九年级数学第一学期月考试卷(复习测试卷一)

合集下载

九年级数学第一次月考卷(北师大版)(全解全析)【测试范围:第一章~第三章】A4版

九年级数学第一次月考卷(北师大版)(全解全析)【测试范围:第一章~第三章】A4版

2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第一章~第三章(北师大版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、单选题1.下列方程是关于x的一元二次方程的是().A.1+x=2B.x2―2y=0xC.x2+2x=x2―1D.x2=0【答案】D【分析】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解题的关键.根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐项分析判断即可求解.+x=2,是分式方程,不是一元二次方程;故该选项不符合题意;【详解】解:A.1xB.x2―2y=0,含有两个未知数,不是一元二次方程,故该选项不符合题意;C.x2+2x=x2―1,化简后为:2x+1=0,不是一元二次方程,故该选项不符合题意;D.x2=0,是一元二次方程,故该选项符合题意;故选D.2.下列事件中,属于必然事件的是()A.打开电视,正在播放跳水比赛B.一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,至少有一个是红球C.抛掷两枚质地均匀的骰子,点数和为6D.一个多边形的内角和为600°【答案】B【分析】本题考查事件的分类,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,由此对每一项进行分析即可.【详解】A,打开电视,可能播放跳水比赛,也可能不播放,因此该事件是随机事件;B,一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,可能是2个红球,也可能是1个红球和1个白球,因此至少有一个是红球,该事件是必然事件;C,抛掷两枚质地均匀的骰子,点数和为可能是6,也可能不是6,因此该事件是随机事件;D,设一个n边形的内角和为600°,则(n―2)⋅180°=600°,解得n=16,不是整数,因此这种情3况不存在,该事件是不可能事件;故选B.3.下列命题是假命题的是()A.有一组邻边相等的矩形是正方形B.有一组邻边相等的四边形是平行四边形C.有三个角是直角的四边形是矩形D.对角线互相垂直且平分的四边形是菱形【答案】B【分析】根据正方形的判定、平行四边形的判定、矩形和菱形的判定判断即可.【详解】解:A、有一组邻边相等的矩形是正方形,是真命题;B、有一组邻边相等的四边形不一定是平行四边形,如筝形,原命题是假命题;C、有三个角是直角的四边形是矩形,是真命题;D、对角线互相垂直且平分的四边形是菱形,是真命题;故选:B.【点睛】本题考查的是命题的真假判断,主要包括平行四边形的判定和特殊平行四边形的判定.判断命题的真假关键是要熟悉课本中的性质定理.4.已知m是方程x2―x―4=0的一个根,则―2m2+2m的值为()A.4B.―4C.8D.―8【答案】D【分析】根据一元二次方程的根的定义,可知m2―m=4,然后整体代入求值即可.【详解】解:∵m是方程x2―x―4=0的一个根,∴m2―m―4=0,整理,可得m2―m=4,∴―2m2+2m=―2(m2―m)=―2×4=―8.故选:D.【点睛】本题主要考查了一元二次方程的根的定义以及代数式求值,理解一元二次方程的根的定义是解题关键.5.某农机厂4月份生产零件50万个,第二季度共生产零件182万个,设该厂5,6月份平均每月的增长率为x,那么x满足的方程是()A.50(1―x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【答案】B【分析】本题主要考查一元二次方程的增长率问题,根据题意分别表示出五月份,六月份生产零件的量,最后相加列出等式即可.【详解】解:根据题意,该厂五月份生产零件为:50(1+x),则该厂六月份生产零件为:50(1+x)(1+x)=50(1+x)2,故该厂第二季度共生产零件为:50+50(1+x)+50(1+x)2=182.故选:B6.如图,在3×3的正方形网格中,已有两个小正方形被凃黑,再将图中剩余的小正方形中任意一个涂黑,则三个被涂黑的小正方形能构成轴对称图形的概率是()A.17B.37C.47D.57【答案】B【分析】本题考查了概率公式,轴对称图形,熟记概率公式和能识别轴对称图形是解题的关键.分别将7个空白处涂黑,判断出所得图案是轴对称图形的个数,再根据概率公式进行计算.【详解】解:如图①②③任意一处涂黑时,图案为轴对称图形,∵共有7个空白处,将①②③处任意一处涂黑,图案为轴对称图形,共3处,∴构成轴对称图形的概率是3,7故选:B7.若1和―1有一个是关于x的方程x2+bx+a=0的根,则一元二次方程(a+1)x2+2bx+(a+1)=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根D.没有实数根【答案】B【分析】本题考查了一元二次方程的根,一元二次方程的根的判别式.熟练掌握:当Δ=0时,一由(a+1)x2+2bx+(a+1)=0,可知Δ=4b2―4(a+1)2,由题意,当1是方程的根时,b=―(1+a),则Δ=0,此时,方程有两个相等的实数根;当―1是方程的根时,b=1+a,则Δ=0,此时,方程有两个相等的实数根;然后作答即可.【详解】解:∵(a+1)x2+2bx+(a+1)=0,∴Δ=4b2―4(a+1)2,∵1和―1有一个是关于x的方程x2+bx+a=0的根,当1是方程的根时,则1+b+a=0,解得,b=―(1+a),∴Δ=4b2―4(a+1)2=4[―(1+a)]2―4(a+1)2=0,此时,方程有两个相等的实数根;当―1是方程的根时,则1―b+a=0,解得,b=1+a,∴Δ=4b2―4(a+1)2=4(1+a)2―4(a+1)2=0,此时,方程有两个相等的实数根;综上,方程有两个相等的实数根,故选:B.8.如图,菱形ABCD的顶点A,B的坐标分别为1,2,―2,―1,BC∥x轴,将菱形ABCD平移,使点B与原点O重合,则平移后点D的对应点的坐标为()A.3―1,2B.2,3)C.+1,2)D.+3,3)【答案】D【分析】本题考查了菱形的性质,坐标与图形,勾股定理以及平移等知识,先利用勾股定理求出AB,然后利用菱形的性质求出点D的坐标,最后利用平移的性质求解即可.【详解】解∶∵A,B的坐标分别为1,2,―2,―1,∴AB==∵菱形ABCD,∴AD=AB=AD∥BC,又BC∥x轴,∴AD∥x轴,∴D的坐标为(1+,∵菱形ABCD平移,使点B与原点O重合,∴菱形ABCD向右平移2个单位,向上平移1个单位,∴平移后点D的对应点的坐标为3,3),故选∶D.9.如图,在平行四边形ABCD中,∠C=135°,AB=2,AD=3,点H,G分别是CD,BC上的动点,连接AH,GH.E,F分别为AH,GH的中点,则EF的最小值是( )A.2B C D.【答案】C【分析】作AQ⊥BC,根据中位线定理可推出EF=12AG,进一步可得当AG⊥BC时,AG有最小值,此时EF的值也最小.据此即可求解.【详解】解:作AQ⊥BC,如图:∵E,F分别为AH,GH的中点∴EF=12AG故:当AG⊥BC时,AG有最小值,此时EF的值也最小∴EF的最小值是12AQ∵∠C=135°,AB=2∴∠B=180°―135°=45°∴AQ=AB×sin45°=∴EF故选:C【点睛】本题考查了中位线定理、平行四边形的性质、解直角三角形等.掌握相关结论即可.10.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a―b+c=0,则b2―4ac≥0;②若方程ax2+c=0有两个不相等的实数根,则方程ax2+bx+c=0必有两个不相等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2―4ac=(2ax0+b)2;⑤若方程ax2+bx+c=0(a≠0)两根为x1,x2且满足x1≠x2≠0,则方程cx2+bx+a=0(c≠0),必有实数根1x1,1x2.其中,正确的是( )A.②④⑤B.②③⑤C.①②③④⑤D.①②④⑤【答案】D【分析】一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则Δ=b2―4ac>0;有两个相等的实数根,则Δ=b2―4ac=0;没有实数根,则Δ=b2―4ac<0;若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=―ba ,x1·x2=ca.【详解】解:①若a―b+c=0,则x=―1是一元二次方程ax2+bx+c=0的解∴Δ=b2―4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实数根∴Δ=―4ac>0∴b2―4ac≥4ac>0∴方程ax2+bx+c=0必有两个不相等的实数根,故②正确;③∵c是方程ax2+bx+c=0的一个根∴ac2+bc+c=0当c=0时,无法得出ac+b+1=0,故③错误;④∵x0是一元二次方程ax2+bx+c=0的根∴x0=∴±=2ax0+b∴b2―4ac=(2ax0+b)2,故④正确;⑤∵方程ax2+bx+c=0(a≠0)两根为x1,x2∴x1+x2=―ba ,x1·x2=ca∴b=―a(x1+x2),c=ax1x2∴方程cx2+bx+a=0(c≠0)可化为:ax1x2x2―a(x1+x2)x+a=0(c≠0)即:x1x2x2―(x1+x2)x+1=0∴(x1x―1)(x2x―1)=0∴x=1x1或x=1x2,故⑤正确;综上分析可知,正确的是①②④⑤.故选:D【点睛】本题考查了一元二次方程根的判别式和根与系数的关系.熟记相关结论是解题关键.第II卷(非选择题)二、填空题11.已知关于x的一元二次方程(m―2)x2―2x+1=0有实数根,则实数m的取值范围是.【答案】m≤3且m≠2【分析】本题考查了一元二次方程的定义及根的判别式,根据一元二次方程的定义及根的判别式可得,解不等式即可求解,掌握一元二次方程的定义及根的判别式与根的关系是解题的关键.【详解】解:由题意得,Δ=(―2)2―4(m―2)×1=12―4m≥0,且m―2≠0,∴m≤3且m≠2.12.在一个不透明的盒子中装有6个红球、若干个黑球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是红球的概率为23,则盒子中黑球的个数为.【答案】3【分析】设黑球的个数为x个,根据概率的求法得:66+x =23,解方程即可求出黑球的个数.【详解】解:设黑球的个数为x个根据题意得:66+x =23解得:x=3经检验:x=3是原分式方程的解∴黑球的个数为3故答案为:3.【点睛】本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.把关于x的一元二次方程x²―8x+c=0配方,得(x―m)²=11,则c+m=.【答案】9【分析】本题考查了配方法解一元二次方程;把常数项c移项后,在左右两边同时加上一次项系数8的一半的平方得(x―4)2=16―c,进而得出c=5,m=4,即可求解.【详解】解:x2―8x+c=0配方,得(x―4)2=16―c∴m=4,16―c=11∴c=5∴c+m=9,故答案为:9.14.如图,在Rt△ABC中,∠ACB=90°,且Rt△ABC的周长是12cm,斜边上的中线CD长为52cm,则S△ABC=.【答案】6cm2【分析】先根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=5cm,再利用勾股定理可得AC2 +BC2=25cm2,利用三角形的周长公式可得AC+BC=7cm,然后利用完全平方公式可得AC⋅BC的值,最后利用三角形的面积公式求解即可得.cm,【详解】解:∵在Rt△ABC中,斜边上的中线CD长为52∴AB=2CD=5cm,∴AC2+BC2=AB2=25(cm2),∵Rt△ABC的周长是12cm,∴AC+BC+AB=AC+BC+5=12,∴AC+BC=7(cm),×(72―25)=12(cm2),∴AC⋅BC=AC+BC)2―(AC2+BC2)=12AC⋅BC=6cm2,则S△ABC=12故答案为:6cm2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半、勾股定理、完全平方公式等知识点,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题关键.15.如图,在矩形ABCD中,AB=4,AD=3.P是射线AB上一动点,将矩形ABCD沿着PD对折,点A的对应点为A′.当P,A′,C三点在同一直线上时,则AP的长.【答案】4±【分析】分类讨论:当点P在AB上时,由折叠的性质得AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,利用勾股定理求得A′C=AP=A′P=x,则PB=4―x,PC=x+定理列方程求解即可;当点P在AB的延长线上时,由折叠的性质得∠A=∠A′=90°,AP=A′P,AD=A′D=3,利用勾股定理求得A′C=AP=A′P=a,则CP=a―BP=a―4,利用勾股定理列方程求解即可.【详解】解:如图,当点P在AB上时,由折叠的性质得,AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,∴∠DA′C=90°,在Rt△DA′C中,A′C==设AP=A′P=x,则PB=4―x,PC=x+在Rt△BCP中,BC2+BP2=PC2,即32+(4―x)2=(x+2,解得x=4―∴AP=4―如图,当点P在AB的延长线上时,由折叠的性质得,∠A=∠A′=90°,AP=A′P,AD=A′D=3,在Rt△A′DC中,A′C==设AP=A′P=a,则CP=a―BP=a―4,在Rt△BCP中,BC2+BP2=CP2,即32+(a―4)2=(a―2,解得a=4+综上所述,AP=±+4,故答案为:4±【点睛】本题考查矩形的性质、折叠的性质、勾股定理、解一元一次方程,运用分类讨论思想解决问题是解题的关键.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示放置,点A1,A2,A3,…,在直线y=x+2上,点C1,C2,C3,…在x轴上,则B2023的坐标是.【答案】(22024―2,22023)【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出B1,B2,B3,……,的坐标,根据点的坐标的变化找出变化规律,再代入n=2023即可得出结论.【详解】解:∵直线y=x+2,当x=0时,y=2,∴A1的坐标为(0,2).∵四边形A1B1C1O为正方形,∴B1的坐标为(2,2),C1的坐标为(2,0).当x=2时,y=4,∴A2的坐标为(2,4),∵四边形A2B2C2C1为正方形,∴B2的坐标为(6,4),C2的坐标为(6,0).同理,可知:B3的坐标为(14,8),……,∴B n的坐标为(2n+1―2,2n)(n为整数),∴点B2023的坐标是(22024―2,22023).故答案为:(22024―2,22023).【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质及规律型,解题的关键是根据点的坐标的变化找出变化规律.三、解答题17.解方程:(1)x2―4x―1=0.(2) x(x―1)+2=2x【答案】(1)x1=2+2=2―(2)x1=2,x2=1【分析】(1)利用配方法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)x2―4x―1=0x2―4x=1x2―4x+4=1+4(x―2)2=5x―2=±x1=2x2=2―(2)x(x―1)+2=2xx(x―1)+2―2x=0x(x―1)―2(x―1)=0(x―2)(x―1)=0x1=2,x2=1【点睛】本题考查了解一元二次方程,选择合适的方法是解题的关键.18.小明的手机没电了,现有一个只含A,B,C,D四个同型号插座的插线板(如图,假设每个插座都适合所有的充电插头,且被选中的可能性相同),请计算:(1)若小明随机选择一个插座插入,则插入插座C的概率为______;(2)现小明同时对手机和学习机两种电器充电,请用列表或画树状图的方法计算两种电器插在不相邻的插座的概率.【答案】(1)14(2)12【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,再找出两个插头插在不相邻插座的结果数,然后根据概率公式计算.【详解】(1)小明随机选择一个插座插入,则插入A 的概率=14;故答案为:14;(2)画树状图为:共有12种等可能的结果数,其中两个插头插在不相邻插座的结果数为6,所以两个插头插在不相邻插座的概率=612=12.19.如图,用长为34米的篱笆,一面利用墙(墙的最大可用长度为20米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1米的两扇小门(如图),设花圃垂直于墙的边AB 长为x 米.(1)用含x 的代数式表示BC ;(2)当AB 为多少米时,所围成花圃面积为105平方米?【答案】(1)(36―3x )米(2)当AB 为7米时,所围成花圃面积为105平方米【分析】(1)用绳子的总长减去三个AB 的长,然后加上两个门的长即可表示出BC ;(2)由(1)得花圃长BC=36―3x,宽为x,然后再根据面积为105,列一元二次方程方程解答即可.【详解】(1)解:设花圃垂直于墙的边AB长为x米,则长BC=34―3x+2=36―3x(米)故答案为:(36―3x);(2)由题意可得:(36―3x)x=105解得:x1=5,x2=7∵当AB=5时,BC=36―3×5=21>20,不符合题意,故舍去;当AB=7时,BC=36―3×7=15<20,符合题意,∴AB=7(米).答:当AB为7米时,所围成花圃面积为105平方米.【点睛】本题主要考查一元二次方程的应用,弄清题意、用x表示出BC是解答本题的关键.20.已知关于x的一元二次方程x2+6x―m2=0.(1)求证:该方程有两个不相等的实数根;(2)若该方程的两个实数根x1,x2满足x1+2x2=―5,求m的值.【答案】(1)见解析(2)m=±【分析】(1)根据一元二次方程根的判别式,代入计算即可解答;(2)根据一元二次方程根与系数的关系,求得x1,x2,再将其代入求得m的值即可.【详解】(1)证明:∵在方程x2+6x―m2=0中,Δ=62―4×1×(―m2)=36+4m2>0,∴该方程有两个不相等的实数根.(2)解:∵该方程的两个实数根分别为x1,x2,∴x1+x2=―6①,x1⋅x2=―m2②.∵x1+2x2=―5③,∴联立①③,解得x1=―7,x2=1.∴x1⋅x2=―7=―m2,解得m=±【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟知相关公式是解题的关键.21.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE 于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.【答案】(1)见解析(2)AB=【分析】(1)由题意可得△AFD≌△CED(AAS),则AF=EC,根据“一组对边平行且相等的四边形是平行四边形”可得四边形AECF是平行四边形;又EF垂直平分AC,根据垂直平分线的性质可得AF=CF,根据“有一组邻边相等的平行四边形是菱形”可得结论;(2)过点A作AG⊥BC于点G,根据题意可得∠AEG=60°,AE=2,则BG=AG=AB=BG=【详解】(1)证明:在△ABC中,点D是AC的中点,∴AD=DC,∵AF∥BC,∴∠FAD=∠ECD,∠AFD=∠CED,∴△AFD≌△CED(AAS),∴AF=EC,∴四边形AECF是平行四边形,又EF⊥AC,点D是AC的中点,即EF垂直平分AC,∴平行四边形AECF是菱形.(2)解:如图,过点A作AG⊥BC于点G,由(1)知四边形AECF是菱形,又CF=2,∠FAC=30°,∴AF∥EC,AE=CF=2,∠FAE=2∠FAC=60°,∴∠AEB=∠FAE=60°,∵AG⊥BC,∴∠AGB=∠AGE=90°,∴∠GAE=30°,AE=1,AG==∴GE=12∵∠B=45°,∴∠GAB=∠B=45°,∴BG=AG=∴AB==.【点睛】本题主要考查菱形的性质与判定,含30°角的直角三角形的三边关系,等腰直角三角形的性质与判定等内容,根据45°,30°等特殊角作出正确的垂线是解题关键.22.如图,在Rt△ABC中,AC=24cm,BC=7cm,点P在BC上从B运动到C(不包括C),速度为2cm/s;点Q在AC上从C运动到A(不包括A),速度为5cm/s.若点P,Q分别从B,C同时出发,当P,Q两点中有一个点运动到终点时,两点均停止运动.设运动时间为t秒,请解答下列问题,并写出探索的主要过程.(1)当t为何值时,P,Q两点的距离为?(2)当t 为何值时,△PCQ 的面积为15cm 2【答案】(1)经过1秒,P ,Q 两点的距离为(2)经过1.5秒或2秒,△PCQ 的面积为15cm 2【分析】本题考查一元二次方程的应用,勾股定理.熟练掌握勾股定理,列出一元二次方程,是解题的关键.(1)设经过t 秒,P ,Q 两点的距离为,勾股定理列式求解即可;(2)利用S △PCQ =12PC ⋅CQ ,列式计算即可.【详解】(1)解:设经过t 秒,P ,Q 两点的距离为,由题意,得:BP =2t cm ,CQ =5t cm ,∵在Rt △ABC 中,AC =24cm ,BC =7cm ,∴CP =BC ―BP =(7―2t )cm ,由勾股定理,得:CP 2+CQ 2=PQ 2,即:(7―2t )2+(5t )2=2,解得:t 1=1,t 2=―129(舍去);∴经过1秒,P ,Q 两点的距离为;(2)解:设经过t 秒,△PCQ 的面积为15cm 2,此时:BP =2t cm ,CQ =5t cm ,则:CP =BC ―BP =(7―2t )cm ,∴S △PCQ =12PC ⋅CQ =12(7―2t )⋅5t =15,解得:t 1=2,t 2=1.5,∴经过1.5秒或2秒,△PCQ 的面积为15cm 2.23.暑假期间某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额-进货成本)(1)若该纪念品的销售单价为45元时则当天销售量为 件.(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元.(3)该纪念品的当天销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)230(2)59元或39元(3)不可能达到3700元,理由见解析【分析】本题考查一元二次方程的应用,找准等量关系是解题的关键,正确列出一元二次方程是解题的关键.(1)根据当天销售量=280―10×增加的销售单价,即可得到答案;(2)设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,列出一元二次方程即可得到答案;(3)设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,列出一元二次方程根据根的判别式判断即可.【详解】(1)解:280―(45―40)×10=230(件),故答案为:230;(2)解:设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,依题意得(x―30)[280―(x―40)×10]=2610,整理得x2―98x+2301=0,整理解得x1=39,x2=59,答:当该纪念品的销售单价定价为59元或39元时,该产品的当天销售利润是2610元.(3)解:不能,理由如下:设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,依题意得(y―30)[280―(y―40)×10]=2610,整理得y2―98y+2410=0,∵Δ=(―98)2―4×1×2410=―36<0,故该方程没有实数根,即该纪念品的当天利润不可能达到3700元.24.如图,正方形ABCD中,点P是线段BD上的动点.(1)当PE⊥AP交BC于E时,①如图1,求证:PA=PE.②如图2,连接AC 交BD 于点O ,交PE 于点F ,试探究线段PA 2、PO 2、PF 2之间用等号连接的数量关系,并说明理由;(2)如图3,已知M 为BC 的中点,PQ 为对角线BD 上一条定长线段,若正方形边长为4,随着P 的运动,CP +QM 的最小值为PQ 的长.【答案】(1)①见解析;②PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2【分析】(1)①连接PC ,根据SAS 证明△ABP≌△CBP (SAS),得到PA =PC ,∠BAP =∠BCP ,再求出∠BAP +∠BEP =180°,进一步证明∠BCP =∠PEC 得到PC =PE ,等量代换可得结果;②先根据PE ⊥AP 得到S △APF =12PO ⋅AF =12PA ⋅PF ,得到PO 2⋅AF 2=PA 2⋅PF 2,结合勾股定理得到PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)连接AC 交BD 于点O ,先根据正方形的性质得到AC ⊥BD ,BO =CO =P 与点O 重合时,CP 的最小值,QM 的最小值,以及此时QM ⊥BD ,QM∥AC ,最后根据M 为BC 中点得到Q 为BO 中点,即可求解.【详解】(1)解:①如图1,连接PC ,∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =90°,∠ABD =∠CBD =45°,在△ABP 和△CBP 中,AB =BC ∠ABD =∠CBD BP =BP,∴△ABP≌△CBP (SAS),∴PA =PC ,∠BAP =∠BCP,∵PE ⊥AP ,∴∠APE =90°,又∠BAP +∠BEP +∠ABC +∠APE =360°,∴∠BAP +∠BEP =180°,∵∠PEC +∠BEP =180°,∴∠BAP =∠PEC ,∴∠BCP =∠PEC ,∴PC =PE ,∴PA =PE ;②如图,PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2,理由是:∵PE ⊥AP ,∴PA 2+PF 2=AF 2,∵四边形ABCD 是正方形,∴AC ⊥BD ,∵S △APF =12PO ⋅AF =12PA ⋅PF ,∴PO 2⋅AF 2=PA 2⋅PF 2,∴PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)如图,连接AC 交BD 于点O ,∵四边形ABCD 是正方形,边长为4,∴AC ⊥BD ,BO =CO ==∴当点P 与点O 重合时,CP 的最小值为CO =∵CP +QM 的最小值为∴QM ∴当点P 与点O 重合时,QM ⊥BD ,如图,∴QM∥AC ,∵M 为BC 中点,∴Q 为BO 中点,∴PQ =12BO =12×=。

