12整式的乘除复习导学案

合集下载

整式的乘除与因式分解复习导学案

整式的乘除与因式分解复习导学案

§ 12-13整式的乘除与因式分解复习【学习目标】1. 了解整数指数幕的意义和基本性质。

2. 会进行简单的整式乘除运算,能进行整式的加、减、乘、除混合运算3. 能运用乘法公式简便运算。

4•会用提取公因式法、公式法(直接用公式不超过二次)进行因式分解。

【问题探究】1. (2009重庆)下列计算错误的是( ) A 2m 3n 二 5mn; B. a^:' a 2 二 a 4;C. x 2 3 二 x 6;D. aLa 2 二 a 3;2 .(2009烟台).计算-(-3a 2b3 )4的结果是8 12 6 7 A.81a b ; B. 12a b ;C. -12a 6b 7;D. -81a 8b 12;3.. 计算(2011-江0的结果是 (A. 0;B. 1;C. 2011 -二;D.二-2011.考上*—. 宣必沖窃处击(aD ) ___ = ; a円 a亠—丁―. 【问题导学】•体系构建整式的考点二乘法公式 a+b a-b = ______ ;2 2(a+b ) =; (a-b ) =4. 下列运算结果错误的是 ()2 2 2 2 2A x y x - y = x - y ; B. a- b \ - a - b ;2 2 2C. -x-2 x 4x 4;D. x 2 x-3 = x -x-6;5. 在边长为a 的正方形中挖去一个边长为 b 的小正方形(a . b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可 考点三整式的运算乘法法则:;除法法则:;混合运算顺序:先乘方,再,最后,有括号的先计算的,注意乘法公式简化运算。

7. (2009泸州)化简-3x 2 2x 3的结果是( )A. -6x 5;B. -3x 5;C. 2x 6;D. 6x 5.38.. 计算(2x ) U 的结果正确的是( ).A.8x 2;B. 6x 2;C. 8x 3;D. 6x 3.9.计算:ab 2 L -a 3b 「丨 5ab ;考点四因式分解 以验证()A .B .C . 2 2 2(a b)二a 2ab b2 2 2(a -b) -a -2ab b2 2a -b = (a b)(a -b)2 2(a 2b)(a _b) =a ab -2b a2011- 20102.(用乘法公式)D . b图乙10.下列各式从左到右的变形中,是因式分解的是()2A.x 1 x 2 = x 3x 2;B.2a b c = 2ab 2ac;2 2C.m -n mn m-n;2D.x「4 2x = (x 2)(x「2) 2x11.把多项式x3-2x2• x分解因式结果正确的是()2 2A . x(x -2x)B . x (x「2)2C. x(x 1)(x -1)D. x(x -1)12.因式分解:(1)9a-a3 = ________ ;(2) 2x3 -6x2 +4x = _________ .【达标检测】—、填空题1.(2010大理)下列运算中,结果正确的是()6 3 2 2 22 4A. a ' a =a ;B. 2ab i;=2a b ;C. aLa2 a3;D. a b $ = a2 b2;2.下列计算结果正确的是. ).A. -2x2y3Ltxy =「2x3y4;B. 3x2y -5xy2=「2x2y;C.28x4y2,7x3y =4xy;D. -3a-2 3a-2 i; = 9a2-4.3.把x2 3x c分解因式得x2 3x x 1 x 2 ,则c的值为()A. 2;B. 3;C. -2;D. -3.4 . (2009 枣庄)若 m n =3,则 2m2 4mn 2n2 -6 的值为()A. 12;B. 6;C. 3;D. 0.二、选择题5.(2010 清远)计算:a* + a2=_;6.(2009贺州)计算:f-2^\-a3-^= ;\4丿7.(2009 齐齐哈尔)已知 10m =2,10n =3,则 103m '2^ _________ 三、解答题8.先化简,再计算:[】xy 2 xy-2 -2右-2八xy ,其中x =10, y =-9.(2009衢州)给出三个整式a2、b2和2ab.(1)当 a =3,b =4 时,求 a2 b2 2ab 的值;(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解,请写出你所选的式子及因式分解的过程。

华东师大版八年级上册第12章整式的乘除复习导学案设计(无答案)

华东师大版八年级上册第12章整式的乘除复习导学案设计(无答案)

