2018-2019学年度八年级上数学期中测试题

合集下载

2018-2019学年新人教版八年级上学期期中数学试卷及答案

2018-2019学年新人教版八年级上学期期中数学试卷及答案

2018—2019学年度上学期期中检测八年级数学(新人教版)(考试时间:90分钟,试卷满分:120分)一、选择题(每题3分,共24分)1.下列图形中,不是轴对称图形的是( ) A .B .C .D .2.若等腰三角形的两边长分别是3和6,则这个三角形的周长是( ) A .12 B .15C .12或15D .93.下列命题中,正确的是( )A .形状相同的两个三角形是全等形B .面积相等的两个三角形全等C .周长相等的两个三角形全等D .周长相等的两个等边三角形全等4.如图,△ABO 关于x 轴对称,点A 的坐标为(1,﹣2),则点B 的坐标为( ) A .(﹣1,2) B .(﹣1,﹣2) C .(1,2)D .(﹣2,1)5.如图,在△ABE 中,∠BAE=105°,AE 的垂直平分线 MN 交BE 于点C ,且AB=CE ,则∠B 的度数是( )A .45°B .60°C .50°D .55°6.工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种作法的道理是( ) A .HL B .SSS C .SASD .ASA7.如图,AB ∥DE ,AF=DC ,若要证明△ABC ≌△DEF ,还需补充的条件是( ) A .AC=DFB .AB=DEC .∠A=∠DD .BC=EF8.如图,△ABC 中,已知∠B 和∠C 的平分线相交于点F ,经过点F 作DE ∥BC ,交AB 于D ,交AC 于点E ,若BD+CE=9,则线段DE 的长为( ) A .9 B .8 C .7D .6二、填空题(每题3分,共24分)9. a·a 3= .(b 3)4= . (2ab)3= . 10.已知等腰三角形的一个角是40°,则它的底角是_____________.11. 如图,已知△ABC 的三边AB 、AC 、BC 的长分别为20、30、40,其三条角平分线交于点O ,则S △AOB :S △AOC :S △BOC = .12.如图,点D 、E 分别在线段AB 、AC 上,BE 、CD 相交于点O,AE =AD 要使△ABE ≌△ACD ,需添加一个条件是 (只要写一个条件).13. 计算:10031002)161()16(-⨯-= 14.如图,△ABC 中,∠BAC=100°,DF 、EG 分别是AB 、AC 的垂直平分线,则∠DAE 等于 度.15. 点E(a ,-5)与点F(-2,b)关于y 轴对称,则a =__________,b =__________.16. 如图,在△ABC 中,∠C=90°,∠B=15°,AB 的垂直平分 线交AB 于E ,交BC 于D ,BD=8,则AC=__________. 三、解答题(共72分)17.计算下列各题(每题4分共16分)(1)(ab 2)2·(-a 3b)3÷(-5ab) (2)3a (2a 2-9a+3)-4a (2a-1)(3)﹣4(b ﹣a )3•(a ﹣b )6•(b ﹣a )2÷(a ﹣b )(4)(5x+2y)(3x-2y)18.(8分)如图,在平面直角坐标系xoy 中,A (-1,5),B(-1,0),C(-4,3). (1)在图中作出ABC △关于y 轴的对称图形111A B C △.(2)写出点111A B C ,,的坐标19. (8分) 如图,AD 为△ABC 的中线,BE 为△ABD 的中线, (1)∠ABE=15°,∠BAD=35°,求∠BED 的度数; (2)作出△BED 的BD 边上的高;(3)若△ABC 的面积为60,BD=5,则点E 到BC 边的距离为多少?20.(8分)如图,∠BAC=90°,AB=AC ,D 点在AC 上,E 点在BA 的延长线上,BD=CE ,BD 的延长线交CE 于F.DCABE证明:(1)AD=AE (2) BF⊥CE.21. (6分)如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线,并在这条垂线上取一点E,使A、C、E在一条直线上(如图所示),测得ED的长就是A、B之间的距离,请你说明理由。

2018-2019学年上学期期中考试八年级数学试卷及答案

2018-2019学年上学期期中考试八年级数学试卷及答案

2018 ~ 2019学年上学期期中学业水平检测试卷题号一匸1617181920212223总分分值301599999109U120得分330匕以下四家银行的行标图中*是轴对称图形的有[】® 6 ® A.4,2,314 S. 3,6,11€.4,6,10 D.5,8,14 4•如图,直线MN是四边形A冊N的对称轴,点尸是直线MN上的点,下列判断错谋的是^ 【】B.AP二BN(第4题图)(第5題图)(第占题图}鼻如图所示,为了测量出丸卫两点之间的距离t在地面上找到一点匚连接BC t AC t便然后在叱的延长线上确定巧使仞=HC,那么只要测址出仙的长度也就得到了A0两点之间的距离,这样测置的依据是【】止AAS B. SAS C HL D. SSS6.如图’在△佔f和色磁中,已知的=D取还希添加两个条件才能使AABC^八年级数学第1页|共6页)八年级数学座号座号&.】个 E 2个G 3个2.在“ABC中,小=与△冲甌全等的三角形有一个角是100。

,那么在△冲叱中与这100。

角对应相等的角是[】a厶甘或z.cA. LAB. LB a zc3.下列长度的三条线段能组成三箱形的是C.LMAP二LMBPNM - LBNM1 /102/1012.如图危ABC 中“C 二呂卫C = 5,仙的垂直平分线加交血于点D,交边AC 于点E, _________________________ 则的周长为R 等腰三角形的两边检分别为4』,则它的周长为 __________八年级数学第2页(共6页)△ DEC*不能添加的一组条件是A. BC = EC r Z.F = Z.E R* SC - EC,AC = DC Q BC = DC, LA = LDD.AC = DC, LA = CD7. 一个多边形的内角和是外角和的2倍*这个多边形擡I乩四边形 E 五边形 C 六边形D •八边形8. 如图,已知0为A4BC 边佔的中点疋在边必上,将△肋C 折叠,使占点落在HC ]f 第g 题图)(第9題图)9.如图,冊//CD,BP 和CP 分别平分AABC 和Af )CH,AD 过点罠且与AB 垂直 若]AD 二肌则点F 到月f 的距离是 A. 8R6C4D.210.如图,正方形网格中,网格线的交点称为格点+已知沖上是两格点,如果C 也是图 中的格点,且使得^ABC 为等腰三角形,则点C 的个数有【】儿4个艮6个C 8亍D. 10个二、填空题(毎小题3分,共15分)11.如图,点。

2018-2019学年人教版上学期初二数学期中考试试卷及答案解析

2018-2019学年人教版上学期初二数学期中考试试卷及答案解析

2018-2019学年初二数学第一学期期中检测学校:___________姓名:___________班级:___________考号:___________一、选择题(每题3分,共30分)1.下列计算错误的是(▲ )A .a 2·a=a 3B .(ab )2=a 2b 2C .(a 2)3=a 5D .-a+2a=a2.下列四个图案中,是轴对称图形的是 (▲)3.下面各角能成为某多边形的内角和的是 (▲)A.430°B.4320°C. 4334°D.4360°4.如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( ▲ )A .∠M=∠NB . AM ∥CNC .AB = CD D . AM=CN5.已知等腰三角形的两条边长分别是2和4,则它的周长是( ▲ )A .10B .8C .8或10D .无法确定6. 如图,点D 为△ABC 边AB 的中点,将△ABC 沿经过点D 的直线折叠,使点A 刚好落在BC 边上的点F 处,若∠B=48°,则∠BDF 的度数为( ▲ )A .88°B .86°C .84°D .82°7.如图,∠MON 内有一点P ,P 点关于OM 的轴对称点是G ,P 点关于ON 的轴对称点是H ,GH分别交OM 、ON 于A 、B 点,若GH 的长为10cm ,求△PAB 的周长为( ▲ )A .5cmB . 10cmC . 20cmD . 15cm8.如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ▲ )A .△ACE≌△BCDB.△BGC≌△AFC C .△ADB≌△CEAD.△DCG≌△ECF9.如图,在△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E.某同学分析图形后得出以下结论: A B D C M N①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.上述结论一定正确的是( )A.①②③ B.②③④C.①③⑤ D.①③④10.如图所示,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在点C´的位置,则图中的一个等腰直角三角形是()A. △ADCB. △BDC’C. △ADC´D. 不存在二、填空题(每题3分,共24分)11.实数4的平方根是.12.点A(-5,-6)与点B(5,-6)关于__________对称。

