2016-2017学年人教版七年级数学第一学期期末考试卷及答案
XXX版七年级数学上学期期末考试试卷含答案)
XXX版七年级数学上学期期末考试试卷含答案)X学年第一学期期末考试试卷——初一数学X.1本试卷共分为填空题、选择题和解答题三大题,共28小题,满分130分,考试时间为120分钟。
注意事项:1.考生必须在答题卷上填写自己的学校、班级、姓名、考试号、考场号和座位号,并认真核对;2.考生必须使用0.5毫米黑色墨水签字笔在答题卷指定的位置上作答,不在答题区域内的答案一律无效,不得使用其他笔答题;3.考生必须在答题卷上作答,保持纸面清洁,不要折叠、弄破,草稿纸上的答案一律无效。
一、选择题本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卷相应的位置上。
1.-3的相反数是A。
3 B。
1/1 C。
-3 D。
-1/32.某航空母舰的满载排水量为吨,将数用科学记数法表示为A。
0.609×10 B。
6.09×10 C。
60.9×10 D。
609×10^33.下列计算正确的是A。
3a+2b=5ab B。
5a-2a=3 C。
7a+a=7a D。
2ab-4ab=-2ab4.已知x=-1是方程2x-5=x+m的解,则m的值是A。
6 B。
-6 C。
-8 D。
-55.下列关于多项式2ab+ab-1的说法中,正确的是A。
次数是5 B。
二次项系数是3 C。
最高次项是2ab D。
常数项是-16.下列图形中,线段AD的长表示点A到直线BC距离的是225 4 3 22 2 2 2 2 217.如图,点D在∠AOB的平分线OC上,点E在OB上,DE//OA,∠1=124°,则∠AOD的度数为A。
23° B。
28° C。
34° D。
56°8.XXX在文具用品商店买了3件甲种文具和2件乙种文具,一共花了23元,已知甲种文具比乙种文具单价少1元,如果设乙种文具单价为x元/件,那么下面所列方程正确的是A。
广东省佛山市顺德区2016-2017学年七年级上学期数学期末考试试卷及参考答案
广东省佛山市顺德区2016-2017学年七年级上学期数学期末考试试卷一、单选题1. 如果向东走50米记作+50米,那么﹣50米表示()A . 向西走50米B . 向南走50米C . 向北走50米D . 向东走50米2. 下图左边的几何体可由( )图形绕虚线旋转而成.A .B .C .D .3. 下列图形中属于棱柱的个数有()A . 2个B . 3个C . 4个D . 5个4. 如图是一个正方体纸盒的展开图,每个面内都标注了字母或数字,则面a在展开前所对的面的数字是()A . 2B . 3C . 4D . 55. 在0,,-5,-3这四个数中,最大的数是()A . 0B . -3C .D . -56. 用一个平面去截一个正方体,截面不可能是( )A . 梯形B . 五边形C . 六边形D . 圆7. 下面给出的四条数轴中画得正确的是()A .B .C .D .8. 下列说法中,不正确的是()A . 零是整数B . 零没有倒数C . 零是最小的数D . -1是最大的负整数9. 下列各组数中,不相等的一组是()A . -(+7), -|-7|B . -(+7),-|+7|C . +(-7), -(+7)D . +(+7), -|-7|10. 如果,下列成立的是()A .B .C .D .二、填空题11. 如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记 ________米.12. 的相反数是________,倒数是________,绝对值是________.13. 计算:(1),(2)=.14. 比较大小: ________ (用 “>”、“=” 或“ <” 填空).15. 某市早上气温为-6℃,中午上升了9℃,到夜间又下降了12℃,这天夜间的温度是________℃.16. 某地气象统计资料表明,高度每增加1 000m,气温就降低大约6度. 现在地面的气温是35度,则10 000m高空的气温大约是 ________ 度.三、解答题17. 计算:(1)(-71)+(+64);(2)(-16)-(-7);(3);(4)18. 计算:有理数的运算(1);(2)()×(-24)19. 如图,给出了几个小立方块所塔几何体从上面看到的形状,小正方形中的数字表示该位置的小立方块的个数.请你画出这个几何体从正面和左面看到的形状图.20. 在数轴上表示下列各数,并比较它们的大小.4,-1,,0,1.5,-2.比较大小: ________<________<________<________<________<________21. 把下列各数填在相应的表示集合的大括号里:0.627,-3.14,-5,-,|- |,6% ,0,36①正整数:{________ };②整数:{________}③正分数:{________ };④负分数:{________}22. 下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数),如北京时间的上午1 0:00时,东京时间的10点已过去了1小时,现在已是10+1=11:00.(1)如果现在是北京时间下午3:00,那么现在的纽约时间是多少?(2)此时(北京时间9:00)小明想给远在巴黎的姑妈打电话,你认为合适吗?为什么?23. 一辆汽车沿着一条东西方向的公路来回行驶.某一天早晨从A地出发,晚上到达B地.约定向东为正,向西为负,当天记录如下:(单位:千米)-16、 -10 、+8、 -10、-6 、+13 、-7 、-9,(1)问B地在A地什么方向,距A地多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?24. 流花河的警戒水位是33.5米,下表记录的是今年某一周内的水位变化情况,取河流的警戒水位作为0点,并且上周末(星期六)的水位达到警戒水位,(正号表示水位比前一天上升,负号表示水位比前一天下降.)(1)本周哪一天河流的水位最高?哪一天河流的水位最低?(2)与上周末相比,本周末河流的水位是上升了还是下降了?(3)以警戒水位作为零点,用折线统计图表示本周的水位情况.参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.。
人教版七年级第一学期期末数学试卷及答案三
人教版七年级第一学期期末数学试卷及答案一、选择题(16个小题,1-10每题3分,11-16每题2分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.若(a+1)x2+(b﹣2)x+1=0是关于x的一元一次方程,则a,b的值可以是()A.0,0B.﹣1,2C.﹣1,0D.1,22.下列说法正确的是()A.a是代数式,1不是代数式B.表示a、b、2的积的代数式为2abC.的意义是:a与4的差除b的商D.a、b两数差的平方与a、b两数的积的4倍的和表示为(a﹣b)2+4ab3.如图,四个实数a,b,c,d在数轴上的对应的点分别是A,B,C,D,若c+d=0,则a,b,c,d四个实数中,绝对值最大的一个是()A.a B.b C.c D.d4.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条5.若单项式2x n y m﹣n与单项式3x n y2n的和是5x n y2n,则m,n的关系是()A.m=n B.m=2n C.m=3n D.m=4n6.下面是嘉淇计算的过程,现在运算步骤后的括号内填写运算依据.其中错误的是()解:原式=(有理数减法法则)=(乘法交换律)=(加法结合律)=(﹣5)+0(有理数加法法则)=﹣5A.有理数减法法则B.乘法交换律C.加法结合律D.有理数加法法则7.下列方程的变形,符合等式性质的是()A.由4x+2=3x,得4x=3x+2B.由,得y=2C.由a=b,得D.由﹣7x=5,得8.如图,△AOB绕点O逆时针旋转65°得到△COD,若∠AOB=30°,∠BOC的度数是()A.30°B.35°C.45°D.60°9.下列各组数中,数值相等的是()A.﹣3×23与﹣32×2B.﹣32与(﹣3)2C.﹣25与(﹣2)5D.(﹣)2与(﹣)210.下列方程变形中,正确的()A.方程3x﹣2=2x+1,移项得3x﹣2x=1﹣2B.方程,去分母得5(x﹣1)﹣2x=10C.方程,系数化为1得t=1D.方程3﹣x=2﹣5(x﹣1),去括号得3﹣x=2﹣5x﹣111.如图,AB=12,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为()A.4B.8C.10D.612.下列运算正确的是()A.31°12'36″=31.21°B.88°﹣57°23'27″=30°37'33″C.15°48'36″+37°27'59″=52°16'35″D.63.5°=63°50'13.已知|x|=3,|y|=5,且x>y,那么x+y等于()A.8B.﹣2C.8或﹣2D.﹣8或﹣214.如果A是3m2﹣m+1,B是2m2﹣m﹣7,且A﹣B+C=0,那么C是()A.﹣m2﹣8B.﹣m2﹣2m﹣6C.m2+8D.5m2﹣2m﹣615.大扫除期间,七(2)班已经安排了6人打扫教室,4人打扫包干区,为了尽快完成打扫任务,有14人主动要求去帮忙,使得打扫包干区的人数是打扫教室人数的2倍.假设去教室帮忙的同学有x人,根据题意可列出方程()A.2(6+x)=4+(14﹣x)B.6+x=2[4+(14﹣x)]C.2[6+(14﹣x)]=4+x D.6+(14﹣x)=2(4+x)16.若∠1与∠2互为余角,∠1与∠3互为补角,则下列结论:①∠3﹣∠2=90°;②∠3+∠2=270°﹣2∠1;③∠3﹣∠1=2∠2;④∠3<∠1+∠2.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(4个小题,每题3分,共12分)17.科学知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面的这个情景,请你做出判断.如图,从教学楼到图书馆,总有少数同学不走人行道而横穿草坪,为什么他们要做出如此破坏生态环境的不道德行为呢?试用所学数学知识来说明这个问题:.18.在等式3×□﹣2×□=15的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立.则第一个方格内的数是.19.当x=﹣1时,2ax3﹣3bx的值为10,则12b﹣8a+2的值为.20.观察下列图形:第1个图形中一共有4个小圆圈,第2个图形中一共有10个小圆圈,第3个图形中一共有18个小圆圈…,按此规律排列,则第n个图形中小圆圈的个数是.三、解答题(6道题,共66分。
七年级上期末考试数学试题及答案
第一学期期末测试卷初一数学一、选择题1.-2的相反数是【 】 A .-2 B .2 C .21 D .21- 2.近年来,延庆着力打造中国自行车骑游第一大县,推出了8大骑游区域、11条精品骑游线路,涵盖妫河生态走廊、百里山水画廊等景区景点。
