华师大版数学八年级上册第12章《整式的乘除》复习学案
华东师大版八年级上册第12章整式的乘除复习导学案设计(无答案)
第12章 整式的乘除复习导学案一、学习目标:1. 对全章内容进行梳理,突出知识间的内在联系和递进关系. 2. 进一步提高学生综合应用整式乘除法公式进行运算的能力. 二、知识结构:三、专题演练 ㈠ 幂的运算例1 计算下列各式:⑴ 53()x x x ⋅⋅- ⑵ 112(2)(2)(2)n n n x x x -++⋅+-+⑶ 41()n n a - ⑷ 4223()()y y -⋅⑸ 5[()()]x y x y +- ⑹ 2212()m n x y +-⋅例2 计算下列各式:⑴ 3244224()4()x x x x x ⋅⋅+-+- ⑵ 825(0.125)2-⨯ ⑶ 12(1990)()3980nn +⋅㈡ 整式的乘法 例3 计算:⑴ 322[2()][3()][()]3a b a b a b ----- ⑵ 113(245)n n n n x x x x -++-+例4 计算:⑴ 2(325)(23)x x x ---+ ⑵ 22(2)(42)x y x xy y -++㈢ 乘法公式 例5 计算:⑴ (3)(3)a ab ab a ---+ ⑵ 98102⨯⑶ 24(12)(12)(14)(116)x x x x -+++ ⑷ ()()a b c a b c +--+例6 计算:⑴ 298 ⑵ 2(1)(1)(1)y y y --+-- ⑶ 2(23)x y z +-㈣ 整式的除法例7 先化简,再求值:42622322[5(4)(3)()](2)a a a a a a ---÷÷-,其中5a =-㈤ 因式分解 例8 分解因式:⑴ 324(1)2(1)q p p -+- ⑵ 221()()()m m m ab x y a b x y ab x y +-+---⑶2a ab ac bc -+- ⑷ 22412925x xy y -+-五、能力提升 1.已知212448x x ++=,求x 的值.2.已知4,6x y x y +=-=,求代数式22()(2)3xy y y y xy x xy +-+-的值.3.已知一个多项式除以多项式243a a +-,所得商式是21a +,余式为28a +,求这个多项式.4. 已知2(8)a pa ++与2(3)a a q -+的乘积中不含有3a 和2a 项,求p 、q 的值.。
八年级数学上册第12章整式的乘除复习教案华东师大版(2021-2022学年)
整式的乘除ﻬﻬ ﻬ 整式的乘除复习 1. 对全章内容进行梳理,突出知识间的内在联系和递进关系。
2. 进一步提高学生综合应用整式乘除法公式进行运算的能力. 难点目标 目标三导 学做思一:知识结构 学做思二: ㈠ 幂的运算 例1 计算下列各式: ⑴ ⑵ ⑶⑷ ⑸ ⑹ 例2 计算下列各式: ⑴ ⑵ ⑶㈡ 整式的乘法 例3 计算: ⑴ ⑵例4 计算: ⑴ ⑵ ㈢ 乘法公式 例5 计算: ⑴ ⑵ ⑶⑷ 例6 计算:⑵ ⑶㈣ 整式的除法 例7 先化简,再求值:,其中㈤ 因式分解例8 分解因式: ⑴ ⑵ ⑶ ⑷反思总结 1.知识建构 2。
能力提高3。
课堂体验 课后练习 1。
已知,求的值。
2。
已知,求代数式的值.3。
已知一个多项式除以多项式,所得商式是 ,余式为,求这个多项式. 4. 已知与的乘积中不含有和项,求、的值. 53()x x x ⋅⋅-112(2)(2)(2)n n n x x x -++⋅+-+41()n n a -4223()()y y -⋅5[()()]x yx y +-2212()m n x y +-⋅3244224()4()x x x x x ⋅⋅+-+-825(0.125)2-⨯12(1990)()3980n n +⋅322[2()][3()][()]3a b a b a b -----113(245)n n n n x x x x -++-+2(325)(23)x x x ---+22(2)(42)x yx x y y -++(3)(3)aa b a b a ---+98102⨯24(12)(12)(14)(116)x x x x -+++()()a b c a b c +--+2982(1)(1)(1)y y y --+--2(23)x y z +-42622322[5(4)(3)()](2)a a aa a a ---÷÷-5a =-324(1)2(1)q p p -+-221()()()m m m ab x y a b x ya b x y +-+---2a a ba cbc -+-22412925x x y y -+-212448x x ++=x 4,6xy xy +=-=22()(2)3x y yy y x yxx y +-+-243a a +-21a +28a +2(8)a p a ++2(3)a a q -+3a 2a p q。
华东师大版八年级上册 第12章 整式的乘除 复习学案
八年级数学上册导学案22命题人:刘英明 审题人:曹金满 课型:复习课课题:第12章 整式的乘除(复习Ⅱ)强化训练类型一:单项式与多项式的次数1.已知m y x 27-是7次单项式,求m 的值.22128b a b a a m +++2.已知单项式3421y x -的次数与多项式22128b a b a a m +++的次数相同,求m 的值. 3.若单项式n y x n --12)2(是关于y x ,的三次单项式,求n 的值.4.已知c b a 、、满足:(1)022)3(52=-++b a ;(2)c b a y x ++-1231是7次单项式; 求多项式()22222234⎡⎤------⎣⎦a b a b abc a c a b a c abc 的值. 类型二:同类项1.已知35y x m -与n y x 34能合并,求n m 的值.2.若2222b a m +与3343-+-n m b a 是同类项,求n m +的值. 3.如果b a m 3--与n ab 431是同类项且m 与n 互为倒数,求1141)44(3-----m m mn n 的值. 类型三:整式的加减1.已知三角形的第一边长是b a 2+,第二边比第一边长)2(-b ,第三边比第二边小5. 求三角形的周长。
