闭环、开环频率特性与阶跃响应的关系

合集下载

精品文档-自动控制原理(第二版)(千博)-第5章

精品文档-自动控制原理(第二版)(千博)-第5章
24
图 5-5 惯性环节的波德图
25
三、对数幅相图(Nichols图)
对数幅相图是以相角(°)为横坐标, 以对数幅频L(ω)(dB)
为纵坐标绘出的G(jω)曲线。频率ω为参变量。因此它与幅相
频率特性一样, 在曲线的适当位置上要标出ω的值, 并且要用
箭头表示ω增加的方向。
用对数幅频Hale Waihona Puke 性及相频特性取得数据来绘制对数幅相
第五章 频 域 分 析 法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 关系 第九节 德图
频率特性的基本概念 频率特性的表示方法 典型环节的频率特性 系统开环频率特性 奈奎斯特稳定性判据和波德判据 稳定裕度 闭环频率特性 开环频率特性和系统阶跃响应的
利用MATLAB绘制奈奎斯特图和波
8
图 5-2 频率特性与系统描述之间的关系
9
利用频率特性曲线分析研究控制系统性能的方法称为频域 分析法。频域分析法主要有傅氏变换法和经典法。
(1) 傅氏变换法就是系统在输入信号r(t)的作用下,其输 出响应为
即把时间函数变换到频域进行计算并以此分析研究系统的方法。 (2) 经典法就是先求出系统的开环频率特性G(jω)并绘成
的对数频率
22
(1) 对数幅频特性曲线。通常用L(ω)简记对数幅频特性, 故
ω从0变化到∞时的对数幅频特性曲线如图5-3所示。
23
(2) 相频特性曲线。通常以j(ω)表示相频特性, 即 j (ω)=∠G(jω)。对于惯性环节, 有
j (ω)=-arctanTω 对不同ω值, 逐点求出相角值并绘成曲线即为相频特性曲线, 如图5-5所示。
45
图 5-11 振荡环节近似波德图

控制工程基础2010试题A卷.答案

控制工程基础2010试题A卷.答案

控制工程基础一、 填空题(每空1分,15题共20分)1. 控制系统由 控制对象和控制器 两部分组成。

2. 建立系统数学模型的方法有 分析法 和 实验法 两种。

3. 按其数学模型是否满足 叠加性 ,控制系统可分为线性系统和非线性系统。

4.随动系统是指 在外界作用下,系统的输出能相应于输入在广阔范围内按任意规律变化的系统5. 经典控制理论采用的数学模型主要 传递函数 以为基础;现代控制理论采用的数学模型主要以为 状态空间方程 基础。

6. 工程上常用的线性化方法是 将非线性函数在平衡点附近展开成Taylor 级数,然后去掉高次项以得到线性函数 。

7. 广义误差平方积分性能指标特点 既不允许大的动态误差e(t)长期存在,又不允许大的误差变化率长期存在 。

8. 校正元件按在系统中的连接方式可分为串联校正、 反馈校正 和 顺馈校正 等。

9. 系统频率特性指标中的谐振频率是指 幅频特性A(ω)出现最大值Amax 时的频率 。

10.系统传递函数与其单位脉冲响应函数的关系是 拉氏反变换 。

11.系统稳定的充要条件是 闭环系统特征根具有负实部 。

12.某线性定常系统的单位斜坡响应为t e t t y 2)(-+=,0≥t 。

其单位阶跃响应为 t e 221=- 。

13.在工程控制实践中,为使系统有满意的稳定性储备,一般其幅值裕度应满足 大于6dB 或大于2 。

14.最小相位系统是指 传递函数所有零点和极点均在复平面s 的左半平面内 。

15.已知系统开环传递函数为)1(9)(+=s s s G K ,则系统的固有频率、阻尼比以及单位斜坡输入所引起的稳态误差分别为 3 、 61 、 1 。

二、单项选择题(每题2分,10题共20分)1.下面关于微分环节的控制作用描述中正确的是: ( D )(A)使相位滞后 (B)减小系统的阻尼 (C)抗高频干扰 (D)使相位超前2.稳态误差除了与系统的型别、传递函数有关外,还与下述哪一项有关? ( D )(A) 阶次 (B) 振荡频率 (C) 阻尼比 (D) 输入信号类型3.二阶振荡系统幅值衰减的快慢取决于: ( C )(A) d ω (B)n ξω (C) 特征根实部绝对值 (D) 特征根虚部的分布情况4.系统输出的拉氏变换完全取决于: ( B )(A)系统的传递函数的极点位置 (B)系统的初始状态、输入及其传递函数(C)系统的传递函数 (D)系统的固有特性5.相位滞后校正环节相当于: ( A )(A )低通滤波器 (B )高通滤波器 (C )带通滤波器 (D ) 带阻滤波器6.下图为一阶系统单位脉冲响应曲线,则下列说明正确的是: ( B )(A) 系统的输出为0,2)(2≥=-t e t t ω (B) 系统的输出为0,)(≥=-t e t t ω(C) 系统传递函数为)12(1)(+=s s G (D) 系统单位脉冲响应调整时间为2s7. PI 控制类似于: ( C )(A) 增益调整 (B) 相位超前校正 (C) 相位滞后校正 (D) 相位滞后-超前校正8.某单位反馈系统的闭环传递函数为)2(1)(+=s s G ,则输入t t r 2sin 2)(=时稳态输出的幅值为: ( D )(A )2 (B )2/2 (C )2 (D )19.已知下列系统的开环传递函数为)1)(1)(1)(1()1)(1()(432165++++++=s T s T s T s T s s T s T K s G (所有参数均大于0),则下图中所给幅相曲线中正确的是: ( A )10.用Nyquist 稳定判据判断上面第9小题所给开环系统所对应的闭环系统的稳定性,所得结论正确的是: ( D )(A)0=P ,1=Z ;不稳定 (B)0=P ,2=Z ;不稳定(C)0=P ,1=Z ;稳定 (D) 0=P ,0=Z ;稳定三、简答题(2题共10分)1、简述系统开环对数频率特性曲线中三频段分析法及其适用范围。

机械工程控制基础-----填空简答题知识点

机械工程控制基础-----填空简答题知识点

1、反馈:输出信号被测量环节引回到输入端参与控制的作用。

2、开环控制系统与闭环控制系统的根本区别:有无反馈。

3、线性及非线性系统的定义及根本区别:当系统的数学模型能用线性微分方程描述时,该系统的称为线性系统。

非线性系统:一个系统,如果其输出不与其输入成正比,则它是非线性的。

根本区别:线性系统遵从叠加原理,而非线性系统不然。

4、传递函数的定义及特点:零初始条件下,系统输出量的拉斯变换与输入量的拉斯变换的比值。

用G〔s〕表示。

特点:1〕、传递函数是否有量纲取决于输入与输出的性质,同性质无量纲。

2〕、传递函数分母中S的阶数必n不小于分子中的S的阶数m,既n=>m ,因为系统具有惯性。

3〕、假设输入已给定,则系统的输出完全取决于其传递函数。

4〕、物理量性质不同的系统,环节和元件可以具有相同类型的传递函数。

5〕、传递函数的分母与分子分别反映系统本身与外界无关的固有特性和系统同外界的关系。

5、开环函数的定义:前向通道传递函数G〔s〕与反馈回路传递函数H(s)之积。

6、时间响应的定义和组成:系统在激励信号作用下,输出随时间的变化关系。

按振动来源分为:零状态响应和零输入响应。

按振动性质:自由响应和强迫响应。

7、瞬态性能指标以及反映系统什么特性:性能指标:上升时间tr、峰值时间tp、最大超调量Mp、调整时间ts、振荡次数N。

这些性能指标主要反映系统对输入的响应的快速性。

8、稳态误差的定义及计算公式:系统进入稳态后的误差。

稳态误差反映稳态响应偏离系统希望值的程度。

衡量控制精度的程度。

稳态误差不仅取决于系统自身结构参数,而且与输入信号有关。

系统误差:输入信号与反馈信号之差。

9、减少输入引起稳态误差的措施:增大干扰作用点之前的回路的放大倍数K1,以及增加这一段回路中积分环节的数目。

10、频率响应的概念:线性定常系统对谐波输入的稳态响应称为频率响应。

11、频率特性的组成:幅频特性和相频特性。

12、稳定性的概念:系统在扰动作用下,输出偏离原平衡状态,待扰动消除后,系统能回到原平衡状态〔无静差系统〕或到达新的平衡状态〔有静差系统〕。

频率特性与系统的动态性能

频率特性与系统的动态性能

4.6 频率特性与系统的动态性能4.6 频率特性与系统的动态性能控制系统的频率特性与系统的动态性能之间有密切的关系。

分析控制系统的动态特性,可以利用开环频率特性,也可以利用闭环频率特性。

二阶系统的频率特性与动态性能的时域指标之间又确定的关系,而高阶系统则不存在确定的函数关系。

4.6.1 开环频率特性与系统的动态响应若把系统的开环对数频率特性划分为低频段,中频段和高频段,这三部分对控制系统动态过程的影响是不同的。

开环频率特性的低频段主要影响阶跃响应动态过程的最后阶段,而开环频率特性的高频段主要影响阶跃响应动态过程的起始阶段。

对动态性能影响最重要的是中频段。

所以,常用开环频率的低频段估计系统的稳态性能,而用中频段估计系统的动态响应。

开环频率特性的低频段通常指第一个转折频率前的频段。

这一频段的对数幅频特性质取决于系统的积分环节和放大系数。

图4.29是开环频率特性低频段的几种情况。

图4.29 开环频率特性的低频段图 4.29(a)所示的系统低频段是平行于横轴的直线。

这说明系统中不含积分环节,是零型系统。

这种系统的单位阶跃响应是有误差的,而且可以根据对数幅频特性确定放大系数K,从而计算出系统的稳态误差。

图4.29(b)所示的系统,由于低频段的斜率为-20dB/十倍频程,可以断定系统含有一个积分环节,是Ⅰ型环节。

系统的放大系数可在处求得。

稳态误差可按Ⅰ型系统计算。

图4.29(c)所示的系统是Ⅱ型系统,系统的放大系数可按求取或在对数幅频特性曲线-40dB/十倍频程与轴的交点处求取,此时有。

系统的稳态误差按Ⅱ型系统的稳态误差计算。

开环频率特性曲线的中频段是截止频率附近的频段,截止频率就是使的频率。

即幅值曲线穿越零分贝线的频率。

这一频段,对数幅频特性的形状直接影响到系统的稳定裕量。

从而对系统动态响应过程的主要性能指标产生影响。

用开环频率特性中频段评价控制系统的动态性能,常用到的就是截止频率(穿越频率)和相位裕量。

闭环系统的频域性能指标

闭环系统的频域性能指标

wn2
_ s(s 2wn )
C(s)
G( j)
2 n
2 n
(900 arctan )
j( j 2 n ) 2 4 2 2
2 n
n
由 c定义(P199式(5-99))
c n(
1
4 4 1 2 2 ) 2
相角裕度:
ห้องสมุดไป่ตู้ 1800
G( jc )
arctan2n c
arctan[2
(
4
2、对高频噪声必要的滤波特性。
为了使系统能够精确地跟踪任意输入信号,系统必须具 有大的带宽。但是,从噪声的观点来看,带宽不应当太大。 因此,对带宽的要求是矛盾的,好的设计通常需要折衷考虑。 具有大带宽的系统需要高性能的元件,因此,元件的成本通 常随着带宽的增加而增大。
03:57
3
二、闭环系统频域指标和时域指标的转换
03:57
1
(2)二阶系统
(s)
n2
s 2 2 n s n 2
( j)
1
(1
2
2 n
)2
4
2
2
2 n
根据带宽定义:
20 lg ( jb ) 20 lg ( j0) 3 0 3 20 lg
1 2
代入上式,求得:
1
b n[(1 2 2 ) (1 2 2 )2 1]2
带宽与自然频率 n 成正比,与阻尼比 成反比。
由前面分析知,b与系统响应速度成正比关系,因此 c 也可用来衡
量系统的响应速度,且也与系统响应速度成正比关系。
03:57
4
系统闭环频率特性幅值的最大值称为谐振峰值 Mr
由于系统闭环振荡性能指标 Mr 和开环指标相角裕度 都能表征系统 的稳定程度,因此,建立 Mr 和 的近似关系。