同时,县内很多骑游爱好者还自发成立了骑行俱乐部或车队,促进了延庆骑游运动发展,在延庆骑游人数近20000人,将20000用科学记数法表示应为【 】A .2×103B .20×103C .2×104D .0.2×105 3. 下列运算正确的是【 】 A .236-=÷- B .-3+2=-5C .-3-2=-1D .632=⨯-4.下列等式变形正确的是【 】A .如果x=y,那么x-2=y-2 B .如果x 21-=8,那么x=-4 C .如果mx=my ,那么x=y D .如果|x|=|y|,那么x=y5. 下面由8个完全相同的小正方体组成的几何体从正面看是【 】6.下列各项是同类项的是【 】A .2ab 与b a 2B .xy 与y 2C .ab 与ab 21D .ab 5与26ab7.已知2x =-是方程014)1(=-++a x a 的解,则a 的值是【 】 A . -2 B .23 C . 0 D .32 8.如图,这是一条马路上的人行横道线,即斑马线的示意图,请你根据图示判断,在过马路时三条线路AC 、AB 、AD 中最短的是【 】A .ACB .ABC .AD D .不确定正面AB CD9.已知:点C 在直线..AB 上,线段AB=6,点D 是AC 中点,BC=4那么A 、D 之间的距离是【 】A .5 B .2.5 C .5或1 D . 5或2.510. 如图所示的正方体的展开图是【 】二、填空题:11. -5的绝对值是__________,-2的倒数是____________. 12. __________23=,(-3)2=_________ .13. 方程-2x m+1 =4是关于x 的一元一次方程,则m=______,方程的解是_______. 14. 如果m 、n 满足2)3(2++-n m =0,那么 m+n=__________ ,m-n=__________. 15. 如图,图中有________个角(小于180 º),分别是_____________ . 16.计算: 45 º36′+15°14′=__________;60°30′-45°40′=__________.17.数轴上表示-1的点先向右移动4个单位长度,再向左移动5个单位长度对应的数字是____________.18.计算 :3a+4a-2a=_____________,2x+5x-1=___________. 19.单项式z y x 322-的系数是_____________,次数是________. 20.a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--. 已知113a =-,(1)2a 是1a 的差倒数,那么=2a ;(2)3a 是2a 的差倒数,那么=3a ;(3)4a 是3a 的差倒数,那么=4a ,…,依此类推,那么=2015a . 三、计算:21.()11271832.52⎛⎫+---- ⎪⎝⎭22. (5.6-))5()52()2(-÷-÷-⨯DCBA23.36)()613291(-⨯-+ 24.四、先化简,再求值25.)5(3)3(52222b a ab ab b a +--,其中31=a ,21-=b .五、解方程:(本题共4个小题,26-28每小题4分,29题5分,共17分) 26.4x+7=12x-5 27.6)5(34=--x x 28. 413-x -675-x =1 29. 5.03.02-x -3.04.0+x =1⎥⎦⎤⎢⎣⎡---⨯---32)2()34()3(2六、请按下列要求画图,不写画法30.已知:如图,平面上有A 、B 、C 、D 四点. (1)作射线AD 交直线BC 于点M ;(2)连结AB ,并反向延长AB 至点E ,使AE =12BE .七、补全下列解题过程31.如图所示,点O 是直线AB 上一点,∠BOC=130°,OD 平分∠AOC.求:∠COD 的度数. 解:∵O 是直线AB 上一点 ∴∠AOB= . ∵∠BOC=130°∴∠AOC=∠AOB-∠BOC= . ∵OD 平分∠AOC ∴ ∠COD=21= . 八、列方程解应用题32. 国家规定个人发表文章、出版图书所得稿费的纳税计算方法是: ①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税; ③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税,试根据上述纳税的计算方法作答:(1)如果王老师获得的稿费为2400元,那么应纳税________元,如果王老师获得的稿费为4000元,那么应纳税________元。
2016-2017学年七年级下期末数学试卷及答案解析
2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。
2016——2017 学年第一学期教学质量检测七年级数学试题及答案
2016——2017学年第一学期教学质量检测七年级数学试卷说明:本试卷考试时间90分钟,满分100分,答题必须在答题卷上作答,在试题卷上作答无效。
第一部分选择题一、选择题:(本题共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.2-的相反数是()A .2B .12-C .2-D .122.2015年10月29日,中共十八届五中全会公报决定,实施普遍二孩政策,中国从1980年开始,推行了35年的城镇人口独生子女政策真正宣告终结。
“未来中国人口会不会突破15亿?”是政策调整决策中的重要考量,“经过高、中、低方案反复测算,未来中国人口不会突破。
”15亿用科学计数法表示为()A .81510⨯B .8510⨯C .91.510⨯D .91.53.下列调查方式合适的是()A .为了了解冰箱的使用寿命,采用普查的方式B .为了了解全国中学生的视力状况,采用普查的方式C .为了了解人们保护水资源的意识,采用抽样调查的方式D .对“神舟十一号载人飞船”零部件的检查,采用抽样调查的方式4.下列各组代数式中,不是同类项的是()A .22x y 和2yx -B .33-和3C .2ax 和2a xD .3xy 和2xy -5.若从n 边形的一个顶点出发,最多可以引()条对角线A .n B .1n -C .2n -D .3n -6.有理数a 、b 在数轴上的位置如图,则下列各式不成立的是()A .0a b +>B .0a b ->C .b a>D .0ab <7.下面说法,错误的是()A .一个平面截一个球,得到的截面一定是圆B .一个平面截一个正方体,得到的截面可以是五边形C .棱柱的截面不可能是圆D .下边甲、乙两图中,只有乙才能折成正方体8.某件产品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该件产品的进货价为()A .80元B .85元C .90元D .95元9.方程()1230a a x --+=是关于x 的一元一次方程,则a =()A .2B .2-C .1±D .2±10.下列说法正确的是()A .长方形的长是a 米,宽比长短25米,则它的周长可表示为()225a -米B .6h 表示底为6,高为h 的三角形面积C .10a b +表示一个两位数,它的个位数字是a ,十位数字是bD .甲、乙两人分别从相距40千米的两地同时相向出发,其行走的速度分别为3千米/小时和5千米/小时,经过x 小时相遇,则可列方程式为3540x x +=11.关于x 、y 的代数式()()33981kxy y xy x -++-+中不含有二次项,则k =()A .3B .13C .4D .1412.已知3a =,216b =;且a b a b +≠+,则代数式a b -的值为()A .1或7B .1或7-C .1-或7-D .±1或±7第二部分非选择题二、填空题:(本题共4小题,每小题3分,共12分)13.比较大小:8-________9-(填“<”、“=”、“>”).14.若1a b -=,则代数式()2a b --的值是________.15.在时钟的钟面上,九点半的时针与分针的夹角是________.16.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112--=,1-的差倒数是()11112--=,已知113a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,则2015a =________.三、解答题:(本题共7小题,其中第17题11分,第18题8分,第19题6分,第20题6分,第21题6分,第22题7分,第23题8分,共52分)17.计算:(1)(本题3分)()137********⎛⎫--+⨯- ⎪⎝⎭(2)(本题3分)()()()324224⎡⎤-⨯-÷---⎣⎦(3)(本题5分)先化简,再求值:22221223333x x xy y x ⎛⎫--+-- ⎪⎝⎭,其中2x =,1y -=.18.(每小题4分,共8分)解方程:(1)()52323x x ---=(2)34153x x ---=19.(本题6分)校学生会体育部为更好的的开展同学们课外体育活动,现对学生最喜欢的一项球类运动进行了随机抽样调查,根据调查的结果绘制成如图2-①和图2-②所示的两幅不完整统计图,其中A .喜欢篮球B .喜欢足球C .喜欢乒乓球D .喜欢排球。
2016-2017学年七年级(上)期中数学试卷及答案解析
2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
人教版七年级上册数学期末试卷一及答案(终稿)
人教版七年级第一学期期末试卷一一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入题后括号内.1.如果+20%表示增加20%,那么-6%表示( ).A .增加14%B .增加6%C .减少6%D .减少26%2.如果2()13⨯-=,则“”内应填的实数是( )A .32B .23C .23-D .32-3. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1ab <D .0a b -<4. 下面说法中错误的是( ). A .368万精确到万位B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×1045. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ()A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱6. 如果a <0,-1<b <0,则a ,ab ,2ab 按由小到大的顺序排列为( )A .a <ab <2abB .a <2ab <abC .ab <2ab <aD .2ab <a <ab7.在解方程5113--=x x 时,去分母后正确的是( ) A .5x =15-3(x -1) B .x =1-(3 x -1) C .5x =1-3(x -1)D .5 x =3-3(x -1)8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于( )A .4x -1B .4x -2C .5x -1D .5x -29. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n- B .m n - C .2m D .2n图1 图2 从正南方向看 从正西方向看 第7题 第8题 10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这个几何体最多可由多少个这样的正方体组成?( )nnb 0mnA .12个B .13个C .14个D .18个二、填空题:本大题共10小题,每小题3分,共30分. 11.多项式132223-+--x xy y x x是_______次_______项式12.三视图都是同一平面图形的几何体有 、 .(写两种即可) 13.若ab ≠0,则等式a b a b+=+成立的条件是______________.14.若2320aa --=,则2526a a +-= .15.多项式223368xkxy y xy --+-不含xy 项,则k = ;16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果是________________.18.一个角的余角比它的补角的32还少40°,则这个角为 度. 19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售, 售货员最低可以打___________折出售此商品20.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。
2016-2017年七年级上学期期末考试数学试题及答案
2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。
数学2016-2017学年度第一学期期末考试试题
2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。
人教版七年级上册数学《期末考试试题》附答案
∴原式=2x-2y-3=2-3=-1.
