数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法))
上机报告-二分法,史蒂芬森迭代,割线法
计算方法上机实习报告[题目及目的要求]1.用二分法求方程0163=--x x 在[0,5]上根的近似值。
用牛顿迭代法求0133=--x x 在2=x 附近的实根。
2.完成史蒂芬森迭代加速法和割线法的子程序,并利用方程010423=--x x 对比对分法与一般迭代法。
[方法原理说明]1.二分法和牛顿迭代法:二分法是逐次把有根区间分半,舍弃无根区间而保留有根区间的一种逼近根的方法。
在这个过程中有根区间的长度以2的幂次方减少,当有根区间的长度小于给定的精度时,其中点就作为根的近似值。
牛顿迭代法的迭代格式为: 初值0x ()()k k k k x f x f x x '1-=+ (k=0,1,2....)显然,牛顿迭代格式能够迭代下去必须要求()k x f 的导数不能为0.当某个()0'=k x f 或很小时,迭代中断;当()k x f 满足一定条件时,牛顿迭代具有平方收敛速度。
该方法对初值0x 要求较高,若选取不当,则可能发散,若选取的好,则收敛很快。
2.史蒂芬森迭代加速法和割线法迭代法就是通过一个迭代格式进行反复迭代以产生一个序列。
若这个序列收敛于方程的根,就称这个迭代格式收敛。
史蒂芬森迭代加速法的迭代格式为()k k k k k k k x y z x y x x +---=+221()k k x f y = ,()k k y f z = (k=0,1,2....)割线法与牛顿迭代法一样,即在根的某个邻域内,()k x f 有直至二阶的连续导数,且()0'≠k x f ,则在邻域内选取初值10,x x ,迭代均收敛。
割线法的迭代格式为初值10,x x()()()()111--+---=k k k k k k k x x x f x f x f x x (k=2,3....)[计算步骤]1.二分法:1)给定a,b 及精度要求ep ; 2)计算x=(a+b )/2 及()k x f ;3)若b-a<ep ,则返回主程序,x 作为近似根,否则转4; 4)若()()0<a f x f ,则b x ⇒,否则a x ⇒; 5)转2。
非线性方程求解
⾮线性⽅程求解基于MATLAB的⾮线性⽅程的五种解法探讨摘要:本⽂利⽤matlab软件对⾮线性⽅程解法中的⼆分法、简单迭代法、⽜顿法、割线法以及Steffensen法的数值分析⽅法的算法原理及实现⽅法进⾏了探讨。
对f x x x=+-()2ln2的零点问题,分别运⽤以上五种不同的⽅法进⾏数值实验,⽐较⼏种解法的优缺点并进⾏初步分析评价。
关键词:⼆分法、简单迭代法、⽜顿法、割线法、Steffensen法1、引⾔在很多实际问题中,经常需要求⾮线性⽅程f(x) =0的根。
⽅程f(x) =0的根叫做函数f(x)的零点。
由连续函数的特性知:若f(x)在闭区间[a,b ]上连续,且()()0f a f b<.则f(x) =0在开区间(a,b)内⾄少有⼀个实根。
这时称[a,b]为⽅程f(x) =0的根的存在区间。
本⽂主要对⾮线性⽅程的数值解法进⾏分析,并介绍了⾮线性⽅程数值解法的五种⽅法。
并设=+-.f x x x()2ln2f x在[1,2]上的图形,如图1:. 显然,函数在[1,2]之间有⼀个零点。
⾸先画出()2、计算机配置操作系统Windows 7 旗舰版内存2GB处理器AMD 4核 A6-3400M APU 1.4GHz图.13、⼆分法⼆分法的基本思想是将⽅程根的区间平分为两个⼩区间,把有根的⼩区间再平分为两个更⼩的区间,进⼀步考察根在哪个更⼩的区间内。
如此继续下去,直到求出满⾜精度要求的近似值。
设函数()f x 在区间[a,b ]上连续,且f(a)·f(b) <0,则[a,b ]是⽅程f(x) =0的根的存在区间,设其内有⼀实根,记为x*。
取区间[a,b ]的中点()2k a b x +=并计算1()f x ,则必有下列三种情况之⼀成⽴: (1) 1()f x =0,x1就是⽅程的根x*;(2)()f a .1()f x <0,⽅程的根x*位于区间[a, 1x ]之中,此时令111,a a b x ==; (3)1()f x .()f b <0,⽅程的根x*位于区间[1x ,b ]之中,此时令11a x =,1b b =。
数值分析求解非线性方程根的二分法简单迭代法和牛顿迭代法
实验报告一:实验题目一、 实验目的掌握求解非线性方程根的二分法、简单迭代法和牛顿迭代法,并通过数值实验比较两种方法的收敛速度。
二、 实验内容1、编写二分法、并使用这两个程序计算02)(=-+=x e x x f 在[0, 1]区间的解,要求误差小于 410- ,比较两种方法收敛速度。
2、在利率问题中,若贷款额为20万元,月还款额为2160元,还期为10年,则年利率为多少?请使用牛顿迭代法求解。
3、由中子迁移理论,燃料棒的临界长度为下面方程的根,用牛顿迭代法求这个方程的最小正根。
4、用牛顿法求方程的根,精确至8位有效数字。
比较牛顿迭代法算单根和重根的收敛速度,并用改进的牛顿迭代法计算重根。
第1题:02)(=-+=x e x x f 区间[0,1] 函数画图可得函数零点约为0.5。
画图函数:function Test1()% f(x) 示意图, f(x) = x + exp(x) - 2; f(x) = 0r = 0:0.01:1;y = r + exp(r) - 2plot(r, y);grid on 二分法程序:计算调用函数:[c,num]=bisect(0,1,1e-4)function [c,num]=bisect(a,b,delta)%Input –a,b 是取值区间范围% -delta 是允许误差%Output -c 牛顿迭代法最后计算所得零点值% -num 是迭代次数ya = a + exp(a) - 2;yb = b + exp(b) - 2;if ya * yb>0return;endfor k=1:100c=(a+b)/2;yc= c + exp(c) - 2;if abs(yc)<=deltaa=c;b=c;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;endif abs(b-a)<deltanum=k; %num为迭代次数break;endendc=(a+b)/2;err=abs(b-a);yc = c + exp(c) - 2;牛顿迭代法程序:计算调用函数:[c,num]=newton(@func1,0.5,1e-4) 调用函数:function [y] = func1(x)y = x + exp(x) - 2;end迭代算法:function[c,num]=newton(func,p0,delta)%Input -func是运算公式% -p0是零点值% -delta是允许误差%Output -c牛顿迭代法最后计算所得零点值% -num是迭代次数num=-1;for k=1:1000y0=func(p0);dy0=diff(func([p0 p0+1e-8]))/1e-8;p1=p0-y0/dy0;err=abs(p1-p0);p0=p1;if(err<delta)num=k;%num为迭代次数break;endendc=p0;第2题:由题意得到算式:计算调用函数:[c,num]=newton(@func2,0.02,1e-8)程序:先用画图法估计出大概零点位置在0.02附近。
