°,则该双曲线的离心率为()A. B. C.D.9.若函数f(x)=的图象如图所示,则m的范围为()A.(﹣∞,﹣1)B.(﹣1,2)C.(1,2) D.(0,2)10.已知抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A、B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的横坐标为()A.5 B.4 C.3 D.211.一只小球放入一长方体容器内,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4、5、5,则这只小球的半径是()A.3或8 B.8或11 C.5或8 D.3或1112.已知函数f(x)的导函数为f′(x),满足xf′(x)+2f(x)=,且f(e)=,则f(x)在(0,+∞)上的单调性为()A.先增后减 B.单调递增 C.单调递减 D.先减后增二、填空题,共4小题,每小题5分,共20分13.平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则= .14.若x,y满足条件,当且仅当x=y=3时,z=ax﹣y取最小值,则实数a 的取值范围是.15.函数f(x)=min{2,|x﹣2|},其中min{a,b}=,若动直线y=m与函数y=f (x)的图象有三个不同的交点,它们的横坐标分别为x1,x2,x3,则x1•x2•x3最大值为.16.设{a n}是公比为q的等比数列,其前项积为,并满足条件,给出下列结论:(1)0<q<1;(2)T198<1;(3)a99a101<1;(4)使T n<1成立的最小自然数n 等于199,其中正确的编号为.三、解答题,共5小题,满分60分17.在△ABC中,角A,B,C所对的边分别为a,b,c,且8sin2()+3cos2C=3.(1)求cosC;(2)若B=,2=,求tan∠ABM.18.为了搞好某次大型会议的接待工作,组委会在某校招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm)若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高子”才担任“礼仪小姐”.(1)求12名男志愿者的中位数;(2)如果用分层抽样的方法从所有“高个子”“非高个子”中共抽取5人,再从这5个人中选2人,那么至少有一个是“高个子”的概率是多少?(3)若从所有“高个了”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望.19.如图,将边长为2的正六边形ABCDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且AC=.(1)证明:平面ABEF⊥平面BCDE;(2)求平面ABC与平面DEF所成二面角(锐角)的余弦值.20.已知椭圆C: +=1(a>b>0)的离心率为,定点P(,1),直线OP交椭圆C于点Q(其中O为坐标原点),且||=||.(1)求椭圆C的方程;(2)设A(2,0),过点(﹣1,0)的直线l交椭圆C于M、N两点,△AMN的面积记为S,若对满足条件的任意直线l,不等式S≤λtan∠MAN恒成立,求λ的最小值.21.已知常数a>0,函数f(x)=ln(1+ax)﹣.(Ⅰ)讨论f(x)在区间(0,+∞)上的单调性;(Ⅱ)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.四、选考题。

【选修4-1:几何证明选讲】22.如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC (Ⅰ)求证:BE=2AD;(Ⅱ)当AC=3,EC=6时,求AD的长.【选修4-4:坐标系与参数方程】23.已知直线l:(t为参数,α≠kπ,k∈Z)经过椭圆C:(φ为参数)的左焦点F.(1)求m的值;(2)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最小值.【选修4-5:不等式选讲】24.已知函数f(x)=|x﹣a|.