第12章 整式的乘除复习导学案一、学习目标:1. 对全章内容进行梳理,突出知识间的内在联系和递进关系. 2. 进一步提高学生综合应用整式乘除法公式进行运算的能力. 二、知识结构:三、专题演练 ㈠ 幂的运算例1 计算下列各式:⑴ 53()x x x ⋅⋅- ⑵ 112(2)(2)(2)n n n x x x -++⋅+-+⑶ 41()n n a - ⑷ 4223()()y y -⋅⑸ 5[()()]x y x y +- ⑹ 2212()m n x y +-⋅例2 计算下列各式:⑴ 3244224()4()x x x x x ⋅⋅+-+- ⑵ 825(0.125)2-⨯ ⑶ 12(1990)()3980nn +⋅㈡ 整式的乘法 例3 计算:⑴ 322[2()][3()][()]3a b a b a b ----- ⑵ 113(245)n n n n x x x x -++-+例4 计算:⑴ 2(325)(23)x x x ---+ ⑵ 22(2)(42)x y x xy y -++㈢ 乘法公式 例5 计算:⑴ (3)(3)a ab ab a ---+ ⑵ 98102⨯⑶ 24(12)(12)(14)(116)x x x x -+++ ⑷ ()()a b c a b c +--+例6 计算:⑴ 298 ⑵ 2(1)(1)(1)y y y --+-- ⑶ 2(23)x y z +-㈣ 整式的除法例7 先化简,再求值:42622322[5(4)(3)()](2)a a a a a a ---÷÷-,其中5a =-㈤ 因式分解 例8 分解因式:⑴ 324(1)2(1)q p p -+- ⑵ 221()()()m m m ab x y a b x y ab x y +-+---⑶2a ab ac bc -+- ⑷ 22412925x xy y -+-五、能力提升 1.已知212448x x ++=,求x 的值.2.已知4,6x y x y +=-=,求代数式22()(2)3xy y y y xy x xy +-+-的值.3.已知一个多项式除以多项式243a a +-,所得商式是21a +,余式为28a +,求这个多项式.4. 已知2(8)a pa ++与2(3)a a q -+的乘积中不含有3a 和2a 项,求p 、q 的值.。

第12章整式的乘除复习导学案

第12章整式的乘除复习导学案

第12章 整式的乘除复习导学案一、学习目标:1. 对全章内容进行梳理,突出知识间的内在联系和递进关系. 2. 进一步提高学生综合应用整式乘除法公式进行运算的能力. 二、知识结构:三、专题演练 ㈠ 幂的运算例1 计算下列各式:⑴ 53()x x x ⋅⋅- ⑵ 112(2)(2)(2)n n n x x x -++⋅+-+⑶ 41()n n a - ⑷ 4223()()y y -⋅⑸ 5[()()]x y x y +- ⑹ 2212()m n x y +-⋅例2 计算下列各式:⑴ 3244224()4()x x x x x ⋅⋅+-+- ⑵ 825(0.125)2-⨯ ⑶ 12(1990)()3980nn +⋅㈡ 整式的乘法 例3 计算:⑴ 322[2()][3()][()]3a b a b a b ----- ⑵ 113(245)n n n n x x x x -++-+例4 计算:⑴ 2(325)(23)x x x ---+ ⑵ 22(2)(42)x y x xy y -++㈢ 乘法公式 例5 计算:⑴ (3)(3)a ab ab a ---+ ⑵ 98102⨯⑶ 24(12)(12)(14)(116)x x x x -+++ ⑷ ()()a b c a b c +--+例6 计算:⑴ 298 ⑵ 2(1)(1)(1)y y y --+-- ⑶ 2(23)x y z +-㈣ 整式的除法例7 先化简,再求值:42622322[5(4)(3)()](2)a a a a a a ---÷÷-,其中5a =-㈤ 因式分解 例8 分解因式:⑴ 324(1)2(1)q p p -+- ⑵ 221()()()m m m ab x y a b x y ab x y +-+---⑶2a ab ac bc -+- ⑷ 22412925x xy y -+-五、能力提升 1.已知212448x x ++=,求x 的值.2.已知4,6x y x y +=-=,求代数式22()(2)3xy y y y xy x xy +-+-的值.3.已知一个多项式除以多项式243a a +-,所得商式是21a +,余式为28a +,求这个多项式.4. 已知2(8)a pa ++与2(3)a a q -+的乘积中不含有3a 和2a 项,求p 、q 的值.。

华东师大版八年级上册 第12章 整式的乘除 复习学案

华东师大版八年级上册 第12章 整式的乘除 复习学案

八年级数学上册导学案22命题人:刘英明 审题人:曹金满 课型:复习课课题:第12章 整式的乘除(复习Ⅱ)强化训练类型一:单项式与多项式的次数1.已知m y x 27-是7次单项式,求m 的值.22128b a b a a m +++2.已知单项式3421y x -的次数与多项式22128b a b a a m +++的次数相同,求m 的值. 3.若单项式n y x n --12)2(是关于y x ,的三次单项式,求n 的值.4.已知c b a 、、满足:(1)022)3(52=-++b a ;(2)c b a y x ++-1231是7次单项式; 求多项式()22222234⎡⎤------⎣⎦a b a b abc a c a b a c abc 的值. 类型二:同类项1.已知35y x m -与n y x 34能合并,求n m 的值.2.若2222b a m +与3343-+-n m b a 是同类项,求n m +的值. 3.如果b a m 3--与n ab 431是同类项且m 与n 互为倒数,求1141)44(3-----m m mn n 的值. 类型三:整式的加减1.已知三角形的第一边长是b a 2+,第二边比第一边长)2(-b ,第三边比第二边小5. 求三角形的周长。

