抛物线 课件-2021届高三数学一轮复习
抛物线课件-2025届高三数学一轮复习
A. 2
B. 3
[解析]
2
C. 4
2
D. 8
由题意,知抛物线的焦点坐标为( ,0),椭圆的焦点坐标为(±
2
所以 = 2 ,解得 p =8,故选D.
D )
2 ,0),
5. 已知抛物线 y 2=2 px ( p >0)的焦点为 F ,点 M (2,2 2 )为抛物线上一点,则
|MF|=(
A. 2
2
即 p =2,所以A选项正确.
= − 3( − 1),
对于B,不妨设 M ( x 1, y 1), N ( x 2, y 2), x 1< x 2,联立方程得 2
= 4,
1
消去 y 并整理得3 x 2-10 x +3=0,解得 x 1= , x 2=3.由抛物线的定义得,| MN|=
x 1+ x 2+ p =
B )
B. 3
C. 4
D. 5
[解析] 因为点 M (2,2 2 )为抛物线上一点,所以将点 M 的坐标代入抛物线的方程
y 2=2 px ( p >0),可得 p =2,所以抛物线的方程为 y 2=4 x ,可得其准线方程为 x =
-1.根据抛物线的定义,得| MF |=2-(-1)=3.故选B.
三、知识点例题讲解及方法技巧总结
1
S △ AOB = ×| AB |× ×
2
2
由(2)的推导过程可得,
sin
1
||
2
+
= 2 ,
1−cos
1+cos
si
1
2
α= × 2 × ×
2
si
2
+
[精]高三第一轮复习全套课件8圆锥曲线方程:第3课时 抛物线
2.已知圆x2+y2-9x=0与顶点在原点O、焦点在x轴上的抛物 线C交于A,B两点,ΔOAB的垂心恰为抛物线的焦点,求 抛物线C的方程.
【解题回顾】(1)注意运用平面几何的知识 (2)平面几何中的垂直在解析几何中可转化为斜率之积为-1
3. 若 一 直 线 与 抛 物 线 y2=2px(p > 0) 交 于 A 、 B 两 点 且 OA⊥OB,点O在直线AB上的射影为D(2,1),求抛物线 的方程
第3课时 抛物线 要点·疑点·考点 课 前 热 身 能力·思维·方法
延伸·拓展
误 解 分 析
要点·疑点·考点
1.抛物线的定义:平面内到定点F与到定直线l(F l )的距离 l 之比为1的点的轨迹叫做抛物线
2.抛物线标准方程的四种形式y2=2px , y2=-2px , x2=2py , x2=-2py,当p>0时分别表示焦点在x轴上,开口向右、开 口向左,和焦点在y轴上,开口向上、开口向下的抛物线
返回
课前热身
1.焦点在直线3x-4y+12=0上的抛物线的标准方程是________
y2=-16x或x2=12y ___________________ 2.过抛物线y2=4x的焦点,作直线L交抛物线于A、B两点, 8 若线段AB中点的横坐标为3,则|AB|=______.
3.抛物线y=ax2的准线方程是y=2,则a的值为( (A)1/8 (B)-1/8 (C)8 (D)-8
【解题回顾】将实际问题量化,建立恰当的数学模型, 使用准确的语言加以描述,是数学应用能力的主要体现.
返回
误解分析
(1)不了解光学性质致使解题无法入手,由光学性质知PQ 为抛物线过终点的弦.
(2)目标函数的正确建立是解题之关键同时要能根据具体 目标函数选择适当的方法求最值.
