等腰三角形重难点教学设计

合集下载

青岛版数学八年级上册2.6《等腰三角形》教学设计3

青岛版数学八年级上册2.6《等腰三角形》教学设计3

青岛版数学八年级上册2.6《等腰三角形》教学设计3一. 教材分析《等腰三角形》是青岛版数学八年级上册第二章第六节的内容。

本节内容是在学生已经掌握了三角形的性质和分类的基础上,进一步研究等腰三角形的性质。

等腰三角形是初中数学中的一个重要概念,它不仅涉及到三角形的性质,还涉及到对称性等数学思想。

本节课的教学内容不仅要求学生掌握等腰三角形的性质,还要培养学生的观察能力、推理能力以及运用数学知识解决实际问题的能力。

二. 学情分析学生在学习本节内容之前,已经掌握了三角形的性质和分类,他们对三角形有了一定的认识。

但是,对于等腰三角形的性质,他们可能还比较陌生。

因此,在教学过程中,我需要引导学生通过观察、操作、推理等方法,自主探索等腰三角形的性质,从而加深他们对三角形性质的理解。

三. 教学目标1.知识与技能目标:让学生通过观察、操作、推理等方法,掌握等腰三角形的性质,并能够运用这些性质解决实际问题。

2.过程与方法目标:通过自主探索、合作交流,培养学生的观察能力、推理能力以及运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:让学生在探究等腰三角形性质的过程中,体验到数学的乐趣,增强对数学的兴趣。

四. 教学重难点1.重点:等腰三角形的性质。

2.难点:如何引导学生通过观察、操作、推理等方法,自主探索等腰三角形的性质。

五. 教学方法1.情境教学法:通过设置问题情境,引导学生自主探索等腰三角形的性质。

2.合作学习法:引导学生分组讨论,培养学生的合作意识。

3.引导发现法:教师引导学生发现问题,解决问题,培养学生的观察能力和推理能力。

六. 教学准备1.准备等腰三角形的模型或者图片,用于引导学生观察。

2.准备等腰三角形性质的习题,用于巩固知识。

七. 教学过程1.导入(5分钟)利用多媒体展示等腰三角形的图片,引导学生观察等腰三角形的特征。

提问:你们观察到了等腰三角形的哪些特征?2.呈现(10分钟)呈现等腰三角形的性质,引导学生通过操作、推理等方法,验证这些性质。

八年级数学上册《等腰三角形的性质》教案、教学设计

八年级数学上册《等腰三角形的性质》教案、教学设计
3.演示验证,巩固知识
-利用几何画板等教学工具,直观演示等腰三角形的性质,帮助学生加深理解。
-通过典型例题,引导学生运用等腰三角形的性质进行计算和证明,巩固所学知识。
4.实践应用,拓展提高
-设计具有挑战性的练习题,让学生在解决问题的过程中提高几何素养。
-鼓励学生将所学知识运用到实际生活中,如设计等腰三角形图案,培养他们的创新意识和实际操作能力。
4.结合教材,引导学生学习等腰三角形的相关定理和公式,如等腰三角形的面积公式、周长公式等。
(三)学生小组讨论
1.教师将学生分成若干小组,每组讨论一个问题,如等腰三角形的性质、判定方法、应用等。
2.学生在小组内交流观点,共同解决问题,教师巡回指导,给予提重难点和教学设想
(一)教学重难点
1.理解并掌握等腰三角形的定义及其性质,特别是等腰三角形的底角相等、底边上的高、中线和顶角的平分线相互重合。
2.学会运用等腰三角形的性质解决相关问题,如周长、面积的计算,以及几何证明。
3.培养学生的空间想象能力和逻辑推理能力,提高他们在几何领域的解题技巧。
(二)教学设想
在教学过程中,要注意关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重启发式教学,激发学生的学习兴趣和求知欲,让他们在探索中发现问题,解决问题,从而提高他们的数学素养。
二、学情分析
八年级的学生已经具备了一定的几何知识基础,掌握了三角形的基本概念和性质,能够进行简单的几何推理和论证。在此基础上,学生对等腰三角形的性质进行学习,有利于他们巩固和拓展已有的几何知识体系。然而,学生在几何方面的空间想象能力和逻辑推理能力仍有待提高,对等腰三角形性质的理解和应用可能存在困难。针对这种情况,教师在教学过程中应注重启发引导,关注学生的认知发展,通过直观演示、动手操作等教学手段,帮助他们突破难点,提高几何素养。同时,教师要关注学生的情感态度,鼓励他们积极参与课堂讨论,培养他们的自信心和合作精神,使他们在轻松愉快的氛围中学习等腰三角形的性质。

