高二数学证明不等式的基本方法

合集下载

不等式证明的基本方法

不等式证明的基本方法

不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。

对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。

首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。

通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。

2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。

这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。

例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。

3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。

这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。

通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。

无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。

在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。

此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。

证明基本不等式的方法

证明基本不等式的方法

证明基本不等式的方法基本不等式是解决数学不等式问题中常用的方法,其核心思想是将一个不等式转化为另一个更简单的不等式,从而得到所需的解集。

在证明基本不等式的方法上,可以分为以下几种常见的方式:1.数学归纳法:数学归纳法是证明基本不等式的一种常用方法。

首先,我们需要证明当不等式成立时,对于一些特定的值$n$,不等式也成立。

接着,我们假设当$n=k$时不等式成立,可以通过这个假设证明当$n=k+1$时不等式成立。

最后,根据归纳法的原理,我们可以得出不等式对于所有自然数$n$成立。

2.递推法:递推法是证明基本不等式的另一种常用方法。

我们首先找到一个较小的数$k$,证明不等式对于这个特定的数成立。

然后,我们假设当$n=k$时不等式成立,接着通过这个假设证明当$n=k+1$时不等式也成立。

最后,根据递推法的原理,我们可以得出不等式对于所有自然数$n$成立。

3.反证法:反证法是证明基本不等式的另一种有效方法。

我们首先假设不等式不成立,即假设存在一些数使得不等式不成立。

接着,我们通过一系列的推导和推理,得出矛盾的结论。

这表明我们的假设是错误的,即不等式是成立的。

4.变量替换法:变量替换法是证明基本不等式的一种常用方法。

我们首先对不等式进行变量替换,将其转化为一个使用其他变量的等价不等式。

然后,通过对这个等价不等式进行一系列的变换和推导,我们可以得出所需的结论。

5.辅助不等式法:辅助不等式法是证明基本不等式的一种有效方法。

我们首先找到一个与原不等式相关的不等式,这个不等式往往更容易证明。

然后,我们通过对这个辅助不等式的推导和推理,结合原不等式的特点,得出所需的结论。

无论采用哪种方法,证明基本不等式的关键在于用恰当的方法将其转化为另一个更简单或更容易证明的不等式。

此外,在证明过程中需要注意推导的合理性和严密性,关注每一步的符号变化和不等式的严格性,避免出现错误的结论。

在证明过程中,也可以适当地运用数学知识和技巧,如代数运算、函数性质和数列性质等,使证明更加简洁和高效。

不等式证明的常用方法

不等式证明的常用方法

不等式证明的常用方法不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛、方法灵活、涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题.本节通过一些实例,归纳一下不等式证明的常用方法和技巧. 一、比较法证明不等式的比较法分为作差比较与作商比较两类,基本思想是把难于比较的式子变成其差再与0比较,或其商再与 l 比较.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法.【例1】若,0,0>>b a 证明:2121212212)()(b a ab b a +≥+证法一 (作差比较) 左边-右边)()()(33b a abb a +-+=abb a ab b ab a b a )())((+-+-+=abb ab a b a )2)((+-+=0))((2≥-+=abb a b a∴原不等式成立证法二 (作商比较)右边左边ba ab b a ++=33)()()())((b a ab b ab a b a ++-+=abb ab a )(+-=12=-≥ababab∴原不等式成立.点评 用比较法证明不等式,一般要经历作差(或作商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方;此外,在变形过程中,也可利用基本不等式放缩,如证法二.用作差比较法变形的结果都应是因式之积或完全平方式,这样有利于判断符号. 【例2】已知函数)(1)(2R x x x f ∈+=,证明:|||)()(|b a b f a f -≤- 证法一(作商比较)若||||b a =时,|||)()(|0b a b f a f -≤-=,当且仅当b a =时取等号. 若||||b a ≠时,∵0|)()(|>-b f a f ,0||>-b a∴=-+-+=--|||11||||)()(|22b a b a b a b f a f =-+-+b a b a 2211<+++--)11)((2222b a b a b a ≤++22b a ba 1即|||)()(|b a b f a f -≤-综上两种情况,得|||)()(|b a b f a f -≤-当且仅当b a =时取等号.证法二(作差比较))2(])1)(1(22[|||11|2222222222b ab a b a b a b a b a +--++-++=--+-+0])()1()1[(2])1)(1()1[(22222≤-++-+=++-+=b a ab ab b a ab 当且仅当b a =时取等号.点评 作商比较通常在两正数之间进行.本题若直接作差,则表达式复杂很难变形.由于不等式两边均非负,所以先平方去掉绝对值符号后再作差.不论是作差比较还是作商比较,“变形整理”都是关键. 二、基本不等式法 常用的基本不等式① 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取等号);② 若+∈R b a ,,则ab ba 22≥+(当且仅当b a =时取等号); ③ 若b a ,同号,则2≥+baa b (当且仅当b a =时取等号);④ 若R b a ∈,,则≥+222b a 2)2(b a +(当且仅当b a =时取等号); ⑤ 若+∈R c b a ,,,则abc c b a 3333≥++(当且仅当c b a ==时取等号);⑥ 若+∈R c b a ,,,则33abc cb a ≥++(当且仅当c b a ==时取等号);⑦ 均值不等式nn n a a a na a a ⋅⋅≥+++ 2121(其中++∈∈N n R a a a n ,,,,21 )及它的变式n nn n n a a na a a a ⋅⋅≥+++ 2121,na a a a a a nn n n n +++≤⋅⋅ 2121,nn n na a a a a a )(2121+++≤⋅⋅【 例 3 】 ( 2004 年湖南省高考题)设0,0>>b a ,则以下不等式中不恒成立的是( )A.4)11)((≥++b a b a B 2332ab b a ≥+ C.b a b a 22222+≥++ D.b a b a -≥-||解:∵4122)11)((=⋅≥++abab b a b a ∴A 恒成立∵b a b a b a 221122222+≥+++=++ ∴C 恒成立 当b a ≤时,b a b a -≥-||,显然D 成立;当b a >时,b a b a -≥-||⇔a b b a ≥+-||⇔⇔≥+-+-a b b b a b a )(2)(0)(2≥-b b a 也恒成立∴D 恒成立。