2.已知222c b a A -+=,222324c b a B ++-=,且A +B +C =0.求:(1)多项式C (2)若311=-==c b a ,,,求A +B 的值.3.已知xyz x A -=32,xyz z y B +-=23,xyz y x C -+-=222,且01)1(2=+-++z y x ; 求:A -(2B -3C)的值.01)1(2=+-++z y x4.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭⎫ ⎝⎛-+-22213y xy x 2222123421y x y xy x +⎪⎭⎫ ⎝⎛-+--222123421y x xy x -= ⎝⎛-+--,阴影部分即为被墨迹弄污的部分. 求:被墨汁遮住的一项.类型四:缺项与无关1.多项式83322-+--xy y kxy x 化简后不含xy 项,求k 值.2.若多项式222)25(23mx x y x +-+-的值与x 的值无关,求m 的值.3.若)192()72(22-+--+-+y x bx y ax x 的值与字母x 的取值无关,求b a 、的值.4.试说明:不论x 取何值代数式7)13()345(223x x x x x x --+----++67425(32323x x x x x +---++)6()132()345(323223x x x x x x x x ++--+---++的值是不会改变的. 类型五:整体代入法1.当2=+b a 时,求代数式2()2()3a b a b +-++的值.2.已知532++x x 的值为3,求1932-+x x 的值.3.已知41=+-b a b a ,求代数式)(3)(2b a b a b a b a -+-+-的值. 4.已知3=+y x xy ,求代数式y xy x y xy x -+-+-3353的值. 类型六:化简绝对值1.若0<+b a ,化简b a b a ----+312.已知有理数c b a 、、在数轴上的位置如图所示且b a =.化简dc d c b a a -+--+- 3.当00<>y x ,时;化简 (1) x y y 21125++-+-;(2)182356-----y y x y . 类型七:自定义计算1.“*”是新规定的这样一种运算法则:ab a b a 22+=*比如3)2(323)2(32-=-⨯⨯+=-*.(1)试求)1(2-*的值;(2)若22=*x ,求x 的值;(3)若9)1()2(+=**-x x ,求x 的值.2.对正整数b a ,,b a ∆等于由a 开始的的连续b 个正整数之和,如:43232++=∆, 又如:26876545=+++=∆.若151=∆x ,求x 的值.。

第一章《整式的乘除》复习导学案

第一章《整式的乘除》复习导学案

余江县第四中学---数学导学案=⎪⎭⎫ ⎝⎛p a 1第一章《整式的乘除》复习导学案【教学过程】:一、复习回顾1、幂的运算(1)同底数幂的乘法:a m ﹒a n = (m 、n 为正整数)推广:=⋅⋅p n m a a a (m 、n 、p 都为正整数)逆用:a m+n = (m 、n 、都为正整数) 变形: (2)幂的乘方(a m )n = (m 、n 为正整数) 推广: (m 、n 、p 都为正整数)逆用:()mn a = (m 、n 为正整数)(3)积的乘方:(ab )n = (n 为正整数)推广:()n abc = (n 为正整数)逆用:=⋅n n b a (n 为正整数)(4)同底数幂的除法:a m ÷a n = (a ≠0,m 、n 为正整数,n m >) 推广:=÷÷p n m a a a (a ≠0,m 、n 、p 为正整数,p n m +>)逆用:a m-n = (a ≠0,m 、n 为正整数,n m >)(5)零指数幂:a 0= (注意考底数范围a ≠0). 0的0次幂无意义.(6)负指数幂:=-p a (根据定义)= (根据底倒指反) (a ≠0,p 为正整数) ※0的负指数幂无意义. 逆用: (a ≠0,p 为正整数)2、整式的乘法:(1)、单项式乘以单项式:(2)、单项式乘以多项式:(3)、多项式乘以多项式:3.整式乘法公式: ()[]=p n m a ()⎩⎨⎧=n a -()⎩⎨⎧=n a -b ()()=-+b a b a =-22b a余江县第四中学---数学导学案(1)、平方差公式: 逆用: (2)、公式变形:①系数变化:②符号变化: ③指数变化:()()=-+3232b a b a ④位置变化:()()=+-+a b a b公式变形:①系数变化: ②符号变化:()()=--+-1515x x③指数变化:()()=-+3232b a b a④位置变化:()()=+-+a b a b⑤连用公式:()()()=++-3932a a a 完全平方公式: 逆用:变形: ①=+22b a ()2b a + ab 2=()2b a - ab 2 ②ab 2=()2b a + ()22b a +=()22b a + ()2b a - ③()2b a +=()2b a -+()2b a -=()2b a +- 4、整式的除法:(1)、单项式除以单项式:(2)、多项式除以单项式:=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+b a b a 214214=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+b a b a 214214()()=--+-1515x x ()=+2b a ()=-2b a =++222a b ab =+-222b ab a二、课堂练习1.计算① n m )5.0()21(⨯ ②232)2(c b a - ③()()3222a -a -⋅④333)32()31()9(-⋅⋅- ⑤225)(--+-⋅÷b b b n n ⑥()()()x -22-x 2-x 32⋅⋅2.解答①已知510=a ,210b =,求b a 3210+的值。