2018-2019(含答案)八年级(上)期中数学试卷

2018-2019(含答案)八年级(上)期中数学试卷

2018-2019(含答案)八年级(上)期中数学试卷.................................................................................................................................................................2018.10.22一、选择题(每题3分,共18分)1.下列各式中互为有理化因式的是()A.a+b和a−bB.−x−1和x−1C.5−2和−5+2D.x a+y b和x a+y b2.下列各式中,在实数范围内不能分解因式的是()A.x2+4x+4B.x2−4x−4C.x2+x+1D.x2−x−13.已知a=7−5,b=5−3,c=3−7,则a、b、c三个数的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>a>b4.已知一个两位数等于它个位上的数的平方,并且十位上的数字比个位上的数字小3,则这个两位数为()A.25B.25或36C.36D.−25或−365.关于x的方程(a−6)x2−8x+6=0有实数根,则整数a的最大值是()A.6B.7C.8D.96.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是()A.y=50−2x(0<x<50)B.y=50−2x(0<x<25)(50−2x)(0<x<50)C.y=12(50−x)(0<x<25)D.y=12二、填空题:(每题2分,共24分)7.如果(x+2)2=−x−2,则x的取值范围是________.8.已知20n是整数,则满足条件的最小正整数n为________.9.已知m=n−1−1−n+3,则m n+1=________.a−1是同类二次根式,则a=________,b=________.10.若最简根式4a−1和3b+511.关于x的一元二次方程(a−1)x2+x+(a2−1)=0的一个根是0,则a的值是________.12.已知(x2+y2)2+2(x2+y2)=15,则x2+y2=________.13.如果关于x的方程(a−1)x2−2x−1=0有两个不相等的实数根,那么a的取值范围是________.14.在实数范围内因式分解:2x2−8xy+5y2=________.15.某件商品原价100元,经过两次降价后,售价为64元,设平均每次降价的百分率为x,依题意可列方程________.16.已知点P(a, b)在第三象限,则直线y=(a+b)x经过第________象限,y随x的增大而________.17.反比例函数y=kx的图象经过点P(a, b),且a、b是一元二次方程x2−5x+4=0的两根,k的值是________,点P的坐标为________.18.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=________.三、简答题(每题4分,共28分)19.计算:12−(3+1)2+434÷513.20.计算:xy2−1x8x3y+1y18xy3(x>0, y>0)21.解方程:(x+5)2−2(x+5)=8.22.解方程:2x2−5x+1=0(用配方法)23.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?24.已知y=y1−y2,y1与x成反比例,y2与(x−2)成正比例,并且当x=3时,y=5,当x=1时,y=−1;求y与x之间的函数关系式.25.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长________千米;(2)小强下坡的速度为________千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是________分钟.四、综合题:(每题6分,共30分)26.已知关于x的方程x2−(2k+1)x+4k−2=0(1)求证:不论k取什么实数值,这个方程总有实数根;(2)若等腰△ABC的一边长为a=4,另两边的长b、c恰好是这个方程的两个根,求△ABC 的周长.27.如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m.设AD的长为xm,DC的长为ym.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.28.如图,在△ABC中,∠C=90∘,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.29.如图,正方形OAPB、ADFE的顶点A、D、B在坐标轴上,点E在AP上,点P、F在函数y=k的图x象上,已知正方形OAPB的面积为9.(1)求k的值和直线OP的解析式;(2)求正方形ADFE的边长.30.如图,在四边形ABCD中,AB=BC=1,∠ABC=90∘,且AB // CD,将一把三角尺的直角顶点P放在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,探究:(1)如图,当点Q在边CD上时,线段PQ与BP有怎样的数量关系?并证明你的猜想.(2)当点Q在线段DC延长线上时,在备用图中画出符合要求的示意图,并判断(1)中的结论是否仍成立?(3)点P在线段AC上运动时,△PCQ是否可能为等腰三角形?若可能,求此时AP的值;若不可能,请说明理由.答案1. 【答案】B【解析】根据有理化因式的定义进行解答即可.【解答】解:A、∵⋅=(a+b)(a−b),∴两根式不互为有理化因式,故本选项错误;B、∵(−x−1)⋅x−1=1−x,∴两根式互为有理化因式,故本选项正确;C、∵(5−2)•(−5+2)=210−7,∴两根式不互为有理化因式,故本选项错误;D、∵(x a+y b)•(x a+y b)=(x a+y b)2,∴两根式不互为有理化因式,故本选项错误.故选B.2. 【答案】C【解析】先令二次三项式为0,若有实数根则能因式分解,否则不能.【解答】解:A、x2+4x+4=0有实数根,故本选项能在实数范围内因式分解;B、x2−4x−4=0有实数根,故本选项能在实数范围内因式分解;C、x2+x+1=0没有实数根,故本选项不能在实数范围内因式分解;D、x2−x−1=0有实数根,故本选项能在实数范围内因式分解;故选C.3. 【答案】B【解析】首先求出a,b,c的倒数,进而比较它们的大小,进而得出a、b、c三个数的大小关系.【解答】解:∵a=7−5,b=5−3,c=3−7,∴1 a =7−5=7+52,1 b =5−3=5+32,1 c =3−7=3+72,∵7>3,∴1 a >1b,∵3>5,∴1 a <1c,∴1 c >1a>1b,∴b>a>c.故选:B.4. 【答案】B【解析】设十位上的数字为x,则个位上的数字为(x+3),根据该两位数等于它个位上的数的平方,即可得出关于x的一元二次方程,解之即可得出x的值,进而即可得出该两位数.【解答】解:设十位上的数字为x,则个位上的数字为(x+3),根据题意得:10x+x+3=(x+3)2,整理得:x2−5x+6=0,解得:x=2或x=3,∴x+3=5或x+3=6,∴这个两位数为25或36.故选B.5. 【答案】C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a−6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【解答】解:当a−6=0,即a=6时,方程是−8x+6=0,解得x=68=34;当a−6≠0,即a≠6时,△=(−8)2−4(a−6)×6=208−24a≥0,解上式,得a≤263≈8.6,取最大整数,即a=8.故选C.6. 【答案】D【解析】根据等腰三角形的腰长=(周长-底边长)×12,及底边长x>0,腰长>0得到.【解答】解:依题意有y=12(50−x).∵x>0,50−x>0,且x<2y,即x<2×12(50−x),得到0<x<25.故选D7. 【答案】x≤−2【解析】根据二次根式的性质,可得答案.【解答】解:由(x+2)2=(−x−2)2=−x−2,得x+2≤0,解得x≤−2,故答案为:x≤−2.8. 【答案】5【解析】因为20n是整数,且20n=4×5n=25n,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵20n=4×5n=25n,且20n是整数;∴25n是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.9. 【答案】9【解析】根据二次根式中的被开方数必须是非负数列出不等式,求出n的值,得到m的值,代入代数式根据乘方法则计算即可.【解答】解:由题意得,n−1≥0,1−n≥0,解得,n=1,∴m=3,则m n+1=9,故答案为:9.10. 【答案】3,2【解析】根据最简二次根式与同类二次根式的定义列方程组求解.【解答】解:由题意,得a−1=24a−1=3b+5,解得a=3 b=2,故答案为:3,2.11. 【答案】−1【解析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a −1≠0.【解答】解:∵关于x 的一元二次方程(a −1)x 2+x +(a 2−1)=0的一个根是0, ∴x =0满足该方程,且a −1≠0.∴a 2−1=0,且a ≠1.解得a =−1.故答案是:−1.12. 【答案】3【解析】首先设x 2+y 2=z ,然后将原方程转化为关于z 的一元二次方程,解该方程即可解决问题.【解答】解:设x 2+y 2=z ,(z ≥0)则原方程变为:z 2+2z −15=0,解得:z =3或−5(舍去).故答案为:3.13. 【答案】a >12且a ≠1【解析】根据方程有两个不相等的实数根利用根的判别式结合二次项系数非零即可得出关于a 的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x 的方程(a −1)x 2− 2x −1=0有两个不相等的实数根,∴ a −1≠0△=(− 2)2+4(a −1)>0, 解得:a >12且a ≠1.故答案为:a >12且a ≠1.14. 【答案】( 2x −2 2y + 3y )( 2x −2 2y − 3y )【解析】首先把5y 2变为8y 2−3y 2,然后把前三项组合提公因式2,再利用完全平方分解,然后再次利用平方差分解因式即可.【解答】解:原式=2x 2−8xy +8y 2−3y 2,=2(x −2y )2−3y 2,=[ 2(x −2y )+ 3y ][ 2(x −2y )− 3y ],=( 2x −2 2y + 3y )( 2x −2 2y − 3y ),故答案为:( 2x −2 2y + 3y )( 2x −2 2y − 3y ).15. 【答案】100(1−x )2=64【解析】设平均每次降价的百分率为x ,根据某件商品原价100元,经过两次降价后,售价为64元,可列方程求解.【解答】解:设平均每次降价的百分率为x ,100(1−x )2=64.故答案为:100(1−x )2=64.16. 【答案】二、四,减小【解析】先根据第三象限点的坐标特征得到a <0,b <0,然后根据正比例函数与系数的关系判断直线y =(a +b )x 经过的象限.【解答】解:因为点P (a , b )在第三象限,所以a <0,b <0,可得a+b<0,所以直线y=(a+b)x经过第二、四象限,y随x的增大而减小;故答案为:二、四;减小17. 【答案】4,(1, 4)或(4, 1)的图象经过点P(a, b),把点P的坐标代入解析式,得到关【解析】先根据反比例函数y=kx于a、b、k的等式ab=k;又因为a、b是一元二次方程x2−5x+4=0的两根,得到a+b=5,ab=4,根据以上关系式求出a、b的值即可.得,ab=k,【解答】解:把点P(a, b)代入y=kx因为a、b是一元二次方程x2−5x+4=0的两根,根据根与系数的关系得:a+b=5,ab=4,解得a=1,b=4或a=4,b=1,所以k=4,点P的坐标是(1, 4)或(4, 1).故答案为4,(1, 4)或(4, 1).18. 【答案】6【解析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4的系数k,由此即可求出S1+S2.x上的点,分别经过A、B两点向x轴、y轴作垂线段,【解答】解:∵点A、B是双曲线y=4x则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4−1×2=6.故答案为6.19. 【答案】解:原式=23−(3+23+1)+23×343=23−(4+23)+5=−【解析】根据二次根式的运算性质即可求出答案.【解答】解:原式=2−(3+2+1)+2×343=23−(4+23)+5=−20. 【答案】解:原式=2xy−22xy+32xy2xy.=322【解析】根据二次根式性质与化简,可得同类二次根式,根据合并同类二次根式,可得答案.【解答】解:原式=2xy−22xy+32xy2=322xy.21. 【答案】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.【解析】将x+5看做整体因式分解法求解可得.【解答】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.22. 【答案】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.【解析】将常数项移到右边后把二次项系数化为1,再两边配上一次项系数一半的平方求解可得.【解答】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.23. 【答案】修建的道路宽为1米.【解析】设路宽为x,则道路面积为30x+20x−x2,所以所需耕地面积551=20×30−(30x+20x−x2),解方程即可.【解答】解:设修建的路宽为x米.则列方程为20×30−(30x+20x−x2)=551,解得x1=49(舍去),x2=1.24. 【答案】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.【解析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1−y2,再把当x=3时,y=5,当x=1时,y=−1代入关于y的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【解答】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.25. 【答案】2; 0.5; 14【解析】(1)根据题意和函数图象可以得到下坡路的长度;; (2)根据函数图象中的数据可以求的小强下坡的速度;; (3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【解答】解:(1)由题意和图象可得,小强去学校时下坡路为:3−1=2(千米),; (2)小强下坡的速度为:2÷(10−6)=0.5千米/分钟,; (3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:21+10.5=14(分钟),26. 【答案】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.【解析】(1)根据方程的系数结合根的判别式即可得出△=(2k−3)2≥0,由此可得出:不论k取什么实数值,这个方程总有实数根;; (2)当a为底时,由根的判别式△=(2k−3)2= 0可求出k值,再根据根与系数的关系可得出b+c=4,由b+c=a可知此种情况不符合题意;当a为腰时,将x=4代入原方程求出k值,再根据根与系数的关系可得出b+c=6,套用三角形的周长公式即可求出结论.【解答】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.27. 【答案】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.【解析】(1)根据面积为60m2,可得出y与x之间的函数关系式;; (2)由(1)的关系式,结合x、y都是正整数,可得出x的可能值,再由三边材料总长不超过26m,DC的长<12,可得出x、y的值,继而得出可行的方案.【解答】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.28. 【答案】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.【解析】(1)设x秒钟后,可使△PCQ的面积为8平方厘米,用x表示出△PCQ的边长,根据面积是8可列方程求解.; (2)假设y秒时,△PCQ的面积等于△ABC的面积的一半,列出方程看看解的情况,可知是否有解.【解答】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.29. 【答案】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.【解析】(1)利用正方形的性质得到P点坐标为(3, 3),再把P点坐标代入y=kx即可得到k的值;然后利用待定系数法求直线OP的解析式;; (2)设正方形ADFE的边长为a,利用正方形的性质易表示F点的坐标为(a+3, a),然后把F(a+3, a)代入y=9x,再解关于a的一元二次方程即可得到正方形ADFE的边长.【解答】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.30. 【答案】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.【解析】(1)可通过构建全等三角形来证PB=PQ,过点P作PF⊥BC于点F,PE⊥CD于点E,由于△PEC是等腰直角三角形,因此PE=EC,可得出四边形PECF是正方形,由此可得出PE=PF,根据同角的余角相等可得出∠FPB=∠QPE,这两个三角形中又有一组直角,因此构成了全等三角形判定条件中ASA的条件.根据全等三角形即可得出PB=PQ;; (2)根据题意画出图形,同(1)过点P作PF⊥BC于点F,PE⊥CD于点E可得出四边形PFCE是正方形,故PE=PF.由ASA定理得出△BPF≅△QPE,根据全等三角形的性质即可得出结论;; (3)延长BP交DC于G,可得出等腰△PCQ中,PC=QC,故可得出∠1=∠2,由直角三角形的性质得出∠5=∠3,在正方形ABCD中根据平行线的性质即可得出结论.【解答】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.。

2018-2019学年上学期八年级 数学期中考试卷含答案

2018-2019学年上学期八年级 数学期中考试卷含答案

2018-2019学年上学期期中教学质量调研八年级数学一.精心选择,一锤定音(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入下表中)序号 1 2 3 4 5 6 7 9 10答案1.下面四个手机应用图标中是轴对称图形的是2.已知图中的两个三角形全等,则的大小为A.B. C. D.3.如图,三角形被木板遮住一部分,这个三角形是A.锐角三角形B.直角三角形C.钝角三角形 D.以上都有可能4.如图,∠ACB=90,CD⊥AB,垂足为D,下列结论错误的是A.图中有三个直角三角形B. ∠1=∠2C. ∠1和∠B都是∠A的余角D.∠2=∠A5.已知n边形从一个顶点出发可以作9条对角线,则n=A.9B.10C.11D.126.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有A.1个B.2个C.3个D.4个7.如图,点O在△ABC内,且到三边的距离相等,若∠A=60,则∠BOC的大小为A. B. C. D.608.如图,在Rt△ABC中,∠BAC=90,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=2A.30B.C.60D.759.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,……,照这样走下去,他第一次加到出发地A点时,一共走的路程是A.140米B.150米C.160米D.240米10.如图,在Rt△ABC中,∠ACB=90,∠BAC的平分线交BC于D,过点C作CG⊥AB于G,交AD 于E,过点D作DF⊥AB于 F.下列结论①∠CED=;②;③∠ADF=;④CE=DF.正确的是A.①②④B.②③④C.①③D.①②③④二.细心填一填,试试自己的身手!(本大题共10个小题;每小题3分,共30分)11.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是.12.三角形三边长分别为3,,7,则的取值范围是.13.一个正多边形的内角和为540,则这个正多边形的每个外角的度数为.14.如图,已知AB⊥BD,AB∥DE,AB=ED。

2018-2019八年级第一学期数学期中试题(及答案)

2018-2019八年级第一学期数学期中试题(及答案)