闭环频率特性

闭环频率特性

( ) j (
)
M ()e j ()
闭环系统的幅频特性与相频特性为 M () ( j)
() ( j) 闭环系统对数幅频特性为 20lg M () 20lg ( j)
闭环幅频特性如下图示,其主要的频域指标有:
M ()
Mr
M (0) 1 0.707
0
r
b
▪ 闭环幅频特性的零频值M(0)
零频率振幅值M(0)即ω为零时闭环幅频特性值。它反应了 系统的稳态精度,M(0)越接近于1,系统的精度越高。M(0)≠1 时,则表示系统有稳态误差。
▪ 二阶系统
闭环系统为二阶闭环系统的闭环频率特性为
(
j )
C( R(
j ) j )
(1
2 n2
1 )
j2 n
M ( )e j ( )
闭环幅频特性、相频特性为
M ()
1
(1
2 n2
)2
(2
n
)2
2
(
)
arctg
1
n 2
n2
0 0.707 时,产生谐振

dM
d
0
得谐振频率r
n
1 2 2
第七节 闭环频率特性
闭环系统的时域性能,可以根据闭环频率特性来估算。 对一、二阶系统,时域指标与闭环频域指标有着确定的关系, 对于高阶系统,二者则有近似的对应关系。
一、闭环频率特性主要性能指标
闭环和开环频率特性之间的关系为:
R(s)
-
G(s)
C(s)
( j) G( j) 1 G( j)
1
A()e j A()e
▪ 高频段
高频段指开环幅相特性曲线在中频段以后的区段 10c 这部分特性是由开环传递函数小时间常数环节决定的。

机械工程控制基础填空题

机械工程控制基础填空题

.1.线性系统和非线性系统的根本区别在于线性系统满足迭加原理,非线性系统不满足迭加原理。

2.令线性定常系统传递函数的分母多项式为零,则可得到系统的特征方程3. 时域分析法研究自动控制系统时最常用的典型输入信号是阶跃函数4.设控制系统的开环传递函数为G(s)=)2s )(1s (s 10++,该系统为I 型系统5.二阶振荡环节的相频特性)(ωθ,当∞→ω时,其相位移)(∞θ为-180° 6. 根据输入量变化的规律分类,控制系统可分为 恒值控制系统、随动控制系统和程序控制系统7.采用负反馈连接时,如前向通道的传递函数为G(s),反馈通道的传递函数为H(s),则其等效传递函数为 )s (H )s (G 1)s (G +8. 一阶系统G(s)=1+Ts K 的时间常数T 越大,则系统的输出响应达到稳态值的时间(越长) 9.拉氏变换将时间函数变换成复变函数 10.线性定常系统的传递函数,是在零初始条件下系统输出信号的拉氏变换与输入信号的拉氏变换之比 11.若某系统的传递函数为G(s)=1Ts K +,则其频率特性的实部R(ω)是 22T1K ω+12. 微分环节的频率特性相位移θ(ω)= 90° 13. 积分环节的频率特性相位移θ(ω)= -90° 14.传递函数反映了系统的动态性能,它与系统的结构参数有关15. 系统特征方程式的所有根均在根平面的左半部分是系统稳定的充分必要条件 16. 有一线性系统,其输入分别为u 1(t)和u 2(t)时,输出分别为y 1(t)和y 2(t)。

当输入为a 1u 1(t)+a 2u 2(t)时(a 1,a 2为常数),输出应为a 1y 1(t)+a 2y 2(t)17. I 型系统开环对数幅频渐近特性的低频段斜率为-20(dB/dec)18. 设系统的传递函数为G(s)=255252++s s ,则系统的阻尼比为2119.正弦函数sin t ω的拉氏变换是 22s ω+ω20.二阶系统当0<ζ<1时,如果增加ζ,则输出响应的最大超调量%σ将 减小21.主导极点的特点是距离虚轴很近 22.余弦函数cos tω的拉氏变换是22s sω+23.设积分环节的传递函数为G(s)=s1,则其频率特性幅值M(ω)=ω124. 比例环节的频率特性相位移θ(ω)= 0° 25. 奈奎斯特稳定性判据是利用系统的.开环幅相频率特性来判据闭环系统稳定性的一个判别准则。

自动控制理论填空题

自动控制理论填空题

1.凡是输入输出关系符合_______和齐次性的系统称之为线性系统。

2.叠加原理是线性系统的基本性质之一,对于非线性系统,叠加原理_____成立。

3.线性系统与非线性系统的本质区别是是否满足_______。

4.输入输出模型是对系统的外部描述,_______是这种描述的是最基本的形式,传递函数、框图、信号流图均是由它导出。

5.根轨迹法与频域法都是建立在_______基础上的,需用要根据其画出相应的图,进而进行分析。

6.控制理论有四个重要概念:动态、模型、互联和______,这四个概念是系统分析和设计的关键。

7.计算机网络IP协议采用开环控制,TCP协议则采用______控制。

8.自动控制系统主要由对象、检测单元、执行单元和________等四个基本部分构成。

9.控制理论把系统满足物理约束条件下的负载扰动抑制、测量噪声衰减、指令跟踪、系统结构及参数变化的不确定性问题,归结为求解反馈系统的稳定性、快速性、准确性和_______。

10.反馈是处理不确定性的工具,采用反馈控制,要使系统达到稳定性、_______、准确性、鲁棒性的要求。

11.________是处理不确定性的工具,采用反馈控制,要使系统达到稳定性、快速性、准确性、鲁棒性的要求。

12.灵敏度函数不但可以描述系统对于过程参数变化的鲁棒性,同时也刻画了闭环系统对于______的抑制性能。

13.灵敏度函数不但可以描述系统对于过程_______的鲁棒性,同时也刻画了闭环系统对于扰动的抑制性能。

)14.对于物理系统,由于系统的因果性,传递函数分母的阶次n总是_________分子的阶次m。

15.传递函数2(3)ss++的极点是________。

16.传递函数23(2)(3)ss++的零点是________。

17.传递函数5(3)ss s++的有限零点是________。

18.传递函数23ss++的有限极点是________。

19.线性系统渐近稳定的充要条件是其特征方程的所有根均位于_______。

经典控制理论知识点总结

经典控制理论知识点总结

经典控制理论知识点总结1、自动控制:是没有人直接参与的情况下,利用控制器或控制装置来控制机器、设备或者生产过程等,使其受控物理量自动地按照预定的规律变化,以达到控制目的。

2、开环控制系统定义:被控装置和被控对象之间只有顺向作用,无反向作用特点:系统结构简单、成本低、调整方便;控制精度低;抗干扰能力差。

3、闭环控制系统定义:把输出量直接或者间接的反馈到系统的输入端,形成闭环特点:输出量参与系统的控制;结构复杂、成本高、适应性强;控制精度高;抗干扰能力强。

4、自动控制系统分类恒值系统与随动系统;线性系统与非线性系统;连续系统与离散系统;单输入单输出系统与多输入多输出系统。

5、受控对象:指接收控制量并输出被控制量的装备或设备参考输入量(设定值、给定值):系统的给定输入信号,或称希望值自动控制系统的性能要求:稳定性;准确性,快速性。

6、自动控制理论的发展的三个阶段:经典控制理论;现代控制理论;智能控制理论。

7、列写系统微分方程的一般步骤为:(1)确定系统的输入变量和输出变量(2)从输入端开始,按照信号的传递顺序,依据各变量所遵循的物理、化学等定律,列写各变量之间的动态方程,一般为微分方程组(3)消去中间变量,得到输入变量、输出变量的微分方程(4)标准化拉氏反变换:留数法。

8、传递函数的定义:在零初始条件下,系统输出量的拉氏变换与输入量的拉氏变换之比,称为线性定常系统的传递函数微分方程在时间域,传递函数在复数域传递函数的性质传递函数只适用于线性定常系统;传递函数是在零初始条件下定义的;传递函数可以有量纲;传递函数表示系统的端口关系;传递函数描述了系统的固有特性传递函数的表达式有理分式形式(特征多项式型)零、极点形式(首一型)时间常数形式(尾一型)。

9、动态性能的五个指标延迟时间(稳态值50%);上升时间(稳态值10%-90%,非一阶0-稳态值);峰值时间;调节时间;超调量(或最大超调量)。

10、一阶单位阶跃系统的动态性能指标:调节时间t=3T(5%误差带),t=4T(2%误差带)延迟时间t=0.69T上升时间t=2.20T峰值时间,超调量不存欠阻尼二阶系统的动态性能指标(P72)一对靠的很近或相等的零、极点,彼此将相互抵消,其结果使留数等于零,此类零、极点称为偶极子闭环主导极点,它应满足以下两个条件:(1)在s平面上,距离虚轴比较近,且附近没有其他的零点和极点(2)其实部的绝对值比其他极点实部的绝对值小5倍以上。

自动控制原理1第一节频率特性的基本概念

自动控制原理1第一节频率特性的基本概念

j ) j)
s j
RmG( j )
2j
Wednesday, January 31, 2024
5
而 G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ()
G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ( )
A() P2 () Q2 ()
() tg 1 Q() P( )
频率特性与传递函数的关系为:
G( j ) G(s) |s j
由于这种简单关系的存在,频率响应法和利用传递函数的时域 法在数学上是等价的。
Wednesday, January 31, 2024
8
[结论]:当传递函数中的复变量s用 j代替时,传递函数就转n为极点。
若: r(t)
Rm sint,则R(s)
Rm s2 2
(s
Rm j)(s
j )
则:C(s)
N (s)R(s)
N (s)
Rm
(s p1)(s p2 )...(s pn ) (s p1)(s p2 )...(s pn ) (s j )(s j )
G( j) P() jQ() 这里 P() Re[G( j)] 和 Q() Im[G( j)] 分别称为系统的实
频特性和虚频特性。
Wednesday, January 31, 2024
7
幅频特性、相频特性和实频特性、虚频特性之间具有下列
关系:
P() A() cos()
Q() A() sin()
11
频率响应法的优点之一在于它可以通过实验量测来获得, 而不必推导系统的传递函数。
事实上,当传递函数的解析式难以用推导方法求得时,常 用的方法是利用对该系统频率特性测试曲线的拟合来得出传递 函数模型。

频域响应和时域响应之间的关系

频域响应和时域响应之间的关系
*
5.8 MATLAB在频域分析中的运用
5.8.1 用MATLAB绘制频率响应图
本节介绍如何用MATLAB来绘制Bode图,再次讨论频率性能指标与时域性能的联系,并举例说明频域内的控制系统设计。 本节介绍的MATLAB函数有bode函数和 logspace函数。其中,bode函数用于绘制Bode图, logspace函数用于生成频率点数据是按照数的相等间隔生成的。在这些频率点上,计算机将根据 Bode图的需要,进行相应的计算。
*
当系统无差度 时,由式(5—140)得 (5-141) 综上分析,对于无差度 的无差度系统,闭环幅频特性的零频值 ;而对于无差度 的有差系统,闭环幅频率特性的零频值 。式(5—141)说明, 系统开环放大系数K越大, 闭环幅频特性的零频值 愈接近于1,有差系统的稳态误差将愈小。
上式表明,选择300~600 的相角裕度时,对应的系统阻 尼比约为0.3~0.6。
图5-72 相角裕度和阻尼比的关系
*
式中 为系统的被控信号, 分别是系统的闭环频率特性和 控制信号的频率特性。一般情况下,直接应用式(5—159)求解高阶系统的 时域响应是很困难的。在第三章和第四章我们介绍了主导极点的概念,对于 具有一对主导极点的高阶系统,可用等效的二阶系统来表示,在这种情况下, 可以利用前面介绍的方法对高阶系统进行分析。实践证明,只要满足主导极 点的条件,分析的结果是令人满意的。对于不具有一对主导极点的高阶系统, 除了利用式(5—159)的傅立叶变换外,尚无简便的方法可循。
(3)谐振频率 和截止频率 的大小反映了系统的响应速度。 与 的值愈大,系统响应速度愈快,反之愈慢。但频带太宽( 的值大),系统对高频噪声的滤波性能差,因此在系统设计中,必须兼顾系统的快速性和抗干扰能力,妥善处理好这一对矛盾。