解非线性方程的牛顿迭代法及其应用
解非线性方程的牛顿迭代法及其应用一、本文概述非线性方程是数学领域中的一个重要研究对象,其在实际应用中广泛存在,如物理学、工程学、经济学等领域。
求解非线性方程是一个具有挑战性的问题,因为这类方程往往没有简单的解析解,需要通过数值方法进行求解。
牛顿迭代法作为一种古老而有效的数值求解方法,对于求解非线性方程具有重要的应用价值。
本文旨在介绍牛顿迭代法的基本原理、实现步骤以及在实际问题中的应用。
我们将详细阐述牛顿迭代法的基本思想,包括其历史背景、数学原理以及收敛性分析。
我们将通过具体实例,展示牛顿迭代法的计算步骤和实际操作过程,以便读者能够更好地理解和掌握该方法。
我们将探讨牛顿迭代法在各个领域中的实际应用,包括其在物理学、工程学、经济学等领域中的典型应用案例,以及在实际应用中可能遇到的问题和解决方法。
通过本文的介绍,读者可以深入了解牛顿迭代法的基本原理和应用技巧,掌握其在求解非线性方程中的实际应用方法,为进一步的研究和应用提供有力支持。
二、牛顿迭代法的基本原理牛顿迭代法,又称为牛顿-拉夫森方法,是一种在实数或复数域上近似求解方程的方法。
其基本原理是利用泰勒级数的前几项来寻找方程的根。
如果函数f(x)在x0点的导数f'(x0)不为零,那么函数f(x)在x0点附近可以用一阶泰勒级数来近似表示,即:这就是牛顿迭代法的基本迭代公式。
给定一个初始值x0,我们可以通过不断迭代这个公式来逼近f(x)的根。
每次迭代,我们都用当前的近似值x0来更新x0,即:这个过程一直持续到满足某个停止条件,例如迭代次数达到预设的上限,或者连续两次迭代的结果之间的差小于某个预设的阈值。
牛顿迭代法的收敛速度通常比线性搜索方法快,因为它利用了函数的导数信息。
然而,这种方法也有其局限性。
它要求函数在其迭代点处可导,且导数不为零。
牛顿迭代法可能不收敛,如果初始点选择不当,或者函数有多个根,或者根是重根。
因此,在使用牛顿迭代法时,需要谨慎选择初始点,并对迭代过程进行适当的监控和调整。
数值计算方法第2章2-1节
(2)计算
f
(
a
2
b)
。
(3)若
f
(
a
2
b
)
0
,计算停止;若
f
(
a
2
b
)
f
(a)
0
,用
若
f
(
a
2
b)
f
(b)
0
,以
a
2
b
代替
a
。
a
2
b
代替
b
;
(4)反复执行第二步与第三步,直到区间长缩小到允许误差范围
之内,此时区间中点即可作为所求的近似解。
18
证明方程 x3 3x2 6x 1 0 在区间(0,1)内有唯一的实根,并
在[-1,-0.25],[0.5,1.25],[1.25,2]各区间内至少有一个实根。
10
2.1.3 区间二分法
定理 函数f(x)在[a,b]上单调连续,且f(a)f(b)<0, 则方程f(x)=0在区间[a,b]上有且仅有一个实根x*。
二分法的基本思想 将有根的区间二分为两个小区间,然后判断根在那 个小区间,舍去无根的小区间,而把有根的小区间 再一分为二,再判断根属于哪个更小的区间,如此 反复 ,直到求出满足精度要求的近似根。
5
有根区间
介值定理 若函数 f (x) 在[a, b] 连续,且
f (a) f (b) 0 ,则方程 f ( x) 0 在(a,b) 内至
少有一个实根。将[a, b] 称为 f (x) 的有根区间。
6
2.1.2 逐步搜索法
假设f(x)在区间[a,b]内有一
个实根x*,若 b – a较小,则可 在(a,b)上任取一点x0作为初始 近似根。
牛顿迭代法与其他迭代法
牛顿迭代法与其他迭代法迭代法是一种常见的数值计算方法,用于求解方程的近似解。
其中,牛顿迭代法是一种较为常用且有效的迭代法。
本文将对牛顿迭代法与其他迭代法进行比较和探讨。
一、牛顿迭代法的原理和步骤牛顿迭代法是由英国物理学家牛顿在17世纪提出的一种寻找方程近似解的方法。
其基本思想是通过不断逼近函数的零点,找到方程的根。
牛顿迭代法的步骤如下:1.选择一个初始值x0;2.根据当前的近似解x0,利用函数的导数计算切线的斜率;3.通过切线与x轴的交点得到下一个近似解x1;4.重复步骤2和步骤3,直到满足精度要求为止。
牛顿迭代法的优点在于它通常具有较快的收敛速度,尤其在接近根的地方。
然而,牛顿迭代法可能会收敛到局部极值点,而不是全局极值点,这是其存在的一个不足之处。
二、牛顿迭代法与其他迭代法的比较除了牛顿迭代法,还存在着其他常用的迭代法,比如二分法和割线法。
下面将对牛顿迭代法与这两种方法进行比较。
1. 牛顿迭代法 vs. 二分法二分法是一种简单而广泛使用的迭代法。
它通过不断将搜索区间二分来逐步逼近方程的根。
二分法的步骤如下:- 选择一个初始的搜索区间[a, b],使得方程的根位于[a, b]之间;- 计算搜索区间的中点c=(a+b)/2;- 比较函数在c处的取值与零的关系来确定下一步搜索的区间,即更新[a, b]为[a, c]或者[c, b];- 重复上述步骤,直到满足精度要求。
与牛顿迭代法相比,二分法的收敛速度较慢。
然而,二分法具有简单易懂、稳定可靠的特点,在某些情况下仍然被广泛使用。
2. 牛顿迭代法 vs. 割线法割线法是一种类似于牛顿迭代法的迭代法,它通过直线的割线逼近方程的根。
割线法的步骤如下:- 选择两个初始值x0和x1,使得x0和x1分别位于方程的根的两侧;- 计算通过(x0, f(x0))和(x1, f(x1))两点的直线的方程;- 求解该直线与x轴的交点得到下一个近似解x2;- 重复上述步骤,直到满足精度要求。
熟悉用二分法,迭代法,牛顿法和弦截法求解非线性方程。(常用版)
熟悉用二分法,迭代法,牛顿法和弦截法求解非线性方程。
(常用版)(可以直接使用,可编辑完整版资料,欢迎下载)实验报告学院(系)名称:计算机与通信工程姓名赵云鹏学号20211931 专业计算机科学与技术班级09-1 实验项目实验一方程求根课程名称数值计算方法课程代码实验时间2011年5月26日实验地点#7-215批改意见:实验目的:熟悉用二分法,迭代法,牛顿法和弦截法求解成绩非线性方程。