2024-2025 学年九年级数学上学期第一次月考卷及答案

2024-2025 学年九年级数学上学期第一次月考卷及答案

2024-2025学年九年级数学上学期第一次月考卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版九年级上册21.1-22.1。

6.难度系数:0.8。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则x2﹣x=()A.﹣2B.6或﹣2C.6D.32.方程中x(x﹣1)=0的根是()A.x1=0,x2=﹣1B.x1=0,x2=1C.x1=x2=0D.x1=x2=13.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为()A.B.C.D.4.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.B.C.且k≠0D.5.若方程x 2﹣4x ﹣2=0的两根为x 1,x 2,则+的值为()A .2B .﹣2C .D .6.俗语有云:“一天不练手脚慢,两天不练丢一半,三天不练门外汉,四天不练瞪眼看.”其意思是知识和技艺在学习后,如果不及时复习,那么学习过的东西就会被遗忘.假设每天“遗忘”的百分比是一样的,根据“两天不练丢一半”,则每天“遗忘”的百分比约为(参考数据:)()A .20.3%B .25.2%C .29.3%D .50%7.下列有关函数y =(x ﹣1)2+2的说法不正确的是()A .开口向上B .对称轴是直线x =1C .顶点坐标是(﹣1,2)D .函数图象中,当x <0时,y 随x 增大而减小8.若x =2是方程x 2﹣x +c =0的一个根,则c 的值为()A .1B .﹣1C .2D .﹣29.二次函数y =a (x ﹣t )2+3,当x >1时,y 随x 的增大而减小,则实数a 和t 满足()A .a >0,t ≤1B .a <0,t ≤1C .a >0,t ≥1D .a <0,t ≥110.在解一元二次方程时,小马同学粗心地将x 2项的系数与常数项对换了,使得方程也变了.他正确地解2,另一根等于原方程的一个根.则原方程两根的平方和是()A .B .C .D .第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。

2024-2025学年辽宁省大连市名校联盟九年级(上)第一次月考数学试卷(含答案)

2024-2025学年辽宁省大连市名校联盟九年级(上)第一次月考数学试卷(含答案)

2024-2025学年辽宁省大连市名校联盟九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.以下是回收、绿色包装、节水、低碳四个标志,其中为中心对称图形的是( )A. B. C. D.2.用配方法解方程x2+8x+7=0,则配方正确的是( )A. (x+4)2=9B. (x−4)2=9C. (x−8)2=16D. (x+8)2=573.若关于x的一元二次方程kx2−6x+9=0有实数根,则k的取值范围是( )A. k<1B. k≤1C. k<1且k≠0D. k≤1且k≠04.抛物线y=−(x+2)2−3的顶点坐标是()。

A. (−2,−3)B. (2,−3)C. (2,3)D. (−2,3)5.关于函数y=−3(x+1)2−2,下列描述错误的是( )A. 开口向下B. 对称轴是直线x=−1C. 函数最大值是−2D. 当x>−1时,y随x的增大而增大6.反比例函数y=−1的图象位于( )xA. 第一、三象限B. 第二、四象限C. 第一、四象限D. 第二、三象限7.如图,点P是反比例函数y=k(k≠0,x<0)图象上一点,过点P作PA⊥y轴于点A,x点B是点A关于x轴的对称点,连接PB,若△PAB的面积为18,则k的值为( )A. 18B. 36C. −18D. −368.如图,将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2.将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为( )A. (3,−1)B. (1,−3)C. (2,−2)D. (−2,2)9.如图,D 是△ABC 边AB 上一点,添加一个条件后,仍不能使△ACD ∽△ABC 的是( )A. ∠ACD =∠BB. ∠ADC =∠ACBC. AD AC =CD BCD. AC 2=AD ⋅AB10.如图,正方形ABCD ,点F 在边AB 上,且AF :FB =1:2,CE ⊥DF ,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使BG =12BC ,连接GM ,有如下结论:①DE =AF ;②AN = 24AB ;③∠ADF =∠GMF ;④S △ANF :S 四边形CNFB =1:8.上述结论中,正确的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。