自动控制原理选择填空(含答案)

自动控制原理选择填空(含答案)

[标签:标题]篇一:自动控制原理试题库(有答案的)自动控制理论试卷(A/B卷闭卷)一、填空题(每空1 分,共15分)1、反馈控制又称偏差控制,其控制作用是通过值进行的。

2、复合控制有两种基本形式:即按前馈复合控制。

3、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为G(s),则G(s)为(用G1(s)与G2(s) 表示)。

4、典型二阶系统极点分布如图1所示,则无阻尼自然频率?n?,阻尼比??,该系统的特征方程为,该系统的单位阶跃响应曲线为。

5、若某系统的单位脉冲响应为g(t)?10e?0.2t?5e?0.5t,则该系统的传递函数G(s)为。

6、根轨迹起始于终止于7、设某最小相位系统的相频特性为?(?)?tg?1(??)?900?tg?1(T?),则该系统的开环传递函数为。

8、PI控制器的输入-输出关系的时域表达式是其相应的传递函数为,由于积分环节的引入,可以改善系统的性能。

二、选择题(每题2 分,共20分)1、采用负反馈形式连接后,则( )A、一定能使闭环系统稳定;B、系统动态性能一定会提高;C、一定能使干扰引起的误差逐渐减小,最后完全消除;D、需要调整系统的结构参数,才能改善系统性能。

2、下列哪种措施对提高系统的稳定性没有效果()。

A、增加开环极点;B、在积分环节外加单位负反馈;C、增加开环零点;D、引入串联超前校正装置。

3、系统特征方程为D(s)?s3?2s2?3s?6?0,则系统()A、稳定;B、单位阶跃响应曲线为单调指数上升;C、临界稳定;D、右半平面闭环极点数Z?2。

4、系统在r(t)?t2作用下的稳态误差ess??,说明()A、型别v?2;B、系统不稳定;C、输入幅值过大;D、闭环传递函数中有一个积分环节。

5、对于以下情况应绘制0°根轨迹的是()A、主反馈口符号为“-”;B、除Kr外的其他参数变化时;C、非单位反馈系统;D、根轨迹方程(标准形式)为G(s)H(s)??1。

河南理工大学自动控制原理第5章 第4讲 系统的闭环频率特性及性能指标和利用开环频率特性分析系统的性能2012

河南理工大学自动控制原理第5章 第4讲 系统的闭环频率特性及性能指标和利用开环频率特性分析系统的性能2012

主要内容系统闭环频率特性通过频率特性曲线分析稳态性能指标频域动态性能指标频率域特性指标与时域瞬态指标的关系2)()(1)()()(1s H s G s H s G s H +⋅=4环幅频特性。

闭环幅频特性曲线闭环对数幅频曲线二、由闭环频率特性分析系统的时域响应频率特性分析法比时域性能分析简便,且有成熟的图解法可供使用,但频率特性分析是一种概略性的间接方法,在要求系统性能指标直接而具体时,还需从时域响应面进行讨论。

在已知闭环系统稳定的条件下,可根据系统的闭环幅频特性曲线,对系统的动态过程进行定性分析与定量估算。

51、通常的闭环频域有以下几个指标:V零频幅值:ω=0时闭环幅频特性的数值(反映系统静差(误差))V谐振频率ωr:闭环系统频率特性出现谐振峰值时的频率值V谐振峰值M r:系统闭环频率特性幅值的最大值,反映系统的平稳性,并非所有闭环频率特性的中频段有谐振峰值,若出现了谐振峰值,表明系统的阻尼比较小615M r、σ与ζ的关系曲线当相角裕量γ为30o ~60o 时,对应二阶系统的阻尼比ζ为0.3~0.6在ζ≤0.707时,二阶系统的相角裕量γ与阻尼比ζ之间的关系近似为:ζ=0.01γV谐振频率ωr表征系统瞬态响应的速度。

ωr值越大,响应时间越快。

对于弱阻尼系统(ζ较小),谐振频率ωr与阶跃响应的阻尼振荡频率ωd接近。

V截止频率(带宽频率)ωb当系统闭环幅频特性的幅值M(ω)降到零频率幅值的0.707(或零分贝值以下3dB)时,对应的频率ωb称为截止频率。

0~ωb的频率范围称为带宽它反映系统的快速性和低通滤波特性。

V剪切率ωc幅值=1时的频率ωc,称为剪切率,它既反映系统的相角裕度(相角裕度大,剪切率应较平缓),又表征系统从噪声中辨别信号的能力(剪切率平缓,带宽ωb大,对高频噪声的抑制不利)。

17应注意,剪切频率ωc处斜率平缓(如以-20dB/dec过0dB线)时,系统相角裕量大;而斜率陡峭时,说明具有负相角的环节集图5 剪切率中叠加于此,带来大的负相角,如图5所示,则易造成系统不稳定。