故选B.
13.已知2016xn+7y与-2017x2m+3y是同类项,则(2m-n)2的值是( )
A.16B.48C.-40D.5
【答案】A
【解析】
根据同类项的概念,含有相同的字母,相同字母的指数相同,可得n+7=2m+3,化简为2m-n=4,代入即可得到(2m-n)2=16.
A.a+b>0B.ab>0C.a﹣b<oD.a÷b>0
6.下列方程中,是一元一次方程的是()
A B. C. D.
7.一个角的余角是40º,则这个角的补角是( )
A.40ºB.50ºC.140ºD.130º
8.下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是( )
A.用两个钉子就可以把木条固定在墙上
A.14,17B.14,18C.13,16D.12,16
二、填空题(本大题共4个小题:每小题3分,共12分,把正确答案填在横线上)
15.56°24’=______°.
16.某校图书室共藏书34500册,数34500用科学记数法表示为______.
17.已知2x+4与3x﹣2互为相反数,则x=_____.
故选A.
点睛:此题主要考查了同类项,解题关键是确定同类项,根据同类项的概念,含有相同的字母,相同字母的指数相同,然后列式求解即可.
14.小博表演扑克牌游戏,她将两副牌分别交给观众A和观众B,然后背过脸去,请他们各自按照她的口令操作:
a.在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;
故选D.
5.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是( )
2016-2017西城区初一数学期末试卷及答案(北区)
北京市西城区(北区)2016— 2017学年度第一学期期末试卷七年级数学 2017.1(试卷满分100分,考试时间100分钟)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.6-的绝对值等于( ).A. 6-B. 6C. 16- D.162.根据北京市公安交通管理局网站的数据显示,截止到2016年2月16日,北京市机动车保有量比十年前增加了3 439 000 辆,将3 439 000 用科学记数法表示应为( ).A .70.343 910⨯B .63.43910⨯C .73.43910⨯D .534.3910⨯3.下列关于多项式22521ab a bc --的说法中,正确的是( ). A.它是三次三项式 B.它是四次两项式 C.它的最高次项是22a bc - D.它的常数项是14.已知关于x 的方程72kx x k -=+的解是2x =,则k 的值为( ).A.3-B.45C. 1D.545. 下列说法中,正确的是( ).A .任何数都不等于它的相反数B .互为相反数的两个数的立方相等C .如果a 大于b ,那么a 的倒数一定大于b 的倒数D .a 与b 两数和的平方一定是非负数A B CD7.下列关于几何画图的语句正确的是 A .延长射线AB 到点C ,使BC =2ABB .点P 在线段AB 上,点Q 在直线AB 的反向延长线上C .将射线OA 绕点O 旋转180︒,终边OB 与始边OA 的夹角为一个平角D . 已知线段a ,b 满足20a b >>,在同一直线上作线段2AB a =,BC b =,那么线段8.将下列图形画在硬纸片上,剪下并折叠后能围成三棱柱的是A B CDA.①,④B. ①,③C. ②,③D. ②,④10.右图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几 何体应是二、填空题(本题共20分,11~14题每小题2分,15~18题每小题3分)11.用四舍五入法将1.893 5取近似数并精确到0.001,得到的值是 .12.计算:135459116''︒-︒= .13.一件童装每件的进价为a元(0a >),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为元.14.将长方形纸片ABCD 折叠并压平,如图所示,点C ,点D 的对应点分别为点C ',点D ',折痕分别交AD ,BC 边于点E ,点F .若30BFC '∠=︒,则CFE ∠= °.15.对于有理数a ,b ,我们规定a b a b b ⊗=⨯+.(1)(3)4-⊗= ; (2)若有理数x 满足 (4)36x -⊗=,则x 的值为 .A B C D16.如图,数轴上A ,B 两点表示的数分别为2-和6,数轴上的点C 满足AC BC =,点D 在线段AC 的延长线上, 若32AD AC =,则BD = ,点D 表示的数为 .17.右边球体上画出了三个圆,在图中的六个□里分别填入1,2,3,4,5,6,使得每个圆周上四个数相加的和都相等. (1)这个相等的和等于 ; (2)在图中将所有的□填完整.18.如图,正方形ABCD 和正方形DEFG 的边长都是3 cm ,点P 从点D 出发,先到点A ,然后沿箭头所指方向运动 (经过点D 时不拐弯),那么从出发开始连续运动2016 cm 时,它离点 最近,此时它距该点 cm .三、计算题(本题共12分,每小题4分)19.2742()(12)(4)32⨯-÷--÷-. 解:20.3212(3)4()23-÷⨯-.解:21.211312()49(5)64828-⨯+-÷-.解:四、先化简,再求值(本题5分)22.222225(3)(3)2a b ab ab a b ab --++,其中21=a ,3b =. 解:五、解下列方程(组)(本题共10分,每小题5分)23.321123x x x --+=-. 解:24.231445 6.x y x y +=⎧⎨-=⎩,解:六、解答题(本题4分)25. 问题:如图,线段AC 上依次有D ,B ,E 三点,其中点B 为线段AC 的中点,AD BE =, 若4DE =,求线段AC 的长. 请补全以下解答过程.解:∵ D ,B ,E 三点依次在线段AC 上,∴ DE BE =+. ∵ AD BE =,∴ DE DB AB =+=. ∵ 4DE =, ∴ 4AB =.∵ , ∴ 2 AC AB ==.七、列方程(或方程组)解应用题(本题共6分)26. 有甲、乙两班学生,已知乙班比甲班少4人,如果从乙班调17人到甲班,那么甲班人数比乙班人数的3倍还多2人,求甲、乙两班原来各有多少人. 解:八、解答题(本题共13分,第27题6分,第27题7分)27.已知当1x =-时,代数式3236mx nx -+的值为17.(1)若关于y 的方程24my n ny m +=--的解为2y =,求n m 的值;(2)若规定[]a 表示不超过a 的最大整数,例如[]4.34=,请在此规定下求32n m ⎡⎤-⎢⎥⎣⎦的值.解:28.如图,50DOE ∠=︒,OD 平分∠AOC ,60AOC ∠=︒,OE 平分∠BOC . (1)用直尺、量角器画出射线OA ,OB ,OC 的准确位置; (2)求∠BOC 的度数,要求写出计算过程;(3)当DOE α∠=,2AOC β∠=时(其中0βα︒<<,090αβ︒<+<︒),用α,β的代数式表示∠BOC 的度数.(直接写出结果即可) 解:EOD七年级数学参考答案及评分标准 2017.1一、选择题(本题共30分,每小题3分)阅卷说明:15~18题中,第一个空为1分,第二个空为2分;17题第(2)问其他正确答案相应给分.三、计算题(本题共12分,每小题4分)19.2742()(12)(4)32⨯-÷--÷-. 解:原式2242337=-⨯⨯- ………………………………………………………………2分83=-- ………………………………………………………………………3分 11=-.…………………………………………………………………………4分20.3212(3)4()23-÷⨯-.解:原式2227()99=-⨯⨯- ………………………………………………………………3分113=. …………………………………………………………………………4分(阅卷说明:写成43不扣分)21.211312()49(5)64828-⨯+-÷-.解:原式1125(1212)(50)2564828=-⨯-⨯--÷11(2)(2)428=---- ……………………………………………………… 2分1122428=---+114()428=---3414=--3414=-. ………………………………………………………………………4分四、先化简,再求值(本题5分)22.解: 222225(3)(3)2a b ab ab a b ab --++ 22222(155)(3)2a b ab ab a b ab =--++2222215532a b ab ab a b ab =---+ ………………………………………………… 2分 (阅卷说明:去掉每个括号各1分)22124a b ab =-. ……………………………………………………………………3分 当21=a ,3b =时, 原式221112()34322=⨯⨯-⨯⨯ …………………………………………………… 4分9189=-=-. …………………………………………………………………5分 五、解下列方程(组)(本题共10分,每小题5分)23.321123x x x --+=-.解:去分母,得 3(3)2(21)6(1)x x x -+-=-. …………………………………… 2分去括号,得 394266x x x -+-=-.…………………………………………… 3分 移项,得 346926x x x +-=+-. …………………………………………… 4分 合并,得 5x =. ………………………………………………………………… 5分24.231445 6.x y x y +=⎧⎨-=⎩,解法一:由①得 2143x y =-.③ ………………………………………………… 1分 把③代入②,得 2(143)56y y --=.………………………………………2分 去括号,得 28656y y --=. 移项,合并,得 1122y =.系数化为1,得 2y =. …………………………………………………… 3分 把2y =代入③,得 28x =.系数化为1,得 4.x = ………………………………………………………4分所以,原方程组的解为 42.x y =⎧⎨=⎩,……………………………………………5分解法二:①×2得 4628x y +=.③ ………………………………………………… 1分③-②得 6(5)286y y --=-.