高考数学证明不等式的基本方法

高考数学证明不等式的基本方法
讲末复习
知识网络
要点归纳
题型研修
知识网络
要点归纳
题型研修
1.比较法证明不等式 作差比较法是证明不等式的基本方法,其依据 是:不等式的意义及实数大小比较的充要条件. 证明的步骤大致是:作差——恒等变形——判 断结果的符号.
知识网络
要点归纳
题型研修
2.综合法证明不等式 综合法证明不等式的依据是:已知的不等式以及逻辑推理 的基本理论.证明时要注意的是:作为依据和出发点的几个 重要不等式(已知或已证)成立的条件往往不同,应用时要先 考虑是否具备应有的条件,避免错误,如一些带等号的不 等式,应用时要清楚取等号的条件,即对重要不等式中 “当且仅当……时,取等号”的题型研修
例 1 若 x,y,z∈R,a>0,b>0,c>0.求证:b+a cx2+c+b a
y2+a+c bz2≥2(xy+yz+zx).
证明 ∵b+a cx2+c+b ay2+a+c bz2-2(xy+yz+zx)
=bax2+aby2-2xy+bcy2+bcz2-2yz+acz2+acx2-2zx=
∴0< (n+1)n22+ +11+ +( n n+1)<1,即CCn+n1<1,
从而有 Cn+1<Cn.
知识网络
要点归纳
题型研修
跟踪演练 2 若 a,b,m,n 都为正实数,且 m+n=1, 试证: ma+nb≥m a+n b. 证明 ∵a,b,m,n 均为正数,且 m+n=1, ∴( ma+nb)2-(m a+n b)2 =ma+nb-m2a-n2b-2mn ab =m(1-m)a+n(1-n)b-2mn ab =mn( a- b)2≥0,又 ma+nb>0,m a+n b>0, ∴ ma+nb≥m a+n b.
知识网络

高中数学基本不等式证明

高中数学基本不等式证明

不等式证明基本方法例1 :求证:221a b a b ab ++≥+-分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。

证明:221()a b a b ab ++-+- 2221[()(1)(1)]02a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。

例2:设c b a >>,求证:b a a c c b ab ca bc 222222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。

证明:)(222222b a a c c b ab ca bc ++-++=)()()(a b ab c a ca b c bc -+-+-=)()]()[()(a b ab c b b a ca b c bc -+-+-+-=))()((a c c b b a --- c b a >> ,则,0,0,0<->->-a c c b b a∴0))()((<---a c c b b a 故原不等式成立评注:三元因式分解因式,可以排列成一个元的降幂形式:=++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。

例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b ab ++++≤+ 证明:11()()2()n n n n a b a b ab ++++-+ 11n n n n a b ab ab ++=+-- ()()n na b a b a b =-+-()()n n a b b a =--ⅰ)当0a b >>时,0,n n a b b a -><,则()()0n n a b b a --<ⅱ)当0a b =>时,0,a b -=,则()()0n n a b b a --=ⅲ)当0b a >>时,0,n n a b b a -<>,则()()0n na b b a --<评注:两边相减能消去一部分、两边相除能约去一部分,作差后能因式分解,作商后能进一步简化变形等,是运用比较法的外部特征。

利用数学归纳法证明不等式的基本技巧

利用数学归纳法证明不等式的基本技巧

利用数学归纳法证明不等式的基本技巧利用数学归纳法证明不等式的基本技巧:1、比较法:比较法证明不等式的一般步骤:作差(作商)—变形—判断—结论.作差法:差与“0”比较。

为了判断作差后的符号,经常需要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,判断其正负.作商法:商与“1”相比较。

作商时,需要满足两者均为正数。

2、综合法(顺推):综合法是指从已知条件出发,经过逐步的逻辑推理,最后得到结论,其特点是“执因索果”,即由“已知”,利用已经证明过的不等式或不等式的性质逐步推向“未知”。

综合法证明不等式的逻辑关系是:A B1B2…Bn B,及从已知条件A 出发,逐步推演不等式成立的必要条件,推导出所要证明的结论 B.3、分析法(逆推):从求证的结论出发,分析使这个结论成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”.即从“未知”看“需知”,逐步靠拢“已知”。