机械电子工程基础II》习题答案

机械电子工程基础II》习题答案

实用文档【机械电子工程根底II 】习题答案一、单项选择题1、开环系统与闭环系统最本质的区别是〔 A 〕A.开环系统的输出对系统无控制作用,闭环系统的输出对系统有控制作用B.开环系统的输入对系统无控制作用,闭环系统的输入对系统有控制作用C.开环系统不一定有反应回路,闭环系统有反应回路D.开环系统不一定有反应回路,闭环系统也不一定有反应回路2、假设f t t t (),,=⎧⎨⎩⎪00515≤<≥,那么L f t [()]=〔 B 〕A.e s s-B.e s s -5C.1sD.15se s 3、f t t ().,=+051其L f t [()]=〔 C 〕 A.s s +052. B.052.s C.1212s s+ D.12s4、以下函数既可用初值定理求其初始值又可用终值定理求其终值的为〔 D 〕A.5252s + B.ss 216+ C.12s -D.12s + 5、假设f t te t ()=-2,那么L f t [()]=〔 B 〕 A.12s + B.122()s + C.12s - D.122()s -6、线性系统与非线性系统的根本区别在于〔 C 〕A.线性系统微分方程的系数为常数,而非线性系统微分方程的系数为时变函数B.线性系统只有一个外加输入,而非线性系统有多个外加输入C.线性系统满足迭加原理,非线性系统不满足迭加原理实用文档D.线性系统在实际系统中普遍存在,而非线性系统在实际中存在较少 7、系统方框图如图示,那么该系统的开环传递函数为〔 B 〕A.1051s + B.2051s s +C.10251s s ()+D.2s8、二阶系统的极点分别为s s 12054=-=-.,,系统增益为5,那么其传递函数为〔 D 〕 A.2054(.)()s s --B.2054(.)()s s ++C.5054(.)()s s ++D.10054(.)()s s ++9、某系统的传递函数为2s 5)s (G +=,那么该系统的单位脉冲响应函数为〔 A 〕 A.52e t - B.5tC.52e tD.5t10、二阶欠阻尼系统的上升时间t r 定义为〔 C 〕 A.单位阶跃响应到达稳态值所需的时间B.单位阶跃响应从稳态值的10%上升到90%所需的时间C.单位阶跃响应从零第一次上升到稳态值时所需的时间D.单位阶跃响应到达其稳态值的50%所需的时间11、系统类型λ、开环增益K 对系统稳态误差的影响为〔 A 〕 A.系统型次λ越高,开环增益K 越大,系统稳态误差越小 B.系统型次λ越低,开环增益K 越大,系统稳态误差越小 C.系统型次λ越高,开环增益K 越小,系统稳态误差越小 D.系统型次λ越低,开环增益K 越小,系统稳态误差越小 12、一系统的传递函数为G s KTs ()=+1,那么该系统时间响应的快速性〔 C 〕 A.与K 有关 B.与K 和T 有关 C.与T 有关D.与输入信号大小有关13、一闭环系统的开环传递函数为G s s s s s ()()()()=+++83232,那么该系统为〔 C 〕A.0型系统,开环增益为8B.I 型系统,开环增益为8C.I 型系统,开环增益为4D.0型系统,开环增益为414、瞬态响应的性能指标是根据哪一种输入信号作用下的瞬态响应定义的〔 B 〕 A.单位脉冲函数 B.单位阶跃函数 C.单位正弦函数D.单位斜坡函数15、二阶系统的传递函数为G s Ks s ()=++2212,当K 增大时,其〔 C 〕 A.无阻尼自然频率ωn 增大,阻尼比ξ增大 B.无阻尼自然频率ωn 增大,阻尼比ξ减小 C.无阻尼自然频率ωn 减小,阻尼比ξ减小 D.无阻尼自然频率ωn 减小,阻尼比ξ增大 16、所谓最小相位系统是指〔 B 〕 A.系统传递函数的极点均在S 平面左半平面B.系统开环传递函数的所有零点和极点均在S 平面左半平面C.系统闭环传递函数的所有零点和极点均在S 平面右半平面D.系统开环传递函数的所有零点和极点均在S 平面右半平面 17、一系统的传递函数为G s s ()=+102,那么其截止频率ωb 为〔 A 〕 A. 2rad s / rad s /C.5rad s /D.10rad s /18、一系统的传递函数为G s Ks Ts ()()=+1,那么其相位角ϕω()可表达为〔 B 〕A.--tg T 1ωB.-︒--901tg T ωC.901︒--tg T ωD.tg T -1ω19、一系统的传递函数为G s s ()=+22,当输入r t t ()sin =22时,那么其稳态输出的幅值为〔 A 〕 A.2 B.22/ C.2D.420、延时环节e s ->ττ()0,其相频特性和幅频特性的变化规律是〔 D 〕 A.ϕωω(),()=︒=900L dB B.ϕωωτω(),()=-=L 1 dB C.ϕωωωτ(),()=︒=90L dB D.ϕωωτω(),()=-=L 0 dB21、一单位反应系统的开环传递函数为G s Ks s s ()()()=++12,当K 增大时,对系统性能能的影响是〔 A 〕 A.稳定性降低 B.频宽降低 C.阶跃输入误差增大D.阶跃输入误差减小22、一单位反应系统的开环Bode 图,其幅频特性在低频段是一条斜率为-20dB dec /的渐近直线,且延长线与0dB 线的交点频率为ωc =5,那么当输入为r t t ().=05时,其稳态误差为〔 A 〕C.023、利用乃奎斯特稳定性判据判断系统的稳定性时,Z P N =-中的Z 表示意义为〔 D 〕 A.开环传递函数零点在S 左半平面的个数 B.开环传递函数零点在S 右半平面的个数 C.闭环传递函数零点在S 右半平面的个数 D.闭环特征方程的根在S 右半平面的个数24、关于劳斯—胡尔维茨稳定性判据和乃奎斯特稳定性判据,以下表达中正确的选项是〔 B 〕 A.劳斯—胡尔维茨判据属代数判据,是用来判断开环系统稳定性的 B.乃奎斯特判据属几何判据,是用来判断闭环系统稳定性的 C.乃奎斯特判据是用来判断开环系统稳定性的 D.以上表达均不正确25、以下频域性能指标中根据开环系统来定义的是〔 D 〕 A.截止频率ωb B.谐振频率ωr 与谐振峰值M r C.频带宽度D.相位裕量γ与幅值裕量kg26、一单位反应系统的开环传递函数为G s Ks s K ()()=+,那么该系统稳定的K 值范围为〔 A 〕A.K >0B.K >1C.0<K <10D. K >-127、对于开环频率特性曲线与闭环系统性能之间的关系,以下表达中不正确的有〔 A 〕 A.开环频率特性的低频段表征了闭环系统的稳定性 B.中频段表征了闭环系统的动态特性 C.高频段表征了闭环系统的抗干扰能力D.低频段的增益应充分大,以保证稳态误差的要求28、以下性能指标中不能反映系统响应速度的指标为〔 D 〕 A.上升时间t r B.调整时间t s C.幅值穿越频率ωcD.相位穿越频率ωg29、当系统采用串联校正时,校正环节为G s s s c ()=++121,那么该校正环节对系统性能的影响是〔 D 〕A.增大开环幅值穿越频率ωcB.增大稳态误差C.减小稳态误差D.稳态误差不变,响应速度降低 30、串联校正环节G s As Bs c ()=++11,关于A 与B 之间关系的正确描述为〔 A 〕 A.假设G c (s)为超前校正环节,那么A >B >0 B.假设G c (s)为滞后校正环节,那么A >B >0 C.假设G c (s)为超前—滞后校正环节,那么A≠B D.假设G c (s)为PID 校正环节,那么A=0,B >0 31. 线性系统与非线性系统的根本区别在于〔 C 〕A.线性系统微分方程的系数为常数,而非线性系统微分方程的系数为时变函数B.线性系统只有一个外加输入,而非线性系统有多个外加输入C.线性系统满足迭加原理,非线性系统不满足迭加原理D.线性系统在实际系统中普遍存在,而非线性系统在实际中存在较少实用文档32. 系统方框图如图示,那么该系统的开环传递函数为〔 B 〕A.1051s + B.2051s s +C.10251s s ()+D.2s33. 二阶系统的极点分别为s s 12054=-=-.,,系统增益为5,那么其传递函数为〔 D 〕 A.2054(.)()s s --B.2054(.)()s s ++C.5054(.)()s s ++D.10054(.)()s s ++34. 某系统的传递函数为2s 5)s (G +=,那么该系统的单位脉冲响应函数为〔 A 〕 A.52e t - B.5tC.52e tD.5t35. 二阶欠阻尼系统的上升时间t r 定义为〔 C 〕 A.单位阶跃响应到达稳态值所需的时间B.单位阶跃响应从稳态值的10%上升到90%所需的时间C.单位阶跃响应从零第一次上升到稳态值时所需的时间D.单位阶跃响应到达其稳态值的50%所需的时间36. 系统类型λ、开环增益K 对系统稳态误差的影响为〔 A 〕 A.系统型次λ越高,开环增益K 越大,系统稳态误差越小 B.系统型次λ越低,开环增益K 越大,系统稳态误差越小 C.系统型次λ越高,开环增益K 越小,系统稳态误差越小 D.系统型次λ越低,开环增益K 越小,系统稳态误差越小 37. 一系统的传递函数为G s KTs ()=+1,那么该系统时间响应的快速性〔 C 〕 A.与K 有关B.与K 和T 有关C.与T 有关D.与输入信号大小有关38. 一闭环系统的开环传递函数为G s s s s s ()()()()=+++83232,那么该系统为〔 C 〕A.0型系统,开环增益为8B.I 型系统,开环增益为8C.I 型系统,开环增益为4D.0型系统,开环增益为439. 瞬态响应的性能指标是根据哪一种输入信号作用下的瞬态响应定义的〔 B 〕 A.单位脉冲函数 B.单位阶跃函数 C.单位正弦函数D.单位斜坡函数40.二阶系统的传递函数为G s Ks s ()=++2212 ,当K 增大时,其〔 C 〕A.无阻尼自然频率ωn 增大,阻尼比ξ增大B.无阻尼自然频率ωn 增大,阻尼比ξ减小C.无阻尼自然频率ωn 减小,阻尼比ξ减小D.无阻尼自然频率ωn 减小,阻尼比ξ增大 41. 所谓最小相位系统是指〔 B 〕 A.系统传递函数的极点均在S 平面左半平面B.系统开环传递函数的所有零点和极点均在S 平面左半平面C.系统闭环传递函数的所有零点和极点均在S 平面右半平面D.系统开环传递函数的所有零点和极点均在S 平面右半平面 42. 一系统的传递函数为G s s ()=+102,那么其截止频率ωb 为〔 A 〕 A. 2rad s / rad s /C.5rad s /D.10rad s /43. 一系统的传递函数为G s Ks Ts ()()=+1,那么其相位角ϕω()可表达为〔 B 〕A.--tg T 1ωB.-︒--901tg T ωC.901︒--tg T ωD.tg T -1ω44. 一系统的传递函数为G s s ()=+22,当输入r t t ()sin =22时,那么其稳态输出的幅值为〔 A 〕A.2B.22/C.2D.445. 延时环节e s ->ττ()0,其相频特性和幅频特性的变化规律是〔 D 〕 A.ϕωω(),()=︒=900L dB B.ϕωωτω(),()=-=L 1 dB C.ϕωωωτ(),()=︒=90L dB D.ϕωωτω(),()=-=L 0 dB46. 一单位反应系统的开环传递函数为G s Ks s s ()()()=++12,当K 增大时,对系统性能能的影响是〔 A 〕 A.稳定性降低 B.频宽降低 C.阶跃输入误差增大D.阶跃输入误差减小47. 一单位反应系统的开环Bode 图,其幅频特性在低频段是一条斜率为-20dB dec /的渐近直线,且延长线与0dB 线的交点频率为ωc =5,那么当输入为r t t ().=05时,其稳态误差为〔 A 〕C.048. 利用乃奎斯特稳定性判据判断系统的稳定性时,Z P N =-中的Z 表示意义为〔 D 〕 A.开环传递函数零点在S 左半平面的个数 B.开环传递函数零点在S 右半平面的个数 C.闭环传递函数零点在S 右半平面的个数 D.闭环特征方程的根在S 右半平面的个数49. 关于劳斯—胡尔维茨稳定性判据和乃奎斯特稳定性判据,以下表达中正确的选项是〔 B 〕A.劳斯—胡尔维茨判据属代数判据,是用来判断开环系统稳定性的B.乃奎斯特判据属几何判据,是用来判断闭环系统稳定性的C.乃奎斯特判据是用来判断开环系统稳定性的D.以上表达均不正确50.以下频域性能指标中根据开环系统来定义的是〔 D 〕A.截止频率ωbB.谐振频率ωr 与谐振峰值M rC.频带宽度D.相位裕量γ与幅值裕量kg51 一单位反应系统的开环传递函数为G s Ks s K ()()=+,那么该系统稳定的K 值范围为〔 A 〕A.K >0B.K >1C.0<K <10D. K >-152. 对于开环频率特性曲线与闭环系统性能之间的关系,以下表达中不正确的有〔 A 〕 A.开环频率特性的低频段表征了闭环系统的稳定性 B.中频段表征了闭环系统的动态特性 C.高频段表征了闭环系统的抗干扰能力D.低频段的增益应充分大,以保证稳态误差的要求53. 以下性能指标中不能反映系统响应速度的指标为〔 D 〕 A.上升时间t r B.调整时间t s C.幅值穿越频率ωcD.相位穿越频率ωg54. 当系统采用串联校正时,校正环节为G s s s c ()=++121,那么该校正环节对系统性能的影响是〔 D 〕A.增大开环幅值穿越频率ωcB.增大稳态误差C.减小稳态误差D.稳态误差不变,响应速度降低 55. 串联校正环节G s As Bs c ()=++11,关于A 与B 之间关系的正确描述为〔 A 〕 A.假设G c (s)为超前校正环节,那么A >B >0 B.假设G c (s)为滞后校正环节,那么A >B >0 C.假设G c (s)为超前—滞后校正环节,那么A≠B D.假设G c (s)为PID 校正环节,那么A=0,B >0 56. 开环系统与闭环系统最本质的区别是〔 A 〕A.开环系统的输出对系统无控制作用,闭环系统的输出对系统有控制作用B.开环系统的输入对系统无控制作用,闭环系统的输入对系统有控制作用C.开环系统不一定有反应回路,闭环系统有反应回路D.开环系统不一定有反应回路,闭环系统也不一定有反应回路57. 假设f t t t (),,=⎧⎨⎩⎪00515≤<≥,那么L f t [()]=〔 B 〕A.e s s-B.e s s -5C.1sD.15se s 58.f t t ().,=+051其L f t [()]=〔 C 〕 A.s s +052. B.052.s C.1212s s+ D.12s59. 以下函数既可用初值定理求其初始值又可用终值定理求其终值的为〔 D 〕A.5252s + B.ss 216+ C.12s -D.12s + 60. 假设f t te t ()=-2,那么L f t [()]=〔 B 〕 A.12s + B.122()s +C.12s - D.122()s - 61. 系统类型λ、开环增益K 对系统稳态误差的影响为〔 A 〕 A.系统型次λ越高,开环增益K 越大,系统稳态误差越小 B.系统型次λ越低,开环增益K 越大,系统稳态误差越小 C.系统型次λ越高,开环增益K 越小,系统稳态误差越小 D.系统型次λ越低,开环增益K 越小,系统稳态误差越小 62 一系统的传递函数为G s KTs ()=+1,那么该系统时间响应的快速性〔 C 〕 A.与K 有关 B.与K 和T 有关 C.与T 有关D.与输入信号大小有关63 一闭环系统的开环传递函数为G s s s s s ()()()()=+++83232,那么该系统为〔 C 〕A.0型系统,开环增益为8B.I 型系统,开环增益为8C.I 型系统,开环增益为4D.0型系统,开环增益为464. 瞬态响应的性能指标是根据哪一种输入信号作用下的瞬态响应定义的〔 B 〕 A.单位脉冲函数 B.单位阶跃函数 C.单位正弦函数D.单位斜坡函数65.二阶系统的传递函数为G s Ks s ()=++2212,当K 增大时,其〔 C 〕 A.无阻尼自然频率ωn 增大,阻尼比ξ增大 B.无阻尼自然频率ωn 增大,阻尼比ξ减小 C.无阻尼自然频率ωn 减小,阻尼比ξ减小 D.无阻尼自然频率ωn 减小,阻尼比ξ增大 66. 所谓最小相位系统是指〔 B 〕 A.系统传递函数的极点均在S 平面左半平面B.系统开环传递函数的所有零点和极点均在S 平面左半平面C.系统闭环传递函数的所有零点和极点均在S 平面右半平面D.系统开环传递函数的所有零点和极点均在S 平面右半平面 67. 一系统的传递函数为G s s ()=+102,那么其截止频率ωb 为〔 A 〕 A. 2rad s / rad s /C.5rad s /D.10rad s /68. 一系统的传递函数为G s Ks Ts ()()=+1,那么其相位角ϕω()可表达为〔 B 〕A.--tg T 1ωB.-︒--901tg T ωC.901︒--tg T ωD.tg T -1ω69. 一系统的传递函数为G s s ()=+22,当输入r t t ()sin =22时,那么其稳态输出的幅值为〔 A 〕 A.2 B.22/ C.2D.470. 延时环节e s ->ττ()0,其相频特性和幅频特性的变化规律是〔 D 〕 A.ϕωω(),()=︒=900L dB B.ϕωωτω(),()=-=L 1 dB C.ϕωωωτ(),()=︒=90L dB D.ϕωωτω(),()=-=L 0 dB71. 一单位反应系统的开环传递函数为G s Ks s s ()()()=++12,当K 增大时,对系统性能能的影响是〔 A 〕 A.稳定性降低 B.频宽降低 C.阶跃输入误差增大D.阶跃输入误差减小72. 一单位反应系统的开环Bode 图,其幅频特性在低频段是一条斜率为-20dB dec /的渐近直线,且延长线与0dB 线的交点频率为ωc =5,那么当输入为r t t ().=05时,其稳态误差为〔 A 〕C.073. 利用乃奎斯特稳定性判据判断系统的稳定性时,Z P N =-中的Z 表示意义为〔 D 〕 A.开环传递函数零点在S 左半平面的个数 B.开环传递函数零点在S 右半平面的个数 C.闭环传递函数零点在S 右半平面的个数 D.闭环特征方程的根在S 右半平面的个数74. 关于劳斯—胡尔维茨稳定性判据和乃奎斯特稳定性判据,以下表达中正确的选项是〔 B 〕A.劳斯—胡尔维茨判据属代数判据,是用来判断开环系统稳定性的B.乃奎斯特判据属几何判据,是用来判断闭环系统稳定性的C.乃奎斯特判据是用来判断开环系统稳定性的D.以上表达均不正确75. 以下频域性能指标中根据开环系统来定义的是〔 D 〕 A.截止频率ωbB.谐振频率ωr 与谐振峰值M rC.频带宽度D.相位裕量γ与幅值裕量kg76 一单位反应系统的开环传递函数为G s Ks s K ()()=+,那么该系统稳定的K 值范围为〔 A 〕A.K >0B.K >1C.0<K <10D. K >-177. 对于开环频率特性曲线与闭环系统性能之间的关系,以下表达中不正确的有〔 A 〕 A.开环频率特性的低频段表征了闭环系统的稳定性 B.中频段表征了闭环系统的动态特性 C.高频段表征了闭环系统的抗干扰能力D.低频段的增益应充分大,以保证稳态误差的要求78. 以下性能指标中不能反映系统响应速度的指标为〔 D 〕 A.上升时间t r B.调整时间t s C.幅值穿越频率ωcD.相位穿越频率ωg79. 当系统采用串联校正时,校正环节为G s s s c ()=++121,那么该校正环节对系统性能的影响是〔 D 〕A.增大开环幅值穿越频率ωcB.增大稳态误差C.减小稳态误差D.稳态误差不变,响应速度降低 80. 串联校正环节G s As Bs c ()=++11,关于A 与B 之间关系的正确描述为〔 A 〕 A.假设G c (s)为超前校正环节,那么A >B >0 B.假设G c (s)为滞后校正环节,那么A >B >0 C.假设G c (s)为超前—滞后校正环节,那么A≠B D.假设G c (s)为PID 校正环节,那么A=0,B >0 81. 开环系统与闭环系统最本质的区别是〔 A 〕A.开环系统的输出对系统无控制作用,闭环系统的输出对系统有控制作用B.开环系统的输入对系统无控制作用,闭环系统的输入对系统有控制作用C.开环系统不一定有反应回路,闭环系统有反应回路D.开环系统不一定有反应回路,闭环系统也不一定有反应回路82. 假设f t t t (),,=⎧⎨⎩⎪00515≤<≥,那么L f t [()]=〔 B 〕A.e s s-B.e s s -5C.1sD.15se s 83.f t t ().,=+051其L f t [()]=〔 C 〕 A.s s +052. B.052.s C.1212s s+ D.12s84. 以下函数既可用初值定理求其初始值又可用终值定理求其终值的为〔 D 〕A.5252s + B.ss 216+ C.12s -D.12s + 85. 假设f t te t ()=-2,那么L f t [()]=〔 B 〕 A.12s + B.122()s +C.12s - D.122()s - 86. 线性系统与非线性系统的根本区别在于〔 C 〕A.线性系统微分方程的系数为常数,而非线性系统微分方程的系数为时变函数B.线性系统只有一个外加输入,而非线性系统有多个外加输入C.线性系统满足迭加原理,非线性系统不满足迭加原理D.线性系统在实际系统中普遍存在,而非线性系统在实际中存在较少 87. 系统方框图如图示,那么该系统的开环传递函数为〔 B 〕A.1051s + B.2051s s +C.10251s s ()+D.2s88. 二阶系统的极点分别为s s 12054=-=-.,,系统增益为5,那么其传递函数为〔 D 〕 A.2054(.)()s s --B.2054(.)()s s ++C.5054(.)()s s ++D.10054(.)()s s ++89. 某系统的传递函数为2s 5)s (G +=,那么该系统的单位脉冲响应函数为〔 A 〕 A.52e t - B.5tC.52e tD.5t90. 二阶欠阻尼系统的上升时间t r 定义为〔 C 〕 A.单位阶跃响应到达稳态值所需的时间B.单位阶跃响应从稳态值的10%上升到90%所需的时间C.单位阶跃响应从零第一次上升到稳态值时所需的时间D.单位阶跃响应到达其稳态值的50%所需的时间91、当系统的输入和输出时,求系统结构与参数的问题,称为( B ) A.最优控制 B.系统辩识 C.系统校正D.自适应控制92、反应控制系统是指系统中有( A ) A.反应回路 B.惯性环节 C.积分环节D.PID 调节器93、( A )=1s a+,(a 为常数)。