2018~2019学年度第一学期第二次阶段检测八年级数学考试时间:100分钟分值:100分一、选择题(每题3分,共24分)1. 下列交通标志图案是轴对称图形的是()A B C D2.给出下列7个实数:-3,2.5,-32,0,16,39,227.其中无理数共有A.1个B.2个C.3个D.4个3.下列条件中,不能判断△ABC≅△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠C=∠FC.AB=FE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF4.如图,在Rt△ABC中,∠ACB=900,CD是高,AC=4m,BC=3m,则线段CD的长为()A.5mB.512m C.125m D.34m5.下列三角形中,不是直角三角形的是()A.△ABC中,∠A=∠B-∠CB.△ABC中,a:b:=1:2:3C.△ABC中,a2=c2-b2D.△ABC中,三边的长分别为m2+n2,m2-n2,2mn(m>n>0)6.一个等腰三角形的一个内角为500,那么这个等腰三角形的一条腰上的高与底边的夹角是()A250 B.400 C.250 或400 D.无法确定7.如图,一圆柱体的底面圆周长为6cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则爬行的最短路程为()A.5cm B.5cmπC.D.cmlAA 学校:班级:姓名:考试号:装订线内请勿答题8、如图,A、C、B三点在同一条直线上,DAC∆和EBC∆都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:ACE DCB∆∆①≌CM CN=②AC DN=③.其中,正确结论的个数是()A.3个B.2个C.1个D.0个二、填空(每题3分,共30分)9.已知两条线段的长为5c m和12c m,当第三条线段的长为c m时,这三条线段能组成一个直角三角形.10.16的平方根_____________.11.已知等腰三角形中一个角是70°,则底角是__________°12..如图,在Rt△ABC中,∠C=90。

2018-2019学年八年级数学上期中试题含答案(五四制)

2018-2019学年八年级数学上期中试题含答案(五四制)

2018-2019学年八年级数学上学期期中试题注意事项:1、答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目等内容填、写(涂)准确。

2、本试题分第I卷和第II卷两个部分,第I卷为选择题共48分,第II卷为非选择题共72分,共120分,考试时间为120分钟。

3、第I卷每小题选出答案后,必须用2B铅笔把答题卡上,对应题目的答案标号(AB-CD)涂黑,如需改动,须先用橡皮擦干净再改涂其它答案,第II卷须用蓝黑钢笔或圆珠笔直接答在试卷上,考试时,不允许使用计算器。

4、考试结束后,由监考教师把第I卷和第II卷及答题卡一并收回。

第I卷(选择题)一、选择题。

本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(本题4分)把多项式m(n﹣2)﹣m2(2﹣n)分解因式得()A.(n﹣2)(m2+m) B.(n﹣2)(n﹣m)2C.m(n﹣2)(m+1) D.m(n﹣2)(1﹣m)2.(本题4分)分解因式x 2﹣2x ﹣3,结果是( ) A .(x ﹣1)(x+3) B .(x+1)(x ﹣3)C .(x ﹣1)(x ﹣3) D .(x+1)(x+3)3.(本题4分)一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形( )A .是轴对称图形,但不是中心对称图形B .是中心对称图形,但不是轴对称图形C .既是轴对称图形,又是中心对称图形D .既不是轴对称图形,也不是中心对称图形4.(本题4分)若分式方程xx a x --=+-2321有增根,则a 的值是( )A .1B .0C .﹣ 1D .﹣ 25.(本题4分)有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg .已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg ,根据题意,可得方程( )A .x x 1500300900=+ B .3001500900-=x xC .3001500900+=x x D .x x 1500300900=- 6.(本题4分)如果把分式52xx y-中的x ,y 都扩大7倍,那么分式的值( ) A .扩大7倍 B .扩大14倍 C .扩大21倍 D .不变7.(本题4分)要使45x x --的值和424xx--的值互为倒数,则x 的值为( ). A. 0 B. -1 C. 12D. 18.(本题4分)在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8 乙:7、9、6、9、9,则下列说法中错误的是( )A .甲、乙得分的平均数都是8B .甲得分的众数是8,乙得分的众数是9C .甲得分的中位数是9,乙得分的中位数是6D .甲得分的方差比乙得分的方差小9.(本题4分)下列从左到右的变形,哪一个是因式分解( ) A .()()22b a b a b a -=-+B .()()()144422-+-+=-+-y y x y x y y xC .()()()22112-+=++-+b a b a b aD .⎪⎭⎫ ⎝⎛++=++x x x x x 4545210.(本题4分)判断下列两个结论:①正三角形是轴对称图形;②正三角形是中心对称图形,结果( )A 、①②都正确B 、①②都错误C 、①正确,②错误D 、①错误,②正确11.(本题4分)下列图案中既是中心对称图形,又是轴对称图形的是( )A .B .C .D .12.(本题4分)如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转l20°得到△AB ′C ′,连接 BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A. 45°B. 60°C. 70°D. 90°第II 卷(非选择题)二、填空题(本大题共5个小题,每小题4分,共20分. 把答案写在题中横线上) 13.(本题4分)评定学生的学科期末成绩由期考分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定.已知小明的数学期考80分,作业90分,课堂参与85分,则他的数学期末成绩为 .14.(本题4分)如图,把一块等腰直角三角板△ABC ,∠C=90°,BC=5,AC=5.现将△ABC 沿CB 方向平移到△A ′B ′C ′的位置,若平移距离为x (0≤x ≤5),△ABC 与△A ′B ′C ′的重叠部分的面积y ,则y= (用含x 的代数式表示y ).15.(本题4分)计算: b a a b a b---=___ _____; 16.(本题4分)当x ___ ___时,分式在实数范围内有意义.17.(本题4分)如图①,在△AOB 中,∠AOB =90º,OA =3,OB =4.将△AOB 沿x 轴依次以点A 、B 、O 为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为____________.三、解答题(本大题共7个小题,共52分. 解答应写出文字说明、证明过程或演算步骤)18.(本题6分)解分式方程: 2113222x x x x+=++.19.(本题6分)先化简,再求值:624)373(+-÷+--a a a a ,其中1-=a20.(本题6分)在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)求这50名同学捐款的平均数;(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数.21.(本题8分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2)(1)写出点A、B的坐标:A(,)、B (,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′( 、)(4)求△ABC的面积.22.(本题8分)某文具厂加工一种学生画图工具2500套,在加工了1000套后,采用了新技术,使每天的工作效率是原来的1.5倍,结果提前5天完成任务. 求该文具厂采用新技术前平均每天加工多少套这种学生画图工具.23.(本题9分)课堂上,老师给出了如下一道探究题:“如图,在边长为1的正方形组成的6×8的方格中,△ABC和△A1B1C1的顶点都在格点上,且△ABC≌△A1B1C1.请利用平移或旋转变换,设计一种方案,使得△ABC通过一次或两次变换后与△A1B1C1完全重合.”(1)小明的方案是:“先将△ABC向右平移两个单位得到△A2B2C2,再通过旋转得到△A1B1C1”.请根据小明的方案画出△A2B2C2,并描述旋转过程;(2)小红通过研究发现,△ABC只要通过一次旋转就能得到△A1B1C1.请在图中标出小红方案中的旋转中心P,并简要说明你是如何确定的.24.(本题9分)(10分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=求此时线段CF的长(直接写出结果).2017—2018学年上学期期中质量检测数学试题参考答案1.C【解析】把m(n﹣2)﹣m2(2﹣n)转化成m(n﹣2)+m2(n﹣2),提取公因式m(n﹣2)即可.解:m(n﹣2)﹣m2(2﹣n),=m(n﹣2)+m2(n﹣2),=m(n﹣2)(m+1),故选C.2.B【解析】根据十字相乘法分解因式即可.解:x2﹣2x﹣3=(x+1)(x﹣3).故选B.3.C.【解析】试题分析:∵一个正多边形绕着它的中心旋转45°后,能与原正多边形重合,360°÷45°=8,∴这个正多边形是正八边形.正八边形既是轴对称图形,又是中心对称图形.故选C.考点:①中心对称图形;②轴对称图形.4.A【解析】分式方程去分母转换为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程即可求出a的值.解:去分母得:1+3x﹣6=﹣a+x,根据题意得:x﹣2=0,即x=2,代入整式方程得:1+6﹣6=﹣a+2,解得:a=1. 故选:A . 5.C【解析】根据面积=田地的产量÷田地每亩产量,两块试验田的面积相同列出方程即可 6.D . 【解析】试题解析:如果把分式52xx y-中的x ,y 都扩大7倍则原式变为:()57755 727722x x x x y x y x y ⨯⨯==-⨯⨯--. 故选D .考点:分式的基本性质. 7.B【解析】试题解析:首先根据倒数的性质列出关于x 的分式方程,然后根据分式方程的解法进行求解,得出答案.根据题意可得: x 542xx 44x--=--,方程两边同时乘以(x-4)可得:x-5=2x-4,解得:x=-1,经检验:x=-1是原方程的解. 8.C. 【解析】试题分析:选项A ,由平均数的计算方法可得甲、乙得分的平均数都是8,此选项正确;选项B ,甲得分次数最多是8分,即众数为8,乙得分最多的是9分,即众数为9故此选项正确;选项C ,甲得分从小到大排列为:7、8、8、8、9,可得甲的中位数是8分;乙得分从小到大排列为:6、7、9、9、9,可得乙的中位数是9分;此选项错误;选项D ,512=甲S ×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=51×2=0.4,2乙S =51×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=51×8=1.6,所以2甲S <2乙S ,故D 正确;故答案选C . 考点:算术平均数;中位数;众数;方差. 9.C . 【解析】试题解析:A.B中最后结果不是乘积的形式,不属于因式分解;C、()()()22112-+=++-+bababa,是运用完全平方公式进行的因式分解;D、不是在整式范围内进行的分解,不属于因式分解.故选C.考点:因式分解的意义.10.C【解析】本题考查了中心对称图形与轴对称图形的概念.要注意,轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后能与原图形重合.根据轴对称图形与中心对称图形的概念和正三角形的性质即可求解.解:正三角形是轴对称图形,不是中心对称图形.故选C.11.A【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.考点:中心对称图形;轴对称图形.12.D【解析】已知△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=12(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D.13.84.5分.【解析】试题分析:因为数学期末总评成绩由期考分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,所以利用加权平均数的公式即可求出答案.解:由题意知,小明的总评成绩=(80×3+90×2+85×5)÷(3+2+5)=84.5(分). 故答案为:84.5分.考点:加权平均数.14.x 2﹣5x+.【解析】试题分析:根据等腰三角形的性质得出BC ′=DC ′=5﹣x ,进而求出即可.解:由题意可得:CC ′=x ,BC ′=DC ′=5﹣x ,故y=(5﹣x )2=x 2﹣5x+.故答案为:x 2﹣5x+.考点:平移的性质.15.-1【解析】根据同分母的分式相加减的法则可得原式=1b aa b -=-- .16.1x ≠- 【解析】∵分式在实数范围内有意义,∴x+1≠0,∴x ≠-1.故答案是:x ≠-1.17.(36,0)【解析】试题解析:∵在△AOB 中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).【点睛】本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键.18.x =15【解析】两边同乘以x (x +2)得x + x +2=32 -------------------------------------------2分x=15-------------------------------------------------------------------------------3分检验x =15是原方程的根.19.解:原式=()2164(4)(4)2(3)=24=2832(3)34a a a a a a a a a a a --+-+÷⋅+++++-。

八年级2018-2019学年度上学期期中考试 数学试题(word版,含答案)

八年级2018-2019学年度上学期期中考试 数学试题(word版,含答案)

2018-2019学年度八年级上学期期中考试 数学试题第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。