(1)若f(x)≤m的解集为{x|﹣1≤x≤5},求实数a,m的值;(2)当a>0时,解关于x的不等式f(x)+2a﹣1≥f(x+a).2015年山西省运城市高考数学二模试卷(理科)参考答案与试题解析一、选择题共12小题,每小题5分,共60分1.“m=±1”是“复数(1﹣m2)+(1+m)i(其中i是虚数单位)为纯虚数”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑;数系的扩充和复数.【分析】根据充分条件和必要条件的定义结合纯虚数的概念进行判断即可.【解答】解:若复数(1﹣m2)+(1+m)i为纯虚数,则满足,即,解得m=1,当m=﹣1时,复数(1﹣m2)+(1+m)i=0为实数,不是纯虚数,即“m=±1”是“复数(1﹣m2)+(1+m)i(其中i是虚数单位)为纯虚数”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据纯虚数的概念是解决本题的关键.2.已知集合M={(x,y)|y=x2+1},N={(x,y)|y=x+1},则M∩N=()A.(0,1),(1,2)B.{(0,1),(1,2)} C.{y|y=1或y=2} D.{y|y≥1}【考点】交集及其运算.【专题】集合.【分析】直接联立方程组求得方程组的解集得答案.【解答】解:由M={(x,y)|y=x2+1},N={(x,y)|y=x+1},得M∩N={(x,y)|}={(0,1),(1,2)}.故选:B.【点评】本题考查了交集及其运算,考查了方程组的解法,是基础题.3.执行如图所示的程序框图,则输出S的值为()A.B.C.0 D.【考点】程序框图.【专题】算法和程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当i=1时,执行完循环体后:S=,满足继续循环的条件,故i=2;当i=2时,执行完循环体后:S=,满足继续循环的条件,故i=3;当i=3时,执行完循环体后:S=,满足继续循环的条件,故i=3;当i=4时,执行完循环体后:S=,满足继续循环的条件,故i=5;当i=5时,执行完循环体后:S=0,满足继续循环的条件,故i=6;当i=6时,执行完循环体后:S=0,满足继续循环的条件,故i=7;当i=7时,执行完循环体后:S=,满足继续循环的条件,故i=8;当i=8时,执行完循环体后:S=,满足继续循环的条件,故i=9;当i=9时,执行完循环体后:S=,不满足继续循环的条件,故输出结果为,故选:A【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.一已知函数f(x)=cos(ωx+φ﹣)(ω>0,|φ|<)的部分图象如图所示,则y=f(x+)取得最小值时x的集合为()A.{x|x=kπ﹣,k∈z} B.{x|x=kπ﹣,k∈z}C.{x|x=2kπ﹣,k∈z}} D.{x|x=2kπ﹣,k∈z}}【考点】余弦函数的图象.【专题】三角函数的图像与性质.【分析】根据图象求出函数的解析式,结合三角函数的性质即可得到结论.【解答】解:f(x)=cos(ωx+φ﹣)=sin(ωx+φ),则,即函数f(x)的周期T=π,即T==π,∴ω=2,即f(x)=sin(2x+φ),由五点对应法得2×+φ=,解得φ=﹣,即f(x)=sin(2x﹣),则y=f(x+)=sin=sin(2x+),由2x+=﹣+2kπ,解得x=kπ﹣,k∈z,即y=f(x+)取得最小值时x的集合为{x|x=kπ﹣,k∈z},故选:B.【点评】本题主要考查三角函数最值的求解,利用图象求出三角函数的解析式是解决本题的关键.5.设m,n是正整数,多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为﹣16,则含x2项的系数是()A.﹣13 B.6 C.79 D.37【考点】二项式系数的性质.【专题】二项式定理.【分析】由含x一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数.【解答】解:由于多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为•(﹣2)+•(﹣5)=﹣16,可得2m+5n=16 ①.再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是•(﹣2)2+•(﹣5)2=37,故选:D.