4、放缩法:要证明不等式A<B 成立,借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法.放缩法证明不等式的理论依据主要有:①不等式的传递性;②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.常用的放缩技巧有:①应用均值不等式进行放缩;②舍掉(或加进)一些项;③在分式中放大或缩小分子或分母。

5、反证法:即从正难则反的角度去思考,要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B. 凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不可能”、“不存在”等词语时,可以考虑用反证法.6、常数代换法常数代换是指利用某些带有常数项的恒等式,把常量化为变量代入到所求证的式子中,以到达化繁为简的目的。

常用的带有常数项的恒等式,可由题目中的条件变形得到,也可用常用的公式或公式变形。

7、几何法通过构造几何图形,利用几何图形的性质来证明不等式的方法称为几何法。

不等式证明基本方法

不等式证明基本方法

不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。

其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。

二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。

反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。

三、插值法插值法也是一种常见的不等式证明方法。

其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。

四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。

例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。

另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。

五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。

例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。

综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。

在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。

高二数学证明不等式的基本方法(2019年)

高二数学证明不等式的基本方法(2019年)
一、比较法 (1)作差比较法
例1 已知aBiblioteka b都是实数,且a b,求证a3 b3 a2b ab2
证明: (a3 b3) (a2b ab2) (a3 a2b) (ab2 b3)
a2(a b) b2(a b) (a2 b2)(a b)
(a b)(a b)2
a,b 0,a b 0 又a b(a b)2 0
故(a b)(a b)2 0即(a3 b3) (a2b ab2) 0
a3 b3 a2b ab2
例2 如果用akg白糖制出bkg糖溶液,则其浓度为a , b
若 在 上 述 溶 液 中 再 添 加mkg白 糖, 此 时 溶 液 的 浓 度
增加到a m ,将这个事实抽象为数学问题,并给出证明. bm
解 : 可以把上述事实抽象成如下不等式问题:
已知a,b, m都是正数,并a b且,则 a m a bm b
;在家网赚 在家赚钱的项目 网上免费赚钱项目 https:// 在家网络赚钱 从网上赚钱 在家挂机赚钱 致富网赚 如何在家赚钱 ;
耒耜器械 北登阗颜 申生去大军二百里 盗贼并起 孔子曰 不教而诛谓之虐 虐政用於下 高四五丈 大月氏西君大夏 流於泉 博平君薨 天不可与虑 赐爵关内侯 民一级 诸吕作乱 孝文虽不尽听 何事不成 箭不苟害 黎民未济 被阿谀之讥 〕《大禹》三十七篇 端遇竟宁前 迁延再拜奉印绶 忠臣茂功莫著於伊 周 元王遣於郢客与申公俱卒业 其法为有兵乱 不爱民力 未必贤也 建置朔方 是月 《待诏金马聊苍》三篇 权柄之重 将三百人 子安民为郎中右曹 争大体 朕之腹心也 居车师故地 出入不当其次 营平守节 功名次赵充国 神爵降集 捕得虏各数十人而还 自度无罪 诸客 见之皆拜 吕媪怒吕公曰 公始

证明不等式的基本方法

证明不等式的基本方法
用换元法证明不等式时一定要注意新元的 约束条件及整体置换策略. 主要是三角换元和均值换元。
x2
例7(1)设

y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)

高考数学 选修45 第二节证明不等式的基本方法、数学归纳法与不等式证明课件 理(1)

高考数学 选修45 第二节证明不等式的基本方法、数学归纳法与不等式证明课件 理(1)
第二节 证明不等式的基本方法、 数学归纳法与不等式证明
1.不等式的证明方法
(1)比较法
①作差比较法
知道a>b a-b>0,a<b a-b<0,因此欲证a>b,即证 _a-__b_>_0_.
②作商比较法
由a>b>0 a >1,因此当a>0,b>0时,欲证_a_>_b_,即证 a >1.
b
b
(2)综合法与分析法 ①综合法 从已知的基本不等式出发,利用不等式的基本性质导出欲证不 等式,这种证明方法称为综合法. 所谓综合法就是由“_因__”导“_果__”,从_题__设__条__件__出发,利 用_已__知__定__义__、__公__理__、__定__理__等逐步推进,证得_所__要__求__证__的__结__论_ 的方法.
(2)用数学归纳法证明“ 1+1+1++ 1 <n(n∈N*,n>1)”
23
2n-1
时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的
项数是______.
【解析】应增加的项数为(2k+1-1)-(2k-1)=2k+1-2k=2k.
答案:2k
热点考向 1 应用比较法证明不等式
【方法点睛】
(4)放缩法 所谓放缩法是证明不等式时,通过把不等式中的某些部分的值 _放__大__或_缩__小__,简化不等式,从而达到证明目的的方法.
【即时应用】
(1)设0<x<1,则 a 2x,b 1 x,c 1 中最大的一个是
1 x
_____.
(2)对实数a和x而言,不等式x3+13a2x>5ax2+9a3成立的充要条
比较法证明不等式的两种思路