2.已知222c b a A -+=,222324c b a B ++-=,且A +B +C =0.求:(1)多项式C (2)若311=-==c b a ,,,求A +B 的值.3.已知xyz x A -=32,xyz z y B +-=23,xyz y x C -+-=222,且01)1(2=+-++z y x ; 求:A -(2B -3C)的值.01)1(2=+-++z y x4.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭⎫ ⎝⎛-+-22213y xy x 2222123421y x y xy x +⎪⎭⎫ ⎝⎛-+--222123421y x xy x -= ⎝⎛-+--,阴影部分即为被墨迹弄污的部分. 求:被墨汁遮住的一项.类型四:缺项与无关1.多项式83322-+--xy y kxy x 化简后不含xy 项,求k 值.2.若多项式222)25(23mx x y x +-+-的值与x 的值无关,求m 的值.3.若)192()72(22-+--+-+y x bx y ax x 的值与字母x 的取值无关,求b a 、的值.4.试说明:不论x 取何值代数式7)13()345(223x x x x x x --+----++67425(32323x x x x x +---++)6()132()345(323223x x x x x x x x ++--+---++的值是不会改变的. 类型五:整体代入法1.当2=+b a 时,求代数式2()2()3a b a b +-++的值.2.已知532++x x 的值为3,求1932-+x x 的值.3.已知41=+-b a b a ,求代数式)(3)(2b a b a b a b a -+-+-的值. 4.已知3=+y x xy ,求代数式y xy x y xy x -+-+-3353的值. 类型六:化简绝对值1.若0<+b a ,化简b a b a ----+312.已知有理数c b a 、、在数轴上的位置如图所示且b a =.化简dc d c b a a -+--+- 3.当00<>y x ,时;化简 (1) x y y 21125++-+-;(2)182356-----y y x y . 类型七:自定义计算1.“*”是新规定的这样一种运算法则:ab a b a 22+=*比如3)2(323)2(32-=-⨯⨯+=-*.(1)试求)1(2-*的值;(2)若22=*x ,求x 的值;(3)若9)1()2(+=**-x x ,求x 的值.2.对正整数b a ,,b a ∆等于由a 开始的的连续b 个正整数之和,如:43232++=∆, 又如:26876545=+++=∆.若151=∆x ,求x 的值.。
八年级数学上册第12章整式的乘除12.2整式的乘法12.2.2单项式与多项式相乘导学案新版华东师大版
12.2.2 单项式与多项式相乘【学习目标】1、会利用乘法分配律可以将单项式乘多项式转化成单项式乘单项式。
2、会利用法则进行单项式乘多项式的运算。
3、经历探索单项式乘多项式法则的过程,发展有条理的思考及语言表达能力。
【学习重难点】会利用法则进行单项式乘多项式的运算。
【学习过程】一、课前准备1、单项式与单项式相乘的法则:2、2x2-x-1是几次几项式?写出它的项。
3、用字母表示乘法分配律二、学习新知自主学习:观察右边的图形:回答下列问题(1)大长方形的长为,宽为,面积为。
(2)三个小长方形的面积分别表示为,,,大长方形的面积= + + =(3)根据(1)(2)中的结果中可列等式:(4)这一结论与乘法分配律有什么关系?(5)根据以上探索你认为应如何进行单项式与多项式的乘法运算?单项式乘多项式法则:单项式与多项式相乘时,分两个阶段:①按 律把单项式乘多项式写成 与 乘积的代数和的形式;②分别进行 乘法运算。
几点注意:1.单项式乘多项式的结果仍是 ,原多项式的项数与计算后的项数 。
2.在单项式乘法运算中要注意系数的 。
3.不要出现漏乘现象,运算要有顺序。
实例分析:例1、计算:)53(222b a a -⋅解:【随堂练习】1.2ab (5ab+3a 2b )2.计算:.3.计算:2x (x 2﹣x+3)4.(﹣4a 3+12a 2b ﹣7a 3b 3)(﹣4a 2)= _________ .5.计算:xy 2(3x 2y ﹣xy 2+y )6.(﹣2ab )(3a 2﹣2ab ﹣4b 2)【中考连线】对任意有理数x 、y 定义运算如下:x△y=ax+by+cxy,这里a 、b 、c 是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d 使得对任意有理数x△d=x,求a 、b 、c 、d 的值.【参考答案】随堂练习1、10a2b2+6a3b22、x3y5﹣x3y6+x2y4.3、2x3﹣2x2+6x4、2x3﹣2x2+6x5、3x3y3﹣x2y4+xy36、﹣6a3b+4a2b2+8ab3.中考连线a的值为5、b的值为0、c的值为﹣1、d的值为4.。
华东师大版八年级上册第12章《整式的乘除》期末综合复习讲义设计(无答案)
华东师大版第12章《整式的乘除》期末复习资料 考点一:幂的运算例1:计算()()()3332335a a a a --+⋅-例2:若2=x a ,3=y a ,则=+y x a 32( )A 、 31B 、 36C 、 54D 、 108例3:计算()20182018201715.132-⨯⨯⎪⎭⎫ ⎝⎛所得的结果是( )A 、32-B 、 2C 、 32 D 、 2- 【同步练习】1、计算:()()()ab b a ab 53322-÷-⋅ 2、下列运算正确的是( )A 、6332x x x =⋅B 、()42242x x -=-C 、 ()623x x = D 、 55x x x =- 3、若8=m a ,2=n a ,则n m a 2-的值等于( )A 、 1B 、 2C 、 4D 、 16 4、1001015.02⨯的计算结果是( )A 、 1B 、 2C 、 0.5D 、 10 考点二:整式的乘除运算例4:先化简再求值:()()()()()b a b a b a b a b a 222222+--+--+,其中5.0=a ,2-=b【同步练习】5、化简:()()12439232--+-a a a a a6、先化简,再求值:()()335322-+--x x x x x ,其中21=x7、先化简,再求值:()()()22222222+---+xy y x xy y x ,其中2018=x ,1-=y考点三:乘法公式的应用例5:已知3-=ab ,2=+b a .求下列各式的值:(1)22b a +; (2)32232ab b a b a ++ (3)b a -【同步练习】8、已知15==+xy y x ,,求:①22y x +;②()2y x - ; 22y xy x ++9、已知51=+x x ,那么______122=+xx ; 10、已知:a 为有理数,0123=+++a a a ,求20124321a a a a a ++++++Λ的值。
华东师大版(新版)八年级数学上册:第12章整式的乘除小结与复习课件
8.因式分解的步骤 如果多项式的各项有公因式,那么先 提取公因式; 在各项提出公因式后或各项没有公因式的情况下,视察多项 式的次数:二项式可以尝试运用 平方差公式分解因式;三项 式可以尝试运用 两数和(差)公的式分解因式; 分解因式必须分解到每一个因式在指定的范围内都不能
再分解 为止.