八年级数学上册《等腰三角形的判定》教案、教学设计

八年级数学上册《等腰三角形的判定》教案、教学设计
二、学情分析
八年级的学生已经具备了一定的几何图形认知基础,对三角形的性质有了初步的了解。在此基础上,学生对等腰三角形的判定这一章节内容的学习将更为顺利。然而,学生在几何证明和逻辑推理方面仍存在一定困难,需要教师在教学过程中给予关注和引导。此外,学生对数学学习的兴趣和积极性存在差异,部分学生对几何学习缺乏自信,教师应关注这一现象,采取差异化教学策略,激发学生的学习兴趣和自信心。通过对本章节的学习,使学生能够更好地理解和运用等腰三角形的判定方法,提高几何图形的解题能力,为后续学习打下坚实基础。
4.教学拓展:
-结合实际生活中的等腰三角形实例,让学生体会数学与生活的联系,提高学生的应用意识。
-引导学生探索等腰三角形与其他几何图形之间的关系,如等腰三角形与圆、正方形等,拓展学生的知识视野。
-组织课后研究性学习活动,鼓励学生自主探究等腰三角形的更多性质和应用,培养学生的探究精神。
四、教学内容与过程
3.生活实践题:让学生观察生活中的等腰三角形,并记录下来,分析它们的特点和应用。例如,观察三角尺、衣架、桥梁等,将观察结果以文字或图片形式进行展示。
4.小组合作研究:以小组为单位,选择以下课题进行研究,并在下一节课上进行汇报。
a.等腰三角形与等边三角形的关系。
b.等腰三角形在生活中的应用。
c.等腰三角形的判定方法在解决实际问题时的重要性。
讨论结束后,各小组汇报讨论成果,教师点评并给予指导。
(四)课堂练习
设计以下练习题,检验学生对等腰三角形判定方法的理解和应用:
1.判断以下三角形是否为等腰三角形,并说明理由。
2.已知等腰三角形的底和腰长,求底角和顶角的度数。
3.已知等腰三角形的底角,求顶角的度数。
学生在练习过程中,教师巡回指导,解答学生疑问,帮助学生掌握解题方法。

等腰三角形的教学设计(合集3篇)

等腰三角形的教学设计(合集3篇)

等腰三角形的教学设计(合集3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等腰三角形的教学设计(合集3篇)等腰三角形的教学设计(1)教材分析:《等腰三角形》是冀教版八年级数学上册第十七章第一节内容。

《等腰三角形》教学设计

《等腰三角形》教学设计

《等腰三角形》教学设计《《等腰三角形》教学设计》这是优秀的教学设计文章,盼望可以对您的学习工作中带来协助!等腰三角形的性质教学设计教学目的:通过教学使学生驾驭等腰三角形的性质及推论,并能运用这些性质解题.教学重点:(1)等腰三角形的性质及证明(2)证明题证法的分析.教学难点:(1)等腰三角形的三线合一定理的题设和结论的区分.(2)证明题中协助线的问题.教学方法:探究发觉法.教学过程:一、新课引入师:我们在小学就已经学过等腰三角形,等腰三角形是一种特别的三角形,它除了具有一般三角形的性质外,还有一些特别的性质。

在学习这些性质之前,请同学们回忆一下等腰三角形的概念,即什么叫等腰三角形呢?生:有两条边相等的三角形叫等腰三角形,其中相等的两边叫做腰,另一边叫做底边.师:在等腰三角形中,三个内角分别叫做什么呢?生:两腰的夹角叫做顶角,腰和底边的夹角叫做底角.师:答复得很好(重复顶角和底角的概念),两腰有什么关系?生:由等腰三角形的概念知道等腰三角形的两腰相等.师:那么两个底角有什么关系呢?这便是我们今日所要学习的内容.二、新课讲解:师:在小学里,我们曾把等腰三角形的两腰重叠在一起,发觉它的两个底角重合,(向学生演示将一个硬纸片做成的等腰三角形对折,使两腰重合),这说明等腰三角形的两底角有什么关系呢?生:两底角相等.师:对,这便是我们本节课学习一特性质定理。

(板书:等腰三角形的性质定理:等腰三角形的两个底角相等,简称为:等边对等角。

)我们不但要记住这个定理,还要看如何证明这个定理,同学们想一下怎样证明这个定理呢?生:通过证明两个三角形全等去证明.师:可是我们这里只有一个三角形.生:可以通过作协助线得到两个三角形.师:怎样作协助线呢?提问学生甲:作顶角的平分线AD.师生共同写出:确定三角形ABC中,AB=AC,求证:师:请甲同学表达证明过程。

老师依据学生甲的表达写出证明过程作的平分线AD,在三角形ABD和三角形ACD中.(全等三角形对应角相等)师:上面作顶角的平分线为构造两个全等三角形缔造了条件,想一想还有没有其它的作法?提问学生乙:作底边BC上的高.师:请乙同学表达证明过程。

等腰三角形性质教学设计(共5篇)

等腰三角形性质教学设计(共5篇)

等腰三角形性质教学设计(共5篇)第1篇:等腰三角形性质教学设计等腰三角形的性质教学设计一、教学目标(一)、知识目标1、了解等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行相关的论证和计算。