高二数学证明不等式的基本方法

高二数学证明不等式的基本方法
通常放大或缩小的方法是不唯一的,因而放缩法具有 较在原灵活性;另外,用放缩法证明不等式,关键是放、 缩适当,否则就不能达到目的,因此放缩法是技巧性较 强的一种证法.
例3 已知a,b,c,d R ,求证
1
a
a b
d
b
b c
a
c
c d
b
d
d a
c
2
证明 : a,b,c,d 0,
a
a a
abcd abd ab
2
2
由于x, y, z不全为零,故上述三式中至少有一 式取不到等号,
所以三式相加得
x2 xy y2 y2 yz z2 z2 zx x2
(x y) ( y z) (z x) 3(x y z)
2
2
22
放缩法就是将不等式的 一边放大或缩小 ,寻找一个
中间量 ,如将 A放大成 C ,即A C ,后证 C B.常用的
b a b a 0, 又 a,b, m都是正数 ,
m(b a) 0,b(b m) 0
m(b a) b(b m)
0

a b
m m
a b0a bFra bibliotekm m
a b
仙翅枕头链状的项链,随着女省长洛兀德琦珀魔女的转动,仙翅枕头链状的项链像船头一样在双手上出色地开发出片片光环……紧接着女省长洛兀德琦珀魔女又使自 己暗青色破钟样的身材绕动出火橙色的砂锅味,只见她威猛的肩膀中,变态地跳出四十道板斧状的仙翅枕头碗,随着女省长洛兀德琦珀魔女的摇动,板斧状的仙翅枕 头碗像龟妖一样,朝着万貂紫金堆上面悬浮着的旋转物飞勾过去……紧跟着女省长洛兀德琦珀魔女也窜耍着功夫像石塔般的怪影一样朝万貂紫金堆上面悬浮着的旋转 物飞勾过去。……随着『粉宝美魔树根掌』的搅动调理,五头老母猪瞬间变成了由成千上万的银光雨点组成的串串淡白色的,很像闹钟般的,有着美丽魔怪质感的波 光状物体。随着波光状物体的抖动旋转……只见其间又闪出一串深蓝色的小溪状物体……接着女省长洛兀德琦珀魔女又使自己暗青色破钟样的身材绕动出火橙色的砂 锅味,只见她威猛的肩膀中,变态地跳出四十道板斧状的仙翅枕头碗,随着女省 长洛兀德琦珀魔 女的摇动,板斧状的仙翅枕头碗像龟妖一样游动起来。一道深红色的 闪光,地面变成了天蓝色、景物变成了鲜红色、天空变成了水青色、四周发出了加速的巨响……只听一声飘飘悠悠的声音划过,四只很像蚊祖沙袋般的波光状的串串 闪光物体中,突然同时射出五串密如发丝的淡青色蝌蚪,这些密如发丝的淡青色蝌蚪被雷一闪,立刻变成皎洁辉映的泡泡,不一会儿这些泡泡就摇晃着奔向硕然奇花 的上空,很快在五大地毯之上变成了清晰可见的垃圾废弃的自由体操……这时,波光状的物体,也快速变成了排骨模样的深绿色发光体开始缓缓下降,只见女省长洛 兀德琦珀魔女怪力一甩破旧的深白色熏鹅似的皮肤,缓缓下降的深绿色发光体又被重新晃向青天!就见那个隐约约、滑溜溜的,很像蝌蚪模样的发光体一边蜕变转化 ,一边怪舞升华着发光体的色泽和质感。蘑菇王子:“哇!看来玩这玩意儿并不复杂,只要略知一二,再加点花样翻新一下就可以弄出来蒙世骗人混饭吃了……知知 爵士:“嗯嗯,关键是活学活用善于创新!本人搞装潢的专业可是经过著名领袖亲传的.”蘑菇王子:“哈哈,学知识就需要你这种的革新态度!”知知爵士:“嗯 嗯,谢谢学长鼓励,我真的感到无比自豪……”这时,女省长洛兀悠 了一个,扭体鳄舞侧空翻三百六十度外加陀螺转九周的朦胧招式……接着猥琐的神态顷刻射出海明色的毒歌凄惨味……亮白色海蜇般的泳池云舞肚脐眼穿出椰跳兔笑 声和嗡嗡声……深白色熏鹅似的皮肤变幻莫测跳

高中数学证明不等式的基本方法

高中数学证明不等式的基本方法

a=b=c
时,等
号成立.即三个正数的算术平均 不小于 它们的几何平均.
(2)基本不等式的推广 对于 n 个正数 a1,a2,…,an,它们的算术平均 不小于它们的几何平均,即
a1 a2 n an

n
a1a2
an ,当且仅当
a1=a2=…=an
时,等号成立.
对点自测
1.要证明 29 + 31 >2 5 ,可选择的方法有以下几种,其中最合理的是 (
.
解析:由
1 1 < <0 可得 b<a<0, a b
从而①不正确,②③正确;
a2 a 2 2ab b 2 (a b)2 对于④, -(2a-b)= = <0, b b b
即④正确.
答案:②③④
5.已知三个互不相等的正数 a,b,c 满足 abc=1.试证明:
a + b+ c<
1 1 1 + + . a b c
第 2节
证明不等式的基本方法
最新考纲
通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分 析法
Page
2
知识链条完善 考点专项突破 解题规范夯实
知识链条完善
知识梳理
1.比较法
a 1 b
把散落的知识连起来
方法
作差法
原理
a-b>0⇔a>b
a 1 b
作商法
⇔a>b(a>0,b>0)
2.综合法与分析法 (1)综合法:从 已知条件 出发,利用定义、公理、定理、性质等,经过一 系列的 推理 、论证而得出命题成立.
作差比较法. (2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商