9.图形面积与代数恒等式
整体思想
例6 若2a+5b-3=0,则4a·32b= 8 . 【解析】已知条件是2a+5b-3=0,无法求出a,b的值因此可以 逆用积的乘方先把4a·32b.化简为含有与已知条件相关的部分, 即4a·32b=22a·25b=22a+5b.把2a+5b看做一个整体,因为2a+5b3=0,所以2a+5b=3,所以4a·32b=23=8.
[注意] 其中的a、b代表的不仅可以是单独的数、单独的字
母,还可以是一个任意的代数式;这几个法则容易混淆,计算 时必须先搞清楚该不该用法则、该用哪个法则.
2.整式的乘法 单项式与单项式相乘,把它们的 系数 、 相同字母的幂 分别 相乘,对于只在一个单项式中出现的字母,则连同它的指数一 起作为积的一个 因式 . 单项式与多项式相乘,用 单项式 和 多项式 的每一项分别相 乘,再把所得的积 相加 . 多项式与多项式相乘,先用一个多项式的 每一项 与另一个 多项式的 每一项 相乘,再把所得的积 相加 .
5.因式分解的意义 把一个多项式化成几个整式的 积 的情势,叫做多项式的 因式分解.
因式分解的过程和 整式乘法 的过程正好相反.
6.用提公因式法分解因式 公因式的确定:公因式的系数应取多项式各项整数系数的 最大公约数 ;字母取多项式各项 相同 的字母;各字母 指数取次数最 低 的. 一般地,如果多项式的各项都含有公因式,可以把这个公 因式提到 括号 外面,将多项式写成 因式乘积 的情势,这 种分解因式的方法叫做提公因式法. [注意] 提公因式法是因式分解的首选方法,在因式分解时 先要考虑多项式的各项有无公因式.
华东师大数学八上《第12章《整式的乘除》教案 (新版)华东师大版
课前
预习
【导学提纲】
知识结构与知识归纳:
(一)知识结构见教材P43
(二)知识归纳:
1、整式乘除相关法则及公式有哪些?
2、因式分解:
(1)因式分解的步骤是什么?
(2)因式分解的常用方法有哪些?
(3)分解因式要注意哪些问题?
典例
讲解
1、幂的运算性质
例1已知 (m、n为正整数),求 的值.(思路点拨:注意公式的逆用)
整式的乘除
课 题
单元复习
课 型
复习课
教师复备
教学
目标
1、牢固掌握幂的运算性质和整式乘除的运算法则,理解、掌握乘法公式;
2、分解因式的方法及运用;
3、培养自己的运算能力,以及分析问题、解决问题的能力.
教学重点、难点
重点:有关乘除法的各种运算法则和公式的理解与运用.
难点:有关乘除法的各项运算法则的理解与应用.
2、整式的乘除
例2先化简,再求值: ,其中 .(思路点拨:注意运算顺序及准确性)
(变式训练):若 ,
求 的值.
3、乘法公式的灵活运用
例3已知 ,求 ; 的值.