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.6.设等差数列{a n}的前n项和为S n,且满足S19>0,S20<0,则,,,…,中最大项为()A.B.C.D.【考点】等差数列的性质.【专题】综合题;等差数列与等比数列.【分析】由等差数列的前n项和的公式分别表示出S19>0,S20<0,然后再分别利用等差数列的性质得到a10大于0且a11小于0,得到此数列为递减数列,前10项为正,11项及11项以后为负,由已知的不等式得到数列的前1项和,前2项的和,…,前19项的和为正,前20项的和,前21项的和,…,的和为负,所以得到b11及以后的各项都为负,即可得到b10为最大项,即可得到n的值.【解答】解:由S19==19a10>0,得到a10>0;由S20==10(a10+a11)<0,得到a11<0,∴等差数列{a n}为递减数列.则a1,a2,…,a10为正,a11,a12,…为负;S1,S2,…,S19为正,S20,S21,…为负,则<0,<0,…,<0,又S10>S1>0,a1>a10>0,得到>>0,则最大.故选C【点评】此题考查了等差数列的前n项和公式,等差数列的性质,以及数列的函数特性,数熟练掌握等差数列的性质及求和公式是解本题的关键.7.棱长为2的正方体被一平面截得的几何体的三视图如图所示,那么被截去的几何体的体积是()A.B.C.4 D.【考点】由三视图求面积、体积;简单空间图形的三视图.【专题】计算题;空间位置关系与距离.【分析】根据几何体的三视图,得出该几何体是棱长为2的正方体的一部分,由此求出该几何体的体积.【解答】解:根据几何体的三视图,得;该几何体是棱长为2的正方体被平面分成体积相等的两部分中的一部分,如图所示;所以该几何体的体积为×23=4.故选:C.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键根据三视图得出几何体的结构特征是什么.8.设F1、F2分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线某条渐过线于M,N两点,且满足∠MAN=120°,则该双曲线的离心率为()A. B. C.D.【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】先求出M,N的坐标,再利用余弦定理,求出a,c之间的关系,即可得出双曲线的离心率.【解答】解:不妨设圆与y=x相交且点M的坐标为(x0,y0)(x0>0),则N点的坐标为(﹣x0,﹣y0),联立y0=x0,得M(a,b),N(﹣a,﹣b),又A(﹣a,0)且∠MAN=120°,所以由余弦定理得4c2=(a+a)2+b2+b2﹣2•bcos 120°,化简得7a2=3c2,求得e=.故选A.【点评】本题主要考查双曲线的离心率.解决本题的关键在于求出a,c的关系.9.若函数f(x)=的图象如图所示,则m的范围为()A.(﹣∞,﹣1)B.(﹣1,2)C.(1,2) D.(0,2)【考点】函数的单调性与导数的关系.【专题】计算题.【分析】先对函数f(x)进行求导,根据函数f(x)的图象判断导函数f'(x)的正负进而得到m的关系得到答案.【解答】解:f′(x)==由图知m﹣2<0,且m>0,故0<m<2,又>1,∴m>1,因此1<m<2,故选C【点评】本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.10.已知抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A、B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的横坐标为()A.5 B.4 C.3 D.2【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】设AB的中点为H,求出准线方程,设A,B,H在准线上的射影分别为A',B',H',运用抛物线的定义可得H的横坐标为2,设出直线AB的方程,联立抛物线方程,运用韦达定理和判别式大于0,求得k的范围,由中点坐标公式解得k=﹣2,再求直线AB的中垂线方程,令y=0,即可得到所求值.