2、理解等腰三角形和等边三角形性质定理之间的联系。

(2)、能力目标1、培养学生“转化”的数学思要及应用意识,初步了解作辅助线的规律及“分类讨论”的思要。

2、培养学生进行独立思考,提高了独立解决问题的能力。

(三)、德育目标通过本节课教学,激发学生探索在实际生活中和数学相关的现实问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。

二、教学重难点1、教学着重:等腰三角形的性质定理及其证明。

2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。

三、教学用具三角板、圆规、投影胶片、投影仪、计算机等。

四、教学过程课的导入:(一)、三角形按边怎样分类?(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形) (二)、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.(三)、一般三角形有那些性质?(两边之和大于第三边.三次内角的和等于180°).(四)、图片展示等腰三角形在日常生活中的实例。

新课讲解(一)、动手实验,发现结论请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两次底角还有什么关系?(二)、(电脑或几何画板演示)结论:折叠等腰三角形或改变等腰三角形的腰长后,两底角之间依旧坚持相等关系。

(三)、证明结论,得出性质1、性质定理的证明。

(1)学生找出文字命题的题设、结论、画图,换成符号语言。

(2)引导学生寻找辅助线、如何添加辅助线。

(3)电脑显示证明过程。

(4)说明“等边对等角”的作用。

2、推论1的证明。

(1)进一步启发学生得到“等腰三角形三线合一”的性质。

(2)说明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。

等腰三角形的性质的教学设计

等腰三角形的性质的教学设计

等腰三角形的性质的教学设计教学设计:等腰三角形的性质一、教学目标通过本堂课的学习,学生能够:1. 了解等腰三角形的定义和性质;2. 能够判断一个三角形是否为等腰三角形,并说明理由;3. 掌握等腰三角形的基本性质;4. 运用等腰三角形的性质解决问题。

二、教学准备1. 教师准备:(1) 相关教学课件;(2) 等腰三角形模型;(3) 图形板书。

2. 学生准备:(1) 笔记本和书写工具;(2) 教材和练习册。

三、教学过程步骤一:导入(5分钟)教师利用课件中的图片展示一些常见的图形,引出等腰三角形的概念。

并通过提问的方式,激发学生对等腰三角形的认知。

步骤二:概念讲解(10分钟)教师讲解等腰三角形的定义:在一个三角形中,如果两边边长相等,我们称这个三角形为等腰三角形。

然后,教师通过教材的例题,引导学生发现等腰三角形内部的角度特点。

步骤三:性质总结(15分钟)教师引导学生通过观察和分析,总结出等腰三角形的性质,并进行板书整理。

学生可以利用教材上的例题、练习题,并和同伴进行讨论,加深对等腰三角形性质的理解。

步骤四:性质应用(15分钟)教师通过一些实际问题,引导学生运用等腰三角形的性质解决问题。

学生可以在小组内探讨解题思路,并进行展示和讨论。

教师可以通过个别辅导,帮助学生理解和掌握解题方法。

步骤五:拓展延伸(10分钟)教师可以给学生一些较难的拓展题目,让学生运用所学等腰三角形的性质解决。

教师可以利用课件和实物模型进行演示,帮助学生理解和掌握。

步骤六:归纳总结(5分钟)教师和学生共同总结课堂所学内容,强化学生对等腰三角形的定义和性质的记忆。

四、课堂小结通过本堂课的学习,我们了解了等腰三角形的定义和性质。

我们已经学会如何判断一个三角形是否为等腰三角形,并且掌握了等腰三角形的基本性质。

我们还学会了如何运用等腰三角形的性质解决问题。

五、课后作业请完成教材上的相关练习题,加深对等腰三角形性质的掌握和运用。

六、教学反思教师在本节课中,通过引导学生观察和分析,让学生主动发现等腰三角形的性质。

华师大版数学八年级上册《等腰三角形的性质》教学设计3

华师大版数学八年级上册《等腰三角形的性质》教学设计3

华师大版数学八年级上册《等腰三角形的性质》教学设计3一. 教材分析《等腰三角形的性质》是华师大版数学八年级上册的一个重要内容。

在学习本节课之前,学生已经掌握了三角形的性质,包括三角形的内角和定理和全等三角形的性质。

本节课主要让学生学习等腰三角形的性质,包括等腰三角形的定义、底角相等、高线、中线和角平分线的性质。

这些性质对于学生理解三角形的结构特征和解决三角形相关问题具有重要意义。

二. 学情分析学生在学习本节课之前,已经具备了一定的几何知识基础,能够理解并运用三角形的性质。

但是,对于等腰三角形的性质,学生可能还比较陌生,需要通过实例和操作来加深理解。

此外,学生可能对于一些专业术语,如高线、中线、角平分线等,还不够熟悉,需要在教学中进行解释和强调。

三. 教学目标1.知识与技能目标:使学生理解和掌握等腰三角形的性质,包括等腰三角形的定义、底角相等、高线、中线和角平分线的性质。

2.过程与方法目标:通过观察、操作、猜想和证明等过程,培养学生的几何思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 教学重难点1.重点:等腰三角形的性质,包括底角相等、高线、中线和角平分线的性质。