实验环境:硬件环境:IBM-PC或兼容机软件环境:Windows操作系统编程语言:C语言实验内容:1、用二分法求方程x2-x-1=0的正根,要求准确到小数点后第一位2用迭代法和牛顿法求解方程x=e-x在x=0.5附近的一个根,要求精确到小数点后三位3用双点弦截法求方程x3+3x2-x-9=0在区间[1,2]内的一个实根,精确到五位有效数字。
教师签字:实验步骤:二分法:迭代法:牛顿法:双点弦截法:用二分法求方程x2-x-1=0的正根,要求准确到小数点后第一位#include <stdio.h>#include <math.h>#define ADJUST1 0.01#define ADJUST2 0.001#define EX 0.000001#define INF 999999999.99double func1(double x)//二分法求的方程{return (x*x-x-1);}double func2_1(double x)//迭代法的方程{return exp(-x);}double res1(double a,double b,double (*fun1)(double x))//二分法{double fa=fun1(a);double fb=fun1(b);double fmid=fun1((a+b)/2);while(fabs(b-a)>=ADJUST1){if(fabs(fmid-0a)<EX)return fmid;else if(fmid*fa<0){b=(a+b)/2;fa=fun1(a);fb=fun1(b);fmid=fun1((a+b)/2);}else if(fmid*fb<0){a=(a+b)/2;fa=fun1(a);fb=fun1(b);fmid=fun1((a+b)/2);}}return (a+b)/2;}int main(){printf("%.2f\n",res1(0,100,func1));printf("%.2f\n",func2_1(-1));return 0;}用迭代法和牛顿法求解方程x=e-x在x=0.5附近的一个根,要求精确到小数点后三位#include <stdio.h>#include <math.h>#define ADJUST1 0.01#define ADJUST2 0.001#define EX 0.000001#define INF 999999999.99double func2_1(double x)//迭代法的方程{return exp(-x);}double res2(double x0,double e,int n,double (*fun)(double x))//迭代法,迭代失败标志,输出Fail!,并返回INF{int k=1;double x1;x1=fun(x0);while(k!=n){if(fabs(x1-x0)<e)return x1;x0=x1;x1=fun(x0);k++;}if(k==n)printf("Fail!\n");return INF;}int main(){printf("%.3f\n",res2(0.5,0.001,100,func2_1));//q2.1printf("%.3f\n",func2_1(0.567));//for testreturn 0;}用双点弦截法求方程x3+3x2-x-9=0在区间[1,2]内的一个实根,精确到五位有效数字#include <stdio.h>#include <math.h>#define ADJUST1 0.01#define ADJUST2 0.001#define EX 0.000001#define INF 999999999.99double dfunc2_2(double x)//牛顿法方程导数{return (0-exp(-x)-1);}double func2_2(double x)//牛顿法方程{return exp(-x)-x;}double res3(double x0,double e,int n,double (*fun)(double x),double (*dfun)(double x)) //牛顿迭代法,奇异标志为返回INF,失败标志为返回INF,并输出Fail!{int k=1;double x1;if(fabs(dfun(x0)-0)<EX)return INF;x1=x0-fun(x0)/dfun(x0);while(k!=n){if(fabs(x1-x0)<e)return x1;x0=x1;x1=x0-fun(x0)/dfun(x0);}if(k==n)printf("Fail!\n");return INF;}int main(){printf("%.3f\n",res3(0.5,0.001,100,func2_2,dfunc2_2));return 0;}微分算子法求解二阶常系数非齐次线性微分方程的特解李绍刚 段复建 徐安农(桂林电子科技大学,计算科学与数学系,广西桂林,541004)摘要:本文主要介绍了二阶微分算子的性质及其它在一些求解二阶常系数非齐次线性微分方程的常见运算公式,并对其中的大部分重要公式给出了详细的较为简单的证明,并通过具体而翔实的例子加以说明它在解题中的具体应用,大大简化了二阶常系数非齐次线性微分方程的特解的求法。
二分法、牛顿迭代法、普通迭代法
数值球根试验报告《数值计算方法》专业班级软件08-1姓名熊文成学号08083117时间2010年10月24日星期天一、 实验目的熟悉二分法以及牛顿迭代法求方程近似根的数值方法,掌握各种迭代方法,自己扩张研究迭代法的效率与收敛性和初始值的关系。
二、 实验内容1.已知0104)(23=-+=x x x f 在[]21,上有一个实根*x ,14)2(5)1(=-=f f ,,用二分法和牛顿迭代法求该实根,要求精度满足条件:321*1021-+⨯≤-k x x 。
2.条件允许的话,扩展研究各种迭代法的效率,以及迭代的效率和收敛性与初始值的关系,并通过比较采用两点加速的方法与普通的方法的效率体验加速迭代的优点。
总而言之,本实验中的用到的求根方法有①二分法,②牛顿迭代法,③迭代函数为213)10(21)(x x -=ϕ的迭代方法,以及④对函数213)10(21)(x x -=ϕ采用两点加速迭代的方法。