(思路点拨:注意公式的变形及相互关系)
4、因式分解的运用
例4求 的值
(思路点拨:注意观察数字特征,灵活运用因式分解进行有关计算)
(变式训练)计算:
华东师大版八年级数学上册第十二单元《整式的乘除》教案
第12章整式的乘除12.1 幂的运算1.同底数幂的乘法【基本目标】1.掌握同底数幂的乘法法则,并能运用它进行熟练的计算.2.能利用同底数幂的乘法法则解决简单实际的问题.【教学重点】同底数幂乘法法则的推导与运用.【教学难点】同底数幂乘法法则的运用.一、创设情景,导入新课【情境导入】“盘古开天辟地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【教师提问】盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远呢?【学生活动】开始动笔计算,大部分学生可以列出算式:3×105×5×102=15×105×102=15×?(引入课题)二、师生互动,探究新知同底数幂的乘法法则.【教师活动】到底105×102=?同学们根据幂的意义自己推导一下,现在分四人小组讨论.【学生活动】分四人小组讨论、交流,举手发言,上台演示.计算过程:105×102=(10×10×10×10×10)×(10×10)=10×10×10×10×10×10×10=107.【教师活动】下面引例.请同学们计算并探索规律.(1)23×24=(2×2×2)×(2×2×2×2)=2();(2)53×54= =5();(3)(-3)7×(-3)6= =(-3)();(4)(110)3×(110)= =(110)( );(5)a3·a4= =a().提出问题:①这几道题目有什么共同特点?②请同学们看一看自己的计算结果,想一想,这些结果有什么规律?【学生活动】独立完成,并在黑板上演算.【教师总结】从而得出同底数幂的乘法法则a m·a n=a m+n(m、n为正整数)即同底数幂相乘,底数不变,指数相加.【教学说明】通过以上5个计算,让学生根据乘方的意义从特殊到一般探索同底数幂的乘法法则,水到渠成.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分.四、典例精析,拓展新知例如果x m-n·x2n+1=x11,且y m-1·y4-n=y5,求m、n的值.【分析】根据同底数幂的乘法法则得:(m-n)+(2n+1)=11,(m-1)+(4-n)=5,用方程组解决.【答案】m=6,n=4【教学说明】教师提问:由两个等式我们想到了什么知识?如何建立m与n 之间的等量关系?教师深入强化数学中的转化思想.五、运用新知,深化理解【教学说明】注意同底数幂乘法可以推广到多个因式相乘,遇到形如(-a)6·a9转化为a6·a9.六、师生互动,课堂小结这节课你学习到什么?有什么收获?有何疑问与困惑与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课从故事引入为激发学生探究同底数幂乘法法则的兴趣,探究同底数幂乘法法则时,注意用乘方的意义让学生自己发现归纳.始终遵循从特殊到一般的认知规律.在同底数幂乘法法则的运用中,不断渗透转化方程的数学思想.2.幂的乘方【基本目标】1.理解幂的乘方法则.2.运用幂的乘方法则计算.【教学重点】三理解幂的乘方法则.【教学难点】幂的乘方法则的灵活运用.一、创设情景,导入新课大家知道太阳、木星和月亮的体积的大致比例吗?我可以告诉你,木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=43πr3)【学生活动】进行计算,并在黑板上演算.解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为V木星=43π(102)3.二、师生互动,探究新知【教师引导】(102)3=?利用幂的意义来推导.【学生活动】有些同学这时无从下手.【教师启发】请同学们思考一下a3代表什么?(102)3呢?【学生回答】a3=a×a×a,指3个a相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106,因此(102)3=106.【教师活动】利用上面推导方法求(1)(a3)2;(2)(24)3;(3)(b n)+.【学生活动】推导上面几个算式并板演.【教师推进】请同学们根据所推导的几个题目,推导一下(a m)n的结果是多少?【学生活动】归纳总结并进行小组讨论,最后得出结论:【教学说明】通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分.四、典例精析,拓展新知【教学说明】教师提问x6m与x2m在指数上有何关系,你想到了如何变形,化未知为已知(逆用幂的乘方法则).五、运用新知,深化理解【教学说明】从跟踪练习中捕捉学生知识上、思维上的不足并及时跟进.六、师生互动,课堂小结这节课你学到了什么?有什么收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课在熟悉乘方的意义与同底数幂的法则的前提下推导幂的乘方法则,在教学过程中注意引导学生运用转化思想来解决新问题.在拓展新知时,注意联想与逆向思维能力的培养.3.积的乘方【基础目标】1.理解积的乘方法则.2.运用积的乘方法则计算.【教学重点】理解并掌握积的乘方法则.【教师难点】积的乘方法则的灵活运用.一、回顾交流,导入新课【教学说明】提问学生在前面学过的同底数幂的运算法则;幂的乘方运算法则的内容以及区别.【学生活动】踊跃举手发言,解说老师的提问.【课堂演练】计算:(1)(x4)3;(2)a·a5;(3)x7·x9(x2)3.【学生活动】完成上面的演练题,并从中领会这两个幂的运算法则.【教师活动】巡视,关注学生的练习,并请3位学生上台演示,然后再提出下面的问题.二、师生互动,探究新知【教师活动】请同学们完成教材P20填空,并注意每步变形的依据.【学生活动】完成书本填空并回答教师问题.【教师活动】你发现了什么规律?如何解释这个规律?【学生活动】分组讨论,解释.【师生互动】教师在学生发言的基础上板书.即积的乘方,把积中每一个因式分别乘方,再把所得的幂相乘.