2.难点:理解并证明等腰三角形的底角相等和高线、中线、角平分线的性质。

五. 教学方法1.引导发现法:通过提问和引导学生观察,发现等腰三角形的性质。

2.操作验证法:通过实际操作,验证等腰三角形的性质。

3.几何画板法:利用几何画板软件,展示等腰三角形的性质。

4.小组合作法:引导学生分组讨论,培养团队合作意识。

六. 教学准备1.教学课件:制作课件,展示等腰三角形的性质。

2.几何画板软件:准备几何画板软件,用于展示等腰三角形的性质。

3.教学素材:准备一些等腰三角形的实物模型,用于观察和操作。

七. 教学过程1.导入(5分钟)通过提问方式复习三角形的性质,为新课的学习做好铺垫。

2.呈现(10分钟)利用课件展示等腰三角形的定义和性质,引导学生观察和思考。

等腰三角形第1课时教学设计

等腰三角形第1课时教学设计

等腰三角形第1课时教学设计一、教学目标:1. 知识目标:学生能够正确地定义等腰三角形,并能确定等腰三角形的性质。

2. 技能目标:学生能够通过观察图形和计算,判断一个三角形是否为等腰三角形。

3. 情感目标:培养学生对几何图形的兴趣,激发学生学习数学的积极性。

二、教学重难点:1. 重点:了解等腰三角形的定义和性质,能够判断一个三角形是否为等腰三角形。

2. 难点:通过观察和计算,判断一个三角形是否为等腰三角形。

三、教学过程:1. 情境导入教师拿起一把剪刀,将纸张剪成一个三角形,然后问学生:这是一个什么样的三角形?学生可以回答出各种三角形,如等边三角形、直角三角形等。

然后教师指出三角形的两条边是否相等,学生发现其中两条边相等,教师引导学生发现这是一个等腰三角形。

2. 概念解释教师向学生解释等腰三角形的定义:等腰三角形是指两边长度相等的三角形。

然后,教师再次展示剪纸做出的等腰三角形,引导学生回答:哪两边是相等的?学生可以指出等腰三角形的两边是相等的。

3. 性质探究教师将多个三角形的图形投影或分发给学生,让学生自主观察和研究这些三角形。

然后教师带领学生讨论以下问题:- 这些三角形中哪些是等腰三角形?为什么?- 如何判断一个三角形是否为等腰三角形?通过学生的观察和探究,引导学生总结出等腰三角形的性质:- 一个三角形两边相等时,这个三角形是等腰三角形。

- 在一个三角形中,如果两边相等,那么他们对应的两个角也相等。

4. 练习与巩固教师设计一些练习题目,让学生运用所学知识判断是否为等腰三角形。

例如:- 观察三角形ABC,AB = AC,∠A = 60°,请判断三角形ABC是否为等腰三角形。

- 观察三角形XYZ,XY = XZ,∠X = ∠Y = 45°,请判断三角形XYZ是否为等腰三角形。

5. 拓展与延伸教师提出更高层次的问题,让学生思考和探究。

例如:- 一个三角形两个角相等时,这个三角形一定是等腰三角形吗?- 如果一个三角形两个边相等,这个三角形一定是等腰三角形吗?四、教学反思:通过本堂课的教学设计,学生通过观察和探究,正确理解了等腰三角形的定义和性质,并能够用所学知识判断一个三角形是否为等腰三角形。

等腰三角形复习教学设计与反思

等腰三角形复习教学设计与反思

等腰三角形复习教学设计与反思一、教学设计(一)教学目标1、知识与技能目标:学生能够熟练掌握等腰三角形的性质和判定定理,能够运用这些知识解决相关的几何问题。

2、过程与方法目标:通过复习和练习,培养学生的逻辑思维能力、空间想象力和解题能力。

3、情感态度与价值观目标:让学生在学习中体验成功的喜悦,增强学习数学的自信心和兴趣。

(二)教学重难点1、教学重点:等腰三角形的性质和判定定理的应用。

2、教学难点:等腰三角形相关问题中的分类讨论思想。

(三)教学方法1、讲练结合法:通过讲解例题和练习巩固知识点。

2、小组合作法:组织学生小组讨论,培养合作交流能力。

(四)教学过程1、知识回顾提问:同学们,谁能说一说等腰三角形的定义是什么?(等腰三角形是指至少有两边相等的三角形)引导学生回忆等腰三角形的性质:两腰相等、两底角相等、三线合一(顶角平分线、底边上的中线、底边上的高互相重合)。