江苏省扬州市江都区华君外国语学校2024—2025学年上学期第一次月考九年级数学试卷

江苏省扬州市江都区华君外国语学校2024—2025学年上学期第一次月考九年级数学试卷

江苏省扬州市江都区华君外国语学校2024—2025学年上学期第一次月考九年级数学试卷一、单选题1.下列方程一定是一元二次方程的是( )A .220x y --=B .10x x -=C .225x x --D .24x x =2.若关于x 的一元二次方程2230x x m -+=的一个根是1,则m 的值为( ) A .1 B .1- C .2 D .03.点I 是ABC V 的外心,则点I 是ABC V 的( )A .三条垂直平分线交点B .三条角平分线交点C .三条中线交点D .三条高的交点4.如图,BD 是O e 的直径,30CBD ∠=︒,则A ∠的度数为( )A .30︒B .45︒C .60︒D .75︒5.根据下列表格的对应值:由此可判断方程212150x x +-=必有一个根满足( )A .1 1.1x <<B .1.1 1.2x <<C .1.2 1.3x <<D . 1.3x >6.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,»»DCCB =.若110C ∠=︒,则ABC ∠的度数等于( )A .55︒B .60︒C .65︒D .70︒7.如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D ,若⊙P 的半径为5,点A 的坐标是(0,8),则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)8.如图,AB 是半圆直径,半径OC AB ⊥于点O ,AD 平分CAB ∠交弧BC 于点D ,连接CD 、OD .下列结论:①AC OD ∥;②CE OE =;③OED AOD ∠=∠;④CD DE =.其中正确的结论的个数有( )A .1个B .2个C .3个D .4个二、填空题9.一元二次方程22x x =的根是.10.某测试中心分别从操作系统、硬件规格、屏幕尺寸、电池寿命四个项目对新投入市场的一款智能手机进行测评,各项得分如下表:最后将四项成绩按3:3:2:2的比例计算综合成绩,则该手机的综合成绩为分. 11.直角三角形的两直角边是12,16,则此三角形的外接圆的半径是.12.圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的侧面积是cm 2.13.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为.14.如图,AB 是圆的直径,1∠、2∠、3∠、4∠的顶点均在AB 上方的圆弧上,1∠、4∠的一边分别经过点A 、B ,则1234∠+∠+∠+∠=︒.15.石拱桥是中国传统桥梁四大基本形式之一,如图,已知一石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,求水面宽AB =m .16.已知P 是O e 内一点点P 不与圆心O 重合,点P 到圆上各点的距离中,最小距离与最大距离是关于x 的一元二次方程212200ax ax --=的两个实数根,则O e 的半径为. 17.如图,以正方形ABCD 的AB 边向外作正六边形ABEFGH ,连接DH ,则∠ADH =°18.如图,已知90ABC ∠=︒,8AB =,5BC =,半径为2的O e 从点A 出发,沿A B C→→方向滚动到点C 时停止,圆心O 运动的路程是.三、解答题19.解方程:(1)()222190x x --=;(2)2260x x --=20.如图,AB ,AC 分别是O e 的直径和弦,OD AC ⊥于点D ,连接BD 、BC ,5AB =,4AC =,求BD 的长.21.已知关于x 的一元二次方程()222110x k x k --+-=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为符合条件的最大整数,求此方程的根.22.近来,由于智能聊天机器人ChatGPT 的横空出世,大型语言模型成为人工智能领域的热门话题.有关人员开展了A ,B 两款AI 聊天机器人的使用满意度评分测验,并从中各随机抽取20份,对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级:不满意70x <,比较满意7080x ≤<,满意8090x ≤<,非常满意90x ≥),下面给出了部分信息:抽取的对A 款AI 聊天机器人的评分数据中“满意”的数据:84,86,86,87,88,89; 抽取的对B 款AI 聊天机器人的评分数据:66,68,69,81,84,85,86,87,87,87,88,89,95,97,98,98,98,98,99,100.抽取的对A ,B 款AI 聊天机器人的评分统计表根据以上信息,解答下列问题:(1)上述图表中a =______________,b =______________,c =______________.(2)在此次测验中,有200人对A 款AI 聊天机器人进行评分、160人对B 款AI 聊天机器人进行评分,估计此次测验中对AI 聊天机器人不满意的共有多少人?23.端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出100只粽子,为了使每天获利的利润更多,该店决定把零售单价下降()01m m <<元.(1)零售单价下降m 元后,该店平均每天可卖出___________只粽子,利润为__________元.(2)不在考虑其他因素的条件下,当m 定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?24.如图,AB 是圆O 的弦,C 是圆O 外一点,OC OA ⊥,CO 交AB 于点P ,交圆O 于点D ,且CP CB =.(1)判断直线BC 与圆O 的位置关系,并说明理由;(2)若30A ∠=o ,1OP =,求图中阴影部分的面积.25.如图,在Rt △ABC 中,∠C =90°,(1)求作⊙P ,使圆心P 在BC 上,且⊙P 与AC 、AB 都相切;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若AC =4,BC =3.求⊙P 的半径.26.阅读下面的材料:解方程427120x x -+=这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设2x y =,则42x y =,∴原方程可化为27120y y -+=,解得13y =,24y =,当3y =时,23x =,x =当4y =时,24x =,2x =±.∴原方程有四个根是1x 2x =32x =,42x =-.以上方法叫换元法,达到了降次的目的,体现了数学的转化思想.运用上述方法解答下列问题:(1)解方程:222()5()40x x x x +-++=;(2)已知实数a ,b 满足22222()(310)a b a b +-+=,试求22a b +的值.27.如图1,C ,D 是半圆ACB 上的两点,点P 是直径AB 上一点,且满足APC BPD ∠=∠,则称CPD ∠是»CD的“相望角”,如图,(1)如图2,若弦CE AB ⊥,D 是弧BC 上的一点,连接DE 交AB 于点P ,连接CP .求证:CPD ∠是»CD的“相望角”; (2)如图3,若直径6AB =,弦CE AB ⊥,»CD的“相望角”为90︒,求CD 的长. 28.如图1所示,等边三角形ABC 内接于圆O ,点P 是劣弧BC 上任意一点(不与C 重合),连接PA 、PB 、PC ,求证:PB PC PA +=.【初步探索】小明同学思考如下:将APC △与点A 顺时针旋转60︒到AQB V ,使点C 与点B 重合,可得P 、B 、Q 三点在同一直线上,进而可以证明APQ △为等边三角形,根据提示,解答下列问题:(1)根据小明的思路,请你完成证明.(2)若圆的半径为8,则PB PC +的最大值为________.【类比迁移】如图2所示,等腰Rt ABC △内接于圆O ,90BAC ∠=︒,点P 是弧BC 上任一点(不与B 、C 重合),连接PA 、PB 、PC ,若圆的半径为8,试求PBC △周长的最大值.【拓展延伸】如图3所示,等腰Rt ABC △,点A 、B 在圆O 上,90BAC ∠=︒,圆O 的半径为8,连接OC ,则OC 的最小值为_________(直接写答案).。

2022-2023学年人教版九年级第一学期第一次月考数学试卷(含解析)

2022-2023学年人教版九年级第一学期第一次月考数学试卷(含解析)

广东省九年级(上)第一次月考数学试卷1一、选择题(每小题3分,共30分)1.(3分)若关于x的方程x2+(m+1)x+=0的一个实数根是1,则m的值是()A.B.C.1或D.12.(3分)下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形3.(3分)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD =35°,∠AEF=15°,则∠B的度数为何?()A.50B.55C.70D.754.(3分)在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同D.随着试验次数的增加,频率一般会逐步稳定在概率数值附近5.(3分)根据四边形的不稳定性,当变动∠B的度数时,菱形ABCD的形状会发生改变,当∠B=60°时,如图1,AC=;当∠B=90°时,如图2,AC=()A.B.2C.2D.6.(3分)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普迺扑克牌洗匀后,从中任抽一张牌的花色是红桃B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是57.(3分)如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF =AE.分别连接AF,CF,M为CF的中点,则AM的长为()A.2B.3C.D.8.(3分)共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440B.1000(1+x)2=440C.440(1+x)2=1000D.1000(1+2x)=1000+4409.(3分)如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9B.3或5C.4或6D.3或610.(3分)如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF;⑤EF的最小值为2;⑥AP⊥EF.其中正确结论的序号为()A.①②④⑤⑥B.①②④⑤C.②④⑤D.②④⑤⑥二、填空题(每小题4分,共20分)11.(4分)等腰△ABC的两边长都是方程x2﹣6x+8=0的根,则△ABC的周长为.12.(4分)某商店设计了一种促销活动来吸引顾客:在一个不透明的箱子里放有4个相同的乒乓球,乒乓球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是.13.(4分)有3个正方形如图所示放置,阴影部分面积依次记为S1,S2,若S1的面积为2,则S2的面积为.14.(4分)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连接EG,FG,若AE=DE,AB=2,则EG=.15.(4分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE 折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.三、解答题(本大题共7个小题,满分70分)16.(8分)解下列方程(1)2x2﹣8x﹣1=0(用配方法)(2)3x(x﹣1)=2﹣2x(选择合适方法)17.(9分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径两弧交AD于点F,再分别以点B,F为圆心,大于BF为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)AB AF(选填“=”,“≠”,“>”,“<”):AE∠BAD的平分线.(选填“是”或“不是”)(2)在(1)的条件下,求证:四边形ABEF是菱形.(3)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,∠ABC=°.18.(10分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?19.(10分)如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=4,∠C=45°,点P是BC边上一动点,设PB的长为x,(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形?(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形?(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.20.(11分)我市城建公司新建了一个购物中心,共有商铺30间,据调查分析,当每间的年租金为10万元时,可全部租出:若每间的年租金每增加0.5万元,则少租出商铺一间,为提供优质服务,城建公司引入物业公司代为管理,租出的商铺每间每年需向物业公司缴纳物业费1万元,未租出的商铺不需要向物业公司缴纳物业费.(1)当每间商铺的年租金定为13万元时,能租出间.(2)当每问商铺的年租金定为多少万元时,该公司的年收益为286万元,且使租客获得实惠?(收益=租金﹣物业费)21.(11分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求AE的长(用x的代数式表示);(2)当y=108m2时,求x的值.22.(11分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系和位置关系;(不要求证明)(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)若关于x的方程x2+(m+1)x+=0的一个实数根是1,则m的值是()A.B.C.1或D.1【解答】解:把x=1代入方程,得1+(m+1)+=0,解得,m=﹣故选:A.2.(3分)下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形【解答】解:根据矩形的定义及性质知,有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,故A,B正确;根据菱形的定义及性质知对角线互相垂直的矩形是正方形,也是菱形,故C正确;对角线相等的四边形有可能是等腰梯形,故D错误;故选:D.3.(3分)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD =35°,∠AEF=15°,则∠B的度数为何?()A.50B.55C.70D.75【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选:C.4.(3分)在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同D.随着试验次数的增加,频率一般会逐步稳定在概率数值附近【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.5.(3分)根据四边形的不稳定性,当变动∠B的度数时,菱形ABCD的形状会发生改变,当∠B=60°时,如图1,AC=;当∠B=90°时,如图2,AC=()A.B.2C.2D.【解答】解:如图1、2中连接AC.在图1中,∵AB=BC,∠B=60°,∴△ABC是等边三角形,∴AB=BC=AC=,在图2中,∵∠B=90°,AB=BC=,∴AC==2.故选:B.6.(3分)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普迺扑克牌洗匀后,从中任抽一张牌的花色是红桃B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是5【解答】解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率是,符合题意;C、抛一枚硬币,出现正面的概率为,不符合题意;D、抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是5的概率是,不符合题意,故选:B.7.(3分)如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF =AE.分别连接AF,CF,M为CF的中点,则AM的长为()A.2B.3C.D.【解答】解:连接AC,∵四边形ABCD是正方形,∴∠BAC=45°.∵EF⊥AE,EF=AE,∴△AEF是等腰直角三角形,∴∠EAF=45°,∴∠CAF=90°.∵AB=BC=2,∴AC==2.∵AE=EF=AB+BE=2+1=3,∴AF==3,∴CF===.∵M为CF的中点,∴AM=CF=.故选:D.8.(3分)共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440B.1000(1+x)2=440C.440(1+x)2=1000D.1000(1+2x)=1000+440【解答】解:由题意可得,1000(1+x)2=1000+440,故选:A.9.(3分)如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9B.3或5C.4或6D.3或6【解答】解:如图,∵若直线AB将它分成面积相等的两部分,∴(6+9+x)×9﹣x•(9﹣x)=×(6+9+x)×9﹣6×3,解得x=3,或x=6,故选:D.10.(3分)如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF;⑤EF的最小值为2;⑥AP⊥EF.其中正确结论的序号为()A.①②④⑤⑥B.①②④⑤C.②④⑤D.②④⑤⑥【解答】解:①如图,延长FP交AB与G,连PC,延长AP交EF与H,∵GF∥BC,∴∠DPF=∠DBC,∵四边形ABCD是正方形∴∠DBC=45°∴∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC=DF,∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,∴DP=EC.故①正确;②∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2BC=8,故②正确;③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,∴当∠P AD=45度或67.5度或90度时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故③错误.④∵四边形PECF为矩形,∴PC=EF,∠PFE=∠ECP,由正方形为轴对称图形,∴AP=PC,∠BAP=∠ECP,∴AP=EF,∠PFE=∠BAP,故④正确;⑤由EF=PC=AP,∴当AP最小时,EF最小,则当AP⊥BD时,即AP=BD==2时,EF的最小值等于2,故⑤正确;⑥∵GF∥BC,∴∠AGP=90°,∴∠BAP+∠APG=90°,∵∠APG=∠HPF,∴∠PFH+∠HPF=90°,∴AP⊥EF,故⑥正确;本题正确的有:①②④⑤⑥;故选:A .二、填空题(每小题4分,共20分)11.(4分)等腰△ABC 的两边长都是方程x 2﹣6x +8=0的根,则△ABC 的周长为 12或6或10. .【解答】解:∵x 2﹣6x +8=0, ∴(x ﹣4)(x ﹣2)=0, ∴x 1=4,x 2=2,∵等腰△ABC 的两边长都是方程x 2﹣6x +8=0的根, ∴等腰△ABC 的三边为4、4、4或2、2、2或4、4、2, ∴△ABC 的周长为12或6或10. 故答案为12或6或10.12.(4分)某商店设计了一种促销活动来吸引顾客:在一个不透明的箱子里放有4个相同的乒乓球,乒乓球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是 .【解答】解:列表得: ∵共有12种等可能结果,该顾客所获得购物券的金额不低于30元的有8种情况,∴P(不低于30元)==.故答案为:.13.(4分)有3个正方形如图所示放置,阴影部分面积依次记为S1,S2,若S1的面积为2,则S2的面积为.【解答】解:如图,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DCA=45°=∠ACB=∠DAC,∵四边形EFNM是正方形,∴MN=FN,EF∥AC,∠AMF=∠FNC=90°∴∠DAC=∠AEM=45°=∠ACD=∠CFN∴AM=ME=MN=NC=NF∵EF∥AC∴△DEF∽△DAC∴∴S△ADC=18同理可得:△CGH∽△CAB,AB=2GH,∴∴S2=故答案为:14.(4分)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连接EG,FG,若AE=DE,AB=2,则EG=.【解答】解:如图,连接AC、EF,在菱形ABCD中,AC⊥BD,∵BE⊥AD,AE=DE,∴AB=BD,又∵菱形的边AB=AD,∴△ABD是等边三角形,∴∠ADB=60°,设EF与BD相交于点H,AB=4x,∵AE=DE,∴由菱形的对称性,CF=DF,∴EF是△ACD的中位线,∴DH=DO=BD=x,在Rt△EDH中,EH=DH=x,∵DG=BD,∴GH=BD+DH=4x+x=5x,在Rt△EGH中,由勾股定理得,EG==x,所以,==.∵AB=2,∴EG=.故答案是:.15.(4分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE 折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.三、解答题(本大题共7个小题,满分70分)16.(8分)解下列方程(1)2x2﹣8x﹣1=0(用配方法)(2)3x(x﹣1)=2﹣2x(选择合适方法)【解答】解:(1)移项,得2x2﹣8x=1,两边都除以2,得x2﹣4x=,方程的两边都加上4,得x2﹣4x+4=,即(x﹣2)2=所以x﹣2=±,所以x1=2+,x2=;(2)移项,得3x(x﹣1)+2x﹣2=0,即3x(x﹣1)+2(x﹣1)=0,所以(x﹣1)(3x+2)=0,x﹣1=0或3x+2=0,所以x1=1,x2=﹣17.(9分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径两弧交AD于点F,再分别以点B,F为圆心,大于BF为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)AB=AF(选填“=”,“≠”,“>”,“<”):AE是∠BAD的平分线.(选填“是”或“不是”)(2)在(1)的条件下,求证:四边形ABEF是菱形.(3)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为10,∠ABC=120°.【解答】(1)解:AB=AF;AE平分∠BAD的平分线;故答案为=,是;(2)证明:∵AE平分∠BAF,∴∠BAE=∠F AE,∵AF∥BE,∴∠BAE=∠BEA,∴AB=EB,而AF=AB,∴AF=BE,AF∥BE,∴四边形ABEF为平行四边形,而AB=AF,∴四边形ABEF是菱形;(3)解:∵四边形ABEF是菱形;而四边形ABEF的周长为40,∴AB=10,OA=OE,OB=OF=5,AE⊥BF,∴△ABF为等边三角形,∴∠BAF=60°,∴∠ABC=120°,∵OA=OB=5,∴AE=2OA=10.故答案为10,120.18.(10分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?【解答】解:(1)∵共有4种等可能的结果,落回到圈A的只有1种情况,∴落回到圈A的概率P1=;(2)列表得:∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(4,4),∴最后落回到圈A的概率P2==,∴她与嘉嘉落回到圈A的可能性一样.19.(10分)如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=4,∠C=45°,点P是BC边上一动点,设PB的长为x,(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形?(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形?(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.【解答】解:(1)过D作DM⊥BC于M,∵CD=4,∠C=45°,∴DM=CM=DC×sin45°=4×=4,∵E是BC的中点,BC=12,∴BE=CE=6,∴EM=6﹣4=2,在Rt△DME中,由勾股定理得:DE==2,∵要使以点P、A、D、E为顶点的四边形为直角梯形,∴只能是∠APB=90°,即AP⊥BC,AP⊥AD,如图2,∵AP=DM,AP∥DM,∴四边形APMD是矩形,∴AD=PM=5,∴PE=5﹣2=3,∴BP=12﹣6﹣3=3,即当x为3时,以点P、A、D、E为顶点的四边形为直角梯形,当P和M重合时,以点P、A、D、E为顶点的四边形为直角梯形,此时x=12﹣4=8,所以当x为3或8时,以点P、A、D、E为顶点的四边形为直角梯形;(2)分为两种情况:①如图3,当P在E的左边时,∵AD=PE=5,CE=6,∴BP=12﹣6﹣5=1;②如图4,当P在E的右边时,∵AD=EP=5,∴BP=12﹣(6﹣5)=11;即当x为1或11时,以点P、A、D、E为顶点的四边形为平行四边形;(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能构成菱形,理由是:分为两种情况:①当P在E的左边时,如图3,∵AD=5,DE=2,∴AD≠DE,即此时以点P、A、D、E为顶点的四边形APED不是菱形;②如图4,过点D作DM⊥BC于点M,当P在E的右边时,过A作AQ⊥BC于Q,则AQ=DM=4,∵AD=AE=EP=5,∴BP=BP=6+5=11;即当x为11时,以点P、A、D、E为顶点的四边形为菱形.20.(11分)我市城建公司新建了一个购物中心,共有商铺30间,据调查分析,当每间的年租金为10万元时,可全部租出:若每间的年租金每增加0.5万元,则少租出商铺一间,为提供优质服务,城建公司引入物业公司代为管理,租出的商铺每间每年需向物业公司缴纳物业费1万元,未租出的商铺不需要向物业公司缴纳物业费.(1)当每间商铺的年租金定为13万元时,能租出24间.(2)当每问商铺的年租金定为多少万元时,该公司的年收益为286万元,且使租客获得实惠?(收益=租金﹣物业费)【解答】解:(1)30﹣×1=24(间),∴当每间商铺的年租金定为13万元时,能租出24间.故答案是:24;(2)设每间商铺的年租金增加x万元,则每间商铺的年租金为(10+x)万元,依题意有:(30﹣×1)×(10+x)﹣(30﹣×1)×1=286,解得:x1=2,x2=4,∵使租客获得实惠,∴x1=2符合题意,∴每间商铺的年租金定为12万元.答:当每间商铺的年租金定为12万元时,该公司的年收益为286万元.21.(11分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求AE的长(用x的代数式表示);(2)当y=108m2时,求x的值.【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=a,则AE=2a,AB=3a,∴8a+2x=80,∴a=﹣x+10,∴AE=2a=﹣x+20;(2)∵矩形区域ABCD的面积=AB•BC,∴3(﹣x+10)•x=108,整理得x2﹣40x+144=0,解得x=36或4,即当y=108m2时,x的值为36或4.22.(11分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系和位置关系;(不要求证明)(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【解答】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(3)结论仍然成立.理由:如图3中,设DE与FC的延长线交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,∴∠CBF=∠DCE=90°在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.。