[精]高三第一轮复习全套课件抛物线及其标准方程
四种抛物线的标准方程对比
图形
y
标准方程 焦点坐标 准线方程
y 2 px
2
o
y
x
2
p
p
2
0
p ,0 2
x
p 2
y 2 px
o
y
x
0
p ,0 2
x
p 2
x 2 py
o o
y
x
p
2
0
p 0, 2
1、抛物线的定义,标准方程类型与图象的对应 关系以及判断方法
2、抛物线的定义、标准方程和它 的焦点、准线、方程
3、求标准方程:
(1)用定义 (2)用待定系数法
靓图欣赏
2
①
把①代入抛物线方程 y 4 x ,得
x 1
2
4 x 化简,得 x 6 x 1 0
2
解方程得 x1 3 2 2 , x 2 3 2 2 将x1,x2代入方程①中得:y1
2 2 2 , y2 2 2 2
即A、B的坐标分别为 3 2
(4)化简 (5)证明
想 一 如何建立直角坐标系? 想
√
建立直角坐标系xOy,使x轴经过点F且垂直于直线L,垂足为K, 并使原点与线段KF的中点重合。 p ,, 0 设|KF| = P ( P > 0 ), 那么焦点的F的坐为 准线L的方程为 x = -
p 2
2
设点M(x ,y)是抛物线上任意一点,点M到L的距离为d。 由抛物线的定义,抛物线就是集合 P={M||MF|=d}
例2、求过点A(-3,2)的抛物线的
标准方程。
高三数学第一轮复习_抛物线的定义、性质与
高三数学第一轮复习:抛物线的定义、性质及标准方程【本讲主要内容】抛物线的定义及相关概念、抛物线的标准方程、抛物线的几何性质【知识掌握】【知识点精析】1. 抛物线定义:平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线,定点不在定直线上。
它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0<e<1时为椭圆,当e>1时为双曲线。
2. 抛物线的标准方程有四种形式,参数的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):其中为抛物线上任一点。
3. 对于抛物线上的点的坐标可设为,以简化运算。
4. 抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交于,直线与的斜率分别为,直线的倾斜角为,则有,,,,,,。
说明:1. 求抛物线方程时,若由已知条件可知曲线是抛物线一般用待定系数法;若由已知条件可知曲线的动点的规律一般用轨迹法。
2. 凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算。
3. 解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质。
【解题方法指导】例1. 已知抛物线的顶点在坐标原点,对称轴为轴,且与圆相交的公共弦长等于,求此抛物线的方程。
解析:设所求抛物线的方程为或设交点(y1>0)则,∴,代入得∴点在上,在上∴或,∴故所求抛物线方程为或。
例2. 设抛物线的焦点为,经过的直线交抛物线于两点,点在抛物线的准线上,且∥轴,证明直线经过原点。
解析:证法一:由题意知抛物线的焦点故可设过焦点的直线的方程为由,消去得设,则∵∥轴,且在准线上∴点坐标为于是直线的方程为要证明经过原点,只需证明,即证注意到知上式成立,故直线经过原点。
证法二:同上得。
又∵∥轴,且在准线上,∴点坐标为。
于是,知三点共线,从而直线经过原点。
证法三:如图,设轴与抛物线准线交于点,过作,是垂足则∥∥,连结交于点,则又根据抛物线的几何性质,∴因此点是的中点,即与原点重合,∴直线经过原点。
高考数学一轮复习第七章第七讲抛物线课件
解析:如图 D81,分别过 P,Q 两点作准线 x=-2p的垂线,
垂足分别为 P1,Q1.分别过 P,Q 两点ห้องสมุดไป่ตู้ x 轴
的垂线,垂足分别为 P2,Q2.准线 x=-p2交
x 轴于点 D-p2,0.
∵|PP1|=|PF|=4,|FP2|=12|PF|=2,
图 D81
∴|DF|=|DP2|-|FP2|=4-2=2. ∵|FQ2|=21|QF|=12|QQ1|, ∴|DF|=|QQ1|+|FQ2|=23|QF|. ∴32|QF|=2,|QF|=43. 答案:34
A.直线 AB 的斜率为 2 6 B.|OB|=|OF| C.|AB|>4|OF| D.∠OAM+∠OBM<180°
解析:如图 7-7-5,
图 7-7-5 ∵Fp2,0,M(p,0),且|AF|=|AM|,
∴A34p, 26p, 由抛物线焦点弦的性质可得 xA·xB=p42,则 xB=p3,
则 Bp3,- 36p,
F0,-p2 y≤0,x∈R
(续表) 准线方程 开口方向
焦半径 通径长
x=-p2 向右 x0+p2
x=p2 向左 -x0+2p
2p
y=-p2 向上 y0+p2
y=p2 向下 -y0+2p
【名师点睛】 如图 7-7-1,设 AB 是过抛物线 y2=2px(p>0)焦点 F 的弦,若 A(x1,y1),B(x2,y2),则
由yy= 2=k4(xx-,1), 得 k2x2-(2k2+4)x+k2=0,
得 xA·xB=1,① 因为|AF|=2|BF|,由抛物线的定义得 xA+1=2(xB+1), 即 xA=2xB+1,② 由①②解得 xA=2,xB=21, 所以|AB|=|AF|+|BF|=xA+xB+p=29. 答案:B
抛物线课件 高三数学一轮复习
解析:由题意知F(1,0),设A,B,C的横坐标 分别为x1,x2,x3,
由AF=13 (AB + AC),得1-x1=13(x2-x1+x3-x1), 所以x1+x2+x3=3,
由抛物线的定义得|AF|+|BF|+|CF|=x1+1+x2+ 1+x3+1=x1+x2+x3+3=6.