复习等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。

2、例题讲解例 1:已知在等腰三角形 ABC 中,AB = AC,∠A = 50°,求∠B 和∠C 的度数。

分析:因为 AB = AC,所以∠B =∠C。

又因为三角形内角和为180°,所以∠B =∠C =(180° 50°)÷ 2 = 65°。

例 2:在等腰三角形 ABC 中,AB = 5,BC = 6,求这个三角形的周长。

分析:这道题需要分两种情况讨论。

当 AB 为腰时,周长为 5 + 5+ 6 = 16;当 BC 为腰时,周长为 5 + 6 + 6 = 17。

3、课堂练习让学生完成课本上的相关练习题,教师巡视并进行个别指导。

4、小组讨论组织学生小组讨论以下问题:在一个等腰三角形中,如果一个角是80°,那么另外两个角的度数是多少?每个小组派代表发言,分享讨论结果。

5、总结归纳引导学生总结等腰三角形的知识点和解题方法。

初中数学等腰三角形性质教学设计

初中数学等腰三角形性质教学设计

初中数学等腰三角形性质教学设计初中数学等腰三角形性质教学设计篇1一、教材分析1、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。

能力目标:能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力。

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

2、教学重、难点:重点:等腰三角形性质的探索及其应用。

难点:等腰三角形性质的探索及证明。

3、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

二、学情分析刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

三、教法分析《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。

为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。

四、学法建构《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。

2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。

等腰三角形的教学设计(9篇)

等腰三角形的教学设计(9篇)

等腰三角形的教学设计(9篇)等腰三角形篇一2.5等腰三角形的轴对称性(2)教学目标1.掌握等腰三角形的判定定理。

2.知道等边三角形的性质以及等边三角形的判定定理。

3.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径。

4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力。

教学重点熟练地掌握等腰三角形的判定定理。

教学难点正确熟练地运用定理解决问题及简洁地逻辑推理。

教学过程(教师活动)学生活动设计思路前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识。

本节课我们将继续学习等腰三角形的轴对称性。

一、创设情境如图所示△abc是等腰三角形,ab=ac,它的一部分被墨水涂没了,只留下一条底边bc 和一个底角△c.请同学们想一想,有没有办法把原来的等腰三角形abc重新画出来?大家试试看。

1.学生观察思考,提出猜想。

2.小组交流讨论。

一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的方法,另一方面通过创设情境,自然地引入课题。

二、探索发现一请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:(1)在半透明纸上画一条长为6cm的线段bc.(2)以bc为始边,分别以点b和点c为顶点,在bc的同侧用量角器画两个相等的锐角,两角终边的交点为a.(3)用刻度尺找出bc的中点d,连接ad,然后沿ad对折。

问题1:ab与ac有什么数量关系?问题2:请用语言叙述你的发现。

1.根据实验要求进行操作。

2.画出图形、观察猜想。

3.小组合作交流、展示学习成果。

演示折叠过程为进一步的说理和推理提供思路。

通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验。

三、分析证明思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?问题3:已知如图,在△abc中,△b=△c.求证:ab=ac.引导学分析问题,综合证明。

北师大版数学八年级下册1.1《等腰三角形》教学设计

北师大版数学八年级下册1.1《等腰三角形》教学设计

北师大版数学八年级下册1.1《等腰三角形》教学设计一. 教材分析北师大版数学八年级下册1.1《等腰三角形》是学生在学习了三角形的基本概念和性质的基础上,进一步研究等腰三角形的性质。

本节课的内容包括等腰三角形的定义、等腰三角形的性质以及等腰三角形的判定。

通过本节课的学习,学生能够掌握等腰三角形的性质,并能运用其解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作和推理能力。

但部分学生对概念的理解不够深入,对性质的运用不够熟练,因此需要在教学过程中加强对学生的引导和启发。

三. 教学目标1.知识与技能目标:理解等腰三角形的定义,掌握等腰三角形的性质,并能运用其解决实际问题。

2.过程与方法目标:通过观察、操作、推理等方法,培养学生的几何思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.教学重点:等腰三角形的性质及其运用。