【解答】解:设AB的中点为H,抛物线y2=4x的焦点为F(1,0),准线为x=﹣1,设A,B,H在准线上的射影分别为A',B',H',则|HH'|=(|AA'|+|BB'|),由抛物线的定义可得,|AF|=|AA'|,|BF|=|BB'|,|AF|+|BF|=6,即为|AA'|+|BB'|=6,|HH'|=×6=3,即有H的横坐标为2,设直线AB:y=kx+3,代入抛物线方程,可得k2x2+(6k﹣4)x+9=0,即有判别式(6k﹣4)2﹣36k2>0,解得k<且k≠0,又x1+x2==4,解得k=﹣2或(舍去),则直线AB:y=﹣2x+3,AB的中点为(2,﹣1),AB的中垂线方程为y+1=(x﹣2),令y=0,解得x=4,故选:B.【点评】本题考查抛物线的定义、方程和性质,主要考查抛物线的准线方程的运用,同时考查直线和抛物线方程联立,运用判别式和韦达定理,考查两直线垂直的条件和中点坐标公式的运用,属于中档题.11.一只小球放入一长方体容器内,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4、5、5,则这只小球的半径是()A.3或8 B.8或11 C.5或8 D.3或11【考点】球内接多面体.【专题】计算题;空间位置关系与距离.【分析】小球在长方体容器内,且与共点的三个面相接触,则小球的球心A到三个接触面的距离相等,小球上一点P到这三个面的距离分别为4、5、5,若以三个面的交点为坐标原点,分别以其中两个面的交线为坐标轴建立空间直角坐标系后,球心和小球上的点的坐标可知,向量和的坐标可求,由向量减法的三角形法则可得向量,向量的模就是小球的半径,由半径相等列式可求这只小球的半径.【解答】解:如图,设长方体的三个面共点为O,以OE,OF,OG所在直线分别为x轴,y轴,z轴建立空间直角坐标系,因为小球与共点的三个面相接触,所以设球心A(r,r,r),又因为小球上一点P到这三个面的距离分别为4、5、5,所以点为P(5,4,5),则=(r,r,r),=(5,4,5),由=(5﹣r,4﹣r,5﹣r).∴||2=(5﹣r)2+(4﹣r)2+(5﹣r)2=r2,即r2﹣14r+33=0,解得:r=3或r=11.故选D.【点评】本题考查了球外切多面体,考查了空间点、线、面间的距离的计算,利用空间向量处理该题起到事半功倍的效果,属中档题.12.已知函数f(x)的导函数为f′(x),满足xf′(x)+2f(x)=,且f(e)=,则f(x)在(0,+∞)上的单调性为()A.先增后减 B.单调递增 C.单调递减 D.先减后增【考点】利用导数研究函数的单调性;函数的单调性与导数的关系.【专题】导数的综合应用.【分析】根据得到x2f′(x)+2xf(x)=lnx,从而得到′=lnx,从而x2f(x)=xlnx﹣x+c,由条件f(e)=即可求出c,从而求出f(x),然后求导,根据导数符号即可判断f(x)的单调性.【解答】解:∵;∴x2f′(x)+2xf(x)=lnx;∴′=lnx;∴x2f(x)=xlnx﹣x+c;∵;∴;∴;∴;∴;∴;令g(x)=2x﹣xlnx﹣e,g′(x)=1﹣lnx;∴x∈(0,e)时,g′(x)>0,x∈(e,+∞)时,g′(x)<0;∴g(e)=0是g(x)的最大值;∴f′(x)≤0恒成立;∴f(x)是减函数.故选:C.【点评】考查积的导数和商的导数的计算公式,已知一个函数的导函数,可以写出这个函数的解析式,根据函数导数求函数最值的方法与过程,根据函数导数符号判断函数单调性的方法,注意正确求导.二、填空题,共4小题,每小题5分,共20分13.平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则= 8 .【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】利用向量加减法的坐标运算求出向量的坐标,利用平行四边形对边相等,得到向量的关系,求出向量,的坐标,进行数量积的运算.【解答】解:因为平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),所以==(﹣1,﹣1)=,=(﹣3,﹣5),所以=(﹣1,﹣1)•(﹣3,﹣5)=3+5=8;故答案为:8.