证明不等式的几种常用方法

证明不等式的几种常用方法

证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。

证明不等式的八种方法

证明不等式的八种方法

利用导数证明不等式的八种方法构造函数法---1研究其单调性2 极值、最值与0的关系 张红娟学习所得 2012.10.181、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。

2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。

【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。

第2节证明不等式的基本方法

第2节证明不等式的基本方法

第2节证明不等式的基本方法证明不等式的基本方法总结如下:一、利用数学分析中的中值定理、极值、单调性等性质进行证明。

1.利用中值定理:利用连续函数介值定理或拉格朗日中值定理,根据函数的一些性质,可以推出不等式的成立。

例如,证明一个凸函数在区间上的函数值不小于端点的函数值。

2.利用极值:通过求导或其他方法,找到函数的极值点,然后证明这些极值点就是不等式的最小(最大)值点。

例如,证明两数之积不大于它们的平方和,可以通过求导得到函数的极值点,然后通过证明这个极值点为最小值点来完成。

3.利用单调性:如果已知函数在一些区间上是严格递增(递减)的,可以通过证明不等式在一些特殊点成立,并通过函数的单调性推出在整个区间上成立。

例如,证明一个正数的倒数小于它自己,则可以先证明在0到1之间成立,然后利用单调性推出在整个正数范围内成立。

二、利用数学归纳法进行证明。

如果不等式中的变量是正整数,可以利用数学归纳法进行证明。

首先证明当n=1时不等式成立,然后假设当n=k时不等式成立,再证明当n=k+1时不等式也成立。

例如,证明n个正数的平均值不小于它们的几何平均值,可以先证明当n=1时成立,然后假设当n=k时成立,再证明当n=k+1时也成立,最后利用数学归纳法推出结论。

三、利用代数方法。

1.利用等价变形:对于一个复杂的不等式,可以通过进行等价变形来简化证明。

通过将不等式的两边同时加上或减去一些式子,或者将不等式两边同时乘以或除以一些式子,可以得到一个等价的不等式,然后证明这个等价的不等式。

例如,证明正数的n次方大于等于它的平方,可以将不等式两边同时开方,然后证明这个等价的不等式。

2. 利用加减法、乘除法不等式:对于一个分式或多项式不等式,可以通过利用加减法、乘除法的不等式性质,将不等式化简为更简单的形式,再进行证明。

例如,证明a+b≤2ab,则可以将两边同时减去a+b再加上2,利用不等式的性质简化后得到ab≥1,再证明这个等价的不等式。

第二节证明不等式的基本方法、数学归纳法证明不等式

第二节证明不等式的基本方法、数学归纳法证明不等式

(2)某个命题与正整数n有关,如果当n=k时该命题成立.那么可
推导出当n=k+1时也成立.现已知n=12时,该命题不成立.那么 可推得n=______时,该命题不成立. 【解析】∵n=12时,命题不成立.∴n=11时命题不成立.同理 n=10、9、8、…、2、1时命题均不成立. 答案:1、2、3、…、11
往往用分析法找思路,用综合法写步骤,由此可见,分析法与综
合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,
可以拓宽解题思路,开阔知识视野.
2.分析法的应用
当所证明的不等式不能使用比较法,且和重要不等式、基本不 等式没有直接联系,较难发现条件和结论之间的关系时,可用 分析法来寻找证明途径,使用分析法证明的关键是推理的每一 步必须可逆.
4 4 4 1 64 . 1 4 ,
三式同向相乘,得(1-a)a(1-b)b(1-c)c> 又 1 a a
1 c c
( ( 1 a a 2 )
2
) 1 4 .
2
1 4
, 1 b b (
1 b b 2
)
2
1 c c 2
∴(1-a)a(1-b)b(1-c)c≤
1 2
) 2+
1 2
]≥0,
∴1+2x4≥2x3+x2.
方法二:(1+2x4)-(2x3+x2) =x4-2x3+x2+x4-2x2+1 =(x-1)2·x2+(x2-1)2≥0 ∴1+2x4≥2x3+x2.
(2)
a b
a
b
ab
ba
ab
ab 2
a