三、 主函数流程程序是按顺序运行的,流程图如下图所示:四、源程序#include <stdio.h>#include <conio.h>#include <math.h>//根据x的值计算函数值//函数f(x)=x*x*x+4*x*x-10double func(double x){double value;value=x*x*x+4*x*x-10;return value;}//根据参数x的值计算函数f(x)的导数值double divFunc(double x){return 3*x*x+8*x;}//二分法计算方程f(x)=0在[1,2]上的跟//二份迭代结束条件由参数precision精度给出void biSectionMethod(double precision){int k=0; //均分次数double x1=1.0,x2=2.0; //区间[1.0,2.0]double midx; //二分之后的值printf("\n\t k 有根区间k+1 f(x(k+1)) ");do{printf("\n\t%3d",k);printf(" [%.3f,%.3f]",x1,x2);midx=(x1+x2)/2;printf(" %f",midx);printf(" %.6f",func(midx));if (func(midx)<0)x1=midx;else x2=midx;k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>=precision); //区间的长度超过5e-3就一直迭代printf("\n\t二分法分区间的次数:%d,所求的根是:%lf",k-1,x2);}//牛顿迭代法//根据初值值x0,在区间[1.0,2.0]上迭代求根//迭代次数由参数precision精度决定void NewTonMethod(double x0,double precision){int k=0; //迭代次数double x1,x2=x0;printf("\n\t k x(k) f(x(k)) |x(k+1)-x(k)|");do{printf("\n\t%2d",k);printf(" %.6f",x2);printf(" %.6f",func(x2));x1=x2;x2=x2-func(x1)/divFunc(x1);if (x2-x1>0)printf(" %.6f",x2-x1); //输出两次迭代的差值else printf(" %.6f",x1-x2);k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>precision||x1-x2>precision);printf("\n\t牛顿迭代初值:%lf,次数:%d,所求的根是:%lf",x0,k-1,x2); }//迭代函数g(x)=(sqrt(10-x*x*x))/2;double funcTwo(double x){return (sqrt(10-x*x*x))/2;}//普通迭代函数void ordinaMethod(double x0,double precision){int k=0; //迭代次数double x1,x2=x0;printf("\n\t k x(k) f(x(k)) |x(k+1)-x(k)|");do{printf("\n\t%2d",k);printf(" %.6f",x2);printf(" %.6f",func(x2));x1=x2;x2=funcTwo(x1);if (x2-x1>0)printf(" %.6f",x2-x1); //输出两次迭代的差值else printf(" %.6f",x1-x2);k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>precision||x1-x2>precision);printf("\n\t普通迭代初值:%lf,次数:%d,所求的根是:%lf",x0,k-1,x2); }//使用两个跌代值的组合加速跌代//对迭代函数f(x)=(sqrt(10-x*x*x))/2的加速void twoValue(double x0,double precision){int k=0; //迭代次数double x1,x2=x0;printf("\n\t k x(k) f(x(k)) |x(k+1)-x(k)|");do{printf("\n\t%2d",k);printf(" %.6f",x2);printf(" %.6f",func(x2));x1=x2;x2=(funcTwo(x1)+x1)/2;if (x2-x1>0)printf(" %.6f",x2-x1); //输出两次迭代的差值else printf(" %.6f",x1-x2);k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>precision||x1-x2>precision);printf("\n\t两点加速迭代初值:%lf,次数:%d,根:%lf",x0,k,x2);}void main(){double orgin=1.5; //初始值double precision=5e-6; //精度char sel=0; //操作符while(1){printf("\n\t选择:");printf("\n\t1.二分法\n\t2.迭代法\n\t");sel=getch();printf("\n\n\t注:程序停止处按任意键继续");if (sel=='1'){printf("\n\n\t ************二分法求解过程***********");biSectionMethod(precision); //测试函数}else{printf("\n\t输入迭代的初值:");scanf("%lf",&orgin);//if (orgin>2.0||orgin<1.0) //限制迭代初值范围,根据情况决定//orgin=1.5; //如果输入非法,则按1.5计算printf("\n\n\t ************牛顿迭代法求解过程************");NewTonMethod(orgin,precision);printf("\n\t任何键继续:");getch();printf("\n\n\t *******普通迭代g(x)=(sqrt(10-x*x*x))/2*****");ordinaMethod(orgin,precision);printf("\n\t任何键继续:");getch();printf("\n\n\t ************两个值组合加速迭代x=(g(x)+x)/2***********");twoValue(orgin,precision);}printf("\n\t任何键继续:");getch();}}五、运行结果1、选择求根方法2、 选择二分法下面给出二分法的结果:3、 选择迭代法查看结果:首先显示的是牛顿迭代法的结果:然后是普通迭代法函数是:213)10(21)(x x -=ϕ,结果如下:接着可以看到的是用两点加速法对函数213)10(21)(x x -=ϕ的加速:下面采用不同的初值查看普通迭代函数的收敛性与效率: 各个结果如下:上图对应的是收敛性:收敛的。