整式的乘除复习学案

整式的乘除复习学案

七年级数学学科导学案一、 课题:《整式的乘除复习学案》 二、 复习目标:1、 整式的混合运算,提高整式的运算能力;2、 整式的综合应用,对全章知识体系的梳理和把握;3、 通过实践,培养学习数学的严谨态度。

学习重点:整式的综合应用,特别是乘法公式的灵活应用。

学习难点:乘法公式的灵活应用。

知识点: 三、 教学过程【温故知新】m n1、同底数幕的乘法,底数不变,指数相加。

即:a a都是正整数)。

C 5C 6(1) 3 3a 7 a 4 (1) — 5、整式的乘法:(1) 单项式与单项式相乘,把它们的系数、相同字母的幕分别相乘, 其余字母连同它的指数不变,作为积的因式。

2xy 2z 1 xy ____________如: 3。

(2) 单项式与多项式相乘,用这个单项式去乘以这个多项式的每一 项。

(注意符号)反思 栏1 2mb2、幕的乘方,底数不变,指数相乘。

整数)。

即:a mn a mn m,n 都是正32 .55(1) 2 = _________ (2) b—3、积的乘方等于每一个因数乘方的积。

r n J即:a bn2n 1x填空:(1)3x 2(3)1?xy4、同底数幕相除,底数不变,指数相减。

0,m, n 都是正整数,且 即:m > n ), (a0, P 是正整数)4(3) xyxy4ab 2ab 23a 2b(3)多项式与多项式相乘,用一个多项式的每一项去乘以另一个多 项式的每一项。

2x y x 2y6平方差公式:两数和与这两数差的积,等于它们的平方差。

(1) 有两项(2) 一项相同另一项互为相反数(3)变形为相同的在第一项, 互为相反数的在第二项(4)多项的要运用整体法。

2 .2a b o 即:a b a b / 八 5 8x 5 8x (1)7、完全平方公式: a b 2a 22a ----------- (2) (a-b+c) (a+b-c)=(1)和的完全平方:(2 )差的完全平方:b b 2a b 242(1) 2x同时,也可以用观察情境来推导,如图所示(2)mn2ab b 2。

八年级数学上册第12章整式的乘除12.2整式的乘法12.2.3多项式与多项式相乘导学案华东师大版(

八年级数学上册第12章整式的乘除12.2整式的乘法12.2.3多项式与多项式相乘导学案华东师大版(

八年级数学上册第12章整式的乘除12.2 整式的乘法12.2.3 多项式与多项式相乘导学案(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册第12章整式的乘除12.2 整式的乘法12.2.3 多项式与多项式相乘导学案(新版)华东师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册第12章整式的乘除12.2 整式的乘法12.2.3 多项式与多项式相乘导学案(新版)华东师大版的全部内容。

12。

2。

3 多项式与多项式相乘【学习目标】1、探索并理解多项式与多项式相乘的法则,并会熟练运用它们进行运算.2、主动参与到探索过程中去,逐步形成独立思考、主动探索的习惯【学习重难点】理解多项式与多项式相乘的法则,并会熟练运用它们进行运算【学习过程】一、课前准备1、回忆单项式乘以单项式和单项式乘以多项式的运算法则;2、利用法则进行计算:①263x xy= ; ②22(3)ab ab-=③2(4)(2)a b b--=;④212()2x x-=;⑤5(20.2)ab a b-+=二、学习新知自主学习:1、问题:为了扩大绿地面积,要把街心花园的一块长a米,宽m米的长方形绿地增长b米,加宽n米,求扩地以后的面积是多少?思考:可以用几种方法表示扩大后绿地的面积?不同的表示方法之间有什么关系?方法一:这块花园扩地后长米,宽米,因而面积为米2.方法二:这块花园现在是由小块组成,它们的面积分别为: 米2、米2、米2、米2,故这块绿地的面积为米2.由此可得:和表示的是同一块绿地面积。