再选涂其它答案,不能答在试卷上。

3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)1.若一个正多边形一个外角是60°,则该正多边形的内角和是 A .360° B . 540° C . 720° D .900° 2. 若点A (1,1)m n +-与点B (-3,2)关于y 轴对称,则m n +的值是A .-5B .-3C .3D . 13. 已知三角形三个内角∠A 、∠B 、∠C ,满足关系式∠B+∠C=2∠A ,则此三角形 A. 一定有一个内角为45° B. 一定有一个内角为60° C. 一定是直角三角形 D. 一定是钝角三角形4. 如图,已知∠ABC=∠DCB,添加以下条件不能判定∆ABC ≌∆DCB 的是A .∠A=∠DB .∠ACB=∠DBC C .AC=DBD .AB=DC第4题 第5题第6题5.观察图中尺规作图痕迹,下列说法错误的是A.OE是∠AOB的平分线 B.OC=ODC.点C、D到OE的距离不相等 D、∠AOE=∠BOE6.如图,在Rt∆ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S∆ABD=15,则CD的长为A.3 B.4 C.5 D.67. 将一副直角三角板按如图所示位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45° B.60° C.75° D.85°第7题第8题第9题8.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC②△ACE≌△BDE③点E在∠O的平分线上其中正确的结论是A. 只有①B. 只有②C. 只有①②D. 有①②③9.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则等于∠ACE=A.15° B.30° C.45 D.60°10.将一个n边形变成n+1边形,内角和将A.减少180∘B.增加90∘C.增加180∘D.增加360∘11.如图,△ABC中,∠A=36∘,AB=AC,BD平分∠ABC,下列结论错误的是A. ∠C=2∠AB. BD=BCC. △ABD是等腰三角形D. 点D为线段AC的中点第11题第12题第13题12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是A. AB=ADB. AC平分∠BCDC. AB=BDD. △BEC≌△DEC13.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分别为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③AD平分∠EDF;④AD垂直平分EF.其中正确结论有()A.1个B.2个C.3个D.4个14.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A. 30°B. 35°C. 45°D. 60°第14题第17题第18题二、填空题(本题共4小题,每小题5分,共20分)15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.16.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是___17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是______.18. 在△ABC 中,AB=AC,CD=CB,若∠ACD=42∘,则∠BAC=______∘.19. 含角30°的直角三角板与直线1l ,2l 的位置关系如图所示,已知12l l ,∠1=60°,以下三个结论中正确的是____(只填序号)。

2018-2019学年八年级上册期中数学试卷含答案(人教版)

2018-2019学年八年级上册期中数学试卷含答案(人教版)

2018-2019学年八年级(上册)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.94.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或165.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()(A.30°B.50°C.60°D.37.5°9.3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10.(3分)如图,在△ABC和△DEC中,已知AB=△DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EC.BC=DC,∠A=∠DB.BC=EC,AC=DCD.AC=DC,∠A=∠D11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.913.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN =4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.18.(3分)如图,AB、CD相交于点O,AD=△CB,请你补充一个条件,使得AOD≌△COB,你补充的条件是.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A△2,A2B2A△3,A3B3A4,…均为等边三角形,若OA1=△4,则A6B6A7的边长为.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且P A=PB.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.(不写作法,保留作图痕迹).22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.2018-2019学年八年级(上册)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm【分析】设木条的长度为x cm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为x cm,则11﹣5<x<11+5,即6<x<16.故选:D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.9【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的4倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×4,解得n=10.故选:C.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或16【分析】由于等腰三角形的底边与腰不能确定,故应分4为底边与6为底边两种情况进行讨论.【解答】解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解是解题关键.5.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C【分析】根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是100°,再根据全等三角形的对应角相等解答.【解答】解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.【点评】本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据∠A=∠C判断出这两个角都不能是100°是解题的关键.6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°【分析】根据等腰三角形的性质由已知可求得∠A的度数,再根据垂直的定义和三角形内角和定理不难求得∠ABD的度数.【解答】解:∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°﹣36°=54°.故选:C.【点评】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()(A.30°B.50°C.60°D.37.5°【分析】由题意可得AD=BD=DF,即可求∠B=∠DFB=75°,根据三角形内角和定理可求∠BDF的度数.【解答】解:∵点D是AB的中点∴AD=BD∵折叠∴AD=DF∴BD=AD=DF∴∠B=∠DFB=75°∴∠BDF=30°故选:A.【点评】本题考查了翻折变换,三角形内角和定理,熟练运用折叠性质解决问题是本题的关键.9.3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.10.(3分)如图,在△ABC和△DEC中,已知AB=△DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EC.BC=DC,∠A=∠DB.BC=EC,AC=DCD.AC=DC,∠A=∠D【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵AB=DE,∴当BC=EC,∠B=∠E时,满足SAS,可证明△ABC≌△DEC,故A可以;当BC=EC,AC=DC时,满足SSS,可证明△ABC≌△DEC,故B可以;当BC=DC,∠A=∠D时,在△ABC中是ASS,在△DEC中是SAS,故不能证明△ABC≌△DEC,故C不可以;当AC=DC,∠A=∠D时,满足SAS,可证明△ABC≌△DEC,故D可以;故选:C.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.9【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.13.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm【分析】利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ的长,即可得出QR的长.【解答】解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN﹣MQ=4﹣2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.【点评】此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④【分析】因为△ABC为等边三角形,根据已知条件可推出△Rt ARP≌△Rt ASP,则AR=AS,故(2)正确,∠BAP=∠CAP,所以AP是等边三角形的顶角的平分线,故(1)正确,根据等腰三角形的三线合一的性质知,AP也是BC边上的高和中线,即点P是BC的中点,因为AQ=PQ,所以点Q是AC的中点,所以PQ是边AB对的中位线,有PQ∥AB,故(△3)正确,又可推出BRP≌△QSP,故(4)正确.【解答】解:∵PR⊥AB于R,PS⊥AC于S∴∠ARP=∠ASP=90°∵PR=PS,AP=AP∴△Rt ARP≌△Rt ASP∴AR=AS,故(2)正确,∠BAP=∠CAP∴AP是等边三角形的顶角的平分线,故(1)正确∴AP是BC边上的高和中线,即点P是BC的中点∵AQ=PQ∴点Q是AC的中点∴PQ是边AB对的中位线∴PQ∥AB,故(3)正确∵∠B=∠C=60°,∠BRP=∠CSP=90°,BP=CP∴△BRP≌△QSP,故(4)正确∴全部正确.故选:D.【点评】本题利用了等边三角形的性质:三线合一,全等三角形的判定和性质,中位线的性质求解.二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5),故答案为:(﹣3,﹣5).【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是3.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形的面积公式列式计算即可得解.【解答】解:∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,=×4×2+AC•2=7,∴S△ABC解得AC=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13.【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.(3分)如图,AB、CD相交于点O,AD=△CB,请你补充一个条件,使得AOD≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【分析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A△2,A2B2A△3,A3B3A4,…均为等边三角形,若OA1=△4,则A6B6A7的边长为128.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=16,A4B4=8B1A2=32,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=4,∴A2B1=4,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=16=24,A4B4=8B1A2=32=25,A5B5=16B1A2=64=26,以此类推:△A n B n A n+1的边长为2n+1,∴△A6B6A7的边长为:26+1=128.故答案为:128.【点评】此题主要考查了等边三角形的性质以及直角三角形30度角的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且P A=PB.【分析】分别作∠BAC的平分线和线段AB的中垂线,它们的交点即为所求点P.【解答】解:如图所示,点P即为所求.【点评】此题主要考查了线段垂直平分线的性质与作法以及角平分线的性质与作法,正确掌握相关性质是解题关键.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.(不写作法,保留作图痕迹).【分析】(1)写出点A、B、C关于y轴对称的对应点A′、B′、C′的坐标,然后描点即可;(2)作A点关于x轴的对应点A″,连接A″C交x轴于点P,利用两点之间线段最短可判断此时P A+PC 最小.【解答】解:(△1)如图,A′B′△C′为所作,A′B′C′三个顶点的坐标分别为A'(4,1),B'(3,3),C'(1,2);(2)如图,点P为所作..【点评】本题考查了作图﹣轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.【分析】先由三角形外角的性质,求出∠BAC的度数,然后由角平分线的定义即可求出∠BAE的度数,然后再根据外角的性质,即可求∠AEC的度数.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠BAC,∵∠B=40°,∠ACD=106°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠BAC=33°,∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠BAE=73°.【点评】此题考查了三角形外角的性质及角平分线的定义,熟记三角形的外角等于与它不相邻的两个内角之和.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.【分析】(1)根据已知条件,用HL公理证:△Rt ABC≌△Rt DCB,从而得证;(2)利用△Rt ABC≌△Rt DCB的对应角相等,即可证明△OBC是等腰三角形.【解答】证明:(1)在△Rt ABC与△Rt DCB中,∠A=∠D=90°,,∴△Rt ABC≌△Rt DCB(HL),∴AB=CD;(2)△OBC是等腰三角形,理由如下:∵△ABC≌△DCB,则∠ACB=∠DBC,在△OBC中,即∠OCB=∠OBC∴△OBC是等腰三角形.【点评】此题主要考查全等三角形的判定和性质,关键是学生对直角三角形全等的判定和等腰三角形的判定与性质的理解和掌握.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.【分析】(1)根据题意得到∠CAB=∠B,根据等腰三角形的性质得到CB=CA=80,得到答案;(2)作BD⊥CD于点D,求出∠BCD=30°,根据直角三角形的性质计算即可.【解答】解:(1)由题意得,∠CAB=90°﹣40°﹣10°=40°,∠ACB=40°+60°=100°,∴∠B=180°﹣100°﹣40°=40°,∴∠CAB=∠B,∴CB=CA=80(海里),答:此时货轮到小岛B的距离为80海里;(2)轮船向正东方向航行没有触礁危险.理由如下:如图,作BD⊥CD于点D,∵∠BCD=90°﹣60°=30°,∴BD=BC=40,∵40>36,∴轮船向正东方向航行没有触礁危险.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握直角三角形的性质、方向角的概念是解题的关键.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有②(请写序号,少选、错选均不得分).【分析】(1)欲证明AE=△CD,只要证明ABE≌△CBD;(2)由△ABE≌△CBD,推出BAE=∠BCD,由∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE ﹣∠ANB,又∠CNM=∠ABC,∠ABC=90°,可得∠NMC=90°;(3)结论:②;作BK⊥AE于K,BJ⊥CD于J.理由角平分线的判定定理证明即可;【解答】(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ABC,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②△S ABE=理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,△S CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设△①成立,则ABM≌△DBM,则AB=BD,显然可不能,故①错误.故答案为②.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.【分析】(△1)利用等边三角形的性质可证明APC≌△BQA,则可求得∠BAQ=∠ACP,再利用三角形外角的性质可证得∠CMQ=60°;(2)可用t分别表示出BP和BQ,分∠BPQ=90°和∠BPQ=90°两种情况,分别利用直角三角形的性质可得到关于t的方程,则可求得t的值;(3)同(△1)可证得PBC≌△QCA,再利用三角形外角的性质可求得∠CMQ=120°.【解答】解:(△1)∵ABC为等边三角形,∴AB=AC,∠B=∠P AC=60°,∵点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,∴AP=BQ,在△APC和△BQA中,∴△APC≌△BQA(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠CAQ+∠ACP=∠BAQ+∠CAQ=∠BAC=60°,∴在P、Q运动的过程中,∠CMQ不变,∠CMQ=60°;(2)∵运动时间为ts,则AP=BQ=t,∴PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,∴4﹣t=2t,解得t=,当∠BPQ=90°时,∵∠B=60°,∴BQ=2PB,∴t=2(4﹣t),解得t=,∴当t为s或s时,△PBQ为直角三角形;(3)在等边三角形ABC中,AC=BC,∠ABC=∠BCA=60°,∴∠PBC=∠QCA=120°,且BP=CQ,在△PBC和△QCA中,∴△PBC≌△QCA(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=120°,∴在P、Q运动的过程中,∠CMQ的大小不变,∠CMQ=120°.【点评】本题为三角形的综合应用、等边三角形的性质、直角三角形的性质、勾股定理、全等三角形的判定和性质、解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

2018-2019学年人教版八年级(上册)数学期中考试题及答案

2018-2019学年人教版八年级(上册)数学期中考试题及答案

2018年秋八年级(上)期中考试数学试卷一、选择题:本大题共 10小题,每小题3分,共30分。

将答案填在表格内。

1•在下列各电视台的台标图案中,是轴对称图形的是 ( ) 16 .在厶ABC 中,点 D 是BC 边上的中点,如果 AB=10厘米,AC=12厘米,则 △ ABD 和厶ACD 的周长之差为 ____________ ,面积之差为 ____________ .17 .如图,DE 是厶ABC 中AC 边的垂直平分线,若BC=8cm ,AB=10cm ,则△ EBC 的周长为 _________________ .A .BC .D . 2•以下列各组线段为边,能组成三角形的是 ( A . 2cm , 3cm , 5cm B . 3cm , 3cm , 6cm C . 3•如图所示,亮亮书上的三角形被墨迹污染了一部分, 一样的三角形,那么这两个三角形完全一样的依据是 )5cm , 8cm , 2cm D . 4cm , 5cm , 6cm很快他就根据所学知识画出一个与书上完全 ( )B B 18 .在厶ABC 中,Z A=34 ° Z B=72 °则与Z C 相邻的外角为 ___________________ 19 . 一个多边形的一个顶点出发有5条对角线,这是一个 ______________ 形.20 .如图,已知 △ ABC 的周长是21,OB ,OC 分别平分Z ABC 和Z ACB ,OD 丄BC 于D ,且0D=4,△ ABC 的面积是 ____________ .三、解答题:本大题共 10小题,共40分。