数值分析中求解非线性方程的MATLAB求解程序
数值分析中求解非线性方程的MATLAB求解程序1. fzero函数:fzero函数是MATLAB中最常用的求解非线性方程的函数之一、它使用了割线法、二分法和反复均值法等多种迭代算法来求解方程。
使用fzero函数可以很方便地求解单变量非线性方程和非线性方程组。
例如,要求解方程f(x) = 0,可以使用以下语法:``````2. fsolve函数:fsolve函数是MATLAB中求解多维非线性方程组的函数。
它是基于牛顿法的迭代算法来求解方程组。
使用fsolve函数可以非常方便地求解非线性方程组。
例如,要求解方程组F(x) = 0,可以使用以下语法:``````3. root函数:root函数是MATLAB中求解非线性方程组的函数之一、它采用牛顿法或拟牛顿法来求解方程组。
使用root函数可以非常方便地求解非线性方程组。
例如,要求解方程组F(x) = 0,可以使用以下语法:``````4. vpasolve函数:vpasolve函数是MATLAB中求解符号方程的函数。
它使用符号计算的方法来求解方程,可以得到精确的解。
vpasolve函数可以求解多变量非线性方程组和含有符号参数的非线性方程。
例如,要求解方程组F(x) = 0,可以使用以下语法:```x = vpasolve(F(x) == 0, x)```vpasolve函数会返回方程组的一个精确解x。
5. fsolve和lsqnonlin结合:在MATLAB中,可以将求解非线性方程转化为求解最小二乘问题的形式。
可以使用fsolve函数或lsqnonlin函数来求解最小二乘问题。
例如,要求解方程f(x) = 0,可以将其转化为最小二乘问题g(x) = min,然后使用fsolve或lsqnonlin函数来求解。
具体使用方法可以参考MATLAB官方文档。
6. Newton-Raphson法手动实现:除了使用MATLAB中的函数来求解非线性方程,还可以手动实现Newton-Raphson法来求解。
牛顿法与割线法的优缺点比较
牛顿法与割线法的优缺点比较在高等数学中,求解方程是一个极为重要的问题。
而非线性方程则是其中较为困难的问题之一。
传统的解法是使用代数方法来求解,但是这种方法往往难以得到精确解。
为此,数学家们提出了一些数值方法,如牛顿法和割线法。
本文将比较这两种方法的优缺点。
一、牛顿法牛顿法,也称牛顿-拉夫森方法,是求解非线性方程的一种重要数值方法。
它在数值实现上表现出了极高的效率和精确度。
此方法的基本思路是利用泰勒级数对函数进行近似,并通过二次迭代改进解的精度。
牛顿法的优点在于:首先,求解速度非常快。
其次,在解的精度上,牛顿法通常可以达到很高的精度。
此外,该方法具有广泛的适用性和可靠性,适用于大多数非线性方程情况下的解法。
因此,牛顿法也常常被用于机器学习,人工智能等复杂问题的求解中。
牛顿法的缺点在于:首先,在某些情况下可能会出现发散的现象,导致计算不了解。
其次,在复杂度较高的情况下,需要进行一定程度的求导计算,增加了计算难度和成本。
此外,初始值对解的精度有很大的影响,因此需要对初始值进行一定的优化选择。
二、割线法割线法,也称为切线迭代法,是求解非线性方程的另一种数值方法。
该方法是以相邻两点处的斜率来近似求解方程解。
割线法的主要思路是,用切线代替牛顿法中的一次导数,用两点之间的函数值的差与它们的函数值之和的差来代替二次导数。
割线法的优点在于:首先,它的初值选择很灵活。
其次,在计算精度和效率方面表现出相当不错的结果。
此外,在大多数情况下,计算初始值时相对容易,而且过程较为简单。
割线法的缺点在于:首先,它是一个单点迭代方法,需要出现相邻的两个点进行计算,同时也需要相邻点的值是不同的,因此要求初值的选择较为严格。
其次,不同于牛顿法,割线法的适用性越来越小,对于非平滑函数的解法并不有效。
此外,该方法的精度常常受到初值的影响。
综上所述,牛顿法和割线法都是求解非线性方程的有效方法。
牛顿法具有快速、高精度和广泛适用性等优点,但其成本也相对较高,且初始值对解的精度有很大影响。
数值分析课程教学大纲
数值分析课程教学大纲一、课程简介数值分析是一门应用数学课程,研究如何利用计算机和数值方法来解决实际问题。
本课程将介绍数值计算的基本概念和数值算法,以及其在科学和工程领域中的应用。
主要内容包括:插值与逼近、数值积分与数值微分、非线性方程求解、线性方程组求解、特征值与特征向量计算、数值解常微分方程等。
二、教学目标1.掌握数值分析的基本概念,了解数值计算的背景和意义;2.熟悉常用的数值算法,能够正确选择和应用适当的数值方法;3.能够使用计算机编程语言实现数值分析中的算法,并利用计算机进行数值计算;4.培养独立思考和问题解决能力,能够通过数值分析方法解决实际问题。
三、教学内容与安排1.插值与逼近1.1 插值多项式1.2 插值余项与误差估计1.3 最小二乘逼近方法1.4 样条插值方法2.数值积分与数值微分2.1 数值积分的基本概念2.2 数值积分公式与误差估计 2.3 自适应积分方法2.4 数值微分的基本概念与方法3.非线性方程求解3.1 二分法与不动点迭代法3.2 牛顿法与割线法3.3 收敛性分析3.4 高级方法:弦截法、过程函数法等4.线性方程组求解4.1 线性方程组与矩阵运算的基本概念4.2 直接解法:高斯消元与LU分解4.3 迭代解法:雅可比迭代与高斯-赛德尔迭代4.4 收敛性与稳定性分析5.特征值与特征向量计算5.1 线性代数复习:特征值与特征向量的定义5.2 幂迭代法与反幂迭代法5.3 Jacobi方法与QR方法6.数值解常微分方程6.1 常微分方程数值解的基本概念与方法6.2 单步法:欧拉法、改进的欧拉法、Runge-Kutta法 6.3 多步法:Adams法、Milne法6.4 稳定性与刚性问题四、教学方法1.理论与实践相结合,以理论讲解为主,辅以相关数值计算实例;2.组织编程实践,利用计算机进行数值分析的算法实现与应用;3.课堂互动,鼓励学生提问和思考,培养独立解决问题的能力;4.课后作业辅导,及时解答学生的问题,帮助学生巩固所学知识。
数值分析 迭代法 二分法和迭代法原理
lim | xk x* | 0
k
即 lim xk x *.