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分.四、典例精析,拓展新知例1 计算:(1)[(-x2y)3·(-x2y)2]3;(2)a3·a4·a+(a2)4+(-2a4)2.【分析】(1)按积的乘方法则先算括号里面的;(2)第一项是同底数幂的乘法,第二项是幂的乘方,第三项是积的乘方.【答案】(1)-x30y15;(2)6a8例2 用简便方法计算:【分析】先将指数化为相同的再逆用积的乘方法则.【答案】13/5【教学说明】例1由小组讨论交流解题思路,小组活动后,展示计算结果.教师根据反馈的情况总评.如(-2a4)2中的负号处理.例2在教师引导下,由小组合作完成,并强调遇到高指数时化成同指数,再利用积的乘方法则.五、运用新知,深化理解1.计算:(-3a3)2·a3+(-4a)2·a7-(5a3)3.b =0,求a2014·b2013的值.2.已知:(a-2)2+21【答案】1.-100a9; 2.-2【教学说明】由跟踪练习情况及时点评,如第一题中符号问题引起重视.六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课釆用探究与自主学习相结合的模式完成的,探究的目的是让学生会推导积的乘方法则.通过小组合作学习增强学习的主动性,突出学生的主体地位.并注意在其中的及时引导,发挥教师主导作用.教学中的简便运算应让学生体会转化思想的核心作用.4.同底数幂的除法【基本目标】1.理解同底数幂的除法法则.2.运用同底数幂的除法法则计算.【教学重点】掌握同底数幂的除法法则.【教学难点】同底数幂除法的应用.一、创设情景,导入新课【教师活动】地球的体积是1.1×1012km3,月球的体积2.2×1010km3,求地球的体积是月球的多少倍?如何列式?【学生活动】学生代表发言:(1.1×1012)÷(2.2×1010)【教师活动】1012÷1010=?下面我们一起探究.二、师生互动,探究新知【教师活动】完成教材P22填空,由填空你得出了什么规律?【学生活动】经小组交流后,汇报结果.【教学说明】板书:a m÷a n=a m-n,(a≠0,m>n,且m、n为正整数)同底数相除,底数不变,指数相减.【教师活动】乘法与除法互为逆运算,我们能由同底数幂乘法法则来推导它吗?教师引导a n·()=a m.设()=a k.【学生活动】由小组讨论交流后汇报推导结果.【教学说明】我们的认知规律:猜测——归纳——证明.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分.【教学说明】根据反馈情况及时订正,并与法则对比,找准错因.四、典例精析,拓展新知例1一张数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储多少张这样的照片?【分析】用储量26M除以每张照片的存储量的大小.【答案】28张【教学说明】教师可将此问题类比成总价、单价与数量关系,从而化为同底数幂的除法.例2若32×92a+1÷27a+1=81,求a的值.【分析】将左右都化成3的指数幂再比较对应.【答案】a=3【教学说明】左右两边能否化成同底数幂的运算,如何使用幂的运算法则,强调转化思想.小组活动时注意对学困生的辅导.五、运用新知,深化理解1.一种计算机每秒可进行1012运算,它工作1015次运算需要秒时间.2.若y2m-1÷y=y2,求m+2的值.【答案】1.103 2.4【教学说明】由跟踪练习情况及时点评,如y的指数不是0等.六、师生互动,课堂小结这节课你学到了什么?有何收获?有何疑惑?与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课探究新知部分,注意如何使学生从特殊中发现规律,得到一般性结论,再由同底数幂的乘法法则(同底数幂除法法则)证明规律.积极鼓励学生主动地探究数学问题,加深对数学问题的理解,养成良好思维习惯,提高学生的数学素养.12.2整式的乘法1.单项式与单项式相乘【基本目标】1.通过学生自主探索,掌握单项式相乘的法则.2.掌握单项式相乘的几何意义.3.会运用单项式相乘的法则进行计算,并解决一些实际生活和科学计算中的问题.4.培养学生合作、探究的意识,养成良好的学习习惯.【教学重点】单项式与单项式相乘的法则.【教学难点】单项式与单项式相乘的法则的应用;单项式相乘的几何意义.一、复习旧知,导入新课我们已经学习了幂的运算性质,你能解答下面的问题吗?【教师活动】我们刚才已经复习了幂的运算性质.从本节开始,我们学习整式的乘法.我们知道,整式包括什么?(包括单项式和多项式.)因此整式的乘法可分为单项式乘以单项式、单项式乘以多项式、多项式乘以多项式.这节课我们就来学习最简单的一种:单项式与单项式相乘.二、师生互动,探究新知1.一个长方体的底面积是4xy,高度是3x,那么这个长方体的体积是多少?【学生活动】小组合作完成,在小组交流讨论后由代表发言.【教师活动】每一步的依据是什么?(乘法交换律)因此4xy·3x=4·xy·3·x=(4·3)·(x·x)·y=12x2y.(要强调解题的步骤和格式)2.仿照刚才的作法,你能解出下面的题目吗?【教师活动】第(2)题中在第二个单项式-4b2c中出现的c怎么办?【学生活动】由小组讨论归纳单项式乘单项式的法则.【教学说明】教师板书:单项式和单项式相乘,系数与系数相乘,相同字母的幂分别相乘;对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分。
华师大版数学八年级上册第12章《整式的乘除》复习学案