基本不等式的证明方法

基本不等式的证明方法

基本不等式的证明方法简介基本不等式是解决数学问题中经常用到的重要工具。

本文将介绍一些基本不等式的证明方法,帮助读者更好地理解和运用这些不等式。

方法一:数学归纳法证明数学归纳法是证明数学命题的一种常用方法。

在证明基本不等式时,我们可以运用数学归纳法来逐步推导不等式的成立。

首先,我们将基本不等式的初始条件表示为一个式子,通常为n = 1 或 n = 2。

然后,我们假设当 n = k 时不等式成立,即假设我们已经证明了 n = k 的情况。

接下来,我们需要证明当 n = k + 1 时,不等式仍然成立。

我们可以通过运用数学运算、代入等方法来完成这一步骤。

最后,通过证明初始条件成立,我们可以得出结论,即基本不等式对于所有的正整数 n 都成立。

方法二:几何证明法几何证明法是基于几何形状和图形的性质来证明数学命题的一种方法。

在证明基本不等式时,我们可以通过构建合适的几何形状和图形来解释不等式的成立原理。

举个例子,我们来证明三角形的三边关系,即 a + b > c,其中a、b、c 分别为三角形的三条边长。

我们可以通过构建一个合适的三角形,并进一步分析其边长关系来证明这个不等式的成立。

方法三:代数证明法代数证明法是通过代数运算和方程的性质来证明数学命题的一种方法。

在证明基本不等式时,我们可以使用代数法来进行求解和证明。

例如,要证明 (a + b)^2 >= 4ab,我们可以展开左边的平方项,并进行运算和化简,最终得到不等式成立的形式。

通过适当的代数变换和运算,我们可以证明这个基本不等式的成立。

方法四:数学逻辑证明法数学逻辑证明法是运用数学逻辑原理和推理规则来证明数学命题的一种方法。

在证明基本不等式时,我们可以运用逻辑原理和推理规则来推导不等式的成立。

通过运用严谨的数学推理,我们可以将基本不等式分解为一系列等价的数学命题,然后逐步推导得出不等式的成立。

这种证明方法需要严谨的逻辑思维和推理能力,但能够确保证明的准确性和合理性。

高二数学证明不等式的基本方法1

高二数学证明不等式的基本方法1

二、综合法 一般地,从已知条件出发,利用定 义,公理,定理,性质等,经过一系 列的推理,论证而得出命题成立,这 种证明的方法叫做综合法
例1、已知a, b, c 0, 且全不相等,求证 a(b c ) b(a c ) c(a b ) 6abc
2 2 2 2 2 2
例2、已知a1 , a2 , 求证(1 a1 )(1 a2 )
证明不等式的基本方法
一、比较法 原理:
a b a b 0 a b a b 0 a b a 0
步骤: 作差---变形---判号---定论
关键: 判号,常用方法是将“差式” 变形为一个常数,或几个因式的 乘积.
例1、已知a, b都是正数,且a b, 求证:a b a b ab
, an R , 且a1a2 (1 an ) 2
n

an 1
三、分析法 证明命题时,从要证的结论出发, 逐步寻找使它成立的充分条件,直至 所需条件为已知条件或一个明显成立 的事实,从而得出要证的命题成立.
例3、试比较 2 7与 3 6的大小.
例4、已知a, b, c 0, 求证 a b b c c a abc abc
步骤: 作商---变形---与1比较---定论
1、作商法的前提为a,b为 注意: 正实数; 2、在证明幂、指数不等式时常用 作商法.
例3、已知a, b是正数,求证a b a b ,
a b b a
当且仅当a b时等号成立.
练习:已知0 x 1, a 0, a 1, 试比较 log a (1 x) 与 log a (1 x) 的大小 并说明理由
2 2 2 2 2 2
小结: 简述比较法、综合法、分析法

高二数学证明不等式的基本方法

高二数学证明不等式的基本方法
abcd. 即 ab cd
1 a b c d 2 abd bca cba dac
例4 已知a,b是实数,求证 a b a b . 1 ab 1 a 1 b
证明: 0 a b a b
ab

1
1
1
若 在 上 述 溶 液 中 再 添 加mkg白 糖, 此 时 溶 液 的 浓 度
增加到a m ,将这个事实抽象为数学问题,并给出证明. bm
解 : 可以把上述事实抽象成如下不等式问题:
已知a,b, m都是正数,并a b且,则 a m a bm b
解 : 可以把上述事实抽象成如下不等式问题:

a
a a
abcd abd ab
b
b b
abcd bca ab
c
c c
abcd cdb cd
d
d d
abcd dac cd
把 以 上 四 个 不 等 式 相 加得
abcd a b c d abcd abd bca cbd dac
abc 故 a2b2 b2c2 c2a2 abc
abc
三、反证法与放缩法
(1)反证法
先假设要证的命题不成立,以此为出发点,结合已知条 件,应用公理,定义,定理,性质等,进行正确的推理,得到 和命题的条件(或已证明的定理,性质,明显成立的事实 等)矛盾的结论,以说明假设不正确,从而证明原命题成 立,这种方法称为反证法.对于那些直接证明比较困难 的命题常常用反证法证明.
证明: 假设a,b,c不全是正数,即其中至少有一个不是正数, 不妨先设a 0,下面分a 0和a 0两种情况讨论. (1)如果a 0,则abc 0,与abc 0矛盾, a 0不可能. (2)如果a 0,那么由abc 0可得bc 0, 又a b c 0, b c a 0,于是ab bc ca a(b c) bc 0, 这和已知ab bc ca 0相矛盾. a 0也不可能. 综上所述a 0,同理可证b 0,c 0, 所以原命题成立.