21.某地区要在区域 S 内(即Z COD 内部)建一个超市 M ,如图所示,按照要求,超市 M 到两个 新建的居民小区 A ,B 的距离相等,到两条公路 OC ,OD 的距离也相等.这个超市应该建在何处?C . AASD . ASA 4. 如图所示,△ ABD ◎△ CDB ,下面四个结论中,不正确的是 A . △ ABD 和厶CDB 的面积相等 B . △ ABD 和厶CDB 的周长相等 C . Z A+ / ABD= / C+Z CBD D . AD // BC ,且 AD=BC5. 三角形中,到三边距离相等的点是 ( )A .三条高线的交点B .三条中线的交点C .三条角平分线的交点D .三边垂直平分线的交点 6 .如图,把长方形 ABCD 沿EF 对折后使两部分重合,若Z AEF=110 A . 30° B . 35° C . 40° D . 50 7.等腰三角形一腰上的高与另一腰的夹角为 A . 30° B . 30°或 150 &下列图形中有稳定性的是 A .正方形 B .长方形 9.正n 边形的内角和等于A . 7B . 8C . 10 .如图,Z A=15 °A . 90°B . 75°C . 二、填空题:本大题共 11 .等腰三角形的两边分别为 12 .点A (2,- 1)关于x 轴对称的点的坐标是 __________ .13 . △ ABC 中,Z A=100 ° BI 、CI 分别平分Z ABC , Z ACB ,则Z BIC=__ . 14 .如图,已知 AB=AD , Z BAE= Z DAC ,要使△ ABC ADE ,只需增加一个条件是 __________ (只需添加一个你认为适合的)15 .将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①,②两部分,将①展开后,得到的多边形是 _______________ .° 则/ 1=(C . 60°或 150° ( ) C. 直角三角形1080 °贝U n 的值为 D. 10 60 °则顶角的度数为( D . 60°或 120° 平行四边形) 9 AB=BC=CD=DE=EF ,则/ 70° D . 60 ° 10小题,每小题3分,共30分。

2018-2019学年度第一学期八年级数学期中试卷

2018-2019学年度第一学期八年级数学期中试卷

第1页,共4页 第2页,共4页…………………○………○………………姓 名2018-2019学年度第一学期八年级数学试卷一、选择题(每小题3分,共30分)1.如图所示,图中不是轴对称图形的是( )A .B .C .D .2.下列图形中有稳定性的是( ) A .正方形 B .长方形C .直角三角形D .平行四边形3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .3cm ,3cm ,6cm C .5cm ,8cm ,2cmD .4cm ,5cm ,6cm4.能将三角形面积平分的是三角形的( ) A .角平分线B .高C .中线D .外角平分线5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .带①和②去 6.六边形的内角和与外角和的度数分别是( ) A .1080°,180° B .1080°,360° C .720°,180° D .720°,360° 7.点P (﹣1,2)关于y 轴对称点的坐标是( ) A .(1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)8.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( )A .50°B .30°C .20°D .15°9.如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米.A .16B .18C .26D .2810.已知等腰三角形一腰上的高线与另一腰的夹角为50°,那么这个等腰三角形的顶角等于( ) A .15°或75°B .140°C .40°D .140°或40°二、填空题(每小题3分,共24分)11.如图,一个加油站恰好位于两条公路m ,n 所夹角的平分线上,若加油站到公路m 的距离是80m ,则它到公路n 的距离是__________m .12.已知,如图,∠ACD=130°,∠B=65°,那么∠A 的度数是__________. 3.如图,∠ABC=∠DEF ,AB=DE ,要证明△ABC ≌△DEF ,需要添加一个条件为:__________(只添加一个条件即可)14.等腰三角形中,已知两边的长分别是9和5,则周长为__________.15.已知:如图,AC ⊥BC 于C ,DE ⊥AC 于E ,AD ⊥AB 于A ,BC=AE .若AB=5,则AD=__________.16.如图:△ABC 中,DE 是AC 的垂直平分线,AE=3cm ,△ABD 的周长为13cm ,则△ABC 的周长为__________.17.如下页图,在△ABC 中,∠ACB=90°,∠B=30°,CD ⊥AB 于点D ,若AD=2,则AC=__________,AB=__________.18.如图,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,点E 、F 分别是AD 的三等分点,若△ABC 的面积为18cm 2,则图中阴影部分面积为__________cm 2. 三、作图题(6分)19.如图:某地有两所大学和两条相交叉的公路(点M ,N 表示大学,AO ,BO 表示公路).现计划修建一座仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案(要求保留作图痕迹)装订题四、解答题(共60分)20.(9分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.21.(8分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.22.(8分)如图,已知:AD是BC上的中线,且DF=DE.求证:BE∥CF.23.(8分)如图,已知AE是∠BAC的平分线,∠1=∠D.求证:∠1=∠2.24.(9分)如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:(1)EF=CD;(2)EF∥CD.25.(9分)如图,△ABC中,AB=AC,∠A=120°,AB的垂直平分线EF交AB于E,交BC于F。

2018-2019学年度初二上期中考试数学试题及答案

2018-2019学年度初二上期中考试数学试题及答案

下期半期考试数学试卷(本试卷满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,没小题4分,共48分)在每个小题的下面,都给出了代号为A 、A B .2- C . D .2 2. 如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(-2,1)B .(2,3)C .(3,-5)D .(-6,-2) 3. 下列方程是二元一次方程的是( )A .xy -1=2B .210x x +-=C .113x y +=- D .2y x= B2题图4题图4. 如图,在△ABC 中,∠C=90°,AB 的垂直平分线交AB 于D 点,交BC 于E 点,连接AE ,若CE=5,AC =12,则BE 的长是() A .13 B .17 C .7 D .12 5. 下列不等式中,可以用如图表示其解集的是( )A .21x x ≥-⎧⎨⎩>B .21x x ≥-⎧⎨⎩<C .21x x ≤-⎧⎨⎩>D .12x x ⎧⎨≤-⎩<6. 下列根式不是最简二次根式的是()ABCD7. 有意义,那么x 的取值范围在数轴上表示出来,正确的是( )A .B .C .D .8. 若x >y >0,则下列不等式不一定成立的是( )A .xz yz >B .x z y z ++>C .11x y<D .2x xy > 9. 已知关于x ,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩的解适合方程x -y =4,则m 的值为( )A .1B .2C .3D .4 10. 点A (a ,3),点B (2,b )关于y 轴对称,则a +b 的算术平方根为( )A .1B .2C .1±D .-1 11. 已知不等式组026x a x -≥⎧⎨--⎩>有解,则a 的取值范围( )A .3a >B .3a ≥-C .3a <D .3a ≤-12.如右图,在平面直角坐标系上有个点A (-1,0),点A 第1次向上跳动1个单位至点1A (-1,1),紧接着第2次向右跳动2个单位至点2A (1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依此规律跳动下去,点A 第2015次跳动至点2015A 的坐标是( )A .(504,1008)B .(-504,1007)C .(503,1007)D .(-503,1008) 二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将每小题的正确答案填在下列表格内.14. 不等式-2x +3>0的正整数解是 .15. 已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为_______.16. 已知二元一次方程22=+y x 的一个解是⎩⎨⎧==b y ax ,其中,0≠a ,则______236=-+b a17. 已知11=-x x ,那么x x+1的值为________. 18. 甲乙两人骑自行车在一个环形公路内进行拉力测试,两人从同一地点同时出发,乙迅速超过甲,在第6分钟时甲提速,在第8分钟时,甲追上乙并且开始超过乙,在第15分钟时,甲再次追上乙。

2018-2019八年级上册期中考试数学试卷

2018-2019八年级上册期中考试数学试卷

2018--2019学年度第一学期期中考试八年级数学试卷一、选择题(每小题3分,共30分)。

1.下列长度的三根小木棒能构成三角形的是( )A.2cm,3cm,5cmB.7cm,4cm,2cmC.3cm,4cm,8cmD.3cm,4cm,4cm2.如图2,△ABC中,AB=AC,EB=EC,则由“SSS”直接可以判定A.△ABD≌△ACDB.△ABE≌△ACEC.△BDE≌△CDED.以上答案都不对3.如图3,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°第2题图第3题图第4题图4.如图4,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.若BE=7,AB=3,则AD的长为()A.3B.5C.4D.不确定5.在△ABC和△DEF中,∠B=∠E,AB=DE,添加下列一个条件后,仍然不能证明△ABC ≌△DEF,这个条件是()A. ∠A=∠DB.BC=EFC. ∠ACB=∠FD.AC=DF6.OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A.PC=PDB. ∠CPO=∠DOPC. ∠CPO=∠DPOD. OC=OD7.如图7,点A,D,C,E在同一条直线上,AB//EF,AB=EF, ∠B=∠F,AE=10,AC=6,则CD的长为()A.2B.4C.4.5D.38.一个正多边形的内角和为540°,则这个正多边形的每一个角等于()A.108°B.90°C.72°D.60°9.如图9,△ABC中,D,E,两点分别在AC,BC上,DE为BC的中垂线,DB为∠ADE的角平分线。

若∠A=58°,则∠ABD的度数为()A.58°B.59°C.61°D.62°第7题图第9题图第10题图10.如图10,四边形ABCD中,∠C=50°,∠B= ∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°二、填空题(每小题3分,共30分)11.生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有性.12.若n边形内角和为900°,则边数n=13.已知三角形三个内角的度数比是2:3:4,则这个三角形中最大角的度数是 .14.点A (3,-2)关于x轴对称的点的坐标是15.等腰三角形的周长是18cm,其中一边长为4cm,其他两边分别长为16.如图16,AC是正五边形ABCDE的一条对角线,则∠ACB=17.如图17,在等腰△ABC中,AB=AC,∠BDC=150°,BD平分∠ABC,则∠A的度数为第16题图第17题图第18题图18.如图18,AD=AB,∠C=∠E,AB=2,AE=8,则DE= .19.如图19,OP平分∠AOB,∠AOP=15°,PC//OA,PD⊥OA于点D,PC=4,则PD= .20.如图20,在△ABC中,若PM,QN分别垂直平分AB,AC,如果BC=10cm,则△APQ 的周长为 .第19题图第20题图三、解答题(共60分)21.如图,在△ABD和△EFC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE, ∠B=∠E.求证:∠ADB=∠FCE. (共6分)22.如图,在△ABC和△CDE中,AB//CD,AB=CE,AC=CD.求证:∠B=∠E. (6分)23.如图,△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为EF.求证:EB=FC. (7分)24.如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,求证:(1)BD平分∠ABC;(2)△BCD为等腰三角形. (8分)25.如图,电信部门要在公路m,n之间的S区域修一座电视信号发射塔P.按照设计要求,发射塔P到区域S内的两个城镇A,B的距离必须相等,到两条公路m,n的距离也必须相等.发射塔P建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹). (共6分)26.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3). (9分)(1)请画出△关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A(),B( ),C( );(3)计算△ABC的面积.27.如图所示,D为△ABC的边AB的延长线上一点,过D作DF⊥AC,垂足为F,交BC于E,且BD=BE,求证:△ABC是等腰三角形. (8分)28.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由。

2018~2019学年度上学期期中八年级数学质量检测试题(含答案)

2018~2019学年度上学期期中八年级数学质量检测试题(含答案)