2023_2024学年福建省泉州市石狮市九年级上学期1月月考数学试卷(有答案)

2023_2024学年福建省泉州市石狮市九年级上学期1月月考数学试卷(有答案)

2023_2024学年福建省泉州市石狮市九年级上学期1月月考数学检测卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列二次根式中,与是同类二次根式的是( )2.若=,则的值为( )3.用配方法解方程x2+6x+3=0时,配方结果正确的是( )A.(x+3)2=12B.(x﹣3)2=12C.(x﹣3)2=6D.(x+3)2=64.如图,△ABC与△DEF是位似图形,且位似中心为O,OB:OE=2:3,若△ABC的面积为4,则△DEF的面积为( )A.2B.6C.8D.94 7 85.对于二次函数y=﹣3(x﹣2)2的图象,下列说法正确的是( )A.开口向上B.对称轴是直线x=﹣2C.当x>﹣2时,y随x的增大而减小D.顶点坐标为(2,0)6.根据福建省统计局数据,福建省2020年的地区生产总值为43903.89亿元,2022年的地区生产总值为53109.85亿元.设这两年福建省地区生产总值的年平均增长率为x,根据题意可列方程( )A.43903.89(1+x)=53109.85B.43903.89(1+x)2=53109.85C.43903.89x2=53109.85D.43903.89(1+x2)=53109.857.如图,AB∥CD∥EF,AF与BE相交于点G,若BG=3,CG=2,CE=6,则的值是( )A.B.C.D.48.如图,在长方形ABCD中无重叠放入面积分别为8和16的两张正方形纸片,则图中空白部分的面积为( )A.8﹣8B.8﹣12C.4﹣2D.8﹣29.如图,将矩形ABCD放置在一组等距的平行线中,恰好四个顶点都在平行线上,已知相邻平行线间的距离为1,若∠DCE=β,则矩形ABCD的周长可表示为( )A.B.C.D.9 1010.如图,M是△ABC三条角平分线的交点,过M作DE⊥AM,分别交AB、AC于D,E 两点,设BD=a,DE=b,CE=c,关于x的方程ax2+bx+c=0( )A.一定有两个相等实根B.一定有两个不相等实根C.有两个实根,但无法确定是否相等D.无实根二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11.若有意义,则x的取值范围是 .12.如图,河坝的横断面AB的坡比是1:2,坝高BC=3米,则坡面AB的长度是 .米.13.如图,BD 是△ABC 的中线,E ,F 分别是BD ,BC 的中点,连结EF .若AD =4,则EF 的长为 .14.已知关于x 的一元二次方程x 2﹣3x+1=0的一个根是x =m ,则2m 2﹣6m ﹣2024= .15.如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,则水面宽为8米时,水面下降 米.16.已知二次函数y =﹣x 2+2ax+a+1,若对于﹣1<x <a 范围内的任意自变量x ,都有y >a+1,则a 的取值范围是  .三、解答题:本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤. 在答题卡的相应位置内作答.17.(8分)计算:.6245cos 232⨯-+- 18.(8分)解方程:x 2﹣3x+2=0.19.(8分)关于x 的一元二次方程x 2+2x+3﹣k =0有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且k 2=αβ+3k ,求k 的值.20.(8分)如图,在△ABC 中,点D 在AB 边上,且AD :AB =2:3.(1)在AC 边求作点E ,使AE :AC =2:3;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若△ABC 的周长为12,求△ADE 的周长.21.(8分)如图,一数学项目学习小组要测量某路灯Q ﹣P ﹣M 的顶部到地面的距离MN 的长,他们借助卷尺、测角仪进行测量,测量结果如下:测量项目测量数据从A 处测得路灯顶部M 的仰角αα=58°测角仪到地面的距离ABAB =1.6米路灯顶部M正下方N至测量点B的水平距离BN BN=2米根据以上测量结果,计算路灯顶部到地面的距离MN为多少米.(参考数据:sin58°≈0.85,coc58°≈0.53,tan58°≈1.60,结果精确到0.1米.)22.(10分)某商场举行促销活动,消费满一定金额的顾客可以通过参与摸球活动获得奖励.具体方法如下:从一个装有2个红球、3个黄球(仅颜色不同)的袋中摸出2个球,根据摸到的红球数确定奖励金额,具体金额设置如下表:摸到的红球数012奖励(单位:元)51020现有两种摸球方案:方案一:随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球;方案二:随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.(1)求方案一中,两次都摸到红球的概率;(2)请你从平均收益的角度帮助顾客分析,选择哪种摸球方案更有利?23.(10分)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为x m(如图).(1)若矩形养殖场的总面积为36m2,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?24.(12分)如图,在Rt△ABC中,∠ACB=90°,BC=2AC,D,E分别是边BA,BC的中点,连接DE.将△BDE绕点B顺时针旋转α(0°<α<90°)得到△BFG,点D的对应点是点F,连接AF,CG.(1)求证:∠BFA=∠BGC;(2)若∠BFA=90°,求sin∠CBF的值.25.(14分)已知二次函数y=(x2+bx+c)的图象与y轴交于点A,且经过点B(4,)和点C(﹣1,).(1)求这个二次函数的解析式.(2)直线BC交y轴于点D,点E是二次函数y=(x2+bx+c)图象上位于直线AB 下方的动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②若△AEF中有一个内角是∠ABC的两倍,求点E的横坐标.答案1、选择题1—5 C .A .D .D .D . 6—10 B .C .A .B .A .二、填空题11.x ≥2. 12. 3. 13.214. ﹣2026. 15..16.211--≤<a 三、解答题17.计算:.6245cos 232⨯-+- 解:==﹣.18.解方程:x 2﹣3x +2=0.解:∵x 2﹣3x +2=0,∴(x ﹣1)(x ﹣2)=0,∴x ﹣1=0或x ﹣2=0,∴x 1=1,x 2=2.19.解:(1)b 2﹣4ac =22﹣4×1×(3﹣k )=﹣8+4k ,∵有两个不相等的实数,∴﹣8+4k >0,解得:k >2;(2)∵方程的两个根为α,β,∴αβ==3﹣k,∴k2=3﹣k+3k,解得:k1=3,k2=﹣1(舍去).∴k的值为320.解:(1)如图,点E就是所求作的点.(2)∵AE:AC=2:3,AD:AB=2:3,∴AE:AC=AD:AB,∵∠A=∠A,∴△ADE∽△ABC,∴△ADE的周长:△ABC的周长=AD:AB=2:3,∵△ABC的周长为12,∴△ADE的周长为8.21.解:过A作AH⊥MN于H,由题意得:AH=BN=2m,HN=AB=1.6m,在Rt△AMH中,tanα=,∴MH=AH•tan58°≈2×1.6=3.2(m),∴MN=MH+HN=3.2+1.6=4.8(m),答:路灯顶部到地面的距离MN约为4.8m.22.解:(1)列表如下:红红黄黄黄红(红,红)(黄,红)(黄,红)(黄,红)红(红,红)(黄,红)(黄,红)(黄,红)黄(红,黄)(红,黄)(黄,黄)(黄,黄)黄(红,黄)(红,黄)(黄,黄)(黄,黄)黄(红,黄)(红,黄)(黄,黄)(黄,黄)由表知,共有20种等可能结果,其中两次都摸到红球的有2种结果,∴两次都摸到红球的概率为=;(2)由(1)知,方案一的摸球方案的平均收益为5×+10×+20×=9.5(元),方案二摸球方式的所有结果列表如下:红红黄黄黄红(红,红)(红,红)(黄,红)(黄,红)(黄,红)红(红,红)(红,红)(黄,红)(黄,红)(黄,红)黄(红,黄)(红,黄)(黄,黄)(黄,黄)(黄,黄)黄(红,黄)(红,黄)(黄,黄)(黄,黄)(黄,黄)黄(红,黄)(红,黄)(黄,黄)(黄,黄)(黄,黄)由表知,共有25种等可能结果,∴方案二的摸球方案的平均收益为5×+10×+20×=9.8(元),∵9.5<9.8∴方案二的摸球方式更有利.23.解:(1)根据题意知:较大矩形的宽为2x m,长为=(8﹣x)m,∴(x+2x)×(8﹣x)=36,解得x=2或x=6,经检验,x=6时,3x=18>10不符合题意,舍去,∴x=2,答:此时x的值为2;(2)设矩形养殖场的总面积是y m2,∵墙的长度为10m,∴0<x≤,根据题意得:y=(x+2x)×(8﹣x)=﹣3x2+24x=﹣3(x﹣4)2+48,∵﹣3<0,∴当x=时,y取最大值,最大值为﹣3×(﹣4)2+48=(m2),答:当x=时,矩形养殖场的总面积最大,最大值为m2.24.(1)证明:∵D,E分别是边BA,BC的中点,∴DE∥AC,BD=AB,∴∠BED=∠BCA=90°,∴cos∠ABC=,∵将△BDE绕点B顺时针旋转α(0°<α<90°)得到△BFG,∴BE=BG,BD=BF,∠DBE=∠FBG,∴,∠ABF=∠CBG,∴△CBG∽△ABF,∴∠BFA=∠BGC;(2)解:如图,过点F作FN⊥CA,交CA的延长线于点N,FN⊥BC于H,∵∠AFB=90°,∴sin∠BAF==,∴∠BAF=30°,∴AF=BF,∵∠AFB=∠C=90°,∴∠FAC+∠CBF=180°,又∵∠FAC+∠FAN=180°,∴∠FAN=∠CBF,又∵∠FHB=∠N=90°,∴△AFN∽△BFH,∴==,∴AN=BH,FN=FH,∵FN⊥AC,FH⊥BC,∠C=90°,∴四边形FNCH是矩形,∴CN=FH,CH=FN,∴BC﹣BH=FN,AC+AN=FH,∴2AC﹣BH=FH,AC+BH=FH,∴=,∴设BH=(2﹣)x,FH=(2+1)x,∴BF=2x,∴sin∠CBF===.25.解:(1)∵二次函数y=(x2+bx+c)的图象经过点B(4,)和点C(﹣1,),∴,解得b=﹣3,c=﹣2,∴这个二次函数的解析式为y=(x2﹣3x﹣2).(2)①如图1,过点E作y轴平行线分别交AB、BD于G、H,∵y=(x2﹣3x﹣2),∴A(0,﹣),∴AD=2,BD=4,∴AB=2,∴cos,∴cos,∴,∴,∵A(0,﹣),B(4,)设直线AB的解析式为y=kx+b,∴,解得∴直线AB的解析式为y=,设E(m,),则G(m,),∴,∴当m=2时,EG取得最大值,∴EF的最大值为.答:EF的最大值为.②如图2,已知,令AC=,BC=2,在BC上截取AD=BD,∴∠ADC=2∠ABC,设CD=x,则AD=BD=2﹣x,则,解得x=,∴tan∠ADC=,即tan(2∠ABC)=2,如图3,构造△AMF∽△FNE,相似比为AF:EF,∵tan∠MFA=tan∠CBA=tan∠FEN=,设AM=,MF=2a,1°当∠FAE=2∠ABC时,,∴,∴,∴E(6a,),代入抛物线解析式,得(舍去),∴E点的横坐标为6a=2,2°当∠FEA=2∠ABC时,,∴,∴,∴,代入抛物线解析式,得(舍去),∴E点的横坐标为,综上,点E的横坐标为2或.。