第12章 整式的乘除复习导学案一、学习目标:1. 对全章内容进展梳理,突出知识间的内在联系和递进关系.2. 进一步提高学生综合应用整式乘除法公式进展运算的能力.二、知识构造:三、专题演练㈠ 幂的运算例1 计算以下各式:⑴ 53()x x x ⋅⋅- ⑵ 112(2)(2)(2)n n n x x x -++⋅+-+⑶ 41()n n a - ⑷ 4223()()y y -⋅⑸ 5[()()]x y x y +- ⑹ 2212()m n x y +-⋅例2 计算以下各式:⑴ 3244224()4()x x x x x ⋅⋅+-+- ⑵ 825(0.125)2-⨯⑶ 12(1990)()3980n n +⋅㈡ 整式的乘法例3 计算: ⑴ 322[2()][3()][()]3a b a b a b ----- ⑵ 113(245)n n n n x x x x -++-+例4 计算:⑴ 2(325)(23)x x x ---+ ⑵ 22(2)(42)x y x xy y -++㈢ 乘法公式例5 计算:⑴ (3)(3)a ab ab a ---+ ⑵ 98102⨯⑶ 24(12)(12)(14)(116)x x x x -+++ ⑷ ()()a b c a b c +--+例6 计算:⑴ 298 ⑵ 2(1)(1)(1)y y y --+-- ⑶ 2(23)x y z +-㈣ 整式的除法例7 先化简,再求值:42622322[5(4)(3)()](2)a a a a a a ---÷÷-,其中5a =-㈤ 因式分解例8 分解因式:⑴ 324(1)2(1)q p p -+- ⑵ 221()()()m m m ab x y a b x y ab x y +-+---⑶2a ab ac bc -+- ⑷ 22412925x xy y -+-五、能力提升212448x x ++=,求x 的值.2.4,6x y x y +=-=,求代数式22()(2)3xy y y y xy x xy +-+-的值.3.一个多项式除以多项式243a a +-,所得商式是21a +,余式为28a +,求这个多项式.4. 2(8)a pa ++与2(3)a a q -+的乘积中不含有3a 和2a 项,求p 、q 的值.。
华东师大版八年级数学上册第12章《整式的乘除》 复习导学案(无答案)
南城中学八年级数学导学案 班级: 编制:八年级数学备课组 课题:12.7整式乘除复习 课时:第 课时 复习目标:1.记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则.2.会运用法则进行整式的乘除运算,会对一个多项式分解因式.3.培养学生的独立思考能力和合作交流意识.重点: 记住公式及法则. 难点: 会运用法则进行整式乘除运算.预习案1.幂的运算:同底数幂相乘:_________________________;符号语言____________. 幂的乘方: ___________________________;符号语言____________.积的乘方: ____________________________;符号语言____________.同指数幂相乘:_________________________;符号语言____________.同底数幂相除:_________________________;符号语言____________.2.整式的乘除法:单项式乘以单项式:__________________________________________________ 单项式乘以多项式:__________________________________________________ 多项式乘以多项式:__________________________________________________ 单项式除以单项式:__________________________________________________ 多项式除以单项式:__________________________________________________3.乘法公式平方差公式: ___________________________;符号语言______________完全平方公式:________________________;符号语言______________4.添括号法则__________________________________________________符号语言:__________________________________________________5.计算:①a ·a 3= ;②(-3x )4= ;③(103)5= ;④(b 3)4= ;⑤(2b )3= ; ⑥(2a 3)2= ;⑦(m +n )2·(m +n )3= ;⑧(ab )10÷(ab )3=_____; ⑨(3s 2t -st 2+12st )÷(-12st )= . 6.⑴(-2a 2)(3ab 2-5ab 3) ; ⑵(5x +2y )(3x -2y ) ;⑶(3y +2)(y -4)-3(y -2)(y -3) ; ⑷(-3)2014·(13)2016.姓名:探究案1.(x+2)(x-3)=__________;2. x2++49=(x+)2;3.a3·a·a8+(a3)4+(-2a6)2-(a5)3÷a34.(2m-n+3p)(2m+3p+n)5.(4x4y3-6x3y2+16x2y4)÷(-2xy)26.若(x+a)(2x+7)的积中不含有x的一次项,则a的值是________.7.有三个连续自然数,中间一个是x,则它们的积是___________.8.先化简,再求值:(a+b)(a-2b)-(a+2b)(a-b),其中a=2,b=-19.已知x-y=1,xy=3,求x3y-2x2y2+xy3的值.10.因式分解:①8(a-b)2-2(b-a) ; ②(x+y)2-3(x+y) ; ③x2-8ax+16a2 ; ④x2-5x+6 ;⑤3x3-6x2y+3xy2 ; ⑥(x2+4y2)2-16x2y2;⑦-12n2+2m2;⑧(x-1)(x-3)+1;⑨-1-4x2+4x练习案1.下列式子中,正确的是( )A.3x+5y=8xy B.3y2-y2=3 C.15ab-15ab=0 D.29x3-28x3=x2.当a=-1时,代数式(a+1)2+a(a+3)的值等于______3.若-4x2y和-2x m y n是同类项,则m=_____,n=______.4.化简(-x)3·(-x)2的结果是_______.5.若x2+2(m-3)x+16是完全平方式,则m的值等于_________.6.化简:a3·a2b=; 4x2+4x2=;4x2·(-2xy)=.7.按图15-4所示的程序计算,若开始输入的x值为3,则最后输出的结果是.8.