2018~2019学年度上学期期中八年级数学质量检测试题(含答案)一.选择题(共10小题)1.下列图形是轴对称图形的有()A.1个B.2个C.3个D.4个2.一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是()A.3cm B.4cm C.7cm D.11cm3.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.125°B.120°C.140°D.130°4.三角形的高、中线、角平分线都是()A.直线B.射线C.线段D.以上三种情况都有5.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等6.利用作角平分线的方法,可以把一个已知角()A.三等分B.四等分C.五等分D.六等分7.下列各组线段的长为边,能组成三角形的是()A.2cm,3cm,4cm B.2cm,3cm,5cmC.2cm,5cm,10cm D.8cm,4cm,4cm8.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°9.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状10.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB 于E,AB=a,CD=m,则AC的长为()A.2m B.a﹣m C.a D.a+m二.填空题(共8小题)11.一个十边形所有内角都相等,它的每一个外角等于度.12.在△ABC中,若AB=5,BC=2,且AC的长为奇数,则AC=.13.在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABC的周长是17cm,AC=5cm,△ABD的周长是cm.14.如图,根据三角形的有关知识可知图中的x的值是.15.一个三角形的两边长分别是4和9,另一边长a为偶数,且2<a<8,则这个三角形的周长为.16.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),则B点的坐标是.17.已知A(0,2)、B(4,0),点C在x轴上,若△ABC是等腰三角形,则满足这样条件的C有个.18.△ABC的高BD、CE所在的直线交于点H,若∠BHC=65°,则∠BAC的度数为.三.解答题(共7小题)19.在△ABC中,∠B=∠A+10°,∠C=∠B+10°,求△ABC各内角的度数.20.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.21.如图,利用关于坐标轴对称的点的坐标特点.(1)作出△ABC关于x轴对称的图象;(2)写出A、B、C的对应点A′、B′、C′的坐标;(3)直接写出△ABC的面积.22.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.23.如图,在△ABC中,BE是∠ABC的角平分线,AD⊥BE,垂足为D,求证:∠2=∠1+∠C.24.【阅读】如图1,等边△ABC中,P是AC边上一点,Q是CB延长线上一点,若AP=BQ.则过P作PF∥BC交AB于F,可证△APF是等边三角形,再证△PDF≌QDB可得D是FB的中点.请写出证明过程.【运用】如图2,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A,C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段ED的长是否发生变化?如果不变,直接写出线段ED 的长;如果发生改变,请说明理由.25.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD 于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②求证:BD=2EC;(2)如图(2),过点A作AF⊥BE于点F,求证:BE-CE=2AF。

2018-2019学年上学期初二数学上学期期中测试题及答案7

2018-2019学年上学期初二数学上学期期中测试题及答案7

初二数学上学期期中测试题一.选择题:(每小题3分,共30分,每小题只有一个正确选项) 1.在下列各式中,正确的是( ) A.2)2(33=-B.4.0064.03-=-C.2)2(2±=±D.0)2()2(332=+-.2. 已知关于x 的一次函数)(n x m y -=的图象经过第二、三、四象限,则有( )A.0,.0>>n mB. 0,0><n mC.0,0<>n mD. 0,0<<n m3.如图,数轴上的点A 所表示的数为x ,则102-x 的立方根为( )C.-2 4. 下列说法中,正确的是( ) A.无理数包括正无理数、0和负无理数 B.无理数不是实数C.无理数是带根号的数D.无理数是无限不循环小数5.无论m 为何值,一次函数1)1(--=x m y 的图像总是经过点( ) A.(1,-1) B.(1,0) C.(0,-1) D.(0,1)6.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系的位置是( )A.第一象限B.第二象限C.第三象限D.第四象限7.一次函数1-+=m mx y 的图象过点(0,2)且y 随x 的增大而增大,则m 的值为( ) A.-1或3 B.1 C.3 D.-18.在平面直角坐标系中,已知点A (5-,0),B (5,0),点C 在坐标轴上,且AC+BC=6,则满足条件的点C 有( )个. A.1 B.2 C.3 D.49.在△ABC 中,∠BAC=90°,AB=3,AC=4.AD 平分∠BAC 交BC 于D ,则BD 的长为( )A.715B.512 C.720 D.52110.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B到直线b 的距离为3,AB=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A.6B.8C.10D.12第9题图二、填空题:(每小题3分,共24分) 11的算术平方根是__________. 12.21的整数部分为__________.13. 已知点A 的坐标是(0,4),点B 的坐标是(4-,2),那么过A 、B 两点的直线表达式为__________. 14. 已知方程组⎩⎨⎧+=-=+4332k y x ky x 的解x ,y 满足方程825=+y x ,则k 的值为 __________.15.如果B(74,12-+m m )到x 轴的距离与它到y 轴的距离相等,则m 的值为__________.16.如图,ADC ∆和BCE ∆都是等边三角形,已知222BC AB BD +=,那么=∠ABC ________.17.如图,在ABC ∆中,1AB AC ==,BC 边上有2013个不同的点201321,,P P P ,记2(1,2,...,2013)i i i i m AP BP PC i =+⋅=, 则201321m m m +++ =__________.第16题图 第17题图 第18题图D18.如图,在直角坐标系中,长方形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将长方形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E ,那么点D 的坐标为__________.三、简答题:(共46分) 19.化简:(每题3分,共6分)(1)232011)21(27)1(3-+--+- (2) 0)15(2218-+-20.解方程组:(每小题4分,共8分) (1) ⎩⎨⎧=++=19434y x y x (2) ⎩⎨⎧=-+=-01332432y x y x21.(本小题共6分) 如图所示,在平面直角坐标系中,A(-l ,5),B(-3,0),C(-4,3).(1)在图中作出△ABC 关于y 轴的轴对称图形△A′B′C′; (2)写出点C 关于y 轴的对称点C′的坐标(_______,_______).22.( 本小题共6分) 某单位新建了一栋4层的会议大楼,每层楼有8间会议室。

2018_2019学年八年级数学上学期期中检测试题2201901191230

2018_2019学年八年级数学上学期期中检测试题2201901191230

2018-2019学年八年级数学上学期期中检测试题(时间:120分钟满分:120分)一、选择题(本大题共16小题,共42分.1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段,首尾相接,能组成等腰三角形的是( )A.1,1,2 B.2,2,5 C.3,3,5 D.3,4,52.点M(-3,2)关于y轴对称的点的坐标为( )A.(-3,-2) B.(3,-2) C.(-3,2) D.(3,2)3.下面四个手机应用图标中是轴对称图形的是( )4.如果一个多边形的内角和是1 800°,这个多边形是( )A.八边形B.十四边形C.十边形D.十二边形5.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是( )A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形具有稳定性,(第5题图)),(第6题图)) 6.如图,有两个长度相同的滑梯靠在一面墙的两侧.已知左边滑梯的高度AC与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为( ) A.60°B.75°C.90°D.120°7.如果一个三角形有两个外角(不在同一顶点)的和等于270°,则此三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形8.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙9.下列结论错误的是( )A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等10.点P是锐角△ABC内一点,PE⊥AB于点E,PF⊥BC于点F,PH⊥CA于点H,若PE=PF =PH,则点P是△ABC的( )A.三条中线的交点B.三条高线的交点C.三条角平分线的交点D.三边垂直平分线的交点11.如图,折叠直角三角形纸片,使直角顶点C落在AB边上的点E处.已知BC=12,∠B=30°,则DE的长是( )A.6 B.4 C.3 D.2,(第11题图)),(第12题图)) 12.如图,四边形ABCD关于直线l是对称的,有下面的结论:①AB∥CD;②AC⊥BD;③AO =CO;④AB⊥BC,其中正确的结论有( )A.①②B.②③C.①④D.②13.如图,点D是△ABC的边BC上任意一点,点E,F分别是线段AD,CE的中点,则△ABC的面积等于△BEF(阴影部分)的面积的( )(第13题图))A.2倍B.3倍C.4倍D.5倍14.在直角坐标系中,O为坐标原点,已知A(2,2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( )A.4个B.3个C.2个D.1个15.如图,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于点E,AD⊥BE交BE于点D,下列结论:①AC-BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=∠C;④BC=4AD.其中正确的有( )(第15题图))A.1个B.2个C.3个D.4个16.如图1,已知AB=AC,D为∠BAC的平分线上一点,连接BD,CD;如图2,已知AB=AC,D,E为∠BAC的平分线上两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D,E,F为∠BAC的平分线上三点,连接BD,CD,BE,CE,BF,CF……依此规律,第n个图形中有全等三角形的对数是( )n(n+1)A. B.2n-1 C.n D.3n+32二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如果点A(a+1,-5)和点B(4,b-2)关于x轴对称,则ab=.18.如图,点C,E分别为△ABD的边BD,AB上两点,且AE=AD,CE=CD,△BEC的周长为13,△ABD的周长为29,则AD的长是.,(第18题图)),(第19题图)) 19.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到点A2,使得在第2个△A1CA2中,∠A1CA2=∠A1 A2C;在A2C上取一点D,延长A1A2到点A3,使得在第3个△A2DA3中,∠A2DA3=∠A2 A3D……按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为;第n 个三角形中以A n 为顶点的内角的度数为.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(9分)已知:如图所示.(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标;(2)在x轴上画出点P,使PA+PC的值最小,写出作法.21.(9分)如图,AB=AC,CD⊥AB于点D,BE⊥AC于点E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.22.(9分)如图,△ABC中,AD⊥BC,点E在AC的垂直平分线上,且BD=DE.(1)如果∠BAE=40°,那么∠B=,∠C=;(2)如果△ABC的周长为13 cm,AC=6 cm,那么△ABE的周长=;(3)你发现线段AB与BD的和等于图中哪条线段的长?并证明你的结论.23.(9分)在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于点D.(1)如果点F 与点A 重合,且∠C=50°,∠B=30°,如图1,则∠EFD的度数为;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C-∠B有怎样的数量关系?并说明理由.24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,AD⊥AB交BE延长线于点D,CF平分∠ACB交BD于点F,连接CD.求证:(1)AD=CF;(2)点F为BD的中点.25.(10分)在△ABC中,AB=AC.(1)如图①,若∠BAC=45°,AD和CE是高,它们相交于点H.求证:AH=2BD;(2)如图②,若AB=AC=10厘米,BC=8厘米,点M为AB的中点,点P在线段BC上以3 厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.如果在运动过程中存在某一时刻使得△B PM与△CQP全等,那么点Q的运动速度为多少?点P,Q运动的时间t为多少?26.(12分)如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状(按角分类),并说明理由;(3)求∠OAD的度数;(4)探究:当α=________时,△AOD是等腰三角形.(不必说明理由)参考答案(时间:120分钟满分:120分)一、选择题(本大题共16小题,共42分.1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段,首尾相接,能组成等腰三角形的是( C )A.1,1,2 B.2,2,5 C.3,3,5 D.3,4,52.点M(-3,2)关于y轴对称的点的坐标为( D )A.(-3,-2) B.(3,-2) C.(-3,2) D.(3,2)3.下面四个手机应用图标中是轴对称图形的是( A )4.如果一个多边形的内角和是1 800°,这个多边形是( D )A.八边形B.十四边形C.十边形D.十二边形5.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是( D )A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形具有稳定性,(第5题图)),(第6题图)) 6.如图,有两个长度相同的滑梯靠在一面墙的两侧.已知左边滑梯的高度AC与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为( C ) A.60°B.75°C.90°D.120°7.如果一个三角形有两个外角(不在同一顶点)的和等于270°,则此三角形一定是( B ) A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形8.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是( B )A.甲和乙B.乙和丙C.只有乙D.只有丙9.下列结论错误的是( B )A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等10.点P是锐角△ABC内一点,PE⊥AB于点E,PF⊥BC于点F,PH⊥CA于点H,若PE=PF =PH,则点P是△ABC的( C )A.三条中线的交点B.三条高线的交点C.三条角平分线的交点D.三边垂直平分线的交点11.如图,折叠直角三角形纸片,使直角顶点C落在AB边上的点E处.已知BC=12,∠B=30°,则DE的长是( B )A.6 B.4 C.3 D.2,(第11题图)),(第12题图)),(第13题图)),(第15题图)) 12.如图,四边形ABCD关于直线l是对称的,有下面的结论:①AB∥CD;②AC⊥BD;③AO =CO;④AB⊥BC,其中正确的结论有( D )A.①②B.②③C.①④D.②13.如图,点D是△ABC的边BC上任意一点,点E,F分别是线段AD,CE的中点,则△ABC 的面积等于△BEF(阴影部分)的面积的( C )A.2倍B.3倍C.4倍D.5倍14.在直角坐标系中,O为坐标原点,已知A(2,2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( A )A.4个B.3个C.2个D.1个15.如图,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于点E,AD⊥BE交BE于点D,下列结论:①AC-BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=∠C;④BC=4AD.其中正确的有( D )A.1个B.2个C.3个D.4个16.如图1,已知AB=AC,D为∠BAC的平分线上一点,连接BD,CD;如图2,已知AB=AC,D,E为∠BAC的平分线上两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D,E,F为∠BAC的平分线上三点,连接BD,CD,BE,CE,BF,CF……依此规律,第n个图形中有全等三角形的对数是( A )n(n+1)A. B.2n-1 C.n D.3n+32二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如果点A(a+1,-5)和点B(4,b-2)关于x轴对称,则ab=21.18.如图,点C,E分别为△ABD的边BD,AB上两点,且AE=AD,CE=CD,△BEC的周长为13,△ABD的周长为29,则AD的长是8.,(第18题图)),(第19题图)) 19.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到点A2,使得在第2个△A1CA2中,∠A1CA2=∠A1 A2C;在A2C上取一点D,延长A1A2到点A3,使得在第3个△A2DA3中,∠A2DA3=∠A2 A3D……按此做法进行下去,第3个三角形中以A3为70° 顶点的内角的度数为17.5°;第n个三角形中以A n为顶点的内角的度数为.2n-1三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(9分)已知:如图所示.(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标;(2)在x轴上画出点P,使PA+PC的值最小,写出作法.解:(1)△A′B′C′如图所示,A′(-1,2),B′(-3,1),C′(-4,3).(2)如图所示,点P即为使PA+PC的值最小的点.作法:①作出点C关于x轴对称的点C″(4,-3);②连接C″A交x轴于点P,点P即为所求点.21.(9分)如图,AB=AC,CD⊥AB于点D,BE⊥AC于点E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.∠A=∠A,解:(1)证明:在△ACD与△ABE中,∵{∠A CA=D C A=B,∠AEB=90°,)∴△ACD≌△ABE,∴AD=AE.(2)直线OA垂直平分BC.理由如下:如图,连接BC,AO,并延长AO交BC于点F,在Rt△OA=OA,ADO与Rt△AEO中,{AD=AE. )∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.22.(9分)如图,△ABC中,AD⊥BC,点E在AC的垂直平分线上,且BD=DE.(1)如果∠BAE=40°,那么∠B=70°,∠C=35°;(2)如果△ABC的周长为13 cm,AC=6 cm,那么△ABE的周长=7cm;(3)你发现线段AB与BD的和等于图中哪条线段的长?并证明你的结论.解:(3)AB+BD=DC.证明:∵AD⊥BC,BD=DE,∴AB=AE,∵点E在AC的垂直平分线上,∴AE=CE,∴AB+BD=AE+DE=CE+DE=DC.23.(9分)在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于点D.(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,则∠EFD的度数为10°;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C-∠B有怎样的数量关系?并说明理由.1180°-∠B-∠C 解:(2)∠EFD=(∠C-∠B).理由:∵AE平分∠BAC,∴∠BAE==90°-221 1(∠C+∠B).∵∠AEC为△ABE的外角,∴∠AEC=∠B+∠BAE=∠B+90°-(∠C+∠B)=221 1 90°+(∠B-∠C).∵FD⊥BC,∴∠FDE=90°.∴∠EFD=90°-∠FED=90°-[90°+221(∠B-∠C)],∴∠EFD=(∠C-∠B).224.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,AD⊥AB交BE 延长线于点D,CF平分∠ACB交BD于点F,连接CD.求证:(1)AD=CF;(2)点F为BD的中点.证明:(1)∵E为AC边的中点,∴AE=CE,∵△ABC中,∠ACB=90°,AC=BC,CF平分∠ACB,∴∠BAC=45°=∠ECF,∵AD⊥AB,∴∠DAC=45°=∠FCE,又∵∠AED=∠CEF,∴△ADE≌△CFE,∴AD=CF.(2)∵AC=CB,∠DAC=∠FCB,AD=CF,∴△ACD≌△CBF,∴CD=BF,∠ACD=∠CBF,∵∠DCF=∠ACD+∠ECF=∠ACD+45°,∠DFC=∠CBF+∠BCF=∠CBF+45°∴,∠DCF=∠DFC,∴DC=DF,∴BF=DF,即点F为BD的中点.25.(10分)在△ABC中,AB=AC.(1)如图①,若∠BAC=45°,AD和CE是高,它们相交于点H.求证:AH=2BD;(2)如图②,若AB=AC=10厘米,BC=8厘米,点M为AB的中点,点P在线段BC上以3 厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.如果在运动过程中存在某一时刻使得△BPM与△CQP全等,那么点Q的运动速度为多少?点P,Q运动的时间t为多少?解:(1)证明:在△ABC中,∵∠BAC=45°,CE⊥AB,∴AE=CE,又∵AD⊥BC,∴∠EAH+∠EAH=∠ECB,∠B=∠ECB+∠B=90°,∴∠EAH=∠ECB,在△AEH和△CEB中,{AE=CE,∴△∠AEC=∠BEC=90°,)AEH≌△CEB(ASA),∴AH=BC,∵AD⊥BC,AB=AC,∴BD=CD,∴BC=2 B D,∴AH=2BD.(2)∵AB=AC,∴∠B=∠C,∴△BPM与△CQP全等有两种情况:△BPM≌△CPQ或△BPM≌△CQP.当BP 4△BPM≌△CPQ时,BP=PC=4厘米,CQ=BM=5厘米,∴点P,点Q运动的时间t==秒,∴3 3CQ 5 15v Q===(厘米/秒).当△BPM≌△CQP时,BP=CQ,∴v Q=v P=3厘米/秒.此时PC=BM t 4 43BC-PC 15 4=5厘米,t==1秒.综上所述,点Q的运动速度为厘米/秒,t=秒或点Q的运动3 4 3速度为3厘米/秒,t=1秒时,△BPM与△CQP全等.26.(12分)如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状(按角分类),并说明理由;(3)求∠OAD的度数;(4)探究:当α=________时,△AOD是等腰三角形.(不必说明理由)解:(1)证明:∵△BOC≌△ADC,∴OC=DC.∵∠OCD=60°,∴△OCD是等边三角形.(2)△AOD是直角三角形.理由如下:∵△OCD是等边三角形,∴∠ODC=60°,∵△BOC≌△ADC,α=150°,∴∠ADC=∠BOC=α=150°,∴∠ADO=∠ADC-∠ODC=150°-60°=90°,∴△AOD是直角三角形.(3)由△BOC≌△ADC,得∠ADC=∠BOC=α.∵△OCD是等边三角形,∴∠ADO=α-60°,∠AOD=360°-110°-α-60°=190°-α,∴∠OAD=180°-∠ADO-∠AOD=50°.(4)①当∠AOD=∠ADO时,190°-α=α-60°,∴α=125°;②当∠AOD=∠OAD时,190°-α=50°,∴α=140°;③当∠ADO=∠OAD时,α-60°=50°,∴α=110°.综上所述,当α=110°或125°或140°时,△AOD是等腰三角形,故答案为:110°或125°或140°.。