机械控制工程基础复习题及答案

机械控制工程基础复习题及答案

机械控制工程基础复习题11、 选择填空(30分,每小题2分)(下列各题均给出数个答案,但只有一个是正确的,请将正确答案的序号写在空白 处)1.1在下列典型环节中,属于振荡环节的是 。

(A) 101.010)(2++=s s s G (B) 101.01)(2++=s s s G (C) 101)(+=s s G 1.2系统的传递函数定义为在零初始条件下输出量的Laplace 变换与输入量的Laplace变换之比,其表达式 。

(A )与输入量和输出量二者有关(B )不仅与输入量和输出量二者有关,还与系统的结构和参数有关 (C )只与系统的结构和参数有关,与输入量和输出量二者无关 1.3系统峰值时间p t 满足 。

(A )0)(=pp o dt t dx (B ))()(∞=o p o x t x (C ))()()(∞⋅∆≤∞-o o p o x x t x其中,)(t x o 为系统的单位阶跃响应。

1.4开环传递函数为G (s )的单位反馈系统的静态速度误差系数的计算式为 。

(A) )(lim 0s G K s v →= (B) )(lim 2s G s K s v →=(C) )(lim 0s sG K s v →=1.5最大百分比超调量(%)p M 的定义式为 。

(A ))()(max (%)∞-=o o p x t x M (B) %100)()()(max (%)∞∞-=o o o p x x t x M(C ))()(max(%)t x t x M i o p = 其中,)(t x i 为系统的输入量,)(t x o 为系统的单位阶跃响应,)(max t x o 为)(t x o 的最大值。

1.6给同一系统分别输入)sin()(11t R t x i ω=和)sin()(2t R t x r i ω=这两种信号(其中,r ω是系统的谐振频率,1ω是系统正常工作频率范围内的任一频率),设它们对应的稳态输出分别为)sin()(1111ϕω+=t C t x o 和)sin()(222ϕω+=t C t x r o ,则 成立。

西北工业大学2020春机考《控制工程基础》作业1答案42131

西北工业大学2020春机考《控制工程基础》作业1答案42131

西北工业大学2020春机考《控制工程基础》作业1单选题1.通常以()评价系统单位阶跃响应的稳态精度。

A.超调量B.调节时间C.稳态误差D.延迟时间答案:C2.系统开环对数幅频特性曲线与()线的交点频率称为系统的截止频率。

A.0oB.数轴C.零分贝D.等分贝答案:C3.稳定环节相角的绝对值()不稳定环节相角的绝对值。

A.大于B.小于C.等于D.无法比较答案:B4.单位脉冲函数的拉氏变换式等于1;单位阶跃函数的拉氏变换式等于()。

A.0B.1C.sD.1/s答案:D5.微分环节的对数幅频与积分环节的()互为镜像。

A.零分贝线B.0o线C.相频曲线D.等分贝线答案:A6.()法主要用于非线性系统的稳定性分析、自激振荡分析及自振荡频率和振幅的计算。

A.实值函数B.矩阵函数C.代数函数D.描述函数答案:D7.微分环节的对数幅频特性曲线为一条在ω()处通过零分贝线的直线,其斜率为20dB/dec。

A.0B.1C.-1D.无穷大答案:B8.乃奎斯特判据是一种应用()曲线来判别闭环系统稳定性的判据。

A.开环频率特性B.闭环频率特性C.幅相频率特性D.数轴答案:A9.一般情况下,超调量愈(),系统的瞬态响应震荡的愈厉害。

A.大B.小C.不变D.不确定答案:A10.系统的稳定性只与闭环()点位置有关。

A.极B.零C.正D.负答案:A11.通常把用二阶微分方程描述的系统称为()系统。

A.一阶B.二阶C.三阶D.四阶答案:B12.若开环系统稳定要使闭环系统稳定的充分必要条件是系统开环幅相频率特性曲线不包围()点。

A.(0,j1)B.(0,j0)C.(1,j0)D.(-1,j0)答案:D13.反馈控制系统的传递函数可以在()下对描述系统的微分方程进行拉氏变换后求得。

A.零初始条件B.无穷大初始条件C.随机条件D.无确定条件答案:A14.典型输入信号中,单位阶跃函数的时域表达式为()。

A.1/sB.1(t)C.1/s2。

自动控制原理考试试卷

自动控制原理考试试卷

自动控制原理试题2. (10分)已知某系统初始条件为零,其单位阶跃响应为)0(8.08.11)(94≥+-=--t e e t h t t ,试求系统的传递函数及单位脉冲响应。

3.(12分)当ω从0到+∞变化时的系统开环频率特性()()ωωj j H G 如题4图所示。

K 表示开环增益。

P 表示开环系统极点在右半平面上的数目。

v 表示系统含有的积分环节的个数。

试确定闭环系统稳定的K 值的范围。

4.(12分)已知系统结构图如下,试求系统的传递函数)(,)(s E s C1.(10分)已知某单位负反馈系统的开环传递函数为)5(4)(+=S S s G ,求该系统的单位脉冲响应和单位阶跃响应。

3.(10分)系统闭环传递函数为2222)(nn n s s G ωξωω++=,若要使系统在欠阻尼情况下的单位阶跃响应的超调量小于16.3%,调节时间小于6s ,峰值时间小于6.28s ,试在S 平面上绘出满足要求的闭环极点可能位于的区域。

(8分)0,3==p v (a )0,0==p v (b ) 2,0==p v (c ) 题4图 题2图6. (15分)已知最小相位系统的对数幅频特性曲线如下图所示(分段直线近似表示)1、.(10分)已知某单位负反馈系统的开环传递函数为)5(6)(+=s s s G ,试求系统的单位脉冲响应和单位阶跃响应。

3、(10分)已知系统的结构图如下,试求: (1)开环的对数幅频和相频特性曲线;(2)单位阶跃响应的超调量σ%,调节时间ts ; (3)相位裕量γ,幅值裕量h 。

7.(15分)已知系统结构图如下图所示,试求传递函数)()(,)()(s R s E s R s C 。

(1)试写出系统的传递函数G(s);(2)画出对应的对数相频特性的大致形状; (3)在图上标出相位裕量Υ。

3. (10分)已知某系统初始条件为零,其单位阶跃响应为)0(8.08.11)(94≥+-=--t e e t h t t ,试求系统的传递函数及单位脉冲响应。

自控原理课件第6章-自动控制系统的性能分析

自控原理课件第6章-自动控制系统的性能分析
54
55
56
小 结 自动控制系统性能的分析主要包括稳态性能 分析和动态性能分析。系统的稳态无误差 ess标 志着系统最终可能达到的控制精度,它包括跟 随稳态误差essr和扰动稳态误差essd。跟随误差与 系统的前向通路的积分环节个数 v 、开环增益 K 有关。 v 愈多; K 愈大,则系统的稳态精度愈高 。扰动稳态误差与扰动量作用点前的前向道路 的积分环节个数vl和增益Kl有关,vl 愈多,Kl愈 大,则系统的稳态精度愈高。对于随动控制系 统,主要考虑跟随稳态误差;而对于恒值控制 系统,主要考虑扰动稳态误差。
31
此时,系统的稳定性和快速性都比较好。在工程上常 称取ξ=0.707的系统为“二阶最佳系统”。 以上的分析虽然是对二阶系统的,但对高阶系统,如 果能以系统的主导极点 ( 共扼极点 ) 来估算系统的性能,即 只要能将它近似成一个二阶系统,就可以用二阶系统的分 析方法和有关结论对三阶及三阶以上的高阶系统进行性能 分析。
20
21
22
23
24
25
调整时间是从给定量作用于系统开始,到输 出量进入并保持在允许的误差带 ( 误差带是指离稳 态值c(∞)偏离 δ c (∞) 的区域)内所经历的时间。 δ 通常分为5%(要求较低)和2% (要求较高)两种。 由于输出量c(t)通常为阻尼振荡曲线,c(t)进入 误差带的情况比较复杂,所以通常以输 出量的包络线b(t) 进入误差带来近似求取调整时间 ts。
17
6.1.4 系统稳态性能综述 (1) 系统的稳态误差由跟随稳态误差和扰动稳态 误差两部分组成,它们不仅和系统的结 构、参数 有关,而且还和作用量(输入量和扰动量)的大小、 变化规律和作用点有关。 跟随稳态误差essr:系统开环传递函数中所含积 分环节个数(v)愈多,开环增益K愈大, 则系统的稳态性能愈好。 扰动稳态误差 essd :扰动作用点前,前向通路所 含的积分环节个数 vl 愈多,作用点前的增益 Kl 愈 大.则系统抗扰稳态性能愈好。 (2) 作用量随时间变化得愈快,作用量产生的误 差也愈大。