2.教学难点:等腰三角形性质的推理和证明。

五. 教学方法1.情境教学法:通过设置问题和情境,引导学生主动探索和解决问题。

2.合作学习法:引导学生进行小组讨论和合作,共同解决问题。

3.实践操作法:让学生通过实际操作,加深对等腰三角形性质的理解。

六. 教学准备1.教具准备:多媒体课件、几何模型、黑板等。

2.学具准备:学生自带三角板、直尺、铅笔等。

七. 教学过程1.导入(5分钟)利用多媒体课件展示等腰三角形的图片,引导学生观察和思考:这些三角形有什么共同的特点?从而引出等腰三角形的定义。

2.呈现(10分钟)呈现等腰三角形的性质,引导学生通过观察和操作,发现并证明等腰三角形的性质。

在此过程中,教师引导学生运用已学的三角形性质,培养学生的几何思维能力。

3.操练(10分钟)学生分组进行实践活动,运用等腰三角形的性质解决实际问题。

教师巡回指导,及时解答学生的疑问。

4.巩固(5分钟)教师选取几道练习题,让学生在课堂上完成,检验学生对等腰三角形性质的掌握程度。

初中数学初二数学上册《等腰三角形》教案、教学设计

初中数学初二数学上册《等腰三角形》教案、教学设计
(三)学生小组讨论,500字
1.教师将学生分成小组,每组发放一张含有等腰三角形的图形,要求学生找出图形中的等腰三角形,并讨论其性质。
2.各小组汇报讨论成果,教师点评并给予鼓励。
3.教师提出问题:“等腰三角形性质在解题过程中有什么作用?”引导学生进一步探讨。
(四)课堂练习,500字
1.教师发放练习题,题目涵盖等腰三角形的性质、判定以及运用等方面。
初中数学初二数学上册《等腰三角形》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握等腰三角形的定义及性质,能够识别并运用等腰三角形的性质解决问题。
2.培养学生运用几何图形、符号、文字等多种表达方式描述等腰三角形的特征,提高学生的数学表达能力。
3.通过对等腰三角形性质的学习,使学生能够运用这些性质进行简单的几何证明,培养逻辑思维能力。
作业要求:
1.学生独立完成作业,确保作业质量,书写规范,答案准确。
2.家长协助监督,关注学生的学习进度,鼓励学生主动思考和解决问题。
3.教师在批改作业时,注意学生的解题思路和方法,及时发现问题,有针对性地进行辅导。
4.学生完成作业后,进行自我检查,确保作业无误,养成良好的学习习惯。
3.结合等腰三角形的性质,思考并完成以下问题:若已知等腰三角形的一腰和底边,如何求解该等腰三角形的面积?请给出解题步骤和答案。
4.小组合作,探讨等腰三角形在生活中的应用,并以图文并茂的形式展示成果,提高学生的合作意识和实践能力。
5.完成课后拓展题:已知等腰三角形ABC,AB=AC,D、E分别是BC、AC上的点,且BD=CE。求证:AD垂直平分CE。
2.学生独立完成练习题,教师巡回指导,解答学生的疑问。
3.教师选取部分学生的解答进行展示和点评,强调解题过程中的注意事项,如证明步骤、逻辑关系等。

等腰三角形的性质教学设计一等奖(精选)

等腰三角形的性质教学设计一等奖(精选)

等腰三角形性质分析
等腰三角形底边上的垂直平分线到两 条腰的距离相等。
等腰三角形底边上任意一点到两腰距 离之和等于一腰上的高(需用等面积 法证明)。
等腰三角形的一腰上的高与底边的夹 角等于顶角的一半。
等腰三角形是轴对称图形,只有一条 对称轴,顶角平分线所在的直线是它 的对称轴,等边三角形有三条对称轴。
引导学生通过小组讨论,探讨等腰三角形在生活中的应用,例如建筑设 计、工程绘图等领域。
让学生分享自己对于等腰三角形性质的理解和应用经验,促进课堂交流 和互动。
教师总结本节课内容
回顾本节课所学的等腰三角形性 质,包括定义、性质定理及其证
明过程。
强调等腰三角形性质在几何学和 实际应用中的重要性,鼓励学生
等腰三角形在几何图形中的应用
研究等腰三角形在几何图形中的应用,例如在建筑设计、工程绘图等领域中的实际应用。 这有助于将数学知识与实际生活相结合,提高学生的数学应用能力。
06
课堂互动环节与小结
学生提问及讨论环节
鼓励学生提出对于等腰三角形性质的问题,如“等腰三角形的两条等边 和对应的两个等角有什么关系?”、“如何证明等腰三角形的底角相 等?”等。
等腰三角形的性质教 学设计一等奖(精选)
目录
• 课程介绍与目标 • 等腰三角形基本概念与性质 • 等腰三角形判定定理及应用 • 等腰三角形面积计算与拓展 • 等腰三角形相关数学问题探讨 • 课堂互动环节与小结
01
课程介绍与目标
课程背景与意义
01
等腰三角形是初中数学中的重要内 容,对于提高学生的几何思维能力 和解决问题的能力具有重要意义。
等腰三角形中的角度关系问题
01
等腰三角形两底角相等
在任何等腰三角形中,两个底角的大小总是相等的,这是由于等腰三角

人教版八年级数学上册:133等腰三角形教学设计(4课时)