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.解方程(x+1)2=3(1+x)的最佳方法是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法3.抛物线y=−3x2+2x−1与y轴的交点为( )A. (0,1)B. (0,−1)C. (−1,0)D. (1,0)4.若关于x的一元二次方程(k−1)x2+x+1=0有实数根,则k的取值范围是( )A. k≥54B. k>54C. k>54且k≠1 D. k≤54且k≠15.若关于x的方程x2−kx−3=0的一个根是x=3,则k的值是( )A. −2B. 2C. −12D. 126.关于x的方程|x2−2x−3|=a有且仅有两个实数根,则实数a的取值范围是( )A. a=0B. a=0或a=4C. a>4D. a=0或a>47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x个,根据题意,下面列出的方程正确的是( )A. 12x(x+1)=110 B. 12x(x−1)=110 C. x(x+1)=110 D. x(x−1)=1108.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A. 无实数根B. 有两个相等实数根C. 有两个同号不等实数根D. 有两个异号实数根9.二次函数y=ax2+bx+c,若ab<0,a−b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A. y1=−y2B. y1>y2C. y1<y2D. y1、y2的大小无法确定10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a−b=0;④b2−4ac<0.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。

九年级上期数学第一次月考试卷(含答案)

九年级上期数学第一次月考试卷(含答案)

第一次月考试卷(人教版九年级数学上册前两章)一.细心选一选(每小题3分,共30分.)1、x 为何值时,32+x 在实数范围内有意义( ) A 32≥x B 32-≥x C 23-≥x D 23≥x 2、下列计算正确的是() A .16= ±4 B .131227=- C .24÷ 6= 4 D .32×6=2 3、n 20是整数,则正整数n 的最小值是( )A 。

4B 。

5C 。

6 D.74、下列方程是关于x 的一元二次方程的是( );A 、02=++c bx axB 、2112=+xx C 、1222-=+x x x D 、)1(2)1(32+=+x x5 、方程5)3)(1(=-+x x 的解是 ( );A 、3,121-==x xB 、2,421-==x xC 、3,121=-=x xD 、2,421=-=x x6、一元二次方程的2650x x +-=配成完全平方式后所得的方程为 ( )A .2(3)14x -=B .2(3)14x +=C .21(6)2x += D .以上答案都不对 7、一元二次方程06242=-+-m x x 有两个相等的实数根,则m 等于 ( )A. 2 B 。

3 C. 4 D. 58、若2,1x x 是方程012=-+x x 的两根,则)2()2(222121-+⋅-+x x x x 的值为( ) A.2 B.-2 C.—1 D.19、若b b -=-3)3(2,则( )A .b 〉3B .b 〈3C .b ≥3D .b ≤310、为执行“两免一补"政策,某地区2011年投入教育经费2500万元,预计2013年投入3600万元,设这两年投入教育经费的年平均增长率为x ,则下列方程正确的是( )A 、2500 x 2=3600;B 、2500(1+x ) 2=3600;C 、2500(1+x %) 2=3600;D 、2500(1+x ) +2500(1+x ) 2=3600二、耐心填一填(将正确答案填在相应的横线上。

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第1章~第3章(北师版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)

2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)

2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。

人教版九年级数学上学期第一次月考试卷(含答案)

人教版九年级数学上学期第一次月考试卷(含答案)

人教版九年级数学上学期第一次月考试卷(含答案)一、选择题(本大题共有10小题,每小题3分,共30分)1.如果a为任意实数,下列各式中一定有意义的是…………………………………………()A.aB.a2C.a21D.a212.下列各式中,属于最简二次根式的是…………………………………………………………()A.某2y2B.某y1C.12D.1某23.下列方程,是一元二次方程的是………………………………………………………………()22①3某某20②2某3某y40③某21某4④某20⑤某230某3A.①②B.①②④⑤C.①③④D.①④⑤4.若某3某某,则某的取值范围是……………………………………………………()3某A.某<3B.某3C.0某<3D.某05.方程(某3)(某3)的根为………………………………………………………………()A.3B.4C.4或3D.4或36.用配方法解方程某28某70,则配方正确的是……………………………………………()A.某49B.某49C.某816D.某8577.关于某的一元二次方程(a1)某某a10的一个根为0,则a的值为……………()A.1B.-1C.1或-1D.22222222128.三角形两边长分别是8和6,第三边长是一元二次方程某16某600的一个实数根,则该三角形的面积是……………………………………………………………………………………()A.24B.48C.24或85D.859.下列二次根式中,与3是同类二次根式的是………………………………………………()2310.某农场的粮食产量在两年内从2800吨增加到3090吨,若设平均每年增产的百分率为某,则所列的方程为…………………………………………………………………………………………()A.18B.12C.6D.A.28001某3090;B.1某290;二、填空题(本大题共有10小题,每小题3分,共30分)11.某10某(某).12.在直角坐标系内,点P(5,5)到原点的距离为.13.若a23,b2,且ab0,则ab.14.10在两个连续整数a和b之间,且a10b,那么a、b的值分别是.15.已知一元二次方程某+3某+m=0的一个根为-1,则另一个根为__________.16.某矩形的长为a,宽为b,且(a+b)(a+b+2)=8,则a+b的值为_。

24-25九年级数学第一次月考卷(考试版A4)(浙教版九上第1~2章:二次函数+简单事件的概率)

24-25九年级数学第一次月考卷(考试版A4)(浙教版九上第1~2章:二次函数+简单事件的概率)

2024-2025学年九年级数学上学期第一次月考卷(浙教版)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:浙教版九年级上册第1~2章(二次函数+简单事件的概率)。

5.难度系数:0.65。

第一部分(选择题 共30分)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.将抛物线21y x =+向左平移3个单位长度得到抛物线( )A .()231y x =++B .()231y x =-+C .24y x =+D .22y x =-2.一只不透明的袋子中装有2个黑球和2个白球,这些球除颜色外无其他差别,从中任意摸出3个球,下列事件是随机事件的是( )A .摸出的3个球颜色相同B .摸出的3个球中有1个白球C .摸出的3个球颜色不同D .摸出的3个球中至少有1个白球3.在一个不透明的盒子里装有20个黑、白两种颜色的小球,每个球除了颜色外都相同,小红通过多次摸球试验发现,摸到黑球的频率稳定在0.2左右,则盒子里的白球的个数可能是( )A .4B .8C .10D .164.下列关于抛物线2(1)4y x =-++的判断中,错误的是( )A .形状与抛物线2y x =-相同B .对称轴是直线1x =-C .当2x >-时,y 随x 的增大而减小D .当31x -<<时,0y >5.宁夏素有“塞上江南”之美誉,这里既有古老的黄河文明,又有雄浑的大漠风光.某校开展“大美宁夏,闽宁同行”旅游主题活动.选取三个景点:A .沙坡头,B .六盘山,C .水洞沟.每位参加交流的学生都可以从中随机选择一个景点,则小明和小颖选择同一个景点的概率为( )A .19B .29C .13D .236.已知二次函数()21y a x =-,当1x <-时,y 随x 增大而减小,则实数a 的取值范围是( )A .0a >B .1a <C .1a ¹D .1a >7.如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即OB 的长度)是1米.当喷射出的水流距离喷水头2米时,达到最大高度1.8米,水流喷射的最远水平距离OC 是( )A .6米B .5米C .4米D .1米8.在同一平面直角坐标系中,一次函数y ax b =+与二次函数2y ax bx =+的图像可能是( )A .B .C .D .9.如图是二次函数()20y ax bx c a =++¹图象的一部分,且经过点(2,0),对称轴是直线12x =,给出下列说法:①0abc <;②1x =-是关于x 的方程20ax bx c ++=的一个根;③若点1215,,(,33M y N y æö-ç÷èø)是函数图象上的两点,则12y y >.其中正确的个数为( )A .0B .1C .2D .310.已知抛物线22y x x m =-++交x 轴于点(,0)A a 和(,0)B b ,下列四个命题:①0m >;②对于抛物线上的一点(,)P x y ,当0x >时,y m >;③若1a =-,则3b =;④抛物线上有两点1(P x ,1)y 和2(Q x ,2)y ,若121x x <<,且122x x +>,则12y y >;其中真命题的序号是( )A .①②B .①③④C .③④D .②③④第二部分(非选择题 共90分)二、填空题:本题共6小题,每小题3分,共18分。

2024-2025学年湖北省孝感市汉川外国语学校九年级(上)第一次月考数学试卷+答案解析

2024-2025学年湖北省孝感市汉川外国语学校九年级(上)第一次月考数学试卷+答案解析

2024-2025学年湖北省孝感市汉川外国语学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列方程是一元二次方程的是()A. B.C.D.2.用配方法解方程,则配方正确的是()A. B.C.D.3.抛物线的顶点坐标是()A.B.C. D.4.关于x 的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.将抛物线向下平移5个单位长度,再向左平移2个单位长度,所得的抛物线为()A. B. C.D.6.2020年年无锡居民人均可支配收入由万元增长至万元,设人均可支配收入的平均增长率为x ,下列方程正确的是()A. B.C.D.7.已知关于x 的一元二次方程有两个不相等的实数根,则实数k 的取值范围是()A.B.C.且D.且8.二次函数的图象与一次函数在同一平面直角坐标系中的图象可能是()A. B.C. D.9.抛物线上有两点,,若,则下列结论正确的是()A. B.C.或D.以上都不对10.如图,已知开口向下的抛物线与x轴交于点,对称轴为直线则下列结论正确的有()①;②;③函数的最大值为;④若关于x的方程无实数根,则A.1个B.2个C.3个D.4个二、填空题:本题共5小题,每小题3分,共15分。

11.将二次函数化成的形式,结果为______.12.已知关于x的一元二次方程没有实数根,那么a的取值范围是______.13.一次会议上,每两个参加会议的人都相互握了一次手,经统计所有人一共握了10次手,则这次会议到会的人数是______人.14.若是关x的方程的解,则的值为______.15.已知二次函数,当时,函数值y的最小值为1,则a的值为______.三、解答题:本题共9小题,共75分。