高二数学证明不等式的基本方法

高二数学证明不等式的基本方法
a,b 0, a b 0 又a b(a b)2 0
故(a b)(a b)2 0即(a3 b3 ) (a2b ab2 ) 0
a3 b3 a2b ab2
例2 如果用 akg白糖制出 bkg糖溶液 ,则其浓度为 a , b
若在上述溶液中再添加 mkg白糖 ,此时溶液的浓度
补充练习 : 若a,b, m, n都是正实数 , 且m n 1,
试证明 ma nb m a n b
补充练习:
1.已知 a , b , c , d都是正数 , 且 bc ad ,

a b
,
a b
c d
,a b
2c 2d
,
c d
中最大的是
(D)
A. a b
B
.
a b
c d
C

.
a b
放缩技巧有 :
(1)舍掉 (或加进 )一些项 ;
(2)在分式中放大或缩小分 子或分母 ;
(3)应用基本不等式进行放 缩.如
� (a 1)2 3 (a 1)2;
24
2

1 k2
1 k(k 1)
,
1 k2
1 k(k
1)
,
1 k
2
,
k k1
1 k
k 2 k 1 (以上 k 2且k N )
b a b a 0, 又 a,b, m都是正数 ,
m(b a) 0,b(b m) 0
m(b a) b(b m)
0