人教版八年级数学上册:133等腰三角形教学设计(4课时)
-教师设计不同类型的例题和练习题,引导学生从多个角度分析问题,培养学生的发散思维和创新能力。
-学生通过解决实际问题,将理论知识与实际应用相结合,提高数学素养。
3.利用信息技术手段,如多媒体、网络资源等,辅助教学,提高教学效果。
-教师运用多媒体课件、几何画板等工具,直观演示等腰三角形的性质和证明过程,帮助学生理解和记忆。
2.提高拓展题:
-完成课本第134页的练习题4、5,这两题涉及等腰三角形在几何证明中的应用,有助于培养学生的逻辑思维能力和几何证明技巧。
-鼓励学生尝试不同的解题方法,拓展思维,提高创新能力。
3.实践应用题:
-设计一道与生活相关的等腰三角形应用题,要求学生运用所学知识解决实际问题,例如计算等腰三角形在建筑、艺术等领域的应用。
6.拓展延伸,培养创新能力:
-在教学中,教师可适当拓展等腰三角形的相关知识,如等腰梯形、等腰三角形的特殊性质等,培养学生的发散思维。
-鼓励学生提出不同的解题思路和方法,激发学生的创新意识,提高他们的创新能力。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
-教师以生活中的等腰三角形实例为切入点,如展示等腰三角形形状的物体(如三角尺、风筝等),引导学生观察并思考:这些物体有什么共同特点?它们在生活中的应用有哪些?
-教师组织学生进行小组讨论、合作探究,引导学生互相尊重、互相帮助,培养学生的团队精神。
-学生通过合作学习,学会倾听、表达、沟通,提高人际交往能力。
3.培养学生的创新意识,鼓励学生勇于探索、敢于质疑。
-教师鼓励学生提出不同的观点和疑问,引导学生从多角度思考问题,培养学生的创新思维。
-学生在探索过程中,勇于尝试、不断进步,形成独立思考、解决问题的能力。

《等腰三角形》 教学设计

《等腰三角形》 教学设计

《等腰三角形》教学设计一、教学目标1、知识与技能目标学生能够理解等腰三角形的定义和性质,掌握等腰三角形的判定方法,并能运用这些知识解决简单的几何问题。

2、过程与方法目标通过观察、操作、猜想、论证等活动,培养学生的逻辑推理能力和创新思维能力,提高学生的动手实践能力和合作交流能力。

3、情感态度与价值观目标让学生在探索等腰三角形的过程中,体验数学的乐趣,感受数学的严谨性和逻辑性,培养学生的审美情趣和对数学的热爱之情。

二、教学重难点1、教学重点等腰三角形的性质和判定方法。

2、教学难点等腰三角形性质和判定的证明过程,以及等腰三角形中三线合一性质的应用。

三、教学方法讲授法、演示法、讨论法、探究法四、教学过程1、导入新课通过展示一些等腰三角形的实物图片,如等腰三角形的建筑、等腰三角形的旗帜等,引导学生观察这些图片,提出问题:“这些图形有什么共同特点?”从而引出本节课的主题——等腰三角形。

2、讲授新课(1)等腰三角形的定义教师结合图片,给出等腰三角形的定义:有两边相等的三角形叫做等腰三角形。

相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

(2)等腰三角形的性质①让学生动手制作一个等腰三角形的纸片,通过对折,观察等腰三角形的对称性,得出等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线。

②引导学生猜想等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。

③证明等腰三角形的性质对于性质②,引导学生作顶角的平分线,利用三角形全等证明两个底角相等。

对于性质③,分别证明顶角平分线、底边上的中线、底边上的高互相重合。

(3)等腰三角形的判定提出问题:“如果一个三角形有两个角相等,那么这两个角所对的边有什么关系?”引导学生进行猜想和证明,得出等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形
本周重点、难点分析:
一、等腰三角形的分类讨论
等腰三角形是一种特殊而又重要的三角形。

它的边、角的特殊性在处理许多几何问题中起着关键作用,因为等腰三角形的特殊性。

我们在处理问题时很多时候需要分类讨论。

(1)由于题目条件的不确定性导致结果的不唯一
1.已知等腰三角形的一个角为75度,则其顶角为_____________。

分析:等腰三角形的一个角是750这个角可能是顶角,也可能是底角。

因此需要分类讨论
当等腰三角形的底角是750时,则顶角为300
当等腰三角形的顶角是750 时,也符合题意。

评点对于等腰三角形,若条件中没有确定顶角或底角时,应注意分情况讨论,再用三角形内角和定理求解。

2.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_____________。

分析:等腰三角形的一边等于5,另一边等于6,没有指明哪个是腰长,哪个是底边的长,
因此要分类讨论
当5是等腰三角形的腰长时那么底边长就是6 则它的周长等于16
当6是等腰三角形的腰长时那么底边长就是5 则它的周长等于17
这个等腰三角形的周长等于16 或17.
评点对于底和腰不等的等腰三角形若条件中没有明确底和腰时应在符合三角形三边关系的前提下分类讨论
3.若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。

分析:如图,由于中线分周长为两部分并没有指明哪一部分是9cm
哪一部分是12cm 因此应有两种情形
设这个等腰三角形的腰长为x cm底边长为y cm
当腰长是6cm时底边长是9cm
当腰长是8cm时底边长是5cm
评点求出来的长不一定能构成三角形三条边应满足三角形三边关系定理
(2)由于题目条件的画出图形的不确定性导致结果的不唯一
4.等腰三角形一腰上的高与另一腰所成的夹角为45o,求顶角?
分析:依题意可画出如图所示的两种情形. 显然,易求得左图中顶角为45o和右图中的顶角为135o
评点:三角形的高是由三角形的形状所决定。