在x2·x4,(x2)4,x4+x4,(-x4)2中,与x8相等的是______.9.计算:⑴a3·(-a)4=; ⑵m5·(-m4)=; ⑶(1+x)3·(1+x)5=;⑸(1-x)5÷(x-1)3=; ⑹[(-x3)]4=; ⑺(-x3y4)3=;⑻-64x6y3z9=( )3; ⑼48×0.258=; ⑽(-23)2014·(32)2015=.10.已知:2n+1=7,求2n+5的值. 11.已知10m=2,10n=3,求103m,103m+2n和102m-3n的值.12.已知:m+n=5,mn=6,求m2+n2的值. 13.x+y=4,xy=2,求x2+y2+3xy的值.14.计算:⑴[(x-2y)2-(x-3y)(x+2y)]÷(-4y); ⑵[(2x+y)2-(2x+y)(2x-y)]÷2y⑶8(x2-2y2)-x(7x+y)+xy; ⑷2012×2014×2016-20132×201615.先化简,再求值:⑴(3x4-2x3)÷(-x)-(x-x2)·3x其中x=-1 2;⑵(2x-3)2-(x+y)(x-y)-y2,其中x2-4x-1=0.。
华师大版数学八年级上册第12章《整式的乘除》复习教案
华师大版数学八年级上册第12章《整式的乘除》复习教案第12章整式的乘除一、知识结构二、【方法指导与教材延伸】(一)同底数幂相乘、幂的乘方、积的乘方这三个幂运算,特别是同底数幂相乘的法则是学习整式乘法的基础,其他的如:后面的多项式乘以多项式是转化变成单项式乘以多项式,再转化为单项式乘以单项式,最后转化为同底数幂相乘,所以我们要熟练掌握其法则:1.同底数幂的相乘的法则是:底数不变,指数相加.即a m·a n=a m+n,幂的乘方法则是:底数不变,指数相乘.即(a m)n=a m n,积的乘方法则是:积的乘方等于乘方的积.即(a b)n=a n b n,同底数幂的相除的法则是:底数不变,指数相减.即a m÷a n=a m-n2.其中m、n为正整数,底数a不仅代表具体的数,也可以代表单项式、多项式或其他代数式.3.幂的乘方法则与同底数幂的相乘的法则有共同之处,即运算中底数不变,但不同之处一个是指数相乘,一个是指数相加4.这三个幂运算相互容易混淆,出现错误,在初学时要注意辨明“同底数幂”、“幂的乘方”、“积的乘方”等基本概念,对公式的记忆要联系相应的文字表述,运用法则计算时,要注意识别是同底数幂的相乘、幂的乘方还是积的乘方,法则中各字母分别代表什么?再对照法则运算.(二)整式的乘法1.单项式与单项式相乘:由单项式与单项式法则可知,单项式与单项式相乘实为完成三项工作:(1)系数相乘的积作为积的系数;(2)同字母的指数相加的和作为积中这个字母的指数;(3)只在一个单项式中出现的字母连同它的指数一起作为积中的一个因式.单项式乘法法则对两个以上单项式相乘同样成立.2.单项式与多项式相乘:单项式与多项式相乘,实际上是转化为单项式与单项式相乘:用单项式去乘以多项式中的每一项,再把所得的积相加,即m(a+b+c)=ma+m b+mc 单项式与多项式相乘,结果是多项式,积的项数与因式中多项式的项数相同. 3.多项式与多项式相乘:多项式与多项式相乘,实际上是先转化为单项式与多项式相乘,即将一个多项式看成一个整体,即(m+n)(a+b)=a(m+n)+b(m+n),再用一次单项式与多项式相乘,得(m+n)(a+b)=ma+n a+m b+b n.多项式乘以多项式其积仍是多项式,积的次数等于两个多项式的次数之和,积的项数在末合并同类项之前等于两个多项式项数之和.(三)乘法公式1.“两数和乘以它们的差等于这两个数的平方差”即(a+b)(a-b)=a2-b2,应用这个乘法公式计算时,应掌握公式的特征:①公式的左边是两个二项式相乘;并且这两个二项式中有一项是完全相同的项a,另一项是相反数项b;②公式的右边是相同项的平方a2减去相反数项的平方b2.公式中的a和b,可以是单项式,也可以是多项式或具体数字.2.“两数和的平方等于它们的平方和加上它们乘积的2倍”.即(a +b)2=a2+2ab+b2.要理解公式的特征:①公式的左边是一个二项式的平方,右边是一个二次三项式.公式的适用范围:公式中的a和b 可以是具体的数,也可以是单项式或多项式;任何形式的两数和(或差)的平方都可以运用这个公式计算.。
新华师大版八年级上学期期末复习学案:第12章 整式的乘除(无答案)
新华师大版八年级数学上册复习学案:第十二章整式的乘除一.知识点储备1、同底数幂的乘法法则:同底数幂相乘, 不变,指数 .字母表达式为 .同底数幂的乘法法则也可推广到三个或三个以上同底数幂相乘的情形,即m n p m n p a a a a ++⋅⋅⋅+⋅⋅⋅⋅⋅⋅=(,,m n p 都是正整数).法则的逆用,即m nm n aa a +=⋅(,m n 都是正整数).2、.幂的乘方法则用符号语言表示为:mn n m a a =)((n m ,都为正整数) 法则的逆用,即n m mna a)(=(n m ,都为正整数)3.、积的乘方法则:积的乘方,等于把积的 每一个因式分别乘方,再把所得幂相乘.字母表达式为:()nn nab a b =(n 为正整数).积的乘方法则也可推广到三个或三个以上因式的积的乘方的情形:即:()nn n nabc a b c =(n 为正整数).法则中的底数可以是具体的数,也可以是单项式或多项式,指数可以是任意的正整数或表示正整数的式子(单项式或多项式).法则的逆用,即()nn na b ab =(n 为正整数)4、同底数幂的除法:①法则:同底数幂相除,底数不变,指数相减.a m ÷a n =a m -n ;②推广:a m ÷a n ÷a p=a m -n -p ;③误区:a m ÷a n =a m-a n .⑦注意同底数幂的除法法则的逆用,n m nm a a a÷=-(0≠a ,m 、n 为正整数,m >n );5、单项式与单项式相乘,把它们的______、_________分别相乘,对于只在一个单项式里含有的字母,则_____________作为积的一个因式.这个法则对于三个或三个以上的单项式同样适用.单项式与单项式相乘的法则的应用:①积的系数等于各因式系数的积,要先确定积的符号,再进行绝对值的运算.②相同字母相乘,运用同底数幂的乘法法则进行运算.③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.④单项式乘以单项式,结果仍是一个单项式. 6、单项式与多项式相乘的实质是乘法的分配律,运算时要注意: ①利用分配律将单项式与多项式相乘转化为单项式乘以单项式时,每一项均要带着该项的符号进行分配计算,然后进行整式的加、减运算.②单项式乘以多项式,其结果的项数与多项式的项数相同. ③注意运算中的符号问题.7、多项式乘以多项式运算法则:先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.注意:(1)用一个多项式的每一项乘遍另一个多项式的每一项,不要漏乘,在没有合并同类项之前,两个多项式相乘展开后的项数应是原来两个多项式项数之积。