k
(b) | xk1 x*| L | xk x*|
| xk 1 xk | | ( xk 1 x*) ( xk x*) | xk x * xk 1 x * (1 L) xk x * 1 xk x * xk 1 xk 1 L 又 | xk1 xk | ( xk ) ( xk1 ) | '( ) | | xk xk1 | L | xk xk1 |
等价变换
x = (x) 称为迭代函数
(x) 的不动点x*
不动点迭代
具体做法:
从一个给定的初值 x0 出发,计算 x1 = (x0), x2 = (x1), … x 若 k k 0 收敛,即存在 x* 使得 lim x k x *,则由 的连续
k
xk 1 lim xk 可得 x* = (x*),即 x* 是 的不 性和 lim k k
根的估计
引理3.1(连续函数的介值定理) 设f(x)在 [a,b]上连续,且f(a) f(b)<0,则存在x*(a,b) 使f(x*)=0。 例3.1 证明x33x1 = 0 有且仅有3个实根,并 确定根的大致位置使误差不超过 =0.5。 解:
单调性分析和解的位置 选步长h=2, 扫描节点函数值 异号区间内有根
ek 1 xk 1 x* ( xk ) ( x*) '( )ek e 取极限得 lim k 1 '( x*) 0 线性收敛. k e k
数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法))资料
-1.525
6
-1.50391
11
-1.505
2
-1.4875
7
-1.50508
12
-1.50504
3
-1.50625
8
-1.50449
13
-1.50506
4
-1.49688
9
-1.50479
14
-1.50507
表1-1
区间[-1.2,-0.9]
k
xk
k
xk
k
xk
0
-1.05
5
-0.998437
10
12
-1.50489
18
-1.50505
表2-1
初值-1
k
x
1
-1
2
-1
表2-2
初值1.6结果x=1.69028
k
xk
k
xk
k
xk
1
1.6
8
1.68862
15
1.69023
2
1.65669
9
1.68927
16
1.69025
3
1.66987
10
1.68967
17
1.69027
4
1.6779
11
1.68991
2.计算x2=x1-f(x1)(x1-x0)/f(x1)-f(x0);
3.判断f(x2)是否满足精度要求,若没有则按照上述步骤继续迭代,否则输出x2.x2即为方程的近似解。
第
测试结果
函数图像
函数Y=x5-3x3+x-1
二分法
[-1.6,-1.3]
k
数值分析知识点总结
数值分析知识点总结数值分析是一门研究数值计算方法的学科,它旨在研究如何使用计算机算法来解决数学问题。
数值分析广泛应用于科学与工程领域,如物理学、化学、计算机科学、经济学等,有助于我们在计算机上进行精确、高效、可靠的数值计算。
以下是数值分析的一些重要知识点。
1.数值误差:数值计算中存在着各种误差,包括舍入误差、截断误差、传播误差等。
舍入误差是由于计算机对无限小数进行近似表示而产生的误差,截断误差是由于计算方法不完全而导致的误差,传播误差是由于误差在计算过程中的传播而产生的误差。
2.插值与外推:插值是一类问题,它的目标是通过已知数据点的近似值来估计未知点的值。
插值方法包括拉格朗日插值、牛顿插值等。
外推是在已知数据点外估计函数值的方法,例如外推法、Richardson外推法等。
3.数值积分与微分:数值积分是计算函数在给定区间上的定积分的近似值的方法。
常见的数值积分方法有梯形法则、辛普森法则、龙贝格法则等。
数值微分是通过计算函数在给定点的导数的近似值来估计函数的变化率。
4.线性方程组的求解:线性方程组是数值计算中的重要问题之一,其解决方法包括直接法和迭代法。
直接法是通过代数运算求解线性方程组的精确解,如高斯消元法、LU分解法等。
迭代法是通过迭代计算逼近线性方程组的解,如雅可比迭代法、高斯-赛德尔迭代法等。
5.非线性方程的求解:非线性方程求解是指求解形式为f(x)=0的方程的根。
常用的非线性方程求解方法有二分法、牛顿法、割线法等。
6.常微分方程的数值解法:常微分方程的数值解法是指通过计算机算法来近似求解微分方程的解。
常用的数值解法包括欧拉法、改进的欧拉法、龙格-库塔法等。
7.特征值与特征向量的计算:特征值和特征向量是矩阵与线性变换中的重要概念。
求解特征值和特征向量可以帮助我们理解矩阵或线性变换的性质。
常用的特征值计算方法有幂法、反幂法等。
8.曲线拟合与回归分析:曲线拟合是通过给定的散点数据来拟合出一个函数曲线的方法。
Newton法、一般迭代法Steffensen法、弦截法C语言代码
一、Newton法:#include<math.h>#include<stdio.h>double f(double x){return (3*x*x-exp(x));}double f1(double x){return (6*x-exp(x));}void main(){double x1=1,x;do{x=x1;x1=x-f(x)/f1(x);printf("x=%.9lf\n",x1);}while(fabs(x1-x)>0.000005);}说明:f 为原函数,f1为f的导函数,x1为初始值,通过"x=%.9lf“控制输入输出格式二、一般迭代法#include <stdio.h>#include <math.h>int main(){double x=1,x1;while(1){x1=pow(3*x+1,0.2);printf("x=%.6lf\n",x1);if(fabs(x1-x)<0.000005 )break;x=x1;}return 0;}说明:x1为初始值,x1=pow(3*x+1,0.2);为迭代格式,0.000005为允许误差,通过"x=%.6lf“控制输入输出格式三、Steffensen法:#include"stdio.h"#include"math.h"#define phi(x) pow(3*(x)+1,0.2);void main(){double x,x0,del,y,z;printf("x0="); scanf("%lf",&x0);printf("\ndel=:"); scanf("%lf",&del);while(1){y=phi(x0); z=phi(y);x=x0-(y-x0)*(y-x0)/(z-2*y+x0);printf("\n%.6lf",x);if(fabs(x-x0)<del) break;x0=x;}}说明:x0为初始值,pow(3*(x)+1,0.2);为φ(x)的格式,del为允许误差,通过"x=%.6lf“控制输入输出格式四、弦截法:#include<math.h>#include<stdio.h>double f(double x){ //计算f(x)的值return pow(2,x)+pow(3,x)-pow(4,x);}double point(double x1,double x2){//计算与x轴交点的x值printf("x=%.5f\n",(x1*f(x2)-x2*f(x1))/(f(x2)-f(x1)));return (x1*f(x2)-x2*f(x1))/(f(x2)-f(x1));}int main(){//输入两个数x1,x2double x1,x2,x;do{printf("输入两个数x1,x2:");scanf("%lf%lf",&x1,&x2);}while (f(x1)*f(x2)>= 0); // 当输入两个数大于0为真时,继续重新输入//关键循环步骤:do{x=point(x1,x2);//得到交点的值if(f(x)*f(x1)>0)x1=x;//新的x1elsex2=x;}while (fabs(f(x)) > 0.000005); }。
数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法))
-1.50508
12
-1.50504
3
-1.50625
8
-1.50449
13
-1.50506
4
-1.49688
9
-1.50479
14
-1.50507
表1-1
区间[-1.2,-0.9]
k
xk
k
xk
k
xk
0
-1.05
5
-0.998437
10
-1.00005
1
-0.975
6
-1.00078
11
-0.999976
13
1.69015
20
1.69028
7
1.68753
14
1.6902
表2-3
牛顿