解答应写出文字说明,证明过程或演算步骤。

16.本小题6分解方程配方法;公式法17.本小题6分已知二次函数的图象经过,两点.求b和c的值;试判断点是否在此函数图象上?18.本小题6分2021年7月1日是建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数如图所示,若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数请用方程知识解答19.本小题8分已知关于x的一元二次方程有两个不等实数根,求k的取值范围;若,求k的值.20.本小题8分有一个人患了流感,经过两轮传染后,共有121人患了流感.每轮传染中平均一个人传染几个人?如果按照这样的传染速度,经过三轮传染后共有______个人患流感.21.本小题8分已知函数是关于x 的二次函数.求m 的值;函数图象的两点,,若满足,则此时m 的值是多少?22.本小题10分某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙墙的长度为,另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m ,设较小矩形的宽为如图若矩形养殖场的总面积为,求此时x 的值;当x为多少时,矩形养殖场的总面积最大?最大值为多少?23.本小题11分2022北京冬奥会期间,某网店直接从工厂购进A 、B 两款冰墩墩钥匙扣,进货价和销售价如下表:注:利润=销售价-进货价类别价格A 款钥匙扣B 款钥匙扣进货价元/件3025销售价元/件4537网店第一次用850元购进A 、B 两款钥匙扣共30件,求两款钥匙扣分别购进的件数;第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A 、B 两款冰墩墩钥匙扣共80件进货价和销售价都不变,且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?24.本小题12分如图,在平面直角坐标系中,直线l与x轴交于点,与y轴交于点,抛物线经过点A,B,且对称轴是直线求直线l的解析式;求抛物线的解析式;点P是直线l下方抛物线上的一动点,过点P作轴,垂足为C,交直线1于点D,过点P作,垂足为求PM的最大值及此时P点的坐标.答案和解析1.【答案】B【解析】解:A、当时,方程为是一元一次方程,该选项不合题意;B、方程是一元二次方程,该选项符合题意;C、方程的左边不是整式,方程不是一元二次方程,该选项不合题意;D、方程整理为,是一元一次方程,该选项不合题意;故选:据此即可判定求解.本题考查了一元二次方程的定义,掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解题的关键.2.【答案】B【解析】解:,,,故选:先移项、然后再给等式两边同时加上16,然后再化简即可解答.本题考查运用配方法解一元二次方程,掌握配方法是解题的关键.3.【答案】A【解析】【分析】本题主要考查了求抛物线的顶点坐标.熟记二次函数的顶点式的形式是解题的关键.直接利用顶点式的特点可写出顶点坐标.【解答】解:顶点式,顶点坐标是,抛物线的顶点坐标是故选4.【答案】A【解析】解:,方程有两个不相等的实数根.故选:根据一元二次方程根的判别式解答即可.本题考查的是一元二次方程根的判别式,熟知一元二次方程中,当时,方程有两个不相等的实数根是解题的关键.5.【答案】C【解析】解:抛物线向下平移5个单位长度,再向左平移2个单位长度,所得的抛物线为故选:根据图象的平移规律,可得答案.本题主要考查了二次函数与几何变换问题,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.6.【答案】A【解析】解:由题意得:故选:根据2020年的人均可支配收入年平均增长率年的人均可支配收入,列出一元二次方程即可.此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.【答案】C【解析】【分析】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.利用一元二次方程的定义和判别式的意义得到且,然后求出两个不等式的公共部分即可.【解答】解:根据题意得且,解得且故选8.【答案】A【解析】解:一次函数经过点,二次函数图象的对称轴是直线,一次函数经过二次函数对称轴与x轴的交点,故选:由二次函数的图象得到对称轴与x轴的交点,由一次函数的图象得到与x轴的交点,对比即可得到答案.本题考查二次函数和一次函数的图象,解题的关键是明确一次函数和二次函数性质.9.【答案】D【解析】解:抛物线上有两点,,且,,,或或,故选:根据二次函数的性质判断即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.10.【答案】C【解析】【分析】①根据抛物线的开口方向与位置分别判断出a,b,c的正负,即可得结论;②根据抛物线的对称轴判断即可;③设抛物线的解析式为,可知当时,y的值最大,最大值为;④根据③中的最大值以及二次函数与方程的关系即可得出答案.本题考查二次函数的性质,二次函数与方程的关系,二次函数的最值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【解答】解:抛物线开口向下,,抛物线交y轴于正半轴,,,,,故①错误;抛物线的对称轴是直线,,,故②正确;抛物线交x轴于点,由对称性可知抛物线与x轴的另一交点为,可设抛物线的解析式为,当时,y的值最大,最大值为,故③正确;关于x的方程无实数根,由③可知,函数最大值为,,解得,又,,故④正确.综上,正确的结论有②③④共3个.故选:11.【答案】【解析】解:,故答案为:直接利用配方法确定答案即可.本题考查了二次函数的解析式之一般式化为顶点式,利用配方法整理求解即可.解题的关键在于利用配方法先提出二次项的系数,凑成完全平方式.12.【答案】【解析】解:关于x的一元二次方程没有实数根,,即,解得:,故答案为:由方程根的情况,根据判别式可得到关于a的不等式,则可求得a的取值范围.本题主要考查根的判别式,掌握方程根的情况和根的判别式的关系是解题的关键.13.【答案】5【解析】解:设这次会议到会的人数是x人,根据题意得:,整理得:,解得:,不符合题意,舍去,这次会议到会的人数是5人.故答案为:设这次会议到会的人数是x人,利用握手总次数=参会人数参会人数,可得出关于x的一元二次方程,解之取其符合题意的值,即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】2019【解析】解:把代入方程得:,即,则原式故答案为:把代入方程求出的值,代入原式计算即可求出值.此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.【答案】【解析】解:,二次函数的顶点坐标为,且二次函数的图象开口向下,当时,,,当时,,解得或舍去,故答案为:根据二次函数的解析式求出顶点坐标,再根据二次函数的性质求出a的值即可.本题主要考查二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.16.【答案】解:,,,,;这里,,,,,则,【解析】利用平方根的定义开方转化为两个一元一次方程来求解;找出a,b及c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.此题考查了解一元二次方程-公式法,以及配方法,熟练掌握解法是解本题的关键.17.【答案】解:把,两点代入二次函数得,解得,;由得,把代入,得,点P在不在此函数图象上.【解析】已知了抛物线上两点的坐标,可将其代入抛物线中,通过联立方程组求得b、c的值;将P点坐标代入抛物线的解析式中,即可判断出P点是否在抛物线的图象上.本题考查了用待定系数法求函数表达式的方法,掌握待定系数法求函数解析式的方法与步骤是解决问题的关键.18.【答案】解:设这个最小数为x,则最大数为,依题意得:,整理得:,解得:,不合题意,舍去答:这个最小数为【解析】设这个最小数为x,则最大数为,根据最小数与最大数的乘积为65,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.【答案】解:根据题意得,整理得,解得;根据根与系数的关系得,,,解得,,,【解析】本题考查了一元二次方程根与系数的关系,根的判别式,解一元一次不等式,解一元二次方程等知识,熟练掌握相关知识是解题关键.根据判别式的意义得到,然后解不等式即可;根据根与系数的关系得到,再利用得到,然后解关于k的方程,最后利用k的范围确定k的值.20.【答案】1331【解析】解:设每轮传染中平均一个人传染x个人,由题意得:,解得:,,,不合题意,舍去,,答:每轮传染中平均一个人传染10个人.则第三轮的患病人数为:故答案为:设第一个人传染了x人,根据两轮传染后共有121人患了流感;列出方程,求解,然后求出三轮之后患流感的人数.本题考查了一元二次方程的应用,解答本题的关键在于读懂题意,设出合适的未知数,找出等量关系,列方程求解.21.【答案】解:由题意得,,,解得,或,的值为1或二次函数的对称轴为y轴,数图象的两点,,若满足,时,y随x的增大而减小,,,此时m的值是【解析】根据二次函数的定义列式计算,得到答案;根据二次函数的性质即可判断,从而得出此时m的值是本题考查了二次函数的定义,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.22.【答案】解:如图:,矩形CDEF的面积是矩形BCFA面积的2倍,,,,依题意得:,解得:,不合题意,舍去,答:此时x的值为设矩形养殖场的总面积为S,由得:,墙的长度为10,,,,时,S随着x的增大而增大,当时,S有最大值,最大值为答:当时,矩形养殖场的总面积最大,最大值为【解析】根据题意知:较大矩形的宽为2xm,长为,可得,解方程取符合题意的解,即可得x的值为2;设矩形养殖场的总面积是,根据墙的长度为10,可得,而,由二次函数性质即得当时,矩形养殖场的总面积最大,最大值为本题考查了二次函数的应用,解题的关键是读懂题意,列出方程及函数关系式.23.【答案】解:设购进A款钥匙扣x件,B款钥匙扣y件,依题意得:,解得:答:购进A款钥匙扣20件,B款钥匙扣10件.设购进m件A款钥匙扣,则购进件B款钥匙扣,依题意得:,解得:设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,则,随m的增大而增大,当时,w取得最大值,最大值,此时答:当购进40件A款钥匙扣,40件B款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元.设B款钥匙扣的售价定为a元,则每件的销售利润为元,平均每天可售出件,依题意得:,整理得:,解得:,答:将销售价定为每件30元或34元时,才能使B 款钥匙扣平均每天销售利润为90元.【解析】设购进A 款钥匙扣x 件,B 款钥匙扣y 件,利用总价=单价数量,结合该网店第一次用850元购进A 、B 两款钥匙扣共30件,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;设购进m 件A 款钥匙扣,则购进件B 款钥匙扣,利用总价=单价数量,结合总价不超过2200元,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设再次购进的A 、B 两款冰墩墩钥匙扣全部售出后获得的总利润为w 元,利用总利润=每件的销售利润销售数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质,即可解决最值问题;设B 款钥匙扣的售价定为a 元,则每件的销售利润为元,平均每天可售出件,利用平均每天销售B 款钥匙扣获得的总利润=每件的销售利润平均每天的销售量,即可得出关于a 的一元二次方程,解之即可得出结论.本题考查了二元一次方程组的应用、一元一次不等式的应用、一元二次方程的应用以及一次函数的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,找出w 关于m 的函数关系式;找准等量关系,正确列出一元二次方程.24.【答案】解:设直线l 的解析式为,直线l 与x 轴交于点,与y 轴交于点,,解得:,直线l 的解析式为;设抛物线的解析式为,抛物线的对称轴是直线,,抛物线经过点A ,B ,,解得:,抛物线的解析式为;,,,在中,,,轴,,,在中,,,,,在中,,,,,,设点,,,,当时,PD有最大值是,此时PM最大,,当时,,,的最大值是,此时点【解析】运用待定系数法即可求得答案;根据抛物线的对称轴是直线,可设,利用待定系数法即可求得答案;由,,可得,利用解直角三角形可得,设点,则,可得,利用二次函数的性质即可求得答案.本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,解直角三角形等,本题难度适中,熟练掌握待定系数法和二次函数的图象和性质是解题关键.。

江苏南通启秀中学2024年九年级上学期上学期数学月考试卷(原卷版)

江苏南通启秀中学2024年九年级上学期上学期数学月考试卷(原卷版)

江苏省南通市启秀中学2024~2025学年九年级第一学期数学月考试卷一.选择(共10小题,满分30分,每小题3分)1. 下列函数中,y 关于x 的二次函数是( )A. 2y ax bx c =++B. ()1y x x =−C. 21y x = D. ()221y x x =−− 2. 二次函数261y x x =−−的二次项系数、一次项系数和常数项分别是( )A. 1,6−,1−B. 1,6,1C. 0,6−,1D. 0,6,1− 3. 抛物线23(1)2y x =−−的顶点坐标是( )A. (1,2)−B. (1,2)−C. (1,2)D. (1,2)−− 4. 已知某二次函数图象如图所示,则这个二次函数的解析式为( )A. y =﹣3(x ﹣1)2+3B. y =3x ﹣1)2+3C. y =﹣3(x +1)2+3D. y =3(x +1)2+3 5. 把抛物线y =﹣2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( )A. y =﹣2(x +1)2+2B. y =﹣2(x +1)2﹣2C. y =﹣2(x ﹣1)2+2D. y =﹣2(x ﹣1)2﹣26. 抛物线y=x 2﹣2x ﹣3与x 轴的交点个数是( )A. 0个B. 1个C. 2个D. 3个 7. 若二次函数 23y x bx =−−配方后为 ()21y x k =++,则b 、k 的值分别为( )A 2−,4−B. 2−,5C. 4,4−D. 4−,2− 8. 已知抛物线()2230y ax ax a =−+>,()11,A y −,()22,B y ,()34,C y 是抛物线上三点,则1y ,2y ,3y 由小到大序排列是( )的.A. 123y y y <<B. 213y y y <<C. 312y y y <<D. 231y y y << 9. 如图,在等边三角形ABC 中,BC =4,在Rt △DEF 中,∠EDF =90°,∠F =30°,DE =4,点B ,C ,D ,E 在一条直线上,点C ,D 重合,△ABC 沿射线DE 方向运动,当点B 与点E 重合时停止运动.设△ABC 运动的路程为x ,△ABC 与Rt △DEF 重叠部分的面积为S ,则能反映S 与x 之间函数关系的图象是( )A B.C. D.10. 抛物线y =−x 2+bx +3的对称轴为直线x =−1.若关于x 的一元二次方程−x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( )A. −12<t ≤3B. −12<t <4C. −12<t ≤4D. −12<t <3二.填空题(11~12每题3分)(共8小题,满分30分)11. 如图所示,在同一平面直角坐标系中,作出①y=﹣3x 2,②y=﹣212x ,③y=﹣x 2的图象,则从里到外的三条抛物线对应的函数依次是______(填序号).12. 如图,抛物线2y ax bx =+与直线y mx n =+相交于点(3,6)A −−,(1,2)B −,则关于x 的方程2ax bx mx n +=+的解为_______________ .13. 如图,抛物线()20y ax bx c a ++>的对称轴是直线1x =,且经过点()3,0P ,则a b c −+的值为_____.14. 如图是一座截面为抛物线的拱形桥,当拱顶离水面3米高时,水面宽l 为6米,则当水面下降______米时,水面宽度为15. 已知二次函数()2131y m x x =−+−与x 轴有交点,则m 的取值范围是________. 16. 已知二次函数()21y x m =−−,当3x ≤时,y 随x 的增大而减小,则m 的取值范围是___________________. 17. 如图,在平面直角坐标系中,抛物线()240y ax ax a =−>与x 轴正半轴交于点C ,这条抛物线对称轴与x 轴交于点D ,以CD 为边作菱形ABCD ,若菱形ABCD 的顶点A ,B 在这条抛物线上,则菱形ABCD 的面积为___________.的18. 已知实数a ,b 满足1b a −=且4b ≥,则代数式2411a b −+的最小值是______.三.解答题(共9小题,满分90分,每小题10分)19. 已知函数 ()221m m ym x +=+是关于x 的二次函数. 求:(1)满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点,这时当x 为何值时,y 随x 的增大而增大? 20. 二次函数图象上部分点的横坐标x ,纵坐标y 的对应值如下表: x… 4− 3− 2− 1− 0 1 2 … y… 5 0 3− 4− 3− 05 …(1)求这个二次函数的表达式;(2)在图中画出这个二次函数的图象;(3)当30x −<<时,直接写出y 的取值范围.21. 如图,学校打算用长为16m 的篱笆围成一个长方形的生物园饲养小兔,生物园一面靠墙(篱笆只需围三面,AB 为宽).(1)写出长方形的面积y (单位: 2m )与宽x (单位:m )之间的函数解析式;(2)当x 为何值时,长方形的面积最大?最大面积为多少?22. 已知二次函数y=a (x+m )2的顶点坐标为(﹣1,0),且过点A (﹣2,﹣12). (1)求这个二次函数的解析式;(2)点B (2,﹣2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B 吗?若能,请写出平移方案.23. 某商店销售某种商品的进价为每件20元,这种商品在近30天中的日销售价与日销量的相关信息如表: 时间:第x (天)(1≤x ≤30,x 为整数)122x ≤≤2330x ≤≤ 日销售价(元/件)0.525x + 36 日销售量(件)1202x −设该商品的日销售利润为w 元.(1)求出w 与x 的函数关系式; (2)该商品在第几天的日销售利润最大?最大日销售利润是多少?24. 已知二次函数2112y x bx =++. (1)若1b =−,求该二次函数图象的对称轴及最小值;(2)若对于任意02x ≤≤,都有1y ≥−,求b 的取值范围.25. 如图,抛物线212y x mx n =−++与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知()1,0A −,()0,2C .的(1)求抛物线的解析式;(2)点E 是线段BC 上的一个动点(不与B ,C 重合),过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时点E 的坐标. 26. 如图1,抛物线2y x bx =−+与x 轴交于点A ,与直线y x =−交于点(4,4)B −,点(0,4)C −在y 轴上.点P 从点B 出发,沿线段BO 方向匀速运动,运动到点O 时停止.(1)求抛物线2y x bx =−+的表达式;(2)当BP =时,请在图1中过点P 作PD OA ⊥交抛物线于点D ,连接PC ,OD ,判断四边形OCPD 的形状,并说明理由;(3)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正方向匀速运动,点P 停止运动时点Q 也停止运动.连接BQ ,PC ,求CP BQ +的最小值.。