所以有:= ;2、由上题可得,多项式乘多项式的公式:(a+b)(m+n)= + + +多项式与多项式相乘:理解升华1。

第12章整式的乘除复习导学案

第12章整式的乘除复习导学案

第12章 整式的乘除复习导学案一、学习目标:1. 对全章内容进行梳理,突出知识间的内在联系和递进关系. 2. 进一步提高学生综合应用整式乘除法公式进行运算的能力.三、专题演练 ㈠ 幂的运算例1 计算下列各式:⑴ 53()x x x ⋅⋅- ⑵ 112(2)(2)(2)n n n x x x -++⋅+-+⑶ 41()n n a - ⑷ 4223()()y y -⋅⑸ 5[()()]x y x y +- ⑹ 2212()m n x y +-⋅例2 计算下列各式: ⑴ 3244224()4()x x x x x ⋅⋅+-+- ⑵ 825(0.125)2-⨯ ⑶ 12(1990)()3980nn +⋅㈡ 整式的乘法 例3 计算:⑴ 322[2()][3()][()]3a b a b a b ----- ⑵ 113(245)n n n n x x x x -++-+例4 计算:⑴ 2(325)(23)x x x ---+ ⑵ 22(2)(42)x y x xy y -++㈢ 乘法公式 例5 计算:⑴ (3)(3)a ab ab a ---+ ⑵ 98102⨯⑶ 24(12)(12)(14)(116)x x x x -+++ ⑷ ()()a b c a b c +--+例6 计算:⑴ 298 ⑵ 2(1)(1)(1)y y y --+-- ⑶ 2(23)x y z +-㈣ 整式的除法例7 先化简,再求值:42622322[5(4)(3)()](2)a a a a a a ---÷÷-,其中5a =-㈤ 因式分解 例8 分解因式:⑴ 324(1)2(1)q p p -+- ⑵ 221()()()m m m ab x y a b x y ab x y +-+---⑶2a ab ac bc -+- ⑷ 22412925x xy y -+-五、能力提升 1.已知212448x x ++=,求x 的值.2.已知4,6x y x y +=-=,求代数式22()(2)3xy y y y xy x xy +-+-的值.3.已知一个多项式除以多项式243a a +-,所得商式是21a +,余式为28a +,求这个多项式.4. 已知2(8)a pa ++与2(3)a a q -+的乘积中不含有3a 和2a 项,求p 、q 的值.。

第12章整式的乘除教案

第12章整式的乘除教案

第(8)课时教学过程设计分析备注13.1 幂的运算1、同底数幂的乘法教学目标1.熟记同底数幂的乘法的运算性质,了解法则的推导过程。

2.能熟练地进行同底数幂的乘法运算。

3.通过法则的习题教学,训练学生的归纳能力,感悟从未知转化成已知的思想。

4.会逆用公式a m a n=a m+n。

教学重难点重点:掌握并能熟练地运用同底数幂的乘法法则进行乘法运算。

难点:对法则推导过程的理解及逆用法则。

教学过程一、复习活动,1.填空。

(1)2×2×2×2×2=(),a·a·…·a=( )m个(2)指出各部分名称。

2.应用题计算。

(1)1平方千米的土地上,一年内从太阳中吸收的能量相当于燃烧105千克煤所产生的热量。

那么105平方千米的土地上,一年内从太阳中吸收的能量相当于燃烧多少千克煤?(2)卫星绕地球运行的速度为第一宇宙速度,达到7.9×l05米/秒,求卫星绕地球3×103秒走过的路程?由这两个问题引出本节课的学习内容:同底数幂的乘法。

二、探索,概括。

1.下述题目,要求学生说出每一步变形的根据之后,再提问让学生直接说出23×25=( ),36×37=( ),由此可发现什么规律?(1)23×22=( )×( )=2( ),(2)53×52=( )×( )=5( ),(3)a3a4=( )×( )=a( )。

2.如果把a3×a4中指数3和4分别换成字母m和n(m、n为正整数),你能写出a m a n的结果吗?你写的是否正确?(让学生猜想,并验证。

)即a m·a n=a m+n(m、n为正整数)这就是同底数幂的乘法法则。

让学生用文字语言表述法则:同底数幂相乘,底数不变,指数相加。

3.说明。

同底数幂的乘法法则是初中数学中第一个关于幂的运算法则,应充分展示教学过程。

整式的乘除导学案

整式的乘除导学案

第12章 整式的乘除§12.1.1 《幂的运算》导学案(第一课时)同底数幂的乘法学生班级: 姓名: 组别: 时间:2015年 月 日学习目标:1、在推理判断中得出同底数冪乘法的运算法则,并掌握法则的应用。