(2)[2024·广东广州模拟]设动点P在抛物线y=14x2上,点P在x轴上的射 影为点M,点A的坐标是(2,0),则|PA|+|PM|的最小值是___5_-__1__.
题后师说
求抛物线标准方程的常用方法
巩固训练2
(1)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距
离大1,则抛物线的标准方程为( )
A.y2=x
B.y2=2x
C.y2=4x
D.y2=8x
答案: C 解析:由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=-1 的距离相同,因此-p2=-1,p=2,抛物线方程为y2=4x.故选C.
题后师说
抛物线定义的应用策略
巩固训练1
(1)[2024·辽 宁 辽 阳 模 拟 ] 已 知 抛 物 线 C : x2 = 2py(p>0) 的 焦 点 为 F ,
M(m,2)在抛物线C上,且|MF|=4,则p=( )
A.2
考点40 抛物线-备战2021年高考数学(理)一轮复习考点一遍过
考点40 抛物线抛物线也是高考的重点、难点,常出现在高考的选择题或填空题中,多考查抛物线的几何性质,也常出现在高考中的解答题中,作为压轴题,多考查直线与抛物线的位置关系.(1)了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用. (2)掌握抛物线的定义、几何图形、标准方程及简单性质.一、抛物线的定义和标准方程 1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F ) 距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.抛物线关于过焦点F 与准线垂直的直线对称,这条直线叫抛物线的对称轴,简称抛物线的轴.注意:直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线. 2.抛物线的标准方程(1)顶点在坐标原点,焦点在x 轴正半轴上的抛物线的标准方程为22(0)y px p =>; (2)顶点在坐标原点,焦点在x 轴负半轴上的抛物线的标准方程为22(0)y px p =->; (3)顶点在坐标原点,焦点在y 轴正半轴上的抛物线的标准方程为22(0)x py p =>; (4)顶点在坐标原点,焦点在y 轴负半轴上的抛物线的标准方程为22(0)x py p =->.注意:抛物线标准方程中参数p 的几何意义是抛物线的焦点到准线的距离,所以p 的值永远大于0,当抛物线标准方程中一次项的系数为负值时,不要出现p <0的错误. 二、抛物线的几何性质 1.抛物线的几何性质标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->图 形几 何 性质范 围 0,x y ≥∈R0,x y ≤∈R0,y x ≥∈R0,y x ≤∈R对称性 关于x 轴对称关于x 轴对称关于y 轴对称关于y 轴对称焦点(,0)2p F (,0)2p F -(0,)2p F(0,)2p F -准线方程 2p x =-2p x =2p y =-2p y =顶 点 坐标原点(0,0)离心率1e =2.抛物线的焦半径抛物线上任意一点00(),P x y 与抛物线焦点F 的连线段,叫做抛物线的焦半径. 根据抛物线的定义可得焦半径公式如下表:抛物线方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->焦半径公式0||2pPF x =+ 0||2pPF x =- 0||2pPF y =+ 0||2pPF y =- 3.抛物线的焦点弦抛物线的焦点弦即过焦点F 的直线与抛物线所成的相交弦.焦点弦公式既可以运用两次焦半径公式得到,也可以由数形结合的方法求出直线与抛物线的两交点坐标,再利用两点间的距离公式得到,设AB 为焦点弦,11(,)A x y ,22(,)B x y ,则其中,通过抛物线的焦点作垂直于对称轴而交抛物线于A ,B 两点的线段AB ,称为抛物线的通径. 对于抛物线22(0)y px p =>,由(,)2p A p ,(,)2pB p -,可得||2AB p =,故抛物线的通径长为2p . 4.必记结论直线AB 过抛物线22(0)y px p =>的焦点,交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如图:(1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p ,x 1+x 2≥p ,即当x 1=x 2时,弦长最短为2p . (3)1|AF |+1|BF |为定值2p. (4)弦长AB =2psin 2α(α为AB 的倾斜角).