2018-2019学年八年级上学期期中考试数学试卷

2018-2019学年八年级上学期期中考试数学试卷

2018-2019学年八年级上学期期中考试数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.下列运算正确的是()A. a2·a3﹦a6B. a3+ a3﹦a6C. a·a3﹦a4D. (-a2)3﹦a62.长为8,5,4,3的四根木条,选其中三根组成三角形,选法有( )A. 1种B. 2种C. 3种D. 4种3.下列各式中,从左到右的变形是因式分解的是()A. (x+y)(x-y)=x2-y2B. x2y-xy2-1=xy(x-y)-1C. a2-4ab+4b2=(a-2b)2D. ax+ay+a=a(x+y)4.如图,△ABC中,∠A=90°,AB=AC,BD平分∠ABE,DE⊥BC,如果BC=10 cm,则△DEC的周长是()A. 8 cmB. 10 cmC. 11 cmD. 12 cm5.若(x+a)(x+2)的计算结果中不含x的一次项,则a的值是()A. B. C. 2 D. -26.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A. 角的内部到角的两边的距离相等的点在角的平分线上B. 角平分线上的点到这个角两边的距离相等C. 三角形三条角平分线的交点到三条边的距离相等D. 以上均不正确7.如图,AC⊥BD于点P,AP=CP,增加下列一个条件:①BP=DP;②AB=CD;③∠A=∠C.其中能判定△ABP≌△CDP的条件有( )A. 0个B. 1个C. 2个D. 3个8.计算(-2)2018+(-2)2019等于( )A. -24037B. -2C. -22018D. 220189.如图,把一块含有30°角的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=50°,那么∠AFE的度数为()A. 10°B. 20°C. 30°D. 40°10.如果多项式,则p的最小值是A. 2005B. 2006C. 2007D. 200811.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如图2.照此下去,至多能进行( )步.A. 3B. 4C. 5D. 612.如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,每小题4分,共24分)13.已知一个正多边形有一个内角是120°,那么这个正多边形是正_____边形.14.若4x2+4x+a是完全平方式,则常数a的值是________.15.如图,在△ABC中,AB=CB,∠ABC=90°,AD⊥BD于点D,CE⊥BD于点E,若CE=5,AD=3,则DE的长是________.16.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=3,连接DE,动点P从点B出发,以每秒1个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为__________秒时.△ABP和△DCE全等.17.设a1,a2,a3,……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数),已知a1=1,4a n=(a n+1-1)2-(a n-1)2,则a2018=___________.18.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图中C型黑白一样)按某种规律组成的一个大正方形。