对于等腰三角形:当顶角是锐角时,腰上的高在三角形内部。

当顶角是钝角时,腰上的高在三角形外部。

5.在△ABC 中,AB=AC,AB 的中垂线与AC所在直线相交所得的锐角为50O,则底角为___________。

分析:按照题意我们可以画出示意图。

可以求得底角是70度或者20度。

评点右图,最容易漏掉,求解时一定要认真分析题意,画出可能的所有图形,才能正确解题。

(二)等腰三角形是几何的一块基石,同学们掌握有关等腰三角形证明中添加辅助线的常用方法.是重要的也是必要的
1、作底边上的高(或底边中线或顶角平分线) .
等腰三角形的性质和判定定理就是通过作这样的辅助线得证的.
1.如图1,在△ABC中, AB = AC, BD⊥AC于D,求证: ∠BAC = 2∠DBC.
分析:要证∠BAC = 2∠DBC. 可把∠BAC的一半作出来,故可作∠BAC的平分线,或作底边BC的高,
中线都可. 给出其中一种证明过程.
证明:作AE ⊥BC,则∠2 +∠C = 90°,
∵AB = AC,
∴∠1 = ∠2 =.
∵BD ⊥AC,
∴∠DBC + ∠C = 90°.
∴∠DBC = ∠2,
∴∠BAC = 2∠DBC.
结论:等腰三角形一腰上的高与底边的夹角等于顶角的一半.记住这个结论,对于解答填空题、选择题或判断题非常有帮助.
2、作底边上的中线
2.如图2, △ABC是等腰直角三角形,AB = AC, D是斜边BC的中点, E、F分别是AB、AC边上的点,且DE⊥DF,若 B E = 12, CF= 5,求EF的长.
分析:B E = 12, CF = 5,想到AE、AF应该好求,它们刚好又与EF构成直角三角形于是由图的启发进一步探索AE与CF的关系连结AD,不难证得AE = CF.
证明:连结AD.
∵AB = AC, ∠A = 90°, D是斜边BC的中点.
∴∠1 = ∠C = 45°, AD = CD, AD ⊥CD
∴∠2 + ∠4 = 90°.
∵DE ⊥DF,
∴∠2 + ∠3 = 90°.
∴∠3 = ∠4.
∴△DEA ≌△DFC.
∴AE = CF = 5,
∴AF = B E = 12. ∠A = 90°
∴EF = 13.
3、平移一腰
3.如图3,在△ABC中, AB = AC,点F在AB上,点E在AC延长线上, B F = CE,连接EF交BC于D,求证:D为EF中点.
分析:要证D为EF中点,可证DF =DE,那么,考虑把DF、DE放在可能全等的两个三角形中,
故过F点作FG∥AC交BC于G,或过E作AB的平行线交BC的延长
线于一点都可.现给出其中一种证明.
证明:作FG ∥AC,则
∠1 = ∠2, ∠3 = ∠E, ∠4 = ∠5.
∵AB = AC, ∴∠B = ∠2.
∴∠B = ∠1, ∴B F = GF.
∵B F = CE, ∴GF = CE.
∴△GFD ≌△CED.
∴FD = ED,即D为EF中点.
4、一般三角形中有二倍角时,构造等腰三角形使二倍角是等腰三角形的外角或平分二倍角
4.如图4,已知在△ABC中, ∠B =2∠C, AD是∠A的平分线,求证:AB + BD =AC.
分析:有二倍角,可延长AB到E,使B E= BD,连结DE,只需证AE = AC即可.
证明:延长AB到E使 B E = BD. 连结
DE,则∠E = ∠3.
∴∠4 = 2∠E.
∵∠4 = 2∠C, ∴∠E = ∠C.
∵AD是∠A的平分线,
∴∠1 = ∠2,又AD = AD,
∴△AED ≌△ACD,
∴AE = AC.
∴AB + BD = AB +B E = AC.
5、将等腰三角形转化成等边三角形
5.如图5, △DBE是等边三角形,点A在B E
延长线上,点C在BD延长线上,且AD =AC,求证:DE +DC = AE.
分析:要证AE = DE +DC,由于DE =BD故要证AE = BC.题中现有条件无法证明这个结论,若延长BC至F,使CF = B E,连接AF,则出现△ACF ≌△ADB.
故AF = AB,又∠B = 60°,从而△AB F为等边三角形,
故AB = B F,又AB = AE + B E,
B F = B
C +CF, B E = CF,故AE = BC,命题得证.
证明:延长BC至F,使CF = B E.
连接AF.
∵AC = AD,
∴∠ACD = ∠ADC,
∴∠ADB = ∠ACF.
∵△BDE为等边三角形,
∴∠B = 60°, BD = B E = DE = CF.
又∵AD = AC,
∴△ABD≌△AFC, ∴AF = AB.
又∵∠B = 60°,
∴△AB F为等边三角形,
∴AB = B F.
由等量代替得:
AE = AB - B E = B F - CF
= BD +DC = DE +DC。

相关文档
最新文档