《控制工程基础》参考复习题及答案

《控制工程基础》参考复习题及答案

《控制工程基础》参考复习题及习题解答第一部分 单项选择题1.闭环控制系统的主反馈取自【 D 】A.给定输入端B.干扰输入端C.控制器输出端D.系统输出端2.不同属性的物理系统可以有形式相同的【 A 】A.数学模型B.被控对象C.被控参量D.结构参数3.闭环控制系统的开环传递函数为G(s)H(s),其中H(s)是反馈传递函数,则系统的误差信号为【 A 】A.X i (s )-H (s)X 0(s )B.X i (s )-X 0(s )C.X or (s )-X 0(s )D.X or (s )-H (s )X 0(s )3-1闭环控制系统的开环传递函数为G(s)H(s),其中H(s)是反馈传递函数,则系统的偏差信号为【 A 】A.X i (s )-H (s)X 0(s )B.X i (s )-X 0(s )C.X or (s )-X 0(s )D.X or (s )-H (s )X 0(s )4.微分环节使系统【 A 】A.输出提前B.输出滞后C.输出大于输入D.输出小于输入5.当输入量发生突变时,惯性环节的输出量不能突变,只能按【 B 】A.正弦曲线变化B.指数曲线变化C.斜坡曲线变化D.加速度曲线变化6.PID 调节器的微分部分可以【 A 】A.提高系统的快速响应性B.提高系统的稳态性C.降低系统的快速响应性D.降低系统的稳态性6-1.PID 调节器的微分部分可以【 A 】A.提高系统的稳定性B.提高系统的稳态性C.降低系统的稳定性D.降低系统的稳态性7.闭环系统前向传递函数是【 C 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.输出信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与输出信号的拉氏变换之比8.一阶系统的时间常数为T ,其脉冲响应为【 C 】 A.T t e --1 B.T t Te T t -+- C.T t e T-1 D.T t Te T -+ 8-1.一阶系统的时间常数为T ,其单位阶跃响应为【 C 】 A.T t e --1 B.T t Te T t -+- C.T t e T-1 D.T t Te T -+ 8-2.一阶系统的时间常数为T ,其单位斜坡响应为【 C 】 A.T t e --1 B.T t Te T t -+- C.T t e T-1 D.T t Te T -+ 8-3.一阶系统的时间常数为T ,其单位阶跃响应的稳态误差为【C 】A.0B.TC.1TD.T t Te T -+ 8-4.一阶系统的时间常数为T ,其单位斜坡响应的稳态误差为【 C 】 A.0 B.T C.1TD.T t Te T -+ 9.过阻尼二阶系统的单位阶跃稳态响应为【 】A.零B.常数C.单调上升曲线D.等幅衰减曲线10.干扰作用下,偏离原来平衡状态的稳定系统在干扰作用消失后【 】A.将发散离开原来的平衡状态B.将衰减收敛回原来的平衡状态C.将在原平衡状态处等幅振荡D.将在偏离平衡状态处永远振荡11.单位脉冲函数的拉普拉斯变换是【 】A.1/sB.1C. 21sD.1+1/s12.线性控制系统的频率响应是系统对输入【 】A.阶跃信号的稳态响应B.脉冲信号的稳态响应C.斜坡信号的稳态响应D.正弦信号的稳态响应13.积分环节的输出比输入滞后【 】A.090-B.090C.0180-D.018014.奈魁斯特围线中所包围系统开环传递函数)(s G 的极点数为3个,系统闭环传递函数的极点数为2个,则映射到)(s G 复平面上的奈魁斯特曲线将【 】A.逆时针围绕点(0,j0)1圈B.顺时针围绕点(0,j0)1圈C.逆时针围绕点(-1,j0)1圈D.顺时针围绕点(-1,j0)1圈15.最小相位系统稳定的条件是【 】A.γ>0和g L <0B.γ<0和g K >1C.γ>0和)(g L ω<0D.γ<0和)(g L ω>016.若惯性环节的时间常数为T ,则将使系统的相位【 】A.滞后1tan ()T ω-B.滞后1tan ω--C.超前1tan ()T ω-D.超前1tan ω-- 17.控制系统的误差是【 】A.期望输出与实际输出之差B.给定输入与实际输出之差C.瞬态输出与稳态输出之差D.扰动输入与实际输出之差18.若闭环系统的特征式与开环传递函数的关系为)()(1)(s H s G s F +=,则【 】A.)(s F 的零点就是系统闭环零点B.)(s F 的零点就是系统开环极点C.)(s F 的极点就是系统开环极点D.)(s F 的极点就是系统闭环极点19.要使自动调速系统实现无静差,则在扰动量作用点的前向通路中应含有【 】A.微分环节B.积分环节C.惯性环节D.比例环节20.积分器的作用是直到输入信号消失为止,其输出量将【 】A.直线上升B.垂直上升C.指数线上升D.保持水平线不变21.自动控制系统的控制调节过程是以偏差消除【 】A.偏差的过程B.输入量的过程C.干扰量的过程D.稳态量的过程22.系统输入输出关系为i o o o x x x x cos =++&&&,则该系统为【 】A.线性系统B.非线性系统C.线性时变系统D.线性定常系统23.线性定常二阶系统的输出量与输入量之间的关系是【 】A.振荡衰减关系B.比例线性关系C.指数上升关系D.等幅振荡关系24. 微分环节可改善系统的稳定性并能【 】A.增加其固有频率B.减小其固有频率C.增加其阻尼D.减小其阻尼25.用终值定理可求得)8)(5(4)(++=s s s s F 的原函数f (s )的稳态值为【 】A.∞ B .4 C.0.1 D.026.可以用叠加原理的系统是【 】A.开环控制系统B.闭环控制系统C.离散控制系统D.线性控制系统27.惯性环节含有贮能元件数为【 】A.2B.1C.0D.不确定28.一阶系统的单位阶跃响应在t =0处的斜率越大,系统的【 】A.响应速度越快B.响应速度越慢C.响应速度不变D.响应速度趋于零29.临界阻尼二阶系统的单位阶跃稳态响应为【 】A.零B.常数C.单调上升曲线D.等幅衰减曲线30.欠阻尼二阶系统的输出信号振幅的衰减速度取决于【 】A.n ξωB.ξωC.g ξωD.c ξω31.单位加速度信号的拉氏变换为【 】A.1B. s 1C. 21sD. 31s32.线性系统的输入信号为t t x i ωsin )(=,则其输出信号响应频率为【 】A.ωB.n ωC.ωjD.n j ω33.微分环节的输出比输入超前【 】A.090-B.090C.0180-D.018034.若闭环系统的特征式与开环传递函数的关系为)()(1)(s H s G s F +=,则【 】A.)(s F 的极点就是系统开环零点B.)(s F 的零点就是系统开环极点C.)(s F 的零点就是系统闭环极点D.)(s F 的极点就是系统闭环极点35.系统开环传递函数为)11.0()14.0()(2++=s s s K s G 不用计算或作图,凭思考就能判断该闭环系统的稳定状况是【】A.稳定B.不稳定C.稳定边界D.取决于K 的大小36.为了保证系统有足够的稳定裕量,在设计自动控制系统时应使穿越频率附近)(ωL 的斜率为【 】A.-40 dB/decB.-20 dB/decC.+40 dB/decD.+20 dB/dec37.线性定常系统的偏差信号就是误差信号的条件为【 】A.反馈传递函数H(s)=1B.反馈信号B(s)=1C.开环传递函数G(s) H(s)=1D.前向传递函数G(s)=138.降低系统的增益将使系统的【 】A.稳定性变差B.稳态精度变差C.超调量增大D.稳态精度变好39.含有扰动顺馈补偿的复合控制系统可以显著减小【 】A.超调量B.开环增益C.扰动误差D.累计误差40.PID 调节器的微分部分可以【 】A.改善系统的稳定性B.调节系统的增益C.消除系统的稳态误差D.减小系统的阻尼比41.一般情况下开环控制系统是【 】A.不稳定系统B.稳定系统C.时域系统D.频域系统42.求线性定常系统的传递函数条件是【 】A.稳定条件B.稳态条件C.零初始条件D.瞬态条件43.单位负反馈系统的开环传递函数为G(s),则其闭环系统的前向传递函数与【 】A.反馈传递函数相同B.闭环传递函数相同C.开环传递函数相同D.误差传递函数相同44.微分环节是高通滤波器,将使系统【 】A.增大干扰误差B.减小干扰误差C.增大阶跃输入误差D.减小阶跃输入误差45.控制框图的等效变换原则是变换前后的【 】A.输入量和反馈量保持不变B.输出量和反馈量保持不变C.输入量和干扰量保持不变D.输入量和输出量保持不变46.对于一个确定的系统,它的输入输出传递函数是【 】A.唯一的B.不唯一的C.决定于输入信号的形式D.决定于具体的分析方法47.衡量惯性环节惯性大小的参数是【 】A.固有频率B.阻尼比C.时间常数D.增益系数48.三个一阶系统的时间常数关系为T2<T1<T3,则【 】A.T2系统响应快于T3系统B.T1系统响应快于T2系统C.T2系统响应慢于T1系统D.三个系统响应速度相等49.闭环控制系统的时域性能指标是【 】A.相位裕量B.输入信号频率C.最大超调量D.系统带宽50.输入阶跃信号稳定的系统在输入脉冲信号时【 】A .将变成不稳定系统 B.其稳定性变好 C.其稳定性不变 D.其稳定性变差51.二阶欠阻尼系统的阶跃响应为【 】A.单调上升曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线52.单位斜坡信号的拉氏变换为【 】A.1B.s 1C.21sD.31s53.线性控制系统【 】A.一定是稳定系统B.是满足叠加原理的系统C.是稳态误差为零的系统D.是不满足叠加原理的系统54.延迟环节Ts e s G -=)(的幅频特性为【 】A.)(ωA =1B.)(ωA =0C.)(ωA <1D.)(ωA >155.闭环系统稳定的充分必要条件是其开环极坐标曲线逆时针围绕点(-1,j0)的圈数等于落在S 平面右半平面的【】 A.闭环极点数 B.闭环零点数 C.开环极点数 D.开环零点数56.频率响应是系统对不同频率正弦输入信号的【 】A.脉冲响应B.阶跃响应C.瞬态响应D.稳态响应57.传递函数的零点和极点均在复平面的左侧的系统为【 】A.非最小相位系统B.最小相位系统C.无差系统D.有差系统58.零型系统跟踪阶跃信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 59.降低系统的增益将使系统的【 】A.稳定性变差B.快速性变差C.超调量增大D.稳态精度变好60.把系统从一个稳态过渡到新的稳态的偏差称为系统的【 】A.静态误差B.稳态误差C.动态误差D.累计误差61.闭环控制系统除具有开环控制系统所有的环节外,还必须有【 】A.给定环节B.比较环节C.放大环节D.执行环节62.同一系统由于研究目的的不同,可有不同的【 】A.稳定性B.传递函数C.谐波函数D.脉冲函数63.以同等精度元件组成的开环系统和闭环系统其精度比较为【 】A.开环高B.闭环高C.相差不多D.一样高64.积分环节的积分时间常数为T ,其脉冲响应为【 】A.1B.1/TC.TD.1+1/T65.串联环节的对数频率特性为各串联环节的对数频率特性的【 】A.叠加B.相乘C.相除D.相减66.非线性系统的最主要特性是【 】A.能应用叠加原理B.不能应用叠加原理C.能线性化D.不能线性化67.理想微分环节的输出量正比于【 】A.反馈量的微分B.输入量的微分C.反馈量D.输入量68.若二阶系统的阻尼比和固有频率分别为ξ和n ω,则其共轭复数极点的实部为【 】A.n ξωB.n ξω-C.d ξω-D.d ξω69.控制系统的时域稳态响应是时间【 】A.等于零的初值B.趋于零的终值C.变化的过程值D.趋于无穷大时的终值70.一阶系统的时间常数T 越小,系统跟踪斜坡信号的【 】A.稳定性越好B.稳定性越差C.稳态性越好D.稳态性越差71.二阶临界阻尼系统的阶跃响应为【 】A.单调上升曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线72.线性系统的输入信号为t A t x i ωsin )(=,则其稳态输出响应相位【 】A.等于输入信号相位B.一般为输入信号频率ω的函数C.大于输入信号相位D.小于输入信号相位73.延迟环节Ts es G -=)(的相频特性为【 】 A.T ωωϕ1tan )(--= B.T ωωϕ1tan )(-=C. T ωωϕ=)(D. T ωωϕ-=)(74.Ⅱ型系统的开环传递函数在虚轴上从右侧环绕其极点的无穷小圆弧线所对应的开环极坐标曲线是半径为无穷大,且按顺时针方向旋转【 】A.π2的圆弧线B.πv 的圆弧线C.-π2的圆弧线D.π的圆弧线75.闭环系统稳定的充要条件是系统开环对数幅频特性过零时,对应的相频特性【 】A.ο180)(-<c ωϕB. ο180)(->c ωϕC. ο180)(>c ωϕ ο180)(<c ωϕ76.对于二阶系统,加大增益将使系统的【 】A.稳态性变差B.稳定性变差C.瞬态性变差D.快速性变差77.Ⅰ型系统跟踪阶跃信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 78.控制系统含有的积分个数多,开环放大倍数大,则系统的【 】A.稳态性能愈好B.动态性能愈好C.稳定性愈好D.稳态性能愈差79.控制系统的稳态误差主要取决于系统中的【 】A.微分和比例环节B.惯性和比例环节C.比例和积分环节D.比例和延时环节80.比例积分微分(PID)校正对应【 】A.相位不变 B .相位超前校正 C .相位滞后校正 D .相位滞后超前校正81.闭环控制系统必须通过【 】A.输入量前馈参与控制B.干扰量前馈参与控制C.输出量反馈到输入端参与控制D.输出量局部反馈参与控制82.不同属性的物理系统可以有形式相同的【 】A.传递函数B.反函数C.正弦函数D.余弦函数83.输出信号对控制作用有影响的系统为【 】A.开环系统B.闭环系统C.局部反馈系统D.稳定系统84.比例环节能立即地响应【 】A.输出量的变化B.输入量的变化C.误差量的变化D.反馈量的变化85.满足叠加原理的系统是【 】A.定常系统B.非定常系统C.线性系统D.非线性系统86.弹簧-质量-阻尼系统的阻尼力与两相对运动构件的【 】A.相对位移成正比B.相对速度成正比C.相对加速度成正比D.相对作用力成正比87.当系统极点落在复平面S 的虚轴上时,其系统【 】A.阻尼比为0B.阻尼比大于0C.阻尼比小于1大于0D.阻尼比小于088.控制系统的最大超调量【 】A.只与阻尼比有关B.只与固有频率有关C.与阻尼比和固有频率都有关D.与阻尼比和固有频率都无关89.过阻尼的二阶系统与临界阻尼的二阶系统比较,其响应速度【 】A.过阻尼的小于临界阻尼的B.过阻尼的大于临界阻尼的C.过阻尼的等于临界阻尼的D.过阻尼的反比于临界阻尼的90.