初值-1.5结果x=-1.50507
k
xk
k
xk
1
-1.5
4
-1.50504
2
-1.50471
5
-1.50506
3
-1.50497
6
-1.50507
表3-1
初值-1结果x=-1.50507
k
x
1
-1
2
-1
表3-2
初值1.6结果x=1.69028
步骤:1.计算原函数的导数f’(x);构造牛顿迭代公式
2.计算,若f’(x0)=0,退出计算,否则继续向下迭代。
3.若|x1-x0|满足精度要求,x1即为方程的近似解。
2.4弦截法
思想:为加速收敛,改用两个端点都在变动的弦,用差商替代牛顿迭代公式的导数f’(x)。
步骤:1.构造双点弦法的公式
2.计算x2=x1-f(x1)(x1-x0)/f(x1)-f(x0);
数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法))
本科生实验报告实验课程______________ 数值计算方法 _______________________ 学院名称_____________ 信息科学与技术学院_________________ 专业名称______________ 计算机科学与技术 ___________________ 学生 _________________________________________学生学号_______________________________________________指导教师___________________________________________实验地点_______________________________________________实验成绩__________________________________________________二0 一六年五月二◦一六年五月实验一非线性方程求根1.1问题描述实验目的:掌握非线性方程求根的基本步骤及方法,。
实验容:试分别用二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法),求x5-3x3+x-仁0在区间[-8,8]上的全部实根,误差限为10-6。
要求:讨论求解的全过程,对所用算法的局部收敛性,优缺点等作分析及比较,第2章算法思想2.1 二分法思想:在函数的单调有根区间,将有根区间不断的二分,寻找方程的解。
步骤:1.取中点 mid=(x0+x1)/22若f(mid)=0,则mid为方程的根,否则比较与两端的符号,若与f(x0) 异号,则根在[x0,mid]之间,否则在[mid,x1]之间。
3并重复上述步骤,直达达到精度要求,则mid为方程的近似解。
开始读入a,b,eyes输出mid结束2.2简单迭代法思想:迭代法是一种逐次逼近的方法,它是固定公式反复校正跟的近似值, 使之逐步精确,最后得到精度要求的结果。
求解非线性方程的三种新的迭代法
求解非线性方程的三种新的迭代法
非线性方程是一种不满足线性关系的方程,它们的解不易通过代数方法直接求解。
需要通过迭代法来逼近非线性方程的解。
迭代法是一种通过不断逼近的方法,寻找非线性方程的近似解的方法。
在本文中,我们将介绍三种新的迭代法,这些方法可以更有效地求解非线性方程。
1. 牛顿迭代法
牛顿迭代法是求解非线性方程的一种经典方法,它通过不断迭代来逼近方程的解。
该方法的基本思想是从方程的一个初始值开始,通过一定的迭代公式不断逼近方程的解。
具体的迭代公式为:
\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\]
x_n表示第n次迭代的近似解,f(x)表示原非线性方程,f'(x)表示f(x)的导数。
牛顿迭代法的收敛速度非常快,但是需要计算方程的导数,对于复杂的非线性方程来说,计算导数较为困难。
2. 割线法
割线法的收敛速度较快,但是需要两个初始值,并且每次迭代都需要计算函数值,因此每次迭代的计算量较大。
3. 弦截法
\[x_{n+1} = x_n - \frac{f(x_n) \cdot (x_n - x_{n-1})}{f(x_n) - f(x_{n-1})} - \frac{f(x_n) \cdot (x_n - x_{n-1})^2}{f(x_n) - f(x_{n-1})}\]
弦截法通过引入截距值来加快收敛速度,虽然每次迭代的计算量较大,但是收敛速度也较快。
以上介绍了三种新的迭代法,它们可以更有效地求解非线性方程。
在实际应用中,可以根据具体问题的特点选取合适的迭代方法来求解非线性方程,从而得到更为准确和高效的解。
matlab割线法
matlab割线法Matlab割线法Matlab是一款非常强大的数值计算软件,它能够通过各种算法和函数解决多种数学计算、数据处理和图形绘制问题。
其中割线法是解决非线性方程的一种有效的数值方法,也是Matlab中提供的一个强大的工具。
本文将介绍割线法的基本原理和实现过程,在此基础上介绍如何使用Matlab进行问题求解。
一、割线法的基本原理割线法是一种解非线性方程的迭代方法,与二分法、牛顿法、弦截法等常用的解方程方法不同,它不需要求出导数和计算二阶导数,因此在一些情况下比较方便易用。
其基本原理如下:设函数f(x)在[a,b]区间内有一点x0,依据函数的连续性可得到:f(x0) - f(a) ------------ = k0 x0 - a假设在x0点处的函数导数存在,则可以得到:f(x0) - f(a) ------------ ≈ f'(x0) x0 - a即:f(x0) - f(a) ≈ f'(x0) (x0 - a) (1)设函数在[a,b]区间上有一条过点(x0, f(x0))和(x1,f(x1))的直线,这条直线与x轴交点为x2,则可得到:f(x0) - f(x1) ------------ = k1 x0 - x1同样地,利用函数的连续性和微分学知识,可以得到:f(x0) - f(x1) ------------ ≈ f'(x2) x0 - x2即:f(x0) - f(x1) ≈ f'(x2) (x0 - x2) (2)由于k0和k1近似相等,可以将(1)和(2)相加,得到:f(x0) - f(a) f(x0) - f(x1) --------------- + -------------- ≈ f'(x0) + f'(x2) x0 - a x0 - x2整理得到:f(x0) (x1 - x2) + f(x1) (x2 - x0) + f(x2) (x0 -x1) ---------------------------------------------------- ≈ f'(x0) (x1 - x2) + f'(x2) (x2 - x0) (x0 - x1) (x0 - x2)此时,x3可以由上式求得,即x3 = x2 - f(x2) (x2- x0) / [f(x2) - f(x0)]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科生实验报告实验课程数值计算方法学院名称信息科学与技术学院专业名称计算机科学与技术学生姓名*学生学号指导教师实验地点实验成绩二〇一六年五月二〇一六年五月实验一非线性方程求根问题描述`实验目的:掌握非线性方程求根的基本步骤及方法,。
实验内容:试分别用二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法),求x5-3x3+x-1= 0 在区间[-8,8]上的全部实根,误差限为10-6。
要求:讨论求解的全过程,对所用算法的局部收敛性,优缺点等作分析及比较,第2章算法思想二分法思想:在函数的单调有根区间内,将有根区间不断的二分,寻找方程的解。
步骤: 1.取中点mid=(x0+x1)/22.若f(mid)=0,则mid为方程的根,否则比较与两端的符号,若与f(x0)异号,则根在[x0,mid]之间,否则在[mid,x1]之间。
3并重复上述步骤,直达达到精度要求,则mid为方程的近似解。
>简单迭代法思想:迭代法是一种逐次逼近的方法,它是固定公式反复校正跟的近似值,使之逐步精确,最后得到精度要求的结果。
步骤:1.构造迭代公式f(x),迭代公式必须是收敛的。
2.计算x1,x1=f(x0).3.判断|x1-x0|是否满足精度要求,如不满足则重复上述步骤。
4.输出x1,即为方程的近似解。
f为迭代函数Newton迭代法@思想:设r 是的根,选取作为r 的初始近似值,过点做曲线的切线L ,L 的方程为,求出L 与x 轴交点的横坐标,称x 1为r 的一次近似值。
过点做曲线的切线,并求该切线与x 轴交点的横坐标,称为r 的二次近似值。