………………………………………………2分 合并,得 1122y =.系数化为1,得 2y =. …………………………………………………… 3分 ① ②系数化为1,得 4.x = ………………………………………………………4分所以,原方程组的解为 42.x y =⎧⎨=⎩,……………………………………………5分六、解答题(本题4分)25.解:∵ D ,B ,E 三点依次在线段AC 上,∴ DE DB BE =+. ………………………………………………………… 1分 ∵ AD BE =,∴ DE DB AD AB =+=. …………………………………………………… 2分 ∵ 4DE =, ∴ 4AB =.∵ 点B 为线段AC 的中点 , …………………………………………………… 3分 ∴ 2 8 AC AB ==. ……………………………………………………………4分 七、列方程(或方程组)解应用题(本题共6分)26.解:设甲班原来有x 人.……………………………………………………………… 1分 则乙班原来有 (4)x -人.依题意得 []173(4)172x x +=--+.…………………………………………… 3分 去括号,得 17312512x x +=--+. 移项,合并,得 278x =.系数化为1,得 39x =.……………………………………………………………4分 439435x -=-=. ……………………………………………………………… 5分答:甲班原来有39人,乙班原来有35人.……………………………………………6分 八、解答题(本题共13分,第27题6分, 第28题7分)27.解:∵ 当1x =-时,代数式3236mx nx -+的值为17, ∴ 将1x =-代入,得 23617m n -++=.整理,得 3211n m -=. ① ……………………………………………………1分 (1)∵ 关于y 的方程24my n ny m +=--的解为 2y =, ∴ 把2y =代入以上方程,得 442m n n m +=--.整理,得 534m n +=. ② ……………………………………………… 2分由①,②得 321153 4.n m m n -=⎧⎨+=⎩,②-①,得 77m =-.系数化为1,得 1m =-.把1m =-代入①,解得 3n =.∴ 原方程组的解为 13.m n =-⎧⎨=⎩, ……………………………………………… 4分此时3(1)1n m =-=-.…………………………………………………………5分 ①②∴ []32311 5.56222n m n m -⎡⎤⎡⎤⎡⎤-==-=-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.………………………… 6分 阅卷说明:直接把第(1)问的1m =-,3n =代入得到第(2)问结果的不 给第(2)问的分.28.解:(1)①当射线OA 在DOE ∠外部时,射线OA ,OB ,OC 的位置如图1所示. ②当射线OA 在DOE ∠内部时,射线OA ,OB ,OC 的位置如图2所示. ……………………………………………………………………… 2分 (阅卷说明:画图每种情况正确各1分,误差很大的不给分)(2)①当射线OA 在DOE ∠外部时,此时射线OC 在DOE ∠内部,射线OA ,OD ,OC ,OE ,OB 依次排列,如图1.∵ OD 平分∠AOC ,60AOC ∠=︒,∴ 1302DOC AOC ∠=∠=︒.…………………………………………… 3分∵ 此时射线OA ,OD ,OC ,OE ,OB 依次排列,∴ DOE DOC COE ∠=∠+∠.∵ 50DOE ∠=︒,∴ 503020COE DOE DOC ∠=∠-∠=︒-︒=︒.∵ OE 平分∠BOC ,∴ 222040BOC COE ∠=∠=⨯︒=︒.…………………………………… 4分②当射线OA 在DOE ∠内部时,此时射线OC 在DOE ∠外部,射线OC ,OD ,OA ,OE ,OB 依次排列,如图2.∵ OD 平分∠AOC ,60AOC ∠=︒,∴ 1302COD AOC ∠=∠=︒. ∵ 此时射线OC ,OD ,OA ,OE ,OB 依次排列,50DOE ∠=︒,∴ 305080COE COD DOE ∠=∠+∠=︒+︒=︒.∵ OE 平分∠BOC ,∴ 2280160BOC COE ∠=∠=⨯︒=︒.………………………………… 5分阅卷说明:无论学生先证明哪种情况,先证明的那种情况正确给2分,第二种 情况正确给1分.(3)当射线OA 在DOE ∠外部时,22BOC αβ∠=-;当射线OA 在DOE ∠内部时,22BOC αβ∠=+.……………………………………………7分阅卷说明:两种情况各1分;学生若直接回答22BOC αβ∠=-或22αβ+不扣分.。
【期末数学试卷带答案】2016-2017学年河南省洛阳市七年级(上)期末数学试卷
2016-2017学年河南省洛阳市七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)|﹣2|的相反数为()A.﹣2 B.2 C.D.2.(3分)下列比较大小正确的是()A.﹣(﹣3)>﹣|﹣3|B.(﹣2)3>(﹣2)2C.(﹣3)3>(﹣2)3D.<3.(3分)一个两位数,十位上的数字是x,个位上的数字是y,把这个两位数十位上数字与个位上数字调换位置后的两位数用代数式表示为()A.yx B.xy C.10y+x D.10x+y4.(3分)国家统计局的相关数据显示,2015年我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A.6.767×1013元B.6.767×1012元C.67.67×1012元D.6.767×1014元5.(3分)图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④6.(3分)在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c|C.|a|>|b|D.abc<07.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+68.(3分)有x辆客车,若每辆客车乘50人,则还有10人不能上车,若每辆车乘52人,则车上只剩2个空位,下列方程中正确的是()A.50x﹣10=52x﹣2 B.50x+10=52x﹣2 C.50x+10=52x+2 D.50x﹣10=52x+2二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)在“﹣(﹣1),﹣0.3,+,0,﹣3.3”这五个数中,非负有理数的个数是.10.(3分)若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=.11.(3分)如图是一个数值转换器,若输入x的值是﹣5,则输出的值是12.(3分)已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.13.(3分)已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.14.(3分)已知:如图,OB是∠AOC的角平分线,OC是∠AOD的角平分线,∠AOB=35°,那么∠BOD的度数为.15.(3分)观察下列有规律的数:,,,,,…根据规律可知第n个数是(n 是正整数).三、解答题(本大题共8小题,共75分)16.(8分)计算:(1)(﹣56)+(+7)+150+(+93)+(﹣44).(2)﹣16÷(﹣2)3﹣|﹣|×(﹣8)+[1﹣(﹣3)2].17.(8分)先化简再求值:已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.18.(8分)解方程:(x+15)=﹣(x﹣7)19.(8分)如图,货轮O航行过程中,在它的北偏东60°方向上,与之相距30海里处发现灯塔A,同时在它的南偏东30°方向上,与之相距20海里处发现货轮B,在它的西南方向上发现客轮C.按下列要求画图并回答问题:(1)画出线段OB;(2)画出射线OC;(3)连接AB交OE于点D;(4)写出图中∠AOD的所有余角:.20.(10分)已知:点C在直线AB上,AC=8cm,BC=6cm,点M、N分别是AC、BC的中点,求线段MN的长.21.(10分)已知如图,∠BOC与∠AOB互为补角,OD平分∠AOB,若∠COD=21°,求∠BOC的大小.22.(11分)列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?23.(12分)如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠AOM=度;(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,若直线ON恰好平分∠AOC,则此时三角板绕点O旋转的时间是秒.2016-2017学年河南省洛阳市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)|﹣2|的相反数为()A.﹣2 B.2 C.D.【解答】解:∵|﹣2|=2,∴|﹣2|的相反数为:﹣2.故选A.2.(3分)下列比较大小正确的是()A.﹣(﹣3)>﹣|﹣3|B.(﹣2)3>(﹣2)2C.(﹣3)3>(﹣2)3D.<【解答】解:A、∵﹣(﹣3)=3,﹣|﹣3|=﹣3,∴﹣(﹣3)>﹣|﹣3|,故本选项正确;B、∵(﹣2)3=﹣8,(﹣2)2=4,∴(﹣2)3<(﹣2)2,故本选项错误;C、∵(﹣3)3=﹣27,(﹣2)3=﹣8,∴(﹣3)3<(﹣2)3,故本选项错误;D、∵|﹣|=,|﹣|=,∴﹣>﹣,故本选项错误;故选A.3.(3分)一个两位数,十位上的数字是x,个位上的数字是y,把这个两位数十位上数字与个位上数字调换位置后的两位数用代数式表示为()A.yx B.xy C.10y+x D.10x+y【解答】解:由题意可得,调换位置后的两位数是:10y+x,故选C.4.(3分)国家统计局的相关数据显示,2015年我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A.6.767×1013元B.6.767×1012元C.67.67×1012元D.6.767×1014元【解答】解:67.67万亿元=6.767×1013元,故选:A.5.