安徽省合肥市部分学校2024届九年级上学期第一次月考数学试卷(含解析)

安徽省合肥市部分学校2024届九年级上学期第一次月考数学试卷(含解析)

2023-2024学年安徽省合肥市部分学校九年级(上)第一次月考数学试卷第I卷(选择题)一、选择题(本大题共10小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列函数一定是二次函数的是( )A. B.C. D.2.抛物线的顶点坐标是( )A. B. C. D.3.抛物线的对称轴是( )A. 直线B. 直线C. 直线D. 直线4.下列函数中,随的增大而增大的是( )A. B. C. D.5.某种药品售价为每盒元,经过医保局连续两次“灵魂砍价”,药品企业同意降价若干进入国家医保用药目录如果每次降价的百分率都是,则两次降价后的价格元与每次降价的百分率之间的函数关系式是( )A. B. C. D.6.将抛物线向右平移个单位长度,再向上平移个单位长度后,得到的新抛物线的函数表达式为( )A. B.C. D.7.将二次函数化成的形式,正确的是( )A. B.C. D.8.在平面直角坐标系中,二次函数和一次函数的大致图象可能是( )A. B.C. D.9.已知函数,当时,的最大值与最小值的和为( )A. B. C. D.10.已知二次函数的部分图象如图所示,抛物线的对称轴为直线,且经过点,下列结论错误的是( )A.B. 若点是抛物线上的两点,则C.D. 若,则第II卷(非选择题)二、填空题(本大题共4小题,共20.0分)11.已知抛物线开口向下,则的取值范围是______.12.已知函数为二次函数,则的值为______ .13.已知二次函数的图象与轴交于,两点若,则______ .14.如图,二次函数的图象与轴交于,两点点在点的左侧,与轴交于点.的度数是______ ;若点是二次函数在第四象限内图象上的一点,作轴交于点,则的长的最大值是______ .三、解答题(本大题共9小题,共90.0分。

解答应写出文字说明,证明过程或演算步骤)15.本小题分已知某抛物线的顶点坐标为,且经过点,求该抛物线的表达式.16.本小题分已知抛物线.求该抛物线的顶点坐标;在所给的平面直角坐标系中,画出该抛物线的图象.17.本小题分学校准备将一块长,宽的矩形绿地扩建,如果长和宽都增加,设增加的面积是.求与之间的函数关系式.若要使绿地面积增加,长与宽都要增加多少米?18.本小题分二次函数的图象经过点,,点与点关于该二次函数图象的对称轴对称,已知一次函数的图象经过,两点.求二次函数与一次函数的解析式;根据图象,写出满足不等式的的取值范围.19.本小题分如图,在平面直角坐标系中,一次函数的图象与二次函数为常数的图象相交于,两点,点的坐标为.求的值以及二次函数的表达式;若点为抛物线的顶点,过点作轴,交于点,求线段的长.20.本小题分规定:在平面直角坐标系中,横、纵坐标互为相反数的点为“完美点”,顶点是“完美点”的二次函数为“完美函数”.若点是“完美点”,则______ ;已知某“完美函数”的顶点在直线上,且与轴的交点到原点的距离为,求该“完美函数”的表达式.21.本小题分已知二次函数的图象与轴交于,两点,且点在点的左侧.当时,求点,的坐标;若直线经过点,且与抛物线交于另一点,连接,,试判断的面积是否发生变化?若不变,请求出的面积;若发生变化,请说明理由.22.本小题分如图为某新建住宅小区修建的一个横断面为抛物线的拱形大门,点为顶点,其高为米,宽为米以点为原点,所在直线为轴建立直角坐标系.求出该抛物线的函数表达式,并写出自变量的取值范围;拱形大门下的道路设双向行车道供车辆出入正中间是宽米的值班室,其中的一条行车道能否行驶宽米、高米的消防车辆?请通过计算说明;如图,小区物业计划在拱形大门处安装一个矩形“光带”,使点,在抛物线上,点,在上,求出所需的三根“光带”,,的长度之和的最大值.23.本小题分如图,抛物线与轴相交于点,与轴相交于点.求直线的解析式;若点为第三象限内抛物线上的一点,设的面积为,求的最大值;设抛物线的顶点为,轴于点,在轴上是否存在点,使得是直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.答案和解析1.【答案】解析:解:时,不是二次函数,选项A不符合题意;是一次函数,选项B不符合题意;可化简为,选项C符合题意;不是二次函数,选项D不符合题意,故选:.根据二次函数的定义进行逐一辨别.此题考查了二次函数概念的应用能力,关键是能准确理解该知识,并能对所给出的函数解析式进行辨别.2.【答案】解析:解:抛物线的顶点坐标为,故选:.根据二次函数的性质的顶点坐标是即可求解.本题考查了二次函数的性质,正确记忆的顶点坐标是是关键.3.【答案】解析:解:,抛物线的对称轴是直线,故选:.根据二次函数的对称轴公式进行计算即可.本题考查了二次函数的性质,对于二次函数的对称轴为直线,熟练掌握此知识点是解题的关键.4.【答案】解析:解:、函数中,,在随增大而减小,故本选项不符合题意;B、函数中,,随增大而增大,故本选项符合题意;C、函数中,,对称轴是轴,当时,随增大而增大,故本选项不符合题意;D、函数中,,对称轴是轴,当时,随增大而增大,故本选项不符合题意;故选:.根据一次函数、二次函数的性质对各选项进行逐一分析即可.本题考查一次函数、二次函数的性质,解题关键是掌握函数与方程的关系,函数图象与系数的关系.5.【答案】解析:解:根据题意得:.故选:.利用经过两次降价后的价格原价每次降价的百分率,即可找出与之间的函数关系式.本题考查了根据实际问题列二次函数关系式,根据各数量之间的关系,找出与之间的函数关系式是解题的关键.6.【答案】解析:解:将抛物线向右平移个单位长度,再向上平移个单位长度后,得到的新抛物线的函数表达式为.故选:.根据二次函数图象平移的规律:左加右减,上加下减,进行解答即可.本题考查了二次函数图象的平移,熟练掌握平移规律是解题的关键.7.【答案】解析:解:,将二次函数化成的形式为.故选:.利用配方法化成顶点式即可得到答案.本题考查了把化成顶点式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.8.【答案】解析:解:对于二次函数,当时,符合条件的为、,选项A:从二次函数看,、同号,即,则,而从一次函数看,,故A错误,不符合题意;选项B:从二次函数看,、异号,即,则,从一次函数看,,,故B正确,符合题意;对于二次函数,当时,符合条件的为、,在选项C中,对于抛物线而言、异号,则,对于一次函数而言,,,故选项C错误,不符合题意;对于选项D,从抛物线看,同号,则,从一次函数看,,,故D错误,不符合题意;故选:.逐次分析两个函数的、值,即可求解.本题考查了二次函数的图象以及一次函数的图象,掌握图象和性质是解题的关键.9.【答案】解析:解:函数中,,函数图象开口向上,顶点坐标为,,,当时,,的最大值与最小值的和.故选:.先根据二次函数的解析式得出函数图象的开口方向及顶点坐标,进而可得出其最小值,再找出其最大值求和即可.本题考查的是二次函数的性质及二次函数的最值,根据题意得出函数的最大值与最小值是解题的关键.10.【答案】解析:解:,,,故A错误;抛物线开口向上,在对称轴右侧随增大而增大,关于对称轴的对称点为,,,故B正确;图象过,,,,故C正确;关于对称轴的对称点为,时,,故D正确.故选:.根据对称轴判断,根据二次函数性质判断,根据抛物线与轴交点可判断,根据抛物线与轴交点及对称轴判断.本题主要考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征,熟练掌握相关知识点是解决本题的关键.11.【答案】解析:解:由题意可知:,;故答案为:.根据二次函数的图象与性质即可求出答案.本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.12.【答案】解析:解:函数为二次函数,,解得:,故答案为:由函数为二次函数,可得,再解不等式组可得答案.本题考查的是二次函数的定义,形如:的函数是二次函数,熟记二次函数的定义是解本题的关键.13.【答案】解析:解:当,则,设方程的两根分别为,,,,,,,,,经检验符合题意;故答案为:.设方程的两根分别为,,可得,,利用,再解方程即可.本题考查的是二次函数与一元二次方程的关系,一元二次方程根与系数的关系,熟练的利用建立方程求解是解本题的关键.14.【答案】解析:解:在中,令得,,令得或,,,,,,,,故答案为:;由,得直线解析式为,设,则,,,当时,取最大值,故答案为:.由求出,,,可得,,,故;由,得直线解析式为,设,可得,根据二次函数性质可得答案.本题考查二次函数的综合应用,涉及勾股定理逆定理的应用,二次函数最值问题等,解题的关键是用含字母的代数式表示相关点坐标和相关线段的长度.15.【答案】解:抛物线的顶点坐标为,设抛物线为:,把代入可得:,解得:,抛物线为:.解析:根据抛物线的顶点坐标为,设抛物线为:,再把代入,从而可得答案.本题考查的是利用待定系数法求解二次函数的解析式,根据给定的条件设出合适的表达式是解本题的关键.16.【答案】解:,抛物线的顶点坐标为;如图所示:解析:把化成顶点式即可得到结论;根据题意画出抛物线的图象即可.本题考查了二次函数的性质,二次函数的图象,正确地画出图象是解题的关键.17.【答案】解:由题意可得,化简,得,即与之间的函数关系式是:;将代入,得,解得,舍去,,即若要使绿地面积增加,长与宽都要增加米.解析:根据题意可以得到与之间的函数关系式;将代入中的函数关系式,即可解答本题.本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.18.【答案】解:二次函数的图象经过点,,,得,,二次函数的对称轴为直线,,点与点关于该二次函数图象的对称轴对称,点,设一次函数的图象经过,两点,,得,一次函数,即二次函数的解析式为,一次函数的解析式为;由图象可知,不等式的的取值范围:或.解析:根据二次函数的图象经过点,,可以求得二次函数的解析式,再根据点与点关于该二次函数图象的对称轴对称,一次函数的图象经过,两点,从而可以求得一次函数的解析式;根据函数图象可以直接写出满足不等式的的取值范围.本题考查二次函数与不等式组、待定系数法求一次函数解析式和二次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.【答案】解:把点坐标为代入一次函数中可得:,,把点坐标为代入二次函数中可得:,解得:,,答:的值为,二次函数的表达式为:;,顶点,轴,把代入中得:,,.解析:把点的坐标为代入可求出的值,然后再把点坐标代入二次函数表达式即可解答;求出,坐标,可得结论.本题考查了待定系数法求二次函数解析式,二次函数的性质,正比例函数的图象,解题的关键是求出点,,的坐标.20.【答案】解析:解:点是“完美点”,,即,解得:,故答案为:;某“完美函数”的顶点在直线上,设函数的顶点为,该函数为“完美函数”,,解得:,,该函数的顶点为,设二次函数的解析式为,令,则,该函数与轴的交点到原点的距离为,,解得:或,或该“完美函数”的表达式为:或.由定义可得,求出的值即可;根据该“完美函数”的顶点在直线上可求出顶点为,然后可设二次函数的解析式为,令,则,再根据该函数与轴的交点到原点的距离为求出的值即可得到答案.本题主要考查了坐标与图形、二次函数的图象与性质、相反数的定义,理解新定义,熟练掌握二次函数的图象与性质是解此题的关键.21.【答案】解:当时,,当时,则,解得:,,点在点的左侧,点的坐标为,点的坐标为;的面积不发生变化,理由如下:对于抛物线,当时,则,解得:,,点在点的左侧,点的坐标为,点的坐标为,,直线经过点,,,直线的解析式为:,联立得:,解得:,,点在上,当时,,,.解析:将代入可得,令,解方程即可求解;令,有,解方程得出点、的坐标,则,由直线经过点,可得直线为,联立求解方程组得到点的坐标,即可求解.本题考查了二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.22.【答案】解:,.设这条抛物线的函数解析式为,抛物线过,,解得,这条抛物线的函数解析式为,即.当或时.故能行驶宽米、高米的消防车辆.设点的坐标为则,根据抛物线的轴对称,可得:,故BC,即令故当,即米时,三根木杆长度之和的最大值为米.解析:根据所建坐标系知顶点和与轴交点的坐标,可设解析式为顶点式形式求解,的取值范围是;根据对称性当车宽米时,或,求此时对应的纵坐标的值,与车高米进行比较得出结论;求三段和的最大值须先列式表示三段的和,再运用性质求最大值,可设点或点的坐标表示三段的长度从而得出表达式.本题考查通过建模把实际问题转化为数学模型,这充分体现了数学的实用性.23.【答案】解:抛物线与轴相交于点,,抛物线与轴相交于点,设直线的解析式为,,解得,直线的解析式为;如图,过点作轴的垂线,交于点.直线的解析式为:.设点坐标为,则点的坐标为,.,,当时,有最大值;在轴上是存在点,能够使得是直角三角形.理由如下:,顶点的坐标为,,.设点的坐标为,分三种情况进行讨论:当为直角顶点时,如图,由勾股定理,得,即,解得,所以点的坐标为;当为直角顶点时,如图,由勾股定理,得,即,解得,所以点的坐标为;当为直角顶点时,如图,由勾股定理,得,即,解得或,所以点的坐标为或;综上可知,在轴上存在点,能够使得是直角三角形,此时点的坐标为或或或.解析:已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;过点作轴的垂线,交于点,先运用待定系数法求出直线的解析式,设点坐标为,根据的解析式表示出点的坐标,再根据就可以表示出的面积,运用顶点式就可以求出结论;分三种情况进行讨论:以为直角顶点;以为直角顶点;以为直角顶点;设点的坐标为,根据勾股定理列出方程,求出的值即可.本题考查的是二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.。