2018-2019学年度八年级上期中数学试卷

2018-2019学年度八年级上期中数学试卷

八年级(上)期中数学试卷一、选择题(每题4分,共48分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,143.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个4.等腰三角形的一个角是50°,则它的底角是()A.50°B.50°或65°C.80°D.65°5.和点P(2,﹣5)关于x轴对称的点是()A.(﹣2,﹣5)B.(2,﹣5)C.(2,5)D.(﹣2,5)6.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形7.已知有两边相等的三角形两边长分别为6cm、4cm,则该三角形的周长是()A.16cm B.14cm C.16cm或14cm D.10cm8.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF=()度.A.58°B.68°C.78°D.32°9.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个10.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60°B.75°C.90°D.95°11.若等腰三角形的两边长分别是3和6,则这个三角形的周长是()A.12 B.15 C.12或15 D.912.下列叙述正确的语句是()A.等腰三角形两腰上的高相等B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等D.两腰相等的两个等腰三角形全等二、填空题(每题4分,共24分)13.若点P(m,m﹣1)在x轴上,则点P关于x轴对称的点为.14.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.15.如图,PM=PN,∠BOC=30°,则∠AOB=.16.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件时,就可得到△ABC ≌△FED.(只需填写一个即可)17.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=度.18.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.三、解答题19.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出A1,B1,C1的坐标(直接写出答案),A1;B1;C1.(3)△A1B1C1的面积为.20.如图,∠1=∠2,∠C=∠D,求证:AC=AD.21.已知:如图,AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.22.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.23.如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.24.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.2014-2015学年甘肃省武威十一中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题4分,共48分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个考点:轴对称图形.分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解答:解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,14考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵5+6<11,∴不能组成三角形,故A选项错误;B、∵8+8=16,∴不能组成三角形,故B选项错误;C、∵5+4<10,∴不能组成三角形,故C选项错误;D、∵6+9>14,∴能组成三角形,故D选项正确.故选:D.点评:本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.3.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个考点:全等图形.专题:常规题型.分析:根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.解答:解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.点评:本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.4.等腰三角形的一个角是50°,则它的底角是()A.50°B.50°或65°C.80°D.65°考点:等腰三角形的性质.专题:分类讨论.分析:分这个角为底角和顶角两种情况讨论即可.解答:解:当底角为50°时,则底角为50°,当顶角为50°时,由三角形内角和定理可求得底角为:65°,所以底角为50°或65°,故选B.点评:本题主要考查等腰三角形的性质,分两种情况讨论是解题的关键.5.和点P(2,﹣5)关于x轴对称的点是()A.(﹣2,﹣5)B.(2,﹣5)C.(2,5)D.(﹣2,5)考点:关于x轴、y轴对称的点的坐标.分析:点P(m,n)关于x轴对称点的坐标P′(m,﹣n),然后将题目已经点的坐标代入即可求得解.解答:解:根据轴对称的性质,得点P(2,﹣5)关于x轴对称的点的坐标为(2,5).故选:C.点评:此题考查了平面直角坐标系点的对称性质,属于对一般知识性内容的考查,难度不大,学生做的时候要避免主观性失分.6.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形考点:全等图形.分析:综合运用判定方法判断.做题时根据已知条件,结合全等的判定方法逐一验证.解答:解:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选B.点评:本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.7.已知有两边相等的三角形两边长分别为6cm、4cm,则该三角形的周长是()A.16cm B.14cm C.16cm或14cm D.10cm考点:三角形三边关系.分析:分腰长为6cm,4cm两种情况进行分析.解答:解:由题意知,有两种组合:6,6,4和4,4,6,这两种情况下的三角形都存在,∴周长可以为16cm或14cm.故选C.点评:解决本题的关键是得到相应的三角形的第三边.8.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF=()度.A.58°B.68°C.78°D.32°考点:三角形的外角性质;三角形内角和定理.分析:利用三角形外角的性质及三角形的内角和定理计算.解答:解:∵FD⊥BC,∠AFD=158°,∴∠CFD=180°﹣∠AFD=180°﹣158°=22°,则∠C=180°﹣∠FDC﹣∠CFD=180°﹣90°﹣22°=68°.∵∠B=∠C,DE⊥AB,∴∠EDB=180°﹣∠B﹣∠DEB=180°﹣68°﹣90°=22°,则∠EDC=∠B+∠DEB=∠B+90°.∵∠EDC=∠EDF+90°,∴∠EDF=∠B=68°.故选B.点评:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.9.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质.分析:根据全等三角形的判定定理,可以推出①②③为条件,④为结论,依据是“SAS”;①②④为条件,③为结论,依据是“SSS”.解答:解:当①②③为条件,④为结论时:∵∠A′CA=∠B′CB,∴∠A′CB′=∠ACB,∵BC=B′C,AC=A′C,∴△A′CB′≌△ACB,∴AB=A′B′,当①②④为条件,③为结论时:∵BC=B′C,AC=A′C,AB=A′B′∴△A′CB′≌△ACB,∴∠A′CB′=∠ACB,∴∠A′CA=∠B′CB.故选B.点评:本题主要考查全等三角形的判定定理,关键在于熟练掌握全等三角形的判定定理.10.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60°B.75°C.90°D.95°考点:翻折变换(折叠问题).分析:根据图形,利用折叠的性质,折叠前后形成的图形全等.解答:解:∠ABC+∠DBE+∠DBC=180°,且∠ABC+∠DBE=∠DBC;故∠CBD=90°.故选C.点评:本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.11.若等腰三角形的两边长分别是3和6,则这个三角形的周长是()A.12 B.15 C.12或15 D.9考点:等腰三角形的性质.专题:应用题;分类讨论.分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解答:解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.12.下列叙述正确的语句是()A.等腰三角形两腰上的高相等B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等D.两腰相等的两个等腰三角形全等考点:等腰三角形的性质;全等三角形的判定.分析:根据三角形的面积,等腰三角形三线合一的性质,全等三角形的判定对各选项分析判断后利用排除法求解.解答:解:A、根据三角形的面积两腰相等,所以腰上的高相等,故本选项正确;B、必须是等腰三角形底边上的高,底边上的中线和顶角的平分线互相重合,故本选项错误;C、顶角相等,但腰长不一定相等,所以三角形不一定相等,故本选项错误;D、两腰相等,但顶角不一定相等,故本选项错误.故选A.点评:本题综合考查了等腰三角形的性质和全等三角形的判定;熟练掌握并灵活运用这些知识是解决本题的关键.二、填空题(每题4分,共24分)13.若点P(m,m﹣1)在x轴上,则点P关于x轴对称的点为(1,0).考点:关于x轴、y轴对称的点的坐标.分析:根据x轴上的点的纵坐标为0列式求出m的值,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.解答:解:∵点P(m,m﹣1)在x轴上,∴m﹣1=0,解得m=1,∴点P的坐标为(1,0),∴点P关于x轴对称的点为(1,0).故答案为:(1,0).点评:本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.考点:多边形内角与外角.专题:计算题.分析:任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.解答:解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.点评:本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.15.如图,PM=PN,∠BOC=30°,则∠AOB=60°.考点:角平分线的性质.分析:根据角平分线性质的判定得出∠AOC=∠BOC,即可求出答案.解答:解:∵PM⊥OA,PN⊥OB,PM=PN,∴∠AOC=∠BOC=30°,∴∠AOB=60°,故答案为:60°.点评:本题考查了角平分线性质的应用,注意:到角两边距离相等的点在角的平分线上.16.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F或AB∥EF时,就可得到△ABC≌△FED.(只需填写一个即可)考点:全等三角形的判定.专题:证明题.分析:要得到△ABC≌△FED,现有条件为两边分别对应相等,找到全等已经具备的条件,根据全等的判定方法选择另一条件即可得等答案.解答:解:AD=FC⇒AC=FD,又AB=EF,加BC=DE就可以用SSS判定△ABC≌△FED;加∠A=∠F或AB∥EF就可以用SAS判定△ABC≌△FED.故答案为:BC=ED或∠A=∠F或AB∥EF.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.17.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=30度.考点:线段垂直平分线的性质.分析:由AB=AC,∠A=40°,即可推出∠C=∠ABC=70°,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40°,根据图形即可求出结果.解答:解:∵AB=AC,∠A=40°,∴∠C=∠ABC=70°,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=30°.故答案为30°.点评:本题主要考查等腰三角形的性质,线段垂直平分线的性质,角的计算,关键在于根据相关的性质定理推出∠ABC和∠ABD的度数.18.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15.考点:轴对称的性质.分析:P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.解答:解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:15点评:本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.三、解答题19.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出A1,B1,C1的坐标(直接写出答案),A1(﹣1,2);B1(﹣3,1);C1(2,﹣1).(3)△A1B1C1的面积为 4.5.考点:作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标;(3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.解答:解:(1)△A1B1C1如图所示;(2)△A1(﹣1,2),B1(﹣3,1),C1(2,﹣1);(3)△A1B1C1的面积=5×3﹣×1×2﹣×2×5﹣×3×3,=15﹣1﹣5﹣4.5,=15﹣10.5,=4.5.故答案为:(2)(﹣1,2),(﹣3,1),(2,﹣1);(3)4.5.点评:本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.如图,∠1=∠2,∠C=∠D,求证:AC=AD.考点:全等三角形的判定与性质.专题:证明题.分析:利用邻补角的性质得到∠ABC=∠ABD,然后结合已知条件,利用AAS证得△ABC≌△ABD,则该全等三角形的对应边相等:AC=AD.解答:证明:如图,∵∠1=∠2,∴∠ABC=∠ABD,∴在△ABC与△ABD中,,∴△ABC≌△ABD(AAS),∴AC=AD.点评:本题考查了全等三角形的判定与性质.在证明本题中的两个三角形全等时,要注意挖掘出隐含在题中的已知条件:AB是公共边.21.已知:如图,AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.考点:全等三角形的判定;全等三角形的性质.分析:根据SSS推出△ABD≌△CDB,根据全等三角形性质推出即可.解答:证明:在△ABD和△CDB中,∴△ABD≌△CDB(SSS),∴∠A=∠C.点评:本题考查了全等三角形性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.22.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.考点:全等三角形的判定与性质.专题:证明题.分析:(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD﹣DE.解答:(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.考点:等边三角形的判定与性质;全等三角形的判定与性质;直角三角形的性质.专题:计算题;证明题.分析:(1)根据DE⊥AB,DF⊥AC,AB=AC,求证∠B=∠C.再利用D是BC的中点,求证△BED ≌△CFD即可得出结论.(2)根据AB=AC,∠A=60°,得出△ABC为等边三角形.然后求出∠BDE=30°,再根据题目中给出的已知条件即可算出△ABC的周长.解答:(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)解:∵AB=AC,∠A=60°,∴△ABC为等边三角形.∴∠B=60°,∵∠BED=90°,∴∠BDE=30°,∴BE=BD,∵BE=1,∴BD=2,∴BC=2BD=4,∴△ABC的周长为12.点评:此题主要考查学生对等边三角形的判定与性质、全等三角形的判定与性质直角三角形的性质等知识点的理解和掌握.24.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.考点:全等三角形的判定与性质.分析:(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.解答:(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.点评:此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握判定与性质是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

秋季学期期中检测试题
八年级 数学
(满分:120分,答题时间:120分钟)
一、选择题(每题3分,共39分)
1、下列各组数中都是无理数的为…………………………………………( )
A 、0.07,3
2
,π;
B 、0.∙
7,π,2;
C 、2,6,π;
D 、0.1010101……101,π,3
2、以下列各组数据为边长作三角形,其中能组成直角三角形的是……………( ) A 、
3、5、3 B 、
4、6、8 C 、7、24、25 D 、6、12、13
3、下列式子正确的是( )
A 、
16=±4 B 、±16 =4 C 、2
)4(- =-4 D 、±2
)4(- =±4
4、下列计算正确的是 ……………………………………………………..( )
A .632=⨯
B .532=+
C .248=
D .224=-
5、下列说法不正确的是 ……………………………………………………( )
A .1的平方根是±1
B .-1的立方根是-1
C .±2是2的平方根
D .-3是2)3(-的平方根
6、下面平行四边形不具有的性质是…………………………………………( ) A 、对角线互相平分 B 、两组对边分别相等 C 、 对角线相等 D 、相邻两角互补
7、下列图形中,既是轴对称图形,又是中心对称图形(通过绕着整个图形的中心旋转180后能与原图重合的图形)的是…………………………………………( )
A B C D
8、下列说法正确的是………………………………………………………( )
A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小
B.平移和旋转的共同点是改变图形的位置
C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离
D. 经过旋转,对应角相等,对应线段一定相等且平行 9、如图1,等边△ABC 边长为3cm ,将△ABC 沿AC 向右平移
1cm ,得到△DEF ,则四边形ABEF 的周长………………………( ) A .11cm B .12cm C .13cm D .14cm
10、如图2,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将ΔBCE 绕点C 顺时针方向旋转90°得到ΔDCF ,连接EF ,若∠BEC=60°,则∠ EFD 的度数为( )
A 、10°
B 、15°
C 、20°
D 、25°
11、矩形具有而菱形不一定具有的性质是 ┅┅┅┅┅…….( )
A. 对角线互相平分
B.对角线相等
C. 四个内角都相等
D. 对角线互相垂直
12、如图3,一圆柱高8cm ,底面半径2cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是 ┅┅┅………………………………………( ) A. 20cm B. 10cm C. 14cm D. 无法确定
13、如图4,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另
一端点落在数轴正半轴的点A 处,则点A 为…………………( ) A.2
1
1
B.1.4
C.3
D.2 二、填空题选择题(每题3分,共30分) 14、9的算术平方根是 。

15、求值:____________
83
=-。

16、比较大小:
32。

17、一条线段AB 的长是3cm ,将它沿水平方向平移4cm 得到线段CD ,则CD 的长是 。

18、一个矩形的对角线长10cm ,一边长6cm,则其周长是__________,面积是________。

19、 大于-5且小于3的所有整数是 .
20、81的平方根是 ;64的立方根是 . 21、平行四边形ABCD 中,∠A+ ∠C=100゜,则∠B= 。

22、若菱形的对角线长分别是6cm 、8cm ,则其周长是 ,面积是 。

23、如右图5,四边形ABCD 是平行四边形,要使它变为矩形, 需要添加的条件是 (写一个即可). 三、解答题
24、化简:(每小题6分,共24分) (1)、123
1
27+-
(2) (3)、
(
)
2
15+
(4)
图3

图4
图5
25、(6分)在右图6的网格中按要求画出图象: (1)画出△ABC 向下平移5格后的△A 1B 1C 1。

(2)画出△ABC 以O 点为旋转中
心,沿顺时针方向旋转180○后 的△A 2B 2C 2。

26、(6分)一艘帆船由于风向的原因先向正东方 向航行了160千米,然后向正北方向航行 了120千米,这时它离出发点有多远?
27、(7分)如图7,在平行四边形ABCD 中,E ,F 是对角线AC 上的点,且AE CF 则四边形EBFD
是平行四边形吗? 说说你的理由.
28、(8分) 如图8,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥DB ,DE 、CE 交于E ,那么四边形DOCE 是菱形吗?请你写出说明过程。

★★选做题:请在以下2题中选做一题,两题同时做只给一题的分。

29、(8分)如图9,一架梯子的长度为25米,如图斜靠在墙上,梯子底端离 墙为7米。

(1)这个梯子顶端离地面有多高?
(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向滑 动了几米?
30. (7分) 如图10,在平行四边形ABCD 中,O 是AC ,BD 的交点,点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,四边形EFGH 是平行四边形吗?说说你的理由。

A B
C
E
F 图7
图10
图6
图9。

相关文档
最新文档