(3分)图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选:A.6.(3分)在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c|C.|a|>|b|D.abc<0【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=﹣2,b=0,c=2,则b+c>0,故选项A错误;如果a=﹣2,b=﹣1,c=0,则|b|>|c|,故选项B错误;如果a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选C.7.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+6【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.8.(3分)有x辆客车,若每辆客车乘50人,则还有10人不能上车,若每辆车乘52人,则车上只剩2个空位,下列方程中正确的是()A.50x﹣10=52x﹣2 B.50x+10=52x﹣2 C.50x+10=52x+2 D.50x﹣10=52x+2【解答】解:由题意可得,50x+10=52x﹣2,故选B.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)在“﹣(﹣1),﹣0.3,+,0,﹣3.3”这五个数中,非负有理数的个数是3.【解答】解:﹣(﹣1)=1,+,0是非负有理数,故答案为:3.10.(3分)若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=6.【解答】解:根据题意得:n=5,m+1=2,解得:m=1,则m+n=5+1=6.故答案是:6.11.(3分)如图是一个数值转换器,若输入x的值是﹣5,则输出的值是﹣12【解答】解:[(﹣5)2﹣1]÷(﹣2)=(25﹣1)÷(﹣2)=24÷(﹣2)=﹣12故答案为:﹣12.12.(3分)已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.【解答】解:把x=2代入方程得:3a=a+2,解得:a=.故答案为:.13.(3分)已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为6cm.【解答】解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又因为D为AC的中点,所以DC=AC=6cm.故答案为:6cm.14.(3分)已知:如图,OB是∠AOC的角平分线,OC是∠AOD的角平分线,∠AOB=35°,那么∠BOD的度数为105°.【解答】解:∵OB是∠AOC的角平分线,OC是∠AOD的角平分线,∴∠COB=∠AOB,∠DOC=∠AOC,∵∠AOB=35°,∴∠BOC=35°,∴∠DOC=∠AOC=70°,∴∠BOD=70°+35°=105°.故答案为:105°.15.(3分)观察下列有规律的数:,,,,,…根据规律可知第n个数是(n是正整数).【解答】解:∵第1个数=,第2个数=,第3个数=,第4个数=,…∴第n个数为,故答案为:.三、解答题(本大题共8小题,共75分)16.(8分)计算:(1)(﹣56)+(+7)+150+(+93)+(﹣44).(2)﹣16÷(﹣2)3﹣|﹣|×(﹣8)+[1﹣(﹣3)2].【解答】解:(1)(﹣56)+(+7)+150+(+93)+(﹣44)=﹣49+150+93﹣44=150(2)﹣16÷(﹣2)3﹣|﹣|×(﹣8)+[1﹣(﹣3)2]=2﹣(﹣0.5)+(﹣8)=﹣5.517.(8分)先化简再求值:已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.【解答】解:A+2B=3a2﹣6ab+b2+2(﹣2a2+3ab﹣5b2)=3a2﹣6ab+b2﹣4a2+6ab﹣10b2=﹣a2﹣9b2,当a=1,b=﹣1 时原式=﹣12﹣9×(﹣1)2=﹣10.18.(8分)解方程:(x+15)=﹣(x﹣7)【解答】解:去分母得:6(x+15)=15﹣10(x﹣7),去括号得:6x+90=15﹣10x+70,移项合并得:16x=﹣5,解得:x=﹣.19.(8分)如图,货轮O航行过程中,在它的北偏东60°方向上,与之相距30海里处发现灯塔A,同时在它的南偏东30°方向上,与之相距20海里处发现货轮B,在它的西南方向上发现客轮C.按下列要求画图并回答问题:(1)画出线段OB;(2)画出射线OC;(3)连接AB交OE于点D;(4)写出图中∠AOD的所有余角:∠AON,∠BOD.【解答】解:(1)如图;(2)如图;(3)如图;(4)∠AOD的所有余角是:∠AON,∠BOD.故答案是:∠AON,∠BOD.20.(10分)已知:点C在直线AB上,AC=8cm,BC=6cm,点M、N分别是AC、BC的中点,求线段MN的长.【解答】解:当点C在线段AB上时,由点M、N分别是AC、BC的中点,得MC=AC=×8cm=4cm,CN=BC=×6cm=3cm,由线段的和差,得MN=MC+CN=4cm+3cm=7cm;当点C在线段AB的延长线上时,由点M、N分别是AC、BC的中点,得MC=AC=×8cm=4cm,CN=BC=×6cm=3cm.由线段的和差,得MN=MC﹣CN=4cm﹣3cm=1cm;即线段MN的长是7cm或1cm.21.(10分)已知如图,∠BOC与∠AOB互为补角,OD平分∠AOB,若∠COD=21°,求∠BOC的大小.【解答】解:设∠BOC=x,∵∠BOC与∠AOB互为补角,∴∠AOB=180°﹣x.∵OD平分∠AOB,∠COD=21°,∴∠AOB=2∠BOD=2(∠BOC+∠COD)=2(x+21°),∴180°﹣x=2(x+21°),∴x=46°,即∠BOC是46°.22.(11分)列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款180元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?【解答】解:(1)200×0.9=180(元).答:按活动规定实际付款180元.(2)∵500×0.9=450(元),490>450,∴第2次购物超过500元,设第2次购物商品的总价是x元,依题意有500×0.9+(x﹣500)×0.8=490,解得x=550,550﹣490=60(元).答:第2次购物节约了60元钱.(3)200+550=750(元),500×0.9+(750﹣500)×0.8=450+200=650(元),∵180+490=670>650,∴小丽将这两次购得的商品合为一次购买更省钱.故答案为:180.23.(12分)如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠AOM=120度;(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,若直线ON恰好平分∠AOC,则此时三角板绕点O旋转的时间是6或24秒.【解答】解:(1)∵OM恰好平分∠BOC,∴∠BOM=120°÷2=60°,∴∠AOM=180°﹣60°=120°.(2)如图3,,∠AOM﹣∠NOC=30°,∵∠BOC=120°,∴∠A0C=60°,∵∠AON=90°﹣∠AOM=60°﹣∠NOC,∴∠AOM﹣∠NOC=30°.(3)设三角板绕点O旋转的时间是x秒,∵∠BOC=120°,∴∠AOC=60°,∴∠BON=30°,∴旋转60°时ON平分∠AOC,∵10x=60或10x=240,∴x=6或x=24,即此时三角板绕点O旋转的时间是6或24秒.故答案为:120、6或24.。
2016-2017学年北师大版七年级数学下册期末试题及答案
2016-2017学年北师大版七年级数学下册期末试题及答案2016-2017学年度第二学期期末测试题七年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分。
本试题共8页,满分为120分。
考试时间为120分钟。
答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置。
考试结束后,将本试卷和答题卡一并交回。
本考试不允许使用计算器。
第Ⅰ卷(选择题共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列各式计算正确的是()A.x+x=2xB.xy^4/48=x^3yC.x^2=x^5D.(-x)^5=(-x)^82.下列各式中,不能用平方差公式计算的是( )A.(4x-3y)(-3y-4x)B.(2x-y)(2x+y)C.(a+b-c)(-c-b+a)D.(-x+y)(x-y)3.PM2.5是大气压中直径小于或等于0.xxxxxxxm的颗粒物,将0.xxxxxxx用科学记数法表示为()A.0.25×10^-5B.0.25×10^-6C.2.5×10^-5D.2.5×10^-64.如图,∠1与∠2互补,∠3=135°,则∠4的度数是()A、45°B、55°C、65°D、75°5.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间t(时)变化的图象(全程)如图所示。
有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y与时间t的关系式为y=10t;④第1.5小时,甲跑了12千米。
2016-2017学年安徽省六安市裕安中学七年级(上)期末数学试卷