二阶过阻尼系统的阶跃响应为【 】A.单调衰减曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线91.一阶系统在时间为T 时刻的单位阶跃响应为【 】A. 1B. 0.98C. 0.95D. 0.63292.线性系统的输出信号完全能复现输入信号时,其幅频特性【 】A.)(ωA ≥1B.)(ωA <1C. 0<)(ωA <1D.)(ωA ≤093.Ⅱ型系统是定义于包含有两个积分环节的【 】A.开环传递函数的系统B.闭环传递函数的系统C.偏差传递函数的系统D.扰动传递函数的系统94.系统的幅值穿越频率是开环极坐标曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率94-1.系统的幅值穿越频率是对数频率特性曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率95.系统的穿越频率越大,则其【 】A.响应越快B.响应越慢C.稳定性越好D.稳定性越差96. 最小相位系统传递函数的【 】A.零点和极点均在复平面的右侧B.零点在复平面的右侧而极点在左侧C.零点在复平面的左侧而极点在右侧D.零点和极点均在复平面的左侧97.Ⅰ型系统能够跟踪斜坡信号,但存在稳态误差,其稳态误差系数等于【 】A.0B.开环放大系数C.∞D.时间常数98.把系统扰动作用后又重新平衡的偏差称为系统的【 】A.静态误差B.稳态误差C.动态误差D.累计误差99.0型系统跟踪斜坡信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 100.PID 调节器的比例部分主要调节系统的【 】A.增益B.固有频率C.阻尼比D.相频特性101.随动系统要求系统的输出信号能跟随【 】A.反馈信号的变化B.干扰信号的变化C.输入信号的变化D.模拟信号的变化102.传递函数的量纲是【 】A.取决于输入与反馈信号的量纲B.取决于输出与输入信号的量纲C.取决于干扰与给定输入信号的量纲D.取决于系统的零点和极点配置103.对于抗干扰能力强系统有【 】A.开环系统B.闭环系统C.线性系统D.非线性系统104.积分调节器的输出量取决于【 】A.干扰量对时间的积累过程B.输入量对时间的积累过程C.反馈量对时间的积累过程D.误差量对时间的积累过程105.理想微分环节的传递函数为【 】 A.Ts +11B.s 1C.sD.1+Ts105.一阶微分环节的传递函数为【 】 A.Ts +11B.s 1C.sD.1+Ts106.实际系统传递函数的分母阶次【 】A.小于分子阶次B.等于分子阶次C.大于等于分子阶次D.大于或小于分子阶次107.当系统极点落在复平面S 的负实轴上时,其系统【 】A.阻尼比为0B.阻尼比大于0C.阻尼比大于或等于1D.阻尼比小于0108.欠阻尼二阶系统的输出信号的衰减振荡角频率为【 】A.无阻尼固有频率B.有阻尼固有频率C.幅值穿越频率D.相位穿越频率109.反映系统动态精度的指标是【 】A.超调量B.调整时间C.上升时间D.振荡次数110.典型二阶系统在欠阻尼时的阶跃响应为【 】A.等幅振荡曲线B.衰减振荡曲线C.发散振幅曲线D.单调上升曲线111.一阶系统时间常数为T ,在单位阶跃响应误差范围要求为±0.05时,其调整时间为【】A.TB.2TC.3TD.4T112.比例环节的输出能不滞后地立即响应输入信号,其相频特性为【 】A.00)(=ωϕB.0180)(-=ωϕC.090)(-=ωϕD.090)(=ωϕ113.实际的物理系统)(s G 的极点映射到)(s G 复平面上为【 】A.坐标原点B.极点C.零点D.无穷远点114.系统的相位穿越频率是开环极坐标曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率114-1.系统的相位穿越频率是对数频率特性曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率115.比例微分环节(时间常数为T )使系统的相位【 】A.滞后1tan T ω-B.滞后1tan ω-C.超前1tan T ω-D.超前1tan ω-116.系统开环频率特性的相位裕量愈大,则系统的稳定性愈好,且【 】A.上升时间愈短B.振荡次数愈多C.最大超调量愈小D.最大超调量愈大117.Ⅱ型系统跟踪阶跃信号的稳态误差为零,其静态位置误差系数等于【 】A.0B.开环放大系数C.∞D.时间常数118.PID 调节器的积分部分消除系统的【 】A.瞬态误差B.干扰误差C.累计误差D.稳态误差119.Ⅰ型系统跟踪斜坡信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 120.比例微分校正将使系统的【 】A.抗干扰能力下降B.抗干扰能力增加C.稳态精度增加D.稳态精度减小120-1.比例微分校正将使系统的【 】A.稳定性变好B.稳态性变好C.抗干扰能力增强D.阻尼比减小121.若反馈信号与原系统输入信号的方向相反则为【 】A.局部反馈B.主反馈C.正反馈D.负反馈122.实际物理系统微分方程中输入输出及其各阶导数项的系数由表征系统固有特性【 】A.结构参数组成B.输入参数组成C.干扰参数组成D.输出参数组成123.对于一般控制系统来说【 】A.开环不振荡B.闭环不振荡C.开环一定振荡D.闭环一定振荡124.积分环节输出量随时间的增长而不断地增加,增长斜率为【 】A.TB.1/TC.1+1/TD.1/T 2125.传递函数只与系统【 】A.自身内部结构参数有关B.输入信号有关C.输出信号有关D.干扰信号有关126.闭环控制系统的开环传递函数是【 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.反馈信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与反馈信号的拉氏变换之比127.当系统极点落在复平面S 的Ⅱ或Ⅲ象限内时,其系统【 】A.阻尼比为0B.阻尼比大于0C.阻尼比大于0而小于1D.阻尼比小于0128.欠阻尼二阶系统是【 】A .稳定系统 B. 不稳定系统 C.非最小相位系统 D.Ⅱ型系统129.二阶无阻尼系统的阶跃响应为【 】A.单调上升曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线130.二阶系统总是【 】A.开环系统B.闭环系统C.稳定系统D.非线性系统131.一阶系统时间常数为T ,在单位阶跃响应误差范围要求为±0.02时,其调整时间为【】A.TB.2TC.3TD.4T132.积分环节Ts s G 1)(=的幅值穿越频率为【 】 A.T 1B.-T 1C. 20T 1lgD. -20T 1lg132-1.微分环节()G s Ts =的幅值穿越频率为【 】 A.T 1B.-T 1C. 20T 1lgD. -20T 1lg132-2.积分环节21()G s Ts =的幅值穿越频率为【 】 A.T 1B.-T 1C.D. 133.实际的物理系统)(s G 的零点映射到)(s G 复平面上为【 】A.坐标原点B.极点C.零点D.无穷远点134.判定系统稳定性的穿越概念就是开环极坐标曲线穿过实轴上【 】A.(-∞,0)的区间B.(-∞,0]的区间C.(-∞,-1)的区间D.(-∞,-1]的区间135.控制系统抗扰动的稳态精度是随其前向通道中【 】A.微分个数增加,开环增益增大而愈高B.微分个数减少,开环增益减小而愈高C.积分个数增加,开环增益增大而愈高D.积分个数减少,开环增益减小而愈高136.若系统无开环右极点且其开环极座标曲线只穿越实轴上区间(-1,+∞),则该闭环系统一定【 】A.稳定B.临界稳定C. 不稳定D.不一定稳定137.比例环节的输出能不滞后地立即响应输入信号,其相频特性为【 】A.00)(=ωϕB.0180)(-=ωϕC.090)(-=ωϕD.090)(=ωϕ138.控制系统的跟随误差与前向通道【 】A.积分个数和开环增益有关B.微分个数和开环增益有关C.积分个数和阻尼比有关D.微分个数和阻尼比有关139.Ⅰ型系统跟踪阶跃信号的稳态误差为【 】A.0B.∞C.常数D.)()(lim 0s H s G s → 140.Ⅱ型系统跟踪斜坡信号的稳态误差为零,其静态位置误差系数等于【 】A.0B.开环放大系数C. ∞D.时间常数141.实际物理系统的微分方程中输入输出及其各阶导数项的系数由表征系统固有特性【】 A.特征参数组成 B.输入参数组成 C.干扰参数组成 D.输出参数组成142.输出量对系统的控制作用没有影响的控制系统是【 】A.开环控制系统B.闭环控制系统C.反馈控制系统D.非线性控制系统143.传递函数代表了系统的固有特性,只与系统本身的【 】A. 实际输入量B.实际输出量C.期望输出量D.内部结构,参数144.惯性环节不能立即复现【 】A.反馈信号B.输入信号C.输出信号D.偏差信号145.系统开环传递函数为)(s G ,则单位反馈的闭环传递函数为【 】 A.)(1)(s G s G + B.)()(1)()(s H s G s H s G + C.)()(1)(s H s G s G + D.)()(1)(s H s G s H +146.线性定常系统输出响应的等幅振荡频率为n ω,则系统存在的极点有【 】A.n j ω±1B.n j ω±C.n j ω±-1D.1-147.开环控制系统的传递函数是【 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.反馈信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与反馈信号的拉氏变换之比147-1.闭环控制系统的开环传递函数是【 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.反馈信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与反馈信号的拉氏变换之比148.欠阻尼二阶系统的单位阶跃稳态响应为【 】A.零B.常数C.等幅振荡曲线D.等幅衰减曲线149.一阶系统是【 】A.最小相位系统B.非最小相位系统C.Ⅱ型系统D.不稳定系统150.单位阶跃函数的拉普拉斯变换是【 】A.1/sB.1C.21sD.1+1/s151.一阶系统的响应曲线开始时刻的斜率为【 】A.TB.TC.T 1D.T 1152.惯性环节11)(+=Ts s G 的转折频率越大其【 】A.输出响应越慢B.输出响应越快C.输出响应精度越高D.输出响应精度越低153.对于零型系统的开环频率特性曲线在复平面上【 】A.始于虚轴上某点,终于坐标原点B.始于实轴上某点,终于实轴上另一点C.始于坐标原点,终于虚轴上某点D.始于虚轴上某点,终于虚轴上另一点 153-1.对于Ⅰ型系统的开环频率特性曲线在复平面上【 】A.始于(0)180G j =∞∠-o 的点,终于坐标原点B.始于(0)90G j =∞∠-o 的点,终于坐标原点C.始于(0)180G j =∞∠-o 的点,终于实轴上任意点D.始于(0)90G j =∞∠-o 的点,终于虚轴上任意点154.相位裕量是当系统的开环幅频特性等于1时,相应的相频特性离【 】A.负实轴的距离B.正实轴的距离C.负虚轴的距离D.正虚轴的距离 155.对于二阶系统,加大增益将使系统的【 】A.动态响应变慢B.稳定性变好C.稳态误差增加D.稳定性变差 155-1.对于二阶系统,加大增益将使系统的【 】A.动态响应变慢B.稳态误差减小C.稳态误差增加D.稳定性变好 156.惯性环节使系统的输出【 】A.幅值增大B.幅值减小C.相位超前D.相位滞后156-1.惯性环节使系统的输出随输入信号频率增加而其【 】A.幅值增大B.幅值减小C.相位超前D.相位滞后157.无差系统是指【 】A.干扰误差为零的系统B.稳态误差为零的系统C.动态误差为零的系统D.累计误差为零的系统158.Ⅱ型系统跟踪加速度信号的稳态误差为【 】A.0B.常数C.∞D.时间常数159.控制系统的稳态误差组成是【 】A.跟随误差和扰动误差B.跟随误差和瞬态误差C.输入误差和静态误差D.扰动误差和累计误差160.Ⅰ型系统的速度静差系数等于【 】A.0B.开环放大系数C.∞D.时间常数161.线性定常系统输入信号导数的时间响应等于该输入信号时间响应的【 】A. 傅氏变换B.拉氏变换C.积分D.导数162.线性定常系统输入信号积分的时间响应等于该输入信号时间响应的【 】A.傅氏变换B.拉氏变换C.积分D.导数第一部分 单项选择题1.D2.A3.A4.A5.B6.A7.C8.C9.B 10.B 11.B 12.D 13.B 14.C 15.C16.A 17.A 18.C 19.B 20.A21.A 22.B 23.B 24.C 25.C 26.D 27.B 28.A 29.B 30.A 31.D 32.A 33.B 34.C 35.A 36.B 37.A 38.B 39.C40.A 41.B 42.C 43.C 44.A 45.D 46.A 47.C 48.A 49.C 50.C 51.C 52.C 53.B 54.A 55.C 56.D 57.B58.C 59.B 60.B 61.B 62.B 63.B 64.B 65.A 66.B 67.B 68.B 69.D 70.C 71.A 72.B 73.D 74.A 75.B76.B 77.A 78.A 79.C 80.D 81.C 82.A 83.B 84.B 85.C 86.B 87.A 88.A 89.A 90.D 91.D 92.A 93.A94.B 95.A 96.D 97.B 98.B 99.B 100.A 101.C 102.B 103.B 104.B 105.C 106.C 107.C 108.B 109.A 110.B 111.C 112.A 113.D 114.A 115.C 116.C 117.C 118.D 119.C 120.A 121.D 122.A 123.A 124.B 125.A 126.C 127.C 128.A 129.B 130.C 131.D 132.A 133.A 134.D 135.C 136.A 137.A 138.A 139.A 140.C 141.A 142.A 143.D 144.B 145.A 146.B 147.A 148.B 149.A 150.A 151.C 152.B 153.B 154.A 155.D 156.D 157.B 158.B 159.A 160.B第二部分 填空题1.积分环节的特点是它的输出量为输入量对 时间 的积累。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(s)
1 s
H
2
(s)
=