【点评】本题考查了向量的三角形法则以及向量的数量积的坐标运算;关键是求出向量的坐标.14.若x,y满足条件,当且仅当x=y=3时,z=ax﹣y取最小值,则实数a的取值范围是(﹣,).【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先画出可行域,根据题中条件目标函数z=ax﹣y (其中a>0),在(3,3)处取得最大值得到目标函数所在位置,求出其斜率满足的条件即可求出a的取值范围【解答】解:条件对应的平面区域如图:因为目标函数z=ax﹣y (其中a>0),仅在(3,3)处取得最大值,令z=0得ax﹣y=0,所以直线ax﹣y=0的极限位置应如图所示,故其斜率 k=a需满足⇒﹣<a<.故答案为:(﹣,).【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,以及数形结合、等价转化的思想.15.函数f(x)=min{2,|x﹣2|},其中min{a,b}=,若动直线y=m与函数y=f(x)的图象有三个不同的交点,它们的横坐标分别为x1,x2,x3,则x1•x2•x3最大值为 1 .【考点】函数的零点与方程根的关系.【专题】综合题;函数的性质及应用.【分析】由f(x)表达式作出函数f(x)的图象,由图象可求得符合条件的m的取值范围,不妨设0<x1<x2<2<x3,通过解方程可用m把x1,x2,x3分别表示出来,利用基本不等式即可求得x1•x2•x3的最大值.【解答】解:作出函数f(x)的图象如图所示:由,解得A(4﹣2,2﹣2),由图象可得,当直线y=m与f(x)图象有三个交点时m的范围为:0<m<2﹣2.不妨设0<x1<x2<2<x3,则由2=m得x1=,由|x2﹣2|=2﹣x2=m,得x2=2﹣m,由|x3﹣2|=x3﹣2=m,得x3=m+2,且2﹣m>0,m+2>0,∴x1•x2•x3=•(2﹣m)•(2+m)=•m2•(4﹣m2)≤==1,当且仅当m2=4﹣m2.即m=时取得等号,∴x1•x2•x3存在最大值为1.故答案为:1.【点评】本题考查函数与方程的综合运用,考查基本不等式在求函数最值中的应用,考查数形结合思想,考查学生综合运用知识分析解决新问题的能力,难度较大.16.设{a n}是公比为q的等比数列,其前项积为,并满足条件,给出下列结论:(1)0<q<1;(2)T198<1;(3)a99a101<1;(4)使T n<1成立的最小自然数n 等于199,其中正确的编号为(1)、(3)、(4).【考点】等比数列的性质.【分析】首先判断数列的单调性,然后再根据等比数列的性质进行分析判断.【解答】解:根据等比数列的性质,如果等比数列的公比是负值,在其连续两项的乘积是负值,根据a99a100﹣1>0,可知该等比数列的公比是正值,再根据可知,a99,a100一个大于1,一个小于1,而a1>1,所以数列不会是单调递增的,只能单调递减,所以0<q<1,而且a99>1,a100<1,又a99a101=a1002<1,(1)(3)正确;T198=a1a2••a99a100••a197a198=(a99a100)99>1,(2)不正确;T199=a1a2••a100••a198a199=(a100)199<1,故(4)正确.故答案为:(1)、(3)、(4).【点评】本题设置开放性的结论,综合考查等比数列的性质以及分析问题的能力,试题比较符合高考命题的趋势.在等比数列中最主要的性质之一就是a m+a n=a p+a q⇔m+n=p+q(m,n,p,q∈N*).三、解答题,共5小题,满分60分17.在△ABC中,角A,B,C所对的边分别为a,b,c,且8sin2()+3cos2C=3.(1)求cosC;(2)若B=,2=,求tan∠ABM.【考点】三角函数中的恒等变换应用;两角和与差的正切函数.【专题】解三角形.【分析】(1)利用两角和公式和二倍角公式求得cosC的值.(2)设出BC,则AB,AC,AM,CM可知,利用余弦定理求得BM,进而利用正弦定理求得sin∠CBM,则cot∠CBM可求得,最后利用诱导公式求得答案.【解答】解:(1)8sin2()+3cos2C=8•+3cos2C=4﹣4cos(A+B)+3cos2C=4+4cosC+3cos2C=3,∴3cos2C+4cosC+1=0,∴6cos2C+4cosC﹣2=0,∴cosC=﹣1或,故cos=.