2、经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力。

3、在小组合作交流中,培养协作精神,探究精神,增强学习信心。

学习重点:同底数冪乘法运算性质的推导和应用。

学习难点:同底数冪的乘法的法则的应用。

一、自主学习,个体质疑1、(1)阅读课本P 18-19(2)32 表示几个2相乘?23表示什么? 5a 表示什么?m a 呢?(3)把22222⨯⨯⨯⨯表示成 na 的形式?2、请同学们通过计算探索规律: (1)()()()342222222222⨯=⨯⨯⨯⨯⨯=(2)=⨯4355(3)=⨯-673)3((4)()3111101010⎛⎫⎛⎫⎛⎫⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(5)=⨯43a a3、比较:(1)4322⨯和 72(2)43a a ⨯和 7a (代数式表示)观察计算结果,你能猜想出 n ma a⨯的结果吗?二、小组合作,碰撞激疑问题:(1)这几道题目有什么共同特点?(2)请同学们看一看自己的计算结果,想一想这个结果有什么规律?(3)请同学们推算一下nma a ⨯的结果?同底数幂的乘法法则: 用字母表示:合作评析课后练习:(1)课本P 19页练习题1、2 (2)课本P 24页习题12.1第1题三、合作探究,师生析疑1、计算 (1) 4444⋅- (2)43)6()6(-⨯- (3)2015201622- (4)5342412523⨯+⨯-⨯2、若y x 、是正整数,且12216x y +⋅=,则 y x 、的值是什么?3、已知 28,7,4===cbam m m ,则c b a 、、之间的关系是什么?四、当堂检测,过关解疑1、计算:(1)10432b b b b ⋅⋅⋅ (2)()()876x x x -⋅-(3)()()()562x y y ---- (4)()()()3645p p p p ⋅-+-⋅-2、把下列各式化成 ()ny x + 或 ()n y x -的形式.(1)()()12+++m m y x y x (2)()()()x y y x y x ---23 3、已知 3110m m x x x +-⋅= 求m 的值.课堂反思(自主补充延伸):§12.1.2 《幂的运算》导学案(第二课时)幂的乘方学生班级: 姓名: 组别: 时间:2015年 月 日学习目标:1、理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质。

(完整)七年级下册第一章整式的乘除复习导学案

(完整)七年级下册第一章整式的乘除复习导学案

《整式的乘除》复习教学案(一)一、 复习目标: 掌握整式的加减、乘除,幕的运算;并能运用乘法公式进行运算 二、 复习重、难点 根据新课标要求,整式的乘除运算法则与方法是本课重点。

整式的乘法公式是本课难点。

三、 复习方法 小组讨论探究 四、 复习过程 1 、幕的运算性质:〈自主预习〉(5) 零指数幕:a 0= _____ (注意考底数范围a M 0) . 0的0次幕无意义. (6) 负指数幕:a p _______ (根据定义) ___________ (根据底倒指反)(a M 0,p 为正整数)探0的负指数幕无意义.逆用:(a M 0,p 为正整数)〈练习〉1.计算①(g )m (0.5)n②(2a 2b 3c)2③-a 22 -a 23(1)同底数幕的乘法:am. a n=:(m 、n 为正整数)推广:a m a n a p (m 、n 、p 都为正整数)逆用:am+n=(m 、n 、都为正整数)变形:-a n b-a n(2)幕的乘方:(a ")=(m 、n 为正整数)推广:a m np (m 、n 、p 都为正整数)逆用:a mn =(m 、n 为正整数) (3)积的乘方:(ab )=(n 为正整数) 推广: abc n = (n 为正整数)逆用:a n b n(n 为正整数) ④(9)3出(勺3⑤b n 5b n2( b)2⑥ x-2 2 x-2 3 2-x(4)同底数幕的除法:a m *a n = ________ (a ^0, m 、n 为正整数,m n ) 推广:a m a n a p____________ (a ^ 0, m 、n 、p 为正整数,m n p ) 逆用:am-n= _______ (a M 0, m 、n 为正整数,m n )2.解答① 已知10a 5,10b 2,求102a 3b 的值② 若x n 2, y n 3,求xy 3n 的值。

2、整式的乘法:〈自主预习〉(1) 、单项式乘以单项式:法则:单项式与单项式相乘,把它们的 _______________ 、 _____________ 分别相乘,其余的字母 连同它的指数 __________ ,作为积的因式。