陕西省西安市第三中学2024-2025学年九年级上学期第一次月考数学试卷

陕西省西安市第三中学2024-2025学年九年级上学期第一次月考数学试卷

陕西省西安市第三中学2024-2025学年九年级上学期第一次月考数学试卷一、单选题1.方程x (x ﹣3)=0的根是( )A .x =3B .x =0C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 2.在比例尺为1:500000的地图上距离为1cm 的两地的实际距离为( ) A .0.5km B .5km C .50km D .500km 3.某签字笔七月份销售90万支,八月份、九月份销售量连续增长,九月份销售量达到160万支,求月平均增长率.设月平均增长率为x ,根据题意列方程为( )A .()2901160x +=B .()9012160x +=C .()2901160x -=D .()2901160x += 4.小康利用复印机将一张长为5cm ,周长为16cm 的矩形图片放大,其中放大后的矩形长为10cm ,则放大后的矩形周长为( )A .16cmB .21cmC .32cmD .42cm5.如图,已知菱形OABC 的边长为3,若顶点B 的坐标为()04,,则第一象限内的顶点C 的坐标为( )A .)2B .)4C .)D .5,22⎛⎫ ⎪⎝⎭6.已知一元二次方程240x kx +-=有一个根为1,则k 的值为( )A .2B .2-C .3-D .37.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是( ) A .14 B .12 C .35 D .348.如图,在正方形ABCD 中,=6AB ,点F 是对角线 AC 上的一个动点,连接DF ,以 DF 为斜边作等腰直角三角形DEF ,使点E 和点A 位于DF 两侧,点F 从点A 到点C 的运动过程中,线段DE 扫过图形的面积是( )A .6B .9C .18D .36二、填空题9.若24=16x ,则x =.10.如图,直线123l l l ∥∥,若698AB BC EF ===,,,则DE 的长为.11.已知a 、b 是关于x 的方程220x x m --=两个实数根,则a b +=.12.射影中有一种拍摄手法叫黄金分割构图法,其原理是:如图,将正方形ABCD 的边BC 取中点O ,以O 为圆心,线段OD 为半径作圆,其与边BC 的延长线交于点E ,这样就把正方形ABCD 延伸为黄金矩形ABEF ,若4CE =,则AB =.13.已知345x y z ==,则x y z x-+=. 14.如图,在矩形ABCD 中,5AB =,6BC =,E 、F 分别为BC 、CD 上的动点,且2BE DF =,则2DE AF +的最小值为.三、解答题15.用合适的方法解下列方程.(1)29(2)16x -=;(2)()()33x x x -=-;(3)2230x x +-=;(公式法)(4)210110x x +-=.(配方法)16.如图,在Rt ABC △中,90C ∠=︒,30A ∠=︒,在边AB 上求作一点D ,使CD 将ABC V 分割成两个三角形,并且两个三角形都和原Rt ABC △相似.(尺规作图,不写作法,保留作图痕迹)17.□ABCD 中,E 是CD 的中点,∠BAE =∠ABE ,求证:四边形ABCD 是矩形.18.随着中考临近,某校九年级学生小刚和小明决定从试题库中提供的四套数学试题(依次记为A B C D 、、、)中,随机抽取一套试题进行模拟测试.(1)小刚从这四套试题中随机抽取一套,恰好抽到C 试题的概率为_____________;(2)小刚和小明各自从这四套试题中随机抽取一套,且所抽取的试题互不影响,请用画树状图或列表的方法求他们抽取到同一套试题的概率.19.无论点光源还是视线,其本质是相同的,日常生活中我们可以直接利用视线解决问题.如图,小佳同学用自制的直角三角形纸板DEF 测量树的高度AB ,她调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,小佳眼睛到地面的距离DG 为1.5m ,并测得0.6m DF =,0.4m EF =,10m AG =,求树高AB 的长度.( 2.24≈)20.设1x ,2x 是关于x 的方程()2212104x k x k -+++=的两个实数根. (1)求实数k 的取值范围;(2)若2212132x x +=,求k 的值. 21.又是一年脐橙丰收季!小石通过网络平台进行直播销售.已知每箱(小箱)脐橙的成本是30元,如果销售单价定为每箱40元,那么日销售量将达到100箱.据市场调查,销售单价每提高1元,日销售量将减少2箱.(1)若销售单价定为每箱x 元(40x >),请用含x 的式子表示日销售量;(2)要使每天销售这种脐橙盈利1600元,同时又要让利给顾客,那么脐橙的售价单价应定为每箱多少元?22.如图,在AEC △中,B 为EC 上一点,且满足ABD C E ∠=∠=∠.(1)求证:AEB BCD V :V ;(2)当AE BD ∥时,30C ∠=︒,10CD =,求AD 的长.23.如图所示,点B 坐标为()6,0,点A 坐标为()6,12,动点P 从点O 开始沿OB 以每秒1个单位长度的速度向点B 移动,动点Q 从点B 开始沿BA 以每秒2个单位长度的速度向点A 移动.如果P 、Q 分别从O 、B 同时出发,用t (秒)表示移动的时间(06t <≤),那么:(1)当t 为何值时,四边形OPQA 是梯形,此时梯形OPQA 的面积是多少?(2)当t 为何值时,以点P 、B 、Q 为顶点的三角形与AOB V 相似?24.三角形的布洛卡点(Brocardpoint )是法国数学家和数学教育家克洛尔(A .LCrelle 1780-1855)于1816年首次发现,但他的发现并未被当时的人们所注意.1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845-1922)重新发现,并用他的名字命名.如图1,若ABC V 内一点P 满足PAB PBC PCA α∠=∠=∠=∠,则点P 是ABC V 的布洛卡点,α∠是布洛卡角.(1)如图2,点P 为等边三角形ABC 的布洛卡点,则布洛卡角的度数是______;PA 、PB 、PC 的数量关系是______;(2)如图3,点P 为等腰直角三角形ABC (其中90BAC ∠=︒)的布洛卡点,且123∠=∠=∠. ①请找出图中的一对相似三角形,并给出证明;②若ABC V 的面积为52,求PBC △的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


学校 班级
姓名 考生号
密 封 线 内 不 得 答 题
九年级第一次阶段考试
数学试卷
本试卷满分为150分,考试时间为120分钟。

1.
一元二次方程x 2-4=0的解是
( )
A.x=2;
B.x=-2;
C.x 1=2,x 2=-2;
D.x 12
2.若3a=4b ,则=
( )
A .
B .
C .
D .
3.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数y=﹣的图象上的两点,若x 1
<0<x 2,则下列结论正确的是 ( ) A .y 1<0<y 2 B .y 2<0<y 1 C .y 1<y 2<0 D .y 2<y 1<0
4.关于x 的一元二次方程(m ﹣2)x 2
+2x+1=0有实数根,则m 的取值范围是 ( ) A .m ≤3 B .m <3 C .m <3且m ≠2 D .m ≤3且m ≠2
5.在△ABC 中,D 、E 为边AB 、AC 的中点,若△ADE 的面积为4,那么△ABC 的面积是 ( )
A .8
B .12
C .16
D .20 6.如图,A 、B 两点在双曲线y=上,分别经过A 、B 两点向x 轴,y 轴作垂线段,
若图中阴影部分的面积为1,则S 1+S 2= ( )
A .3
B .4
C .5
D .6 7.如图所示,△ABC 中若D
E ∥BC ,E
F ∥AB ,则下列比例式正确的是 ( ) A .
B .
C .
D .
8.一次函数 y=kx+b (k,b 是常数,k ≠0 )的图象如图2所示,则不等式kx+b >0 的解集是 ( )
A .x >-2
B .x >0
C . x <-2
D .x <0
第5题图 第6题图 第7题图 第8题图
9.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六
月份平均每月的增长率为x ,那么x 满足的方程是
( )
A.50(1+x)2=182
B.50+50(1+x )+50(1+x)2=182
C.50(1+2x)=182.
D.50+50(1+x )+50(1+2x)=182 10.一次函数y=2x ﹣3与反比例函数y=﹣,那么它们在同一坐标系中的图象可能
是 ( )
A .
B .
C .
D .
二、填空题(本题共10小题,每题4
分,共40分)
11.

P

-2,3
)关于
y
轴对称点的坐标是
. 12.要用一条长为24cm 的铁丝围成一个斜边长是10cm 的直角三角形,则两直角
边的长分别为 13.反比例函数y=的图象过点P (﹣1.5,2)
,则k= . 14.某车间第一个月生产100个零件,第二个月比第一个月增产10%,第三个月比第二个月增产10%,则第三个月的产量是 . 座次号
15.如果反比例函数y=的图象在每个象限内y随x的增大而减小,那么k的取值范围是.
16. 如图,已知△ABC中,AB=5,AC=3,点D在边AB上,且
∠ACD=∠B,则线段AD的长为.
17.对于实数a,b,我们定义一种运算“※”为:a※b=a2﹣ab,例如
1※3=12﹣1×3.若x※4=0,则x=.
18.若y=(m2﹣3m)x|m|﹣4为反比例函数,则m=.
19.如图是一位同学设计的用手电筒来测量某古城墙高度的示
意图.点P处放一水平的平面镜,光线从点A出发经平面镜
反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,
CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城
墙的高度CD是米.
20.已知,矩形OCBD如图所示,OD=2,OC=3,反比例函数的图象经过点
B,点A为第一象限双曲线上的动点(点B除外),过点A作AF⊥BD于点
F,AE⊥x轴于点E,若矩形OCBD和矩形AEDF相似,则点A的坐标
是.
三、画图题(1小题,共6分)
21.画出下列图形的位似中心.
四、计算与解答题(共9小题,74分)
22.按要求解方程:(8分)
(1)x2+2x﹣3=0(配方法);(2)5x+2=3x2.
23.(8分)直线y=x+k与双曲线y=在第一象限相交点A,S Rt△AOB为方程x2 12=0的一根.
(1)求k的值;
(2)设直线与x轴交于点C,求点C的坐标;
(3)求S△ABC.
24.
(8
分)如图1,在一幅矩形地毯的四周镶有宽度相同的花边.如图
2
央的矩形图案长8米、宽6米,整个地毯的面积是80平方米.求花边的宽.

学校 班级
姓名 考生号
密 封 线 内 不 得 答 题
25.(8分)如图,已知:△ABC 和△ADE 均为等边三角形,点D 在BC 边上,DE 与AC 交于点F
(1)写出图中所有的相似三角形; (2)求证:AE 2=AF •AC .
26.(8分)将长为30cm ,宽为10cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm.设x 张白纸粘合后的总长度为y cm ,写出y 与x 的函数关系式,并求出当x =20时y 的值.
27.(7分)如图,一幅矩形油画的长为40cm ,宽为25cm ,此幅油画的外围镶有画框.已知画框的宽度为5cm ,则画框内外所构成的两个矩形的长和宽成比例吗?说明理由.
28.(9分)制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y (℃),从加热开始计算的时间为x (分钟).据了解,设该材料加热时,温度y 与时间x
成一次函数关系;停止加热进行操作时,温度
y 与时间
x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达60℃.
(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;
(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
(3)该种材料温度维持在40℃以上(包括40℃)的时间有多长?
29.(8分)在△ABC中,AB=6cm,AC=12cm,动点D以1cm/s 的速度从点A出发到点B止,动点E以2cm/s 的速度从点C出发到点A止,且两点同时运动,当以点A、D、E为顶点的三角形与△ABC相似时,求运动的时间t.30.(10分)阅读下面的例题与解答过程:
例.解方程:x2﹣|x|﹣2=0.
解:原方程可化为|x|2﹣|x|﹣2=0.
设|x|=y,则y2﹣y﹣2=0.
解得y1=2,y2=﹣1.
当y=2时,|x|=2,∴x=±2;
当y=﹣1时,|x|=﹣1,∴无实数解.
∴原方程的解是:x1=2,x2=﹣2.
在上面的解答过程中,我们把|x|看成一个整体,用字母y代替(即换元)
换元法.请你仿照上述例题的解答过程,利用换元法解下列方程:(1)x2﹣2|x|=0;
(2)x2﹣2x﹣4|x﹣1|+5=0.。

相关文档
最新文档