2016-2017学年安徽省六安市裕安中学七年级(上)期末数学试卷一、选择题:(每小题4分,共40分)1. 下列各数:${-\mathrel{|} -3\mathrel{|} }$,${\pi }$,${3.14}$,${(-3)^{2}}$中,有理数有()A.${1}$个B.${2}$个C.${3}$个D.${4}$个2. 新疆地区的面积约占我国国土面积的${\dfrac{1}{6}}$,我国国土面积${9 600 000}$平方千米,用科学记数法表示新疆地的面积为()A.${0.16\times 10^{7}}$平方千米B.${1.6\times 10^{6}}$平方千米C.${16\times 10^{5}}$平方千米D.${160\times 10^{4}}$平方千米3. 已知代数式${-5x^{3}y^{n}}$与${5x^{m+ 1}y^{3}}$是同类项,则${m-n}$的值为()A.${5}$B.${-1}$C.${1}$D.${-5}$4. 下列式子正确的是()A.${x-(y-z)= x-y-z}$B.${-(x-y+ z)= -x-y-z}$C.${x+ 2y-2z= x-2(z+ y)}$D.${-a+ c+ d+ b= -(a-b)-(-c-d)}$5. 已知代数式${2x^{2}+ 3y+ 7}$的值是${8}$,那么代数式${4x^{2}+ 6y+ 9}$的值是()A.${18}$B.${11}$C.${2}$D.${1}$6. 已知${x= 2-t}$,${y= 3+ 2t}$,用只含${x}$的代数式表示${y}$正确的是()A.${y= -2x+ 7}$B.${y= -2x+ 5}$C.${y= -x-7}$D.${y= 2x-1}$7. 一件标价为${600}$元的上衣,按${8}$折销售仍可获利${20}$元,设这件上衣的成本价为${x}$元,根据题意,下面所列的方程正确的是()A.${600\times 0.8-x= 20}$B.${600\times 8-x= 20}$C.${600\times 0.8= x-20}$D.${600\times 8= x-20}$ 8. 如图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()A. B. C. D.9. 有理数${a}$,${b}$,${c}$在数轴上对应的点如图所示,那么()A.${a+ b+ c\gt 0}$B.${a+ b+ c\lt 0}$C.${ab\lt ac}$D.${ac\gt bc}$10. 在一次数学竞赛中,竞赛题共有${25}$道,每道题都给出${4}$个答案,其中只有一个答案是正确的,选对得${4}$分,不选或选错扣${2}$分.规定得分不低于${60}$分得奖,那么得奖者至少应选对()A.${18}$道题B.${19}$道题C.${20}$道题D.${21}$道题二、填空题:(每小题5分,共20分)1. 某校办印刷厂今年四月份盈利${6}$万元,记作${+ 6}$万元,五月份亏损了${2.5}$万元,应计作________万元.2. 已知线段${AB= 5 \rm{cm} }$,点${C}$在直线${AB}$上,且${BC= 3 \rm{cm} }$,则线段${AC= }$________.3. “鸡兔同笼”是我国古代《孙子算经》上的一道名题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.运用方程的思想,我们可以算出笼中有鸡________只.4. 古希腊数学家把数${1}$,${3}$,${6}$,${10}$,${15}$,${21}$,…,叫做三角形数,它有一定的规律性.则第${24}$个三角形数与第${22}$个三角形数的差为________.三、解答题:(第15-18题8分,第19-20题10分,第21-22题12分,第23题14分,共90分)1. 计算:${-\dfrac{3}{4}\times [(-2)^{2}\times (-\dfrac{1}{4})^{2}-\dfrac{1}{2}]}$.2. 解方程:${2(3x-2)= x-4}$解方程组:${\left\{ {\begin{matrix} {\dfrac{x}{2}-\dfrac{y+ 1}{3}= 1} \\ {3x+ 2y= 0} \end{matrix}} \right.}$.3. 矩形的长和宽如图所示,当矩形周长为${12}$时,求${a}$的值.4. 作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个${\triangle ABC}$,可以这样来画:先作一条与${AB}$相等的线段${A′B′}$,然后作${\angle B′A′C′= \angle BAC}$,再作线段${A′C′= AC}$,最后连结${B′C′}$,这样${\triangle A′B′C′}$就和已知的${\triangle ABC}$一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)5. 如图所示,已知${\angle AOB= 165^{{\circ} }}$,${\angle AOC= \angle BOD= 90^{{\circ} }}$,求${\angle COD}$的大小.6. 如图,${C}$、${D}$为线段${AB}$上的两点,${M}$是${AC}$的中点,${N}$是${BD}$的中点.如果${MN= a}$,${CD= b}$,求线段${AB}$的长(用${a}$、${b}$的代数式表示).7. 观察下表,填表后再解答问题: (1)试完成下列表格:${1}$ ${2}$ ${3}$ … …${8}$ ________ ${24}$ …(2)第${n}$个图形中有多少个“${● }$”和多少个“★”?(3)试求第几个图形中有${120}$个“${● }$”?并求该图形中有多少个“★”.8. 某酒店客房部有三人间、双人间客房,收费标准如下表: 为吸引游客,实行团体入住五折优惠措施,一个${50}$人的旅游团优惠期间到该酒店入住,住了一些普通三人间和普通双人间客房.若每间客房正好住满,且住一晚的费用为${1510}$元,则该旅游团住了普通三人间和普通双人间客房各多少间?9. 已知点${A}$在数轴上对应的数为${a}$,点${B}$在数轴上对应的数为${b}$,且${\mathrel{|} a+ 2\mathrel{|} + (b-5)^{2}= 0}$,规定${A}$、${B}$两点之间的距离记作${AB= \mathrel{|} a-b\mathrel{|} }$.(1)求${A}$、${B}$两点之间的距离${AB}$;(2)设点${P}$在${A}$、${B}$之间,且在数轴上对应的数为${x}$,通过计算说明是否存在${x}$的值使${PA+ PB= 10}$;(3)设点${P}$不在${A}$、${B}$之间,且在数轴上对应的数为${x}$,此时是否又存在${x}$的值使${PA+ PB= 10}$呢?参考答案与试题解析2016-2017学年安徽省六安市裕安中学七年级(上)期末数学试卷一、选择题:(每小题4分,共40分)1.【答案】C【考点】有理数的概念及分类【解析】有理数的概念:整数和分数统称为有理数.【解答】解:${-\mathrel{|} -3\mathrel{|} = -3}$,${-3}$是负整数,属于有理数;${\pi }$是无限不循环小数,属于无理数;${3.14}$是分数,属于有理数;${(-3)^{2}}$中${= 9}$,${9}$是正整数,属于有理数.综上所述,属于有理数的个数是${3}$个.故选${C}$.2.【答案】B【考点】科学记数法–表示较大的数【解析】科学记数法就是将一个数字表示成${a\times 10}$的${n}$次幂的形式,其中${1\leq a\lt 10}$,${n}$表示整数.${n}$为整数位数减${1}$,即从左边第一位开始,在首位非零的后面加上小数点,再乘以${10}$的${n}$次幂.此题${\dfrac{1}{6}\times 9 600 000}$平方千米${= 1.6\times 10^{6}}$平方千米.【解答】解:${9 600 000\div 6}$平方千米${= 1 600 000}$平方千米${= 1.6\times 10^{6}}$平方千米,故选${B}$.3.【答案】B【考点】同类项【解析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得${m}$和${n}$的值,从而求出它们的差.【解答】解:由题意得:${m+ 1= 3}$,${n= 3}$,解得:${m= 2}$,${n= 3}$.∴ ${m-n= -1}$.故选${B}$.4.【答案】D【考点】去括号与添括号【解析】根据去括号和添括号法则选择.【解答】解:${A}$、${x-(y-z)= x-y+ z}$,错误;${B}$、${-(x-y+ z)= -x+ y-z}$,括号前是“-”,去括号后,括号里的各项都改变符号,错误;${C}$、${x+ 2y-2z= x-2(z-y)}$,添括号后,括号前是“-”,括号里的各项都改变符号,错误;${D}$、正确.故选${D}$.5.【答案】B【考点】列代数式求值【解析】所求式子前两项提取${2}$变形后,将已知的代数式的值代入计算即可求出值.【解答】解:∵ ${2x^{2}+ 3y+ 7= 8}$,即${2x^{2}+ 3y= 1}$,∴ ${4x^{2}+ 6y+ 9= 2(2x^{2}+ 3y)+ 9= 2+ 9= 11}$.故选${B}$6.【答案】A【考点】解二元一次方程组【解析】两式消去${t}$,求出${y}$即可.【解答】解:由${x= 2-t}$,得到${t= 2-x}$,代入${y= 3+ 2t}$,得:${y= 3+ 2(2-x)= -2x+ 7}$.故选${A}$.7.【答案】A【考点】由实际问题抽象出一元一次方程【解析】要列方程,首先根据题意找出题中存在的等量关系:售价-成本价${= }$利润${20}$元.此时再根据列方程就不难了.【解答】解:设上衣的成本价为${x}$元,由已知得上衣的实际售价为${600\times 0.8}$元,然后根据利润${= }$售价-成本价,可列方程:${600\times 0.8-x= 20}$故选${A}$.8.【答案】B【考点】展开图折叠成几何体【解析】利用正方体及其表面展开图的特点解题.【解答】解:选项${A}$、${C}$、${D}$折叠后有一行两个面无法折起来,而且都缺少一个面,不能折成正方体.${B}$可成正方体.故选${B}$.9.【答案】B【考点】数轴【解析】先根据数轴得出:${-3\lt a\lt -2}$,${-2\lt b\lt -1}$,${0\lt c\lt 1}$,再根据不等式的性质分别进行各选项的判断即可.【解答】解:∵ ${-3\lt a\lt -2}$,${-2\lt b\lt -1}$,${0\lt c\lt 1}$,∴ ${-3-2+ 0\lt a+ b+ c\lt -2-1+ 1}$,即${-5\lt a+ b+ c\lt -2}$,故${A}$错误;${B}$正确;∵ ${b\lt c}$,${a\lt 0}$,∴ ${ab\gt ac}$,故${C}$错误;∵ ${a\lt b}$,${c\gt 0}$,∴ ${ac\lt bc}$,故${D}$错误.