1mjt-整式的乘除复习导学案

1mjt-整式的乘除复习导学案

<<整式的乘除复习>>导学案一、总结反思,归纳升华 1.幂的运算:同底数幂相乘文字语言:_________________________;符号语言____________. 幂的乘方文字语言: ___________________________;符号语言____________. 积的乘方文字语言: ____________________________;符号语言____________. 同指数幂相乘文字语言:_________________________;符号语言____________. 同底数幂相除文字语言:_________________________;符号语言____________. 2.整式的乘除法:单项式乘以单项式:单项式乘以多项式: 多项式乘以多项式:单项式除以单项式: 多项式除以单项式: 3.乘法公式 平方差公式:文字语言___________________________;符号语言______________ 完全平方公式:文字语言________________________ ;符号语言______________ 二、自主探究 综合拓展 1、复习巩固(1)、=⨯23653p p (2)、()=-∙-)(623a ab(3)、________)2()6(23=-∙-a ab (4)、___________)(532=÷a a(5)、__________10)105()102(734=∙⨯∙⨯ (6)、________)13()32(=-∙+x x (7)、________)5()1(2=-∙+-t t t (8)、()__________22=+b a(9)、()__________232=-y x(10)、________52)54(223223=÷+-y x y x y x 2、例题分析(1)、(a -2b)2-(a +2b)2(2)、(a +b +c)(a -b -c)(3)、的值。

整式的乘除复习教案

整式的乘除复习教案
2 2 2 3 5

B. a ÷a =a
2
6
3
2
C. 4x -3x =1
D.(-2x y) =-8 x y
3
6 3
8. (2011 四川南充市,1,3 分)计算 a+(-a)的结果是( (A)2a (B)0 (C)-a
2

(D)-2a
9. (2011 宁波市,2,3 分)下列计算正确的是 A. (a ) = a
2 3 6
B.a + a = a
2
2
4
C.(3a)·(2a) =6a
D.3a-a=3
教学设计方案
Vans PPTS Learning Center
10. (2011 浙江台州,4,4 分)计算 (a 2 ) 3 的结果是( A.

3a 2
B.
2a 3
C.
a5

3 2
D. a
6
11. (2011 浙江义乌,3,3 分)下列计算正确的是( A. x x x
教学设计方案
Vans PPTS Learning Center
教师姓名 学科 课题名称 教学目标 数学 整式的乘除 同步教学知识 个性化问题解决 教学重点 教学难点
学生姓名 年级 课时计划 初一
第( 共( )课时 )课时
填写日期 教材版本 上课时间
2012 浙教版 2012
复习整式乘除的基本运算规律和法则、方法。通过练习,熟悉常规题型的 运算,并能灵活运用。
教学设计方案
Vans PPTS Learning Center
(四)整式的除法
1 (1)( a 6 b 4 c) ((2a 3 c) 4 1 (2)6(a b) 5 [ (a b) 2 ] 3 2 3 3 2 (3)(5 x y 4 x y 6 x) (6 x) 1 3 (4) x 3m y 2 n x 2 m 1 y 2 x 2 m 1 y 3 ) (0.5 x 2 m 1 y 2 ) 3 4

华师大版数学八年级上册第12章《整式的乘除》复习学案

华师大版数学八年级上册第12章《整式的乘除》复习学案

第12章 整式的乘除复习导学案一、学习目标:1. 对全章内容进展梳理,突出知识间的内在联系和递进关系.2. 进一步提高学生综合应用整式乘除法公式进展运算的能力.二、知识构造:三、专题演练㈠ 幂的运算例1 计算以下各式:⑴ 53()x x x ⋅⋅- ⑵ 112(2)(2)(2)n n n x x x -++⋅+-+⑶ 41()n n a - ⑷ 4223()()y y -⋅⑸ 5[()()]x y x y +- ⑹ 2212()m n x y +-⋅例2 计算以下各式:⑴ 3244224()4()x x x x x ⋅⋅+-+- ⑵ 825(0.125)2-⨯⑶ 12(1990)()3980n n +⋅㈡ 整式的乘法例3 计算: ⑴ 322[2()][3()][()]3a b a b a b ----- ⑵ 113(245)n n n n x x x x -++-+例4 计算:⑴ 2(325)(23)x x x ---+ ⑵ 22(2)(42)x y x xy y -++㈢ 乘法公式例5 计算:⑴ (3)(3)a ab ab a ---+ ⑵ 98102⨯⑶ 24(12)(12)(14)(116)x x x x -+++ ⑷ ()()a b c a b c +--+例6 计算:⑴ 298 ⑵ 2(1)(1)(1)y y y --+-- ⑶ 2(23)x y z +-㈣ 整式的除法例7 先化简,再求值:42622322[5(4)(3)()](2)a a a a a a ---÷÷-,其中5a =-㈤ 因式分解例8 分解因式:⑴ 324(1)2(1)q p p -+- ⑵ 221()()()m m m ab x y a b x y ab x y +-+---⑶2a ab ac bc -+- ⑷ 22412925x xy y -+-五、能力提升212448x x ++=,求x 的值.2.4,6x y x y +=-=,求代数式22()(2)3xy y y y xy x xy +-+-的值.3.一个多项式除以多项式243a a +-,所得商式是21a +,余式为28a +,求这个多项式.4. 2(8)a pa ++与2(3)a a q -+的乘积中不含有3a 和2a 项,求p 、q 的值.。