华东师大版八年级数学上册第12章整式的乘除复习课1 课件+ 教案
1、若(a+b)2=11, (a-b)2=7,求ab的值;
2、已知x+y=4,xy=-12
求下列各式的值:
(1)x2+y2
(2)x2y+xy2
(3)x-y
1 、 若 a2 6a M 是 一 个 完 全 平 方 式 , 则 M 等 于 ( ) A.-3 B.3 C.-9 D.9
2、已知:x2+y2+4x-6y+13=0,求xy的值。
3、已知:4x2+9y2+4x-6y+2=0,求x、y的值。
训 练 : 已 知 :x 2
3x
1
0;求x
1 的值
x
书不仅是生活,而且是现在过去和未来文化生活的源泉。——库法耶夫 少一点预设的期待,那份对人的关怀会更自在。 生命是无尽的享受,永远的快乐,强烈的陶醉。 懒人无法享受休息之乐。——拉布克 生命在前进的同时,它就是在走向死亡。 命是弱者的借口,运是强者的谦辞,辉煌肯定有,就看怎么走。 你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 学习不但意味着接受新知识,同时还要修正错误乃至对错误的认识。 明天是世上增值最快的一块土地,因它充满了希望。 情感和愿望是人类一切努力和创造背后的动力,不管呈现在我们面前的这种努力和创造外表上是多么高超。——爱因斯坦 每一种创伤,都是一种成熟。 努力为生,还要努力为死。 有时候谎言,经过精心的包装就有了一个更好听的名字:誓言。 因害怕失败而不敢放手一搏,永远不会成功。 友谊的最大努力并不是向一个朋友展示我们的缺陷,而是使他看到自己的缺陷。
华师版八年级数学上册第12章整式的乘除复习课2 教案有答案
十二章复习课2
学习目标:
1.掌握整式的除法法则、乘法公式及因式分解的概念。
2. 能准确的进行整式乘除法的运算及因式分解。
重点:整式的除法法则、乘法公式及因式分解
难点:能准确的进行整式乘除法的运算及因式分解
课型:复习课课时:1课时
教具:多媒体教法:讲授法
专题三、整式的除法专题复习
(1)单项式除以单项式计算法则
-2x12y ÷x6=________
(2)多项式除以多项式的计算法则
(12a5b6c2-6b5c4) ÷2b2c =_______
巩固训练1:
专题四、乘法公式专题复习
巩固训练2:
3、若x2-4y2=-15,x+2y=3,求x-2y的值
4、已知(x+y)2=1,(x-y)2=49,求:(1)x2+y2(2)xy
专题五、因式分解专题复习
1、因式分解意义:多项式整式乘积
2、因式分解的基本方法:(1)提公因式法;(2)公式法
2、因式分解步骤:一提,二套,三查
巩固训练3:
1.从左到右变形是因式分解的是( )
A.x2-8=(x+3)(x-3)+1
B.(x+2y)2=x2+4xy+4y2
C.y2(x-5)-y(5-x)=(x-5)(y2+y)
D.
三、课堂小,回扣目标
1.整式的除法:
2.乘法公式:
3.因式分解:
四、达标检测,当堂反馈
板书设计
课后反思
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12章 整式的乘除复习导学案
一、学习目标:
1. 对全章内容进展梳理,突出知识间的内在联系和递进关系.
2. 进一步提高学生综合应用整式乘除法公式进展运算的能力.
二、知识构造:
三、专题演练
㈠ 幂的运算
例1 计算以下各式:
⑴ 53()x x x ⋅⋅- ⑵ 112(2)(2)(2)n n n x x x -++⋅+-+
⑶ 41()n n a - ⑷ 4223()()y y -⋅
⑸ 5[()()]x y x y +- ⑹ 2212()m n x y +-⋅
例2 计算以下各式:
⑴ 3244224()4()x x x x x ⋅⋅+-+- ⑵ 825(0.125)2-⨯
⑶ 12(1990)(
)3980
n n +⋅
㈡ 整式的乘法
例3 计算: ⑴ 322[2()][3()][()]3
a b a b a b ----- ⑵ 113(245)n n n n x x x x -++-+
例4 计算:
⑴ 2(325)(23)x x x ---+ ⑵ 22(2)(42)x y x xy y -++
㈢ 乘法公式
例5 计算:
⑴ (3)(3)a ab ab a ---+ ⑵ 98102⨯
⑶ 24(12)(12)(14)(116)x x x x -+++ ⑷ ()()a b c a b c +--+
例6 计算:
⑴ 298 ⑵ 2(1)(1)(1)y y y --+-- ⑶ 2(23)x y z +-
㈣ 整式的除法
例7 先化简,再求值:42622322[5(4)(3)()](2)a a a a a a ---÷÷-,其中5a =-
㈤ 因式分解
例8 分解因式:
⑴ 324(1)2(1)q p p -+- ⑵ 221()()()m m m ab x y a b x y ab x y +-+---
⑶2a ab ac bc -+- ⑷ 22412925x xy y -+-
五、能力提升
212448x x ++=,求x 的值.
2.4,6x y x y +=-=,求代数式22()(2)3xy y y y xy x xy +-+-的值.
3.一个多项式除以多项式243a a +-,所得商式是21a +,余式为28a +,求这个多项式.
4. 2(8)a pa ++与2(3)a a q -+的乘积中不含有3a 和2a 项,求p 、q 的值.。