故选${B}$.10.【答案】B【考点】一元一次不等式的实际应用【解析】设得奖者选对${x}$道题,则不选或选错${(25-x)}$道题,根据得分不低于${60}$分得奖,可得出不等式,解出即可.【解答】解:设得奖者选对${x}$道题,则不选或选错${(25-x)}$道题,由题意得,${4x-2(25-x)\geq 60}$,解得:${x\geq 18\dfrac{1}{3}}$,∵ ${x}$取整数,∴ ${x= 19}$.故得奖者至少答对${19}$道题.故选${B}$.二、填空题:(每小题5分,共20分)1.【答案】${-2.5}$【考点】正数和负数【解析】盈利、亏损表示两个具有相反意义量,若盈利记作“+”,则亏损记作“-”.【解答】解:某校办印刷厂今年四月份盈利${6}$万元,记作${+ 6}$万元,五月份亏损了${2.5}$万元,应计作${-2.5}$万元.故答案为:${-2.5}$.2.【答案】${2 \rm{cm} }$或${8 \rm{cm} }$【考点】两点间的距离【解析】讨论:当点${C}$在线段${AB}$上时,则${AC+ BC= AB}$;当点${C}$在线段${AB}$的延长线上时,则${AC-BC= AB}$,然后把${AB= 5 \rm{cm} }$,${BC= 3 \rm{cm} }$分别代入计算即可.【解答】解:当点${C}$在线段${AB}$上时,则${AC+ BC= AB}$,所以${AC= 5 \rm{cm} -3 \rm{cm} = 2 \rm{cm} }$;当点${C}$在线段${AB}$的延长线上时,则${AC-BC= AB}$,所以${AC= 5 \rm{cm} + 3 \rm{cm} = 8 \rm{cm} }$.故答案为${2ccm}$或${8 \rm{cm} }$.3.【答案】${23}$【考点】二元一次方程组的应用【解析】本题中的两个等量关系为:鸡头+兔头${= 35}$,鸡足+兔足${= 94}$,据此可列方程组求解.【解答】解:设鸡有${x}$只,兔有${y}$只.则${\left\{ {\begin{matrix} {x+ y= 35} \\ {2x+ 4y= 94} \end{matrix}} \right.}$,解得${\left\{ {\begin{matrix} {x= 23} \\ {y= 12} \end{matrix}} \right.}$.答:鸡有${23}$只.4.【答案】${47}$【考点】规律型:数字的变化类【解析】根据所给的数据发现:第${n}$个三角形数是${1+ 2+ 3+ …+ n}$,则第${24}$个三角形数与第${22}$个三角形数的差为${23+ 24= 47}$.【解答】解:第${24}$个三角形:${1+ …+ 21+ 22+ 23+ 24}$,第${22}$个三角形:${1+ …+ 21+ 22}$,${24}$个三角形${-22}$个三角形${= (21+ 22+ 23+ 24)-(21+ 22)= 23+ 24= 47}$.三、解答题:(第15-18题8分,第19-20题10分,第21-22题12分,第23题14分,共90分)1.【答案】解:原式${= -\dfrac{3}{4}\times (4\times \dfrac{1}{16}-\dfrac{1}{2})= -\dfrac{3}{4}\times (-\dfrac{1}{4})= \dfrac{3}{16}}$.【考点】有理数的混合运算【解析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式${= -\dfrac{3}{4}\times (4\times \dfrac{1}{16}-\dfrac{1}{2})= -\dfrac{3}{4}\times (-\dfrac{1}{4})= \dfrac{3}{16}}$.2.【答案】解:去括号得:${6x-4= x-4}$,移项合并得:${x= 0}$;方程组整理得:${\left\{ {\begin{matrix} {3x-2y= 8①} \\ {3x+ 2y= 0②} \end{matrix}} \right.}$,①+②得:${6x= 8}$,解得:${x= \dfrac{4}{3}}$,把${x= \dfrac{4}{3}}$代入②得:${y= -2}$,则方程组的解为${\left\{ {\begin{matrix} {x= \dfrac{4}{3}} \\ {y= -2} \end{matrix}} \right.}$.【考点】解二元一次方程组解一元一次方程【解析】方程去括号,移项合并,把${x}$系数化为${1}$,即可求出解;方程组整理后,利用加减消元法求出解即可.【解答】解:去括号得:${6x-4= x-4}$,移项合并得:${x= 0}$;方程组整理得:${\left\{ {\begin{matrix} {3x-2y= 8①} \\ {3x+ 2y= 0②} \end{matrix}} \right.}$,①+②得:${6x= 8}$,解得:${x= \dfrac{4}{3}}$,把${x= \dfrac{4}{3}}$代入②得:${y= -2}$,则方程组的解为${\left\{ {\begin{matrix} {x= \dfrac{4}{3}} \\ {y= -2} \end{matrix}} \right.}$.3.【答案】${a}$的值是${1}$.【考点】一元一次方程的应用【解析】本题可根据矩形的周长${= }$(长+宽)${\times 2}$求解即可.【解答】解:依题意得${2(3a-1+ a+ 3)= 12}$,即:${8a+ 4= 12}$,解得:${a= 1}$.4.【答案】解:如图所示:${\triangle A′B′C′}$即为所求.【考点】作图—复杂作图【解析】首先作一条射线,进而截取${AB= A′B′}$,${\angle CAB= \angle C′A′B′}$,进而截取${AC= A′C′}$,进而得出答案.【解答】解:如图所示:${\triangle A′B′C′}$即为所求.5.【答案】解:∵ ${\angle AOB= 165^{{\circ} }}$,${\angle AOC= 90^{{\circ} }}$,∴ ${\angle BOC= \angle AOB-\angle AOC= 75^{{\circ} }}$,又∵ ${\angle BOD= 90^{{\circ} }}$,∴ ${\angle COD= \angle BOD-\angle BOC= 90^{{\circ} }-75^{{\circ} }= 15^{{\circ} }}$.【考点】角的计算【解析】根据已知的${\angle AOB}$和${\angle AOC}$的度数,相减得到${\angle BOC}$的度数,再用已知的${\angle BOD}$的度数减${\angle BOC}$的度数,即可得到${\angle COD}$的度数.【解答】解:∵ ${\angle AOB= 165^{{\circ} }}$,${\angle AOC= 90^{{\circ} }}$,∴ ${\angle BOC= \angle AOB-\angle AOC= 75^{{\circ} }}$,又∵ ${\angle BOD= 90^{{\circ} }}$,∴ ${\angle COD= \angle BOD-\angle BOC= 90^{{\circ} }-75^{{\circ} }= 15^{{\circ} }}$.6.【答案】解:∵ ${MN= a}$,${CD= b}$,∴ ${MC+ ND= a-b}$,∵ ${M}$是${AC}$的中点,${N}$是${BD}$的中点,∴ ${AM= MC}$,${BN= DN}$,∴ ${AM+ BN= MC+ ND= a-b}$,∴ ${AB= AM+ BN+ MN= a-b+ a= 2a-b}$.【考点】两点间的距离【解析】先根据${MN= a}$,${CD= b}$,求得${MC+ ND= a-b}$,再根据${M}$是${AC}$的中点,${N}$是${BD}$的中点,得出${AM= MC}$,${BN= DN}$,进而得到${AM+ BN= MC+ ND= a-b}$,最后根据${AB= AM+ BN+ MN}$进行计算即可.【解答】解:∵ ${MN= a}$,${CD= b}$,∴ ${MC+ ND= a-b}$,∵ ${M}$是${AC}$的中点,${N}$是${BD}$的中点,∴ ${AM= MC}$,${BN= DN}$,∴ ${AM+ BN= MC+ ND= a-b}$,∴ ${AB= AM+ BN+ MN= a-b+ a= 2a-b}$.7.【答案】${16}$,${9}$(2)∵图形中“${● }$”的个数依次为${8}$的${1}$倍,${2}$倍,${3}$倍…;“★”的个数依次为${1^{2}}$,${2^{2}}$,${3^{2}}$…∴第${n}$个图形中“${● }$”有${8n}$个,“★”有${n^{2}}$个;(3)${8n= 120}$,${n= 15}$;第${15}$个图形中有${120}$个“${● }$”${15^{2}= 225}$该图形中有${225}$个“★”.【考点】规律型:图形的变化类【解析】(1)由图中可以看出“${● }$”的个数为${4\times 4= 16}$;“★”的个数为${3^{2}= 9}$;(2)易得所有图形中“${● }$”的个数依次为${8}$的${1}$倍,${2}$倍,${3}$倍…;“★”的个数依次为${1^{2}}$,${2^{2}}$,${3^{2}}$…据此可得所求答案;(3)利用(2)的结论可得结果.【解答】解:(1)${● }$的个数为:${8\times 2= 16}$;★的个数为:${3^{2}= 9}$;(2)∵图形中“${● }$”的个数依次为${8}$的${1}$倍,${2}$倍,${3}$倍…;“★”的个数依次为${1^{2}}$,${2^{2}}$,${3^{2}}$…∴第${n}$个图形中“${● }$”有${8n}$个,“★”有${n^{2}}$个;(3)${8n= 120}$,${n= 15}$;第${15}$个图形中有${120}$个“${● }$”${15^{2}= 225}$ 该图形中有${225}$个“★”.8.