2
(
s)
1 s
1(s) = H1(s)s = H2 (ns)ns = 2 (ns)
3. 频带宽度 b 与快速性的关系(一般情况)
r1(t) = 1(t)
h1 (t )
1(s)
r2 (t) = 1(t)
h2 (t)
2 (s)
h(t)
h2
h1
M ()
0.707M (0)
20log G 0
c
高频段
G( j) 1 ( j) = G( j) G( j)
1+ G(j)
闭环幅频特性近似等于开环幅频特性,因此,开环幅频特性的高频段近似反映 了系统对高频输入的抑制作用,高频段的分贝值越低,系统抵抗高频干扰的能力越强。
20log G
-20dB/dec
-40dB/dec
t→
s→0
当 M (0) = 1 时,稳态误差 ess = 0 当 M (0) 1 时,稳态误差 ess 0
M ()
2. 闭环幅频峰值 M m 与平稳性的关系
一阶系统 (s) = 1
M () = 1
Ts +1
(T)2 +1
幅频特性曲线无峰值,阶跃响应无超调,平稳性好。
二阶系统
(s)
越低,系统抵抗高频干扰的能力越强。
本章小结 • 频率特性的定义、物理意义和图示方法; • 典型环节的频率特性; • 系统的开环频率特性(开环幅相特性曲线和对数频率特性曲线); • 频率稳定判据(Nyquist稳定判据和对数频率稳定判据); • 稳定裕度的概念及计算方法; • 闭环频率特性与系统阶跃响应的关系; • 开环频率特性与系统阶跃响应的关系。
1+ G(s)
1、低频段:指小于最小的转折频率的区段,与积分环节和开环增
益有关,反映系统的稳态精度。
20log G
20log G
20 log K 0dB/dec
-20dB/dec
幅值越大,
稳态误差越小 0 低频段
0型
0 低频段 I型
K
20log G
-40dB/dec
0 低频段

K II型
2、中频段:指开环幅频特性曲线在截止频率 c 附件的区段,该段反映系统的平稳性

M () =
( j)
=
G( j) 1+ G( j)
=
|
OA

|
| PA |
R(s)
C(s)
G(s)
单位负反馈系统
若闭环幅频特性M ()存在峰值 M m,对应的频率为
m(峰值频率),若 M m 较大,说明在 =m 时,开环
幅相特性曲线靠近临界点(-1,j0),稳定裕度较小,平稳性
j
第五章 频率域方法
闭环、开环频率特性与阶跃响应的关系
系统闭环频率特性与阶跃响应的关系(单位负反馈系统)
j
R(s)
C(s)
−1
开环与闭环频率特性的关系
G(s)
P
O

( j) = G( j) 1+ G( j)
单位负反馈系统



G( j) = OA = |OA | e j
M () =
( j)
−1
O
P

A
开环幅相特性曲线
M ()
Mm M (0)
较差。 若 M m较小,则稳定裕度较大,平稳性较好。

0
m
闭环幅频特性曲线
3. 频带宽度b 与快速性的关系
M ()
Mm
频带宽度 b 是指 M () 的数值衰减到
0.707M (0) 时所对应的频率。
M (0) 0.707M (0)
一阶系统
和快速性。 若中频段的斜率是-20dB/dec,且占据的频率范围较宽,则从平稳性和快速性考
虑,可以近似认为开环传递函数为
G(s) K = c
ss
闭环传递函数近似为
(s) 1
T= 1
Ts +1
c
20log G
-20dB/dec

0
c
中频段
闭环系统近似于一阶系统,具有较好的平稳性,调节时间近似为:ts 3/c
性和稳态精度进行分析和估算。 1. M (0) 与阶跃响应的稳态误差的关系
R(s)
C(s)
G(s)
M (0) = ( j) =(0) =0
定义误差 e = r − c
单位负反馈系统
输入为单位阶跃信号时, r(t) = 1(t)
输出为
C(s) = (s) 1 s
R(s) = 1 s
若系统稳定,则 lim c(t) = lim sC(s) = (0)=M (0)
=
s2
+
n2 2n s
+ n2
M () =
1
1
2 n2
2


+ 2

n
2

1
Mm=
2
1− 2
0.707
T
一阶系统幅频特性曲线
M ()
阻尼比越小,幅频峰值越2. 闭环幅频峰值 M m 与平稳性的关系

0
m
b
闭环幅频特性曲线
闭环幅频 M () 在b 处的斜率越陡,则系统抗高频干扰的能力就越强。
开环频率特性与阶跃响应的关系(单位负反馈系统) R(s)
若开环传递函数是最小相位的,则可以根据其对数幅频
C(s) G(s)
特性曲线近似分析闭环的阶跃响应。通常将开环幅频特性曲
线分成三段。
(s) = G(s)
2、中频段:指开环幅频特性曲线在截止频率 c 附件的区段,该段反映系统的平稳性
和快速性。 若中频段的斜率是-40dB/dec,且占据的频率范围较宽,则从平稳性和快速性考
虑,可以近似认为开环传递函数为
20log G
G(s) K = c2
s2 s2 闭环传递函数近似为
-40dB/dec

0 c
其中,n为大于1的实数
r2 (t) = 1(t)
h2 (t)
2 (s)
0
t
单位阶跃响应曲线



H1(s) = h1(t)e−stdt = h2 (t / n)e−stdt = n h2 (t / n)e−ns(t /n)d (t / n) = nH2 (ns)
0
0
0
H1
(s)
=
1
3. 频带宽度b 与快速性的关系
M ()
频带宽度 b 是指 M () 的数值衰减到
0.707M (0) 时所对应的频率。
0.707M (0)
二阶系统
n
(s)
=
s2
+
n2 2n s
+ n2
M () =
1
2
1
n2
2
+

2

n
2
b n
谢谢大家

0
m
b
闭环频率特性曲线
(s) = 1
M () = 1
M (0) = 1
M ()
Ts +1
(T)2 +1
b
=
1 T
M (b ) = 0.707
阶跃响应的调节时间 ts = 3T = 3/b ,
频带宽度 b 与阶跃响应调节时间 ts 成反比。
0.707M (0)
Tb
T
一阶系统幅频特性曲线
-20dB/dec
0
c
低频段
中频段

-40dB/dec
高频段
-60dB/dec
单位负反馈系统的开环对数幅频渐近特性曲线(最小相位)
低频段:与积分环节和开环增益有关,反映系统的稳态精度。 中频段:反映系统的平稳性和快速性,斜率为-20dB/dec最佳。 高频段:对动态响应影响不大,反映了系统对高频输入的抑制作用,高频段的分贝值
M 1 ( )
M 2 ()
0
t
0
m1 m2 b1 b2

h1(t) = h2 (t / n)
1(s) = 2 (ns)
以上时间域和复数域之间的对应关系表明,系统的带宽与阶跃响应调节时间成反比。
4 闭环幅频在b 处的斜率反映系统抗高频干扰的能力
M ()
Mm
M (0) 0.707M (0)
=
G( j) 1+ G( j)
=
|OA

|
| PA |


1+G( j) = PA = | PA |e j ( j) = −
A
开环幅相特性曲线


其中, 和 分别是矢量 OA 和 PA 与正实轴方向的夹角,逆时针为正。
在闭环系统稳定的基础上,利用闭环频率特性,对系统的动态过程的平稳性、快速
二阶系统幅频特性曲线
当阻尼比 =0.707
时,频带宽度
b =n
,调节时间
3.5
ts = n
频带宽度 b 与阶跃响应调节时间 ts 成反比。
3. 频带宽度 b 与快速性的关系(一般情况)
r1(t) = 1(t)
h1 (t )
1(s)
h1(t) = h2 (t / n)
h(t)
h2
h1
(s)= G(s) 1+ G(s)

c2 s2 + c2
中频段
闭环系统近似于零阻尼二阶系统,系统平稳性较差,稳定裕度较小(或不稳定);
相关文档
最新文档