重复以上过程,得r 的近似值序列,其中,称为r 的次近似值步骤:1.计算原函数的导数f ’(x);构造牛顿迭代公式2.计算 ,若f’(x0)=0,退出计算,否则继续向下迭代。
3.若|x1-x0|满足精度要求,x1即为方程的近似解。
开始输入x0,eX1=x0-f(x0)/f(x1)|x1-x0|<eX1=x0;输出x1结束Noyesf ’(x0)=0弦截法…思想:为加速收敛,改用两个端点都在变动的弦,用差商替代牛顿迭代公式的导数f’(x)。
步骤: 1.构造双点弦法的公式2.计算x2=x1-f(x1)(x1-x0)/f(x1)-f(x0);3.判断f(x2)是否满足精度要求,若没有则按照上述步骤继续迭代,否则输出即为方程的近似解。
第3章测试结果及分析测试结果函数图像[函数Y=x5-3x3+x-1二分法(表1-1,1-2,1-3)[,]k xk k xk k xk 0【5101611,271238< 134914表1-1"区间[,]k xk k xk k xk 05; 1016112【7123813,表1-2区间[,]表1-3 `简单迭代法(表)初值表2-1初值-1表2-2表2-3牛顿迭代法(表,3-3)初值结果x=表3-1初值-1 结果x=表3-2 [初值结果x=表3-3双点弦法(表,4-3)区间[,] 结果x=表4-1区间[,] 结果x= -1表4-2区间[,] 结果x=表4-3从测试结果可以看出二分法和简单迭代法的收敛速度远大于牛顿迭代和弦截法的收敛速度。
二分法和简单迭代法的公式易于构造和计算,牛顿迭代法虽然收敛高,但要求导数,计算的复杂度高!双点弦法随稍慢于牛顿跌代法,可以用差商代替牛顿迭代法中的导数,降低了计算的复杂度!附录:源程序清单#include<iostream>#include<>using namespace std;!double foot =;//定义寻根步长int a=-8,b=8;double*rn=new double[5];//解的区间double*r =new double[5];// 方程近似解int m=0;//根的个数int x_count;double precision=;//精度要求//函数的表达式(x^5-3x^3+x-1)《double f(double x){return(pow(x,5)-3*pow(x,3)+x-1);}void init(){//根据函数图像确定根的区间和迭代初值r[0]=;r[1]=-1;r[2]=;rn[0]=;《rn[1]=;rn[2]=;}//寻找根的区间void search(){ //若没有给出区间和初值,进行逐步搜索有根区间for(int i=0;i*foot-8<8;i++){if(f(i*foot-8)*f((i+1)*foot-8)<0){rn[m]=i*foot-8;|m++;}}}//=====================二分法==========================double Dichotomy (double a,double b){.double mid=0;int i=0;while(fabs(b-a)>precision){mid =(a+b)/2;if(f(a)*f(mid)<=0) b=mid; //判断与端点函数值得符号else a=mid;cout<<mid<<endl;}r[x_count++]=mid;>return mid;//返回最终结果}//================简单迭代法=========================//构造迭代公式double fitera(double x){double result=0;double xx=3*pow(x,3)-x+1;if(xx<=0){·xx=-xx;return pow(xx,*(-1);}elsereturn pow(xx,;}//简单迭代double itera(double x0){cout<<x0<<endl;double x1=fitera(x0);;while(fabs(x1-x0)>precision){x0=x1;x1=fitera(x0); //没有到达精度要求继续迭代cout<<x1<<endl;}return x1;//返回最终结果}//===============牛顿迭代法=================={//计算函数的一阶导数fderivatives(double x)double fderivatives(double x){return5*pow(x,4)-9*(x,2)+1;}//构造牛顿迭代公式newtonitera(double x)double newtonitera(double x){if(fderivatives(x)==0)return-1;//若导数为0 则停止迭代elsereturn x-(f(x)/fderivatives(x));.}//牛顿迭代double newton(double x0){double x1=newtonitera(x0);while(fabs(x1-x0)>precision){x0=x1;if(newtonitera(x0)==-1)break;x1=newtonitera(x0); //继续迭代cout<<x1<<endl;%}return x1;//返回最终结果}//==================双点弦法迭代======================//构造弦截法的迭代公式double twopointchord_f(double x0,double x1){return x1-(f(x1)/(f(x1)-f(x0)))*(x1-x0);(}//双点弦法迭代double twopointchord(double x0,double x1){double x3=twopointchord_f(x0,x1);cout<<x3<<endl;while(fabs(f(x3))>precision){cout<<"f(x3)"<<f(x3)<<endl; //输出x3的函数值x0=x1;x1=x3;,x3=twopointchord_f(x0,x1); //没有到达精度要求继续迭代// cout<<x3<<endl;}cout<<f(x3)<<endl;return x3;//返回最终结果}//测试void main(){:init(); //初始化区间和迭代初值/* 测试代码输出每次的迭代结果和最终结果cout<<"------------------------二分法----------------------"<<endl;for(int i =0;i<3;i++){double result=0;cout<<"有根区间为["<<rn[i]<<" "<<rn[i]+foot<<"]"<<endl;result=Dichotomy(rn[i],rn[i]+foot); //将区间端点带入公式cout<<"求得近似解为"<<result<<endl;}$cout<<"------------------------迭代法----------------------"<<endl;for(i =0;i<3;i++){double result=0;cout<<"有根区间为["<<rn[i]<<" "<<rn[i]+foot<<"]"<<endl;double x0 =r[i]; //取得初值result=itera(x0); //带入公式cout<<"求得近似解为"<<result<<endl;}cout<<"------------------------牛顿迭代----------------------"<<endl;for(i =0;i<3;i++){double result=0;cout<<"有根区间为["<<rn[i]<<" "<<rn[i]+foot<<"]"<<endl;double x0 =r[i]; //取得初值result=newton(x0); //带入公式cout<<"求得近似解为"<<result<<endl;}cout<<"------------------------弦截法----------------------"<<endl;for(i =0;i<3;i++){double result=0;cout<<"有根区间为["<<rn[i]<<" "<<rn[i]+foot<<"]"<<endl; result=twopointchord(rn[i],rn[i]+foot); //将区间端点带入公式cout<<"求得近似解为"<<result<<endl;}/*。