【答案】该团住了普通三人间${8}$间,普通双人间${13}$间.【考点】二元一次方程组的应用【解析】根据等量关系:三人间所住人数+二人间所住人数${= 50}$人,:三人间费用${\times 50\% + }$二人间费用${\times 50\% = 1510}$,据此可列方程组求解.【解答】解:设普通三人间住了${x}$间,普通双人间住了${y}$间,由题意得:${\left\{ {\begin{matrix} {3x+ 2y= 50} \\ {75x+ 70y= 1510} \end{matrix}} \right.}$,${\left\{ {\begin{matrix} {x= 8} \\ {y= 13} \end{matrix}} \right.}$.9.【答案】解:(1)∵ ${\mathrel{|} a+ 2\mathrel{|} + (b-5)^{2}= 0}$,∴ ${a+ 2= 0}$,${b-5= 0}$,解得:${a= -2}$,${b= 5}$,则${AB= \mathrel{|} a-b\mathrel{|} = \mathrel{|} -2-5\mathrel{|} = 7}$;(2)若点${P}$在${A}$、${B}$之间时,${PA= \mathrel{|} x-(-2)\mathrel{|} = x+ 2}$,${\mathrel{|} PB\mathrel{|} = \mathrel{|} x-5\mathrel{|} = 5-x}$,∴ ${PA+ PB= x+ 2+ 5-x= 7\lt 10}$,∴点${P}$在${A}$、${B}$之间不合题意,则不存在${x}$的值使${PA+ PB= 10}$;(3)若点${P}$在${AB}$的延长线上时,${PA= \mathrel{|} x-(-2)\mathrel{|} = x+ 2}$,${PB= \mathrel{|} x-5\mathrel{|} = x-5}$,由${PA+ PB= 10}$,得到${x+ 2+ x-5= 10}$,解得:${x= 6.5}$;若点${P}$在${AB}$的反向延长线上时,${PA= \mathrel{|} x-(-2)\mathrel{|} = -2-x}$,${PB= \mathrel{|} x-5\mathrel{|} = 5-x}$,由${PA+ PB= 10}$,得到${-2-x+ 5-x= 10}$,解得:${x= -3.5}$,综上,存在使${PA+ PB= 10}$的${x}$值,分别为${6.5}$或${-3.5}$.【考点】数轴非负数的性质:绝对值非负数的性质:偶次方【解析】(1)利用非负数的性质求出${a}$与${b}$的值,确定出${AB}$即可;(2)根据${P}$在${A}$、${B}$之间确定出${x}$的范围,进而求出${PA+ PB}$,判断即可;(3)根据${P}$在${A}$、${B}$之间确定出${x}$的范围,进而求出${PA+ PB}$,判断即可.【解答】解:(1)∵ ${\mathrel{|} a+ 2\mathrel{|} + (b-5)^{2}= 0}$,∴ ${a+ 2= 0}$,${b-5= 0}$,解得:${a= -2}$,${b= 5}$,则${AB= \mathrel{|} a-b\mathrel{|} = \mathrel{|} -2-5\mathrel{|} = 7}$;(2)若点${P}$在${A}$、${B}$之间时,${PA= \mathrel{|} x-(-2)\mathrel{|} = x+ 2}$,${\mathrel{|} PB\mathrel{|} = \mathrel{|} x-5\mathrel{|} = 5-x}$,∴ ${PA+ PB= x+ 2+ 5-x= 7\lt 10}$,∴点${P}$在${A}$、${B}$之间不合题意,则不存在${x}$的值使${PA+ PB= 10}$;(3)若点${P}$在${AB}$的延长线上时,${PA= \mathrel{|} x-(-2)\mathrel{|} = x+ 2}$,${PB= \mathrel{|} x-5\mathrel{|} = x-5}$,由${PA+ PB= 10}$,得到${x+ 2+ x-5= 10}$,解得:${x= 6.5}$;若点${P}$在${AB}$的反向延长线上时,${PA= \mathrel{|} x-(-2)\mathrel{|} = -2-x}$,${PB= \mathrel{|} x-5\mathrel{|} = 5-x}$,由${PA+ PB= 10}$,得到${-2-x+ 5-x= 10}$,解得:${x= -3.5}$,综上,存在使${PA+ PB= 10}$的${x}$值,分别为${6.5}$或${-3.5}$.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年度第一学期七年级期末数学考试试题
一选择题(每题3分,共30分)
1.下列语句正确的是()
A.1是最小的自然数
B.平方等于它本身的数只有1
C.绝对值最小的数是0
D.任何有理数都有倒数
2.下列各式中运算正确的是()
A.6a-5a=1 B.a2+a2=a4 C.3a2+2a3=5a5 D.3a2b-4ba2=-a2b
3.要使关于x的方程3(x-2)+b=a(x-1)是一元一次方程,必须满足()
A.a≠0
B.b≠0
C.a≠3
D.a,b为任意有理数
4.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水为(用科学记数法表示)()
A.1440毫升
B.1.4×103毫升
C.0.14×104毫升
D.14×102毫升
5.下列事件中, 必然发生的是()
A.如果n是整数,那么(-1)n=1
B.掷一枚均匀的骰子,出现3点朝上
C.明天会下雨
D.把圆柱形的橡皮泥捏成长方体,则橡皮泥的体积不变
6.方程x-2=2-x的解是()
A.x=1
B.x=-1
C.x=2
D.x=0
7.下面是一个长方形的展开图,其中错误的是()
8.在数轴上表示a、b两数的点如图所示,则下列判断正确的是( )
A.a+b>0
B.a+b<0
C.ab>0
D.│a│>│b│
9.右边几何体的俯视图是( )
10.一列数:0,1,2,3,6,7,14,15,30.____,_____,____这列数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这列数的最后三个数应该是下面的( )
A.31,32,64
B.31,62,63
C.31,32,33
D.31,45,46
二 填空题:(每题3分,共24分) 11.32-的相反数的倒数是________. 12.单项式413y x a --与b y x 224是同类项,则a+b 的值为 。
13.已知一种商品每件的成本为a 元,将成本增加25%定出价格,后因仓库积压调价,按价格的92%出售,问:每件还能盈利 元
14.如图所示是可以自由转动的一个转盘,转动这个转盘,当它停止转动时,指针落在 号区域上的可能性最大。
15.若a+b=-1,则代数式5-3a-3b 的值是 .
16.已知线段AC=18cm ,点B 在直线AC 上,AB=8cm ,点P 是AB 中点,则PC=____cm.
17.(1-2a )2
与|3b -4|是互为相反数,则ab= ;
18.如图,是某晚报“百姓热线”一周内接到的热线电话的统计图,其中有关环境保护问题最多,共有70个.试问有关交通问题的电话有_______个.
三 解答题:(共12分)
19.计算与化简(每题4分,共计12分)
(1))6
53281(24)2(2-+-⨯+-
(2)23)3(68
3)5.12(2---⨯÷---
(3)[]
a a a a a 5)3(229222+--+-
20.当3,2
1-=-=y x 时,求代数式)](223[)2(322y xy y x xy x ++---的值。
21.有这样一道题: “计算)3()2()232(323323223y y x x y xy x xy y x x -+-++----的值, 其中1,21-==y x ”。
甲同学把“21=
x ”错抄成“2
1-=x ”,但他计算的结果也是正确的,试说明理由,并求出这个结果?
22.已知如图,AO ⊥BC ,DO ⊥OE.
(1)不添加其它条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);
(2)如果∠COE=35°,求∠AOD 的度数。
23.小明和小丽同时从学校出发到运动场看体育比赛,小明每分钟走80米,他走到运动场等了5分钟,比赛才开始,小丽每分钟走60米,她进入运动场时,比赛已经开始3分钟,问学校到运动场有多远?
24.某校校长在国庆节带领该校市级“三好学生”外出旅游,甲旅行社说“如果校长买一张票,则其余学生可享受半价优惠”,乙旅行社说“包括校长在内全部按票价的6折优惠”(即按票的60%收费)。
现在全票价为240元,学生数为5人,请算一下哪家旅行社优惠?你喜欢哪家旅行社?如果是一位校长,两名学生呢?
参考答案
1.C
2.D
3.C
4.B
5.D
6.C
7.C
8.B
9.C 10.B 11.2
3; 12.5
13.0.15a
14.2
15.8
16.13cm 或14cm 17.3
2 18.40
19.(1)原式=-3;(2)原式=-28;(3)原式=-3a 2+3a ;
20.原式=-8xy=-12
21.
32232)
3()2()232(3
23323223323323223=-+--+---=-+-++----y y x x y xy x xy y x x y y x x y xy x xy y x x
22.(1)∠AOD=∠COE ;∠BOD=∠AOE ;∠BOE=∠COD ;(2)∠AOD=350.
23.设学校到运动场有x 米,则甲到运动场的时间为
80x 分钟,乙到达运动场的时间为60x 分钟,由题意得
80x +5+3=60x ,解得:x=1920.答:学校到运动场有1920米. 24.解:①甲旅行社:240+5×240×12=840(元);
乙旅行社:6×240×60100=864(元).
∵840<864,
∴甲旅行社优惠.
②如果是一位校长,两名学生,
甲旅行社:240+2×240×12=480(元);
乙旅行社:3×240×60100=432(元).
∵480>432,∴乙旅行社优惠。