(2)如图:B=,cosC=,做MN∥BC,交AB于点N,设BC=t,则AC=3t,AM=t,CM=2t,AB=2t,又由MN∥BC,则MN=BC=,NB=AB=t,tan∠ABM==4.【点评】本题主要考查了正弦定理和余弦定理的运用.解题过程中运用了转化的思想,求得cosC的值是关键.18.为了搞好某次大型会议的接待工作,组委会在某校招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm)若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高子”才担任“礼仪小姐”.(1)求12名男志愿者的中位数;(2)如果用分层抽样的方法从所有“高个子”“非高个子”中共抽取5人,再从这5个人中选2人,那么至少有一个是“高个子”的概率是多少?(3)若从所有“高个了”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望.【考点】离散型随机变量的期望与方差;茎叶图.【专题】概率与统计.【分析】(1)由茎叶图能求出12名男志愿者的中位数.(2)由题意及茎叶图,有“高个子”12人,“非高个子”18人,利用用分层抽样的方法,每个人被抽中的概率是,利用对立事件即可.(3)由于从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,利用离散型随机变量的定义及题意可知ξ的取值为0,1,2,3,利用古典概型的概率公式求出每一个值对应事件的概率,有期望的公式求出即可. 【解答】解:(1)由茎叶图知12名男志愿者的中位数为:=177(cm ).(2)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是=,所以选中的“高个子”有12×=2人,“非高个子”有3人.用事件A 表示“至少有一名“高个子”被选中”,则它的对立事件表示“没有一名“高个子”被选中”,则P (A )=1﹣=1﹣=.因此,至少有一人是“高个子”的概率是.(3)依题意,ξ的取值为0,1,2,3.P (ξ=0)==,P (ξ=1)==,P (ξ=2)==,P (ξ=3)==.因此,ξ的分布列如下:∴E ξ==1.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.解题时要注意茎叶图的合理运用.19.如图,将边长为2的正六边形ABCDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且AC=.(1)证明:平面ABEF⊥平面BCDE;(2)求平面ABC与平面DEF所成二面角(锐角)的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(1)连结AC、BE,交点为G,由已知得AC⊥BE,且AG=CG=,AG⊥GC,从而AG⊥平面BCDE,由此能证明平面ABEF⊥平面BCDE.(2)以G为坐标原点,分别以GC,GE,GA所在的直线为x轴,y轴,z轴,建立空间直角坐标系,求出平面ABC的法向量和平面DEF的一个法向量,利用向量法能求出平面ABC与平面DEF所成二面角(锐角)的余弦值.【解答】解:(1)证明:正六边形ABCDEF中,连结AC、BE,交点为G,∵ABCDEF是边长为2的正六边形,∴AC⊥BE,且AG=CG=,在多面体中,由AC=,得AG2+CG2=AC2,∴AG⊥GC,又GC∩BE=G,GC,BE⊂平面BCDE,∴AG⊥平面BCDE,又AG⊂平面ABEF,∴平面ABEF⊥平面BCDE.(2)解:以G为坐标原点,分别以GC,GE,GA所在的直线为x轴,y轴,z轴,建立空间直角坐标系,由已知得AG=CG=,BG=1,GE=3,则A(0,0,),B(0,﹣1,0),C(),D(),E(0,3,0),F(0,2,),=(0,﹣1,﹣),=(),=(),==(),设平面ABC的法向量为=(x,y,z),则,取z=1,得,, =(﹣,0,),设平面DEF的一个法向量为=(a,b,c),则,取a=1,得=(1,,1),设平面ABC与平面DEF所成二面角(锐角)为θcosθ=|cos<>|==,∴平面ABC与平面DEF所成二面角(锐角)的余弦值为.