(5)以AB 为直径的圆与准线相切.(6)焦点F 对A ,B 在准线上射影的张角为90°.考向一 抛物线的定义和标准方程1.抛物线定义的实质可归结为“一动三定”:一个动点M ,一个定点F (抛物线的焦点),一条定直线l (抛物线的准线),一个定值 1(抛物线的离心率).2.抛物线的离心率e =1,体现了抛物线上的点到焦点的距离等于到准线的距离,因此,涉及抛物线的焦半径、焦点弦的问题,可以优先考虑利用抛物线的定义将点到焦点的距离转化为点到准线的距离,即2PF p x =+或2PF py =+,使问题简化.典例1 设定点(0,1)F ,动圆D 过点F 且与直线1y =-相切,则动圆圆心D 的轨迹方程为 A .24x y = B .22x y = C .24y x =D .22y x =【答案】A【解析】由题意知,动圆圆心到定点(0,1)F 与到定直线1y =-的距离相等, 所以动圆圆心的轨迹是以F 为焦点的抛物线,则方程为24x y =. 故选A.【名师点睛】本题考查抛物线的定义,属于简单题.由题意,动圆圆心的轨迹是以F 为焦点的抛物线,求得p ,即可得到答案.典例2 已知抛物线y 2=2px (p >0)A .)B .(0)C .)D .(0,)【答案】A【解析】抛物线y 2=2px (p >0),即2p=则抛物线的焦点坐标为0).故选A .【名师点睛】本题主要考查抛物线的定义和准线方程,属于基础题.抛物线上的点到准线的最小距离即为顶点到焦点的距离,进而列方程求解即可.1.已知抛物线24y x =上一点P 到焦点的距离是它到y 轴的距离的2倍,则点P 到焦点的距离为_________.考向二求抛物线的标准方程1.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点的位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.2.用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程.典例3 若点A,B在抛物线y2=2px(p>0)上,O是坐标原点,若正三角形OAB的面积为4√3,则该抛物线的方程是x B.y2=√3xA.y2=3C.y2=2√3x D.y2x【答案】A【解析】根据对称性,可知AB⊥x轴,由于正三角形OAB的面积是4√3,2=4√3,故AB=4,正三角形OAB的高为2√3,故可设点A的坐标为(2√3,2),代入抛物线方程得4=4√3p,解得p,故所求抛物线的方程为y2=x.典例4 求满足下列条件的抛物线的标准方程,并求出对应抛物线的准线方程.(1)过点(32)-,;(2)焦点在直线240x y --=上.【解析】(1)设所求抛物线的方程为22y px =-或20)2(x py p >=.∵过点(32)-,,∴3()42p =-⨯-或922p =⨯(2)令0x =得2y =-∴抛物线的焦点为(4)0,或(0)2-,.当焦点为(4)0,8p =,此时抛物线的方程为216y x =;当焦点为(0)2-,4p =,此时抛物线的方程为28x y =-. 故所求抛物线的方程为216y x =或28x y =-,对应的准线方程分别是4x =-,2y =.2.已知抛物线C :()220x py p =>的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线AB ,垂足为B且ABF 是边长为8的正三角形,则抛物线C 的方程为( ) A .24x y = B .26x y = C .28x y =D .210x y =考向三 抛物线的简单几何性质及其应用确定及应用抛物线性质的关键与技巧:(1)关键:利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化成标准方程. (2)技巧:要结合图形分析,灵活运用平面几何的性质以图助解.典例5 已知等腰三角形OPM 中,OP ⊥MP ,O 为抛物线2y =2px (p >0)的顶点,点M 在抛物线的对称轴上,点P 在抛物线上,则点P 与抛物线的焦点F 之间的距离是A .B .52pC .2pD p【答案】B【解析】由题意得222,P P P P P y x x px x p =∴=∴=因此点P 与抛物线的焦点F 之间的距离为522P p px +=,选B. 【名师点睛】(1)凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.(2)解答本题的关键是画出图形,利用抛物线的简单几何性质转化求解即可.3.