八年级数学上册第12章整式的乘除12.1幂的运算12.1.2幂的乘方导学案华东师大版(2021年整

八年级数学上册第12章整式的乘除12.1幂的运算12.1.2幂的乘方导学案华东师大版(2021年整

八年级数学上册第12章整式的乘除12.1 幂的运算12.1.2 幂的乘方导学案(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册第12章整式的乘除12.1 幂的运算12.1.2 幂的乘方导学案(新版)华东师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册第12章整式的乘除12.1 幂的运算12.1.2 幂的乘方导学案(新版)华东师大版的全部内容。

12。

1。

2 幂的乘方【学习目标】1.经历探索幂的乘方性质,进一步体会幂的乘方.2。

了解幂的乘方运算性质,并能利用性质进行计算和解决一些实际问题。

【学习重难点】1.幂的乘方运算性质.2。

幂的乘方运算性质的灵活运用.【学习过程】一、课前准备计算 ⑴33a a += (2) a 2·a 3 = (3)3342a a a a +=二、学习新知自主学习:1、做一做:(1)(23)2=___________(根据幂的意义)=_________(根据同底数幂的乘法法则)=(2)(a 4)3=________(根据幂的意义)=_________(根据同底数幂的乘法法则)=()a _____(3) ()a n 2=_________×__________=____________(根据a a a nm n m +=• )= ()a ______ (4) (a m )5=_____________________ =___________________=()a______ ( )(5)()a m n =________________________________________(幂的意义)( )=a _________________________________________________(同底数幂的乘法法则) =____________________________________(乘法的意义)2、通过以上计算,你有什么发现?冪的乘方,_________________________,_____________________________。

华师版 数学八年级上册第12章 整式乘除导学案

华师版 数学八年级上册第12章   整式乘除导学案

第十二章“整式的乘除”导学计划一、课标要求1、了解整数指数幂的意义和基本性质2、会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。

3、会推导乘法公式:(a+b)(a-b)=a2-b2;(a+b)2=a2+2ab+b2,了解公式的几何背景,并能进行简单计算。

4、会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。

二、导学目标1。

使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算.2. 使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。

3. 使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。

4.使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。

三、本章编写特点1、强调重要数学思想方法的渗透2、充分体现从具体到抽象再到具体的认知过程3、根据数学知识的逻辑关系循序渐进安排教学内容四、导学核心点1、导学重点(1)幂的运算性质(2)整式的乘除2、导学难点(1)乘法公式的运用(2)多项式的因式分解五、本章总课时安排:本章共安排了4个小节,导学时间约需13课时(供参考):12.1幂的运算4课时12.2整式的乘法4课时12。

3乘法公式4课时12.4整式的除法3课时12.5 因式分解3课时复习2课时六本章知识结构框图12.1 幂的运算第一课时同底数幂的乘法导学目标:1 、知识与技能:①、理解同底数幂的乘法法则。

②、运用同底数幂的乘法法则解决一些实际的问题。

2、过程与方法:在推导同底数幂的乘法性质的过程中,培养学生初步运用“转化”思想能力,培养学生观察概括与抽象的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:整式的乘除(复习)
章节:第十二章复习
学习目标1.知识与技能:对全章内容进行梳理,综合理解并掌握本章各种运算法则,进一步提高综合应用整式乘除法公式进行运算的能力.
2.过程与方法:经历系统的回顾综合整理的过程,培养学生观察、分析、归纳的能力,突出知识间的内在联系和递进关系.
3.情感、态度与价值观:体会事物之间互相转化的辨证思想,从而初步接受对立统一观点.
学习重点:整式乘除法公式的掌握和区分运用.
学习难点:综合应用整式乘除法公式进行运算.
⑶ ⑷
⑸ ⑹
例2 计算下列各式:⑴ ⑵ ⑶㈡整式的源自法例3计算:⑴ ⑵
例4计算:
⑴ ⑵
一、知识结构:
二、专题演练
㈠ 幂的运算
例1 计算下列各式:
⑴ ⑵
㈢乘法公式
例5计算:
⑴ ⑵
⑶ ⑷
例6计算:
⑴ ⑵ ⑶
㈣整式的除法
例7先化简,再求值: ,其中
㈤因式分解
例8分解因式:
⑴ ⑵
⑶ ⑷
五、能力提升
1.已知 ,求 的值.
2.已知 ,求代数式 的值.
3.已知一个多项式除以多项式 ,所得商式是 ,余式为 ,求这个多项式.
4.已知 与 的乘积中不含有 和 项,求 、 的值.
相关文档
最新文档