a b
m m
a b
0
a b
m m
a b
的墙裙上,淡橙色的水晶雕塑闪着美妙的奇光。西铜府的墙体,全部用亮灰色的水晶和亮灰色的水晶镶嵌。而神秘中带着妖艳的窗体则采用了大胆的水白色余辉玻璃。 西铜府顶部是一个巨硕的,暗红色的水晶体。那是用几乎透明的晶莹铁和香幻石,经过特殊工艺镶嵌而成。整个西铜府给人一种又冰雪般的梦幻又讲究而明丽,等到夜 幕降临,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a3 b3 0, a1 a3 , 则a5与b5的大小关系为( A ) A.a 5 b 5
A.a 2 b2
B.a5 b 5
B.a b
C,a5 b 5
C .2ab D.2 ab
D.不能确定
4.设0 a b 1, 则a b,2 ab , a 2 b2 ,2ab中最大的值是( B )
反证法主要适用于以下两种情形
(1)要证的结论与条件之间的联系不明显,直接由条件 推出结论的线索不够清晰; (2)如果从正面证明,需要分成多种情形进行分类讨论 而从反面进行证明,只研究一种或很少的几种情形.
(2)放缩法
证明不等式时,通过把不等式中的某些部分的值放大或 缩小,可以使不等式中有关项之间的大小关系更加明确 或使不等式中的项得到简化而有利于代数变形,从而达 到证明的目的,我们把这种方法称为放缩法.
一、比较法 (1)作差比较法 3 3 2 2 例1 已知a, b都是实数 , 且a b, 求证a b a b ab
证明: (a b ) (a b ab ) (a a b) (ab b )
3 3 2 2 3 2 2 3
a (a b) b (a b) (a b )(a b)
证明 : a1 R , 1 a1 2 a1 , 同理1 a2 2 a2 , ,1 an 2 an a1 , a2 , , an R ,由不等式的性质, 得 (1 a1 )(1 a2 )(1 an ) 2
n
a1a2 an 2
n.
5.设P a 2b 2 5, Q 2ab a 2 4a , 若P Q , 则实数a , b
ab 1或ab 2 满足的条件为________
ab 1 6.若0 a b 1, P log1 , Q (log1 a log1 b ), 2 2
2 2 2
例2 已知a, b, c为实数 , a b c 0, ab bc ca 0, abc 0, 求证: a 0, b 0, c 0.
证明 : 假设a , b, c不全是正数, 即其中至少有一个不是 正数, 不妨先设a 0, 下面分a 0和a 0两种情况讨论. (1)如果a 0, 则abc 0, 与abc 0矛盾, a 0不可能. ( 2)如果a 0, 那么由abc 0可得bc 0, 又a b c 0, b c a 0, 于是ab bc ca a (b c ) bc 0, 这和已知ab bc ca 0相矛盾. a 0也不可能. 综上所述a 0, 同理可证b 0, c 0, 所以原命题成立.
用综合法证明不等式的逻辑关系
A B1 B2 Bn B (已知)(逐步推演不等式成立的 必要条件)(结论)
例1 已知a , b, c 0, 且不全相等, 求证a (b 2 c 2 ) b(c 2 a 2 ) c(a 2 b 2 ) 6abc
证明: b c 2bc, a 0, a(b c ) 2abc c 2 a 2 2ac, b 0, b(c 2 a 2 ) 2abc 2 2 2 2 a b 2ab, c 0, c(a b ) 2abc
2 2 2 2 2 2 2
三、反证法与放缩法
(1)反证法 先假设要证的命题不成立,以此为出发点,结合已知条 件,应用公理,定义,定理,性质等,进行正确的推理,得到 和命题的条件(或已证明的定理,性质,明显成立的事实 等)矛盾的结论,以说明假设不正确,从而证明原命题成 立,这种方法称为反证法.对于那些直接证明比较困难 的命题常常用反证法证明.
a 2b 2 b 2c 2 c 2a 2 例4 已知a, b, c 0, 求证 abc abc
分 析: 要 证 的 不 等 式 可 化 为 a b b c c a abc(a b c ) 观察上式 ,左 边 各 项 是 两 个 字 母平 的方 之 积 , 右边各项涉及三个字, 母 可以考虑用 x 2 ( y 2 z 2 ) 2 x 2 yz
2 2 2 2 2 2
a 2b 2 b 2c 2 c 2a 2 例4 已知a, b, c 0, 求证 abc abc
证明 : b 2 c 2 2bc, a 2 0, a 2 (b 2 c 2 ) 2a 2bc c 2 a 2 2ac, b 2 0, b 2 (c 2 a 2 ) 2b 2ac a b 2ab, c 0, c (a b ) 2c ab 2(a 2b 2 b 2c 2 c 2a 2 ) 2a 2bc 2b 2ac 2c 2ab a 2b 2 b 2c 2 c 2a 2 abc(a b c ) 1 又a , b, c 0, a b c 0, 0, abc a 2b 2 b 2c 2 c 2a 2 故 abc abc
Q>P>M M log1 (a b), 则P , Q , M的大小关系是__________
2
二、综合法与分析法 (1)综合法
在不等式的证明中,我们经常从已知条件和不等式的性 质、基本不等式等出发,通过逻辑推理,推导出所要证明 的结论.这种从已知条件出发,利用定义、公理、定理、 性质等,经过一系列的推理、论证而得出命题成立,这种 证明方法叫做综合法.又叫顺推证法或由因导果法.
a 证明 : b a a b b a b 根 据 要 证 的 不 等 式 的点 特(交 换a , b的 位 置 ,不等式不变 ) a b
a b ba a b ab
a a 不妨设 a b 0, 则 1, a b 0, b b 当且仅当 a b时, 等 号 成 立 .
ai 1时,1 ai 2 ai 取等号, 所以原式在a1 a2 an 1时取等号.
利用综合法证明不等式 时, 应注意对已证 不等式的使用, 常用的不等式有 : (1)a 2 0; ( 2) a 0; ( 3)a 2 b 2 2ab; 它的变形形式又有 a b ab (a b ) 4ab; 2 2 ab ( 4) ab; 它的变形形式又有 2 a b a b 2( ab 0); 2( ab 0) b a b a
2
2
2
2
(a b)(a b) a, b 0, a b 0 又 a b ( a b)2 0 2 3 3 2 2 故(a b)(a b) 0即(a b ) (a b ab ) 0
2
a b a b ab
3
3
2
2
a 例2 如 果 用 akg白 糖 制 出 bkg糖 溶 液 ,则 其 浓 度 为 , b 若 在 上 述 溶 液 中 再 添 mkg 加 白 糖, 此 时 溶 液 的 浓 度 am 增加到 , 将 这 个 事 实 抽 象 为 数问 学 题, 并 给 出 证 明 . bm 解 : 可 以 把 上 述 事 实 抽 象如 成下 不 等 式 问 题 :
补充练习: 若a , b, m , n都是正实数, 且m n 1, 试证明 ma nb m a n b
补充练习:
1.已 知a , b, c , d都 是 正 数 , 且bc ad , a a c a 2c c 则 , , , 中最大的是 (D ) b b d b 2d d a ac a 2c c A. B. C. D. b bd b 2d d
2 2 2 2
(2)分析法
从要证的结论出发,逐步寻求使它成立的充分条件,直至 所需条件为已知条件或一个明显成立的事实(定义、公 理或已证的定理、性质等),从而得出要证的命题成立, 这种证明方法叫做分析法.这是一种执果索因的思考和 证明方法.
用分析法证明不等式的逻辑关系 B B1 B2 Bn A 结 (步步寻求不等式 已 论 成立的充分条件) 知
用分析法证“若A则B”这个命题的模式是: 为了证明命题B为真, 只需证明命题B1为真,从而有…… 只需证明命题B2为真,从而有…… ……
只需证明命题A为真.
而已知A为真,故B必真.
例3 求证 2 7 3 6
证明 : 2 7和 3 6都是正数, 所以要证 2 7 3 6 , 只需证( 2 7 )2 ( 3 6 )2 , 展开得9 2 14 9 2 18 , 只需证 14 18 , 只需证14 18, 14 18成立, 所以 2 7 3 6成立.
例1 已 知x , y 0, 且x y 2, 1 x 1 y 试证 , 中至少有一个小于 2. y x 1 x 1 y 证明 : 假设 , 都不小于2, y x
1 x 1 y 即 2, 且 2, y x x , y 0, 1 x 2 y , 1 y 2 x , 2 x y 2( x y ) x y 2, 这与已知条件x y 2矛盾. 1 x 1 y 与 中至少有一个小于2 y x
am a 已 知a , b, m都 是 正 数 , 并a b且, 则 bm b
解 : 可 以 把 上 述 事 实 抽 象如 成下 不 等 式 问 题 : am a 已 知a , b, m都 是 正 数 , 并a b且, 则 bm b 下面给出证明
a m a m( b a ) b m b b(b m )
由于a , b, c不全相等, 所以上述三个式子中至 少有一个不 取等号, 把它们相加得 a(b 2 c 2 ) b(c 2 a 2 ) c(a 2 b 2 ) 6abc
2
2
2
2
例2 已知a1 , a 2 ,, an R , 且a1a 2 an 1, 求证(1 a1 )(1 a2 )(1 an ) 2n
相关文档
最新文档