【点评】本题主要考查直线与平面之间的平行、垂直等位置关系,二面角的概念、求法等知识,以及空间想象能力和逻辑推理能力.20.已知椭圆C: +=1(a>b>0)的离心率为,定点P(,1),直线OP交椭圆C于点Q(其中O为坐标原点),且||=||.(1)求椭圆C的方程;(2)设A(2,0),过点(﹣1,0)的直线l交椭圆C于M、N两点,△AMN的面积记为S,若对满足条件的任意直线l,不等式S≤λtan∠MAN恒成立,求λ的最小值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】计算题;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.【分析】(1)由题意知a2=2b2,直线OP的方程为y=x,与+=1联立可解得|x|=b,从而求椭圆C的方程.(2)设M(x1,y1),N(x2,y2);分直线l垂直于x轴时与直线l不垂直于x轴时讨论,从而可得•≤;从而化恒成立问题为最值问题求解即可.【解答】解:(1)∵椭圆C: +=1(a>b>0)的离心率为,∴a2=2b2,由题意知,直线OP的方程为y=x,与+=1联立解得,|x|=b,又∵||=||,∴===,∴a=,b=1,∴椭圆C的方程为+y2=1.(2)设M(x1,y1),N(x2,y2);当直线l垂直于x轴时,x1=x2=﹣1,y1=﹣y2, =,故=(x1﹣2,y1)=(﹣3,y1),=(﹣3,﹣y1),故•=9﹣=,当直线l不垂直于x轴时,设直线l的方程为y=k(x+1),与+y2=1联立消y可得(1+2k2)x2+4k2x+2k2﹣2=0,故x1+x2=﹣,x1x2=,故•=(x1﹣2)(x2﹣2)+y1y2=(1+k2)x1x2+(k2﹣2)(x1+x2)+k2+4=﹣<;综上所述,•的最大值为.∵不等式S≤λtan∠MAN恒成立,即||•||sin∠MAN≤λtan∠MAN恒成立,又∵•=﹣>0,∴•≤2λ恒成立,故λ的最小值为.【点评】本题考查了圆锥曲线的方程的求法与应用,同时考查了平面向量的数量积的应用及恒成立问题,同时考查了学生的化简运算能力,属于难题.21.已知常数a>0,函数f(x)=ln(1+ax)﹣.(Ⅰ)讨论f(x)在区间(0,+∞)上的单调性;(Ⅱ)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.【考点】利用导数研究函数的单调性;函数在某点取得极值的条件.【专题】导数的综合应用.【分析】(Ⅰ)利用导数判断函数的单调性,注意对a分类讨论;(Ⅱ)利用导数判断函数的极值,注意a的讨论及利用换元法转化为求函数最值问题解决.【解答】解:(Ⅰ)∵f(x)=ln(1+ax)﹣.∴f′(x)==,∵(1+ax)(x+2)2>0,∴当1﹣a≤0时,即a≥1时,f′(x)≥0恒成立,则函数f(x)在(0,+∞)单调递增,当0<a≤1时,由f′(x)=0得x=±,则函数f(x)在(0,)单调递减,在(,+∞)单调递增.(Ⅱ)由(Ⅰ)知,当a≥1时,f′(x)≥0,此时f(x)不存在极值点.因此要使f(x)存在两个极值点x1,x2,则必有0<a<1,又f(x)的极值点值可能是x1=,x2=﹣,且由f(x)的定义域可知x>﹣且x≠﹣2,∴﹣>﹣且﹣≠﹣2,解得a≠,则x1,x2分别为函数f(x)的极小值点和极大值点,∴f(x1)+f(x2)=ln﹣+ln(1+ax2)﹣=ln﹣=ln(2a﹣1)2﹣=ln(2a﹣1)2+﹣2.令2a﹣1=x,由0<a<1且a≠得,当0<a<时,﹣1<x<0;当<a<1时,0<x<1.令g(x)=lnx2+﹣2.(i)当﹣1<x<0时,g(x)=2ln(﹣x)+﹣2,∴g′(x)=﹣=<0,故g(x)在(﹣1,0)上单调递减,g(x)<g(﹣1)=﹣4<0,∴当0<a<时,f(x1)+f(x2)<0;(ii)当0<x<1.g(x)=2lnx+﹣2,g′(x)=﹣=<0,故g(x)在(0,1)上单调递减,g(x)>g(1)=0,∴当<a<1时,f(x1)+f(x2)>0;综上所述,a的取值范围是(,1).【点评】本题主要考查学生对含有参数的函数的单调性及极值的判断,考查利用导数判断函数的单调性及求极值的能力,考查分类讨论思想及转化划归思想的运用和运算能力,逻辑性综合性强,属难题.四、选考题。

相关文档
最新文档