已知抛物线C 的顶点在坐标原点,焦点F 在x 轴正半轴上,点M 为圆22:12O x y +=与C 的一个交点,且3MF =,则C 的标准方程是( ). A .22y x = B .23y x = C .24y x =D .26y x =考向四 焦点弦问题与抛物线的焦点弦长有关的问题,可直接应用公式求解.解题时,需依据抛物线的标准方程,确定弦长公式是由交点横坐标定还是由交点纵坐标定,是p 与交点横(纵)坐标的和还是与交点横(纵)坐标的差,这是正确解题的关键.典例6 过抛物线y 2=4x 的焦点作直线交抛物线于点A (x 1,y 1),B (x 2,y 2),若|AB |=7,求AB 的中点M 到抛物线准线的距离.【解析】抛物线的焦点为F (1,0),准线方程为x =-1.由抛物线的定义知|AB|=|AF|+|BF|=x 1+p2+x 2+p2=x 1+x 2+p ,即x 1+x 2+2=7,得x 1+x 2=5,于是弦AB 的中点M 的横坐标为52, 因此点M 到抛物线准线的距离为57122+=.典例7 已知过抛物线y 2=2px (p >0)的焦点,斜率为2√2的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ ,求λ的值. 【解析】(1)直线AB 的方程是y =2√2(x-2p),与y 2=2px 联立,从而有4x 2-5px+p 2=0, 所以x 1+x 2=54p . 由抛物线的定义,得|AB|=x 1+x 2+p =9, 所以p =4,从而抛物线的方程是y 2=8x . (2)因为p =4,所以4x 2-5px+p 2=0,可简化为x 2-5x+4=0, 从而x 1=1,x 2=4,y 1=-2√2,y 2=4√2, 从而A (1,-2√2),B (4,4√2).设C (x 3,y 3),则OC⃗⃗⃗⃗⃗ =(x 3,y 3)=(1,-2√2)+λ(4,4√2)=(4λ+1,4√2λ-2√2). 又y 32=8x 3, 所以[2√2(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.4.过抛物线22y px =焦点F 的直线,与抛物线交于A 、B 两点,设11(,)A x y ,22(,)B x y ,则1212y y x x = ( ) A .-4 B .4 C .4pD .-4p考向五 抛物线中的最值问题1.抛物线中经常根据定义把点到焦点的距离和点到准线的距离进行互相转化,从而求解.2.有关抛物线上一点M 到抛物线焦点F 和到已知点E (E 在抛物线内)的距离之和的最小值问题,可依据抛物线的图形,过点E 作准线l 的垂线,其与抛物线的交点到抛物线焦点F 和到已知点E 的距离之和是最小值.典例8 如图,已知点Q(2√2,0)及抛物线24xy 上的动点Ρ(x,y),则y+|ΡQ|的最小值是A.2 B.3C.4 D.2√2【答案】A【解析】如图,作ΡB⊥x轴于A点,并与准线相交于B点.抛物线x2=4y的焦点为F(0,1),准线为y=−1,由抛物线的几何意义可得|ΡB|=|ΡF|,所以y+|ΡQ|= |ΡA|+|ΡQ|=| ΡB|+|ΡQ|−1=| ΡF|+|ΡQ|−1≥|FQ|−1=√1+8−1=2.故选A.典例9 已知抛物线的方程为x2=8y,F是焦点,点A(-2,4),在此抛物线上求一点P,使|PF|+|PA|的值最小.【解析】∵(-2)2<8×4,∴点A(-2,4)在抛物线x2=8y的内部.如图所示,设抛物线的准线为l,过点P作PQ⊥l于点Q,过点A作AB⊥l于点B,连接AQ.由抛物线的定义可知,|PF|+|PA|=|PQ|+|PA|≥|AQ|≥|AB|,当且仅当P,Q,A三点共线时,|PF|+|PA|取得最小值,即|AB|.∵A(-2,4),∴不妨设|PF|+|PA|的值最小时,点P的坐标为(-2, y0),代入抛物线方程x2=8y得y0=1 2 .∴使|PF|+|PA|的值最小的抛物线上的点P的坐标为(-2,1 2 ).5.已知M 是抛物线24y x =上一点,F 为其焦点,点A 在圆22:(6)(1)1C x y -++=上,则||||MA MF +的最小值是__________.1.抛物线214x y =的准线方程为( ) A .1x =- B .116x =-C .1y =-D .116y =-2.若抛物线24y x =上的点M 到焦点的距离为10,则M 点到y 轴的距离是( ) A .6 B .8 C .9D .103.已知抛物线2:C y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x =( ) A .1 B .2 C .4D .84.过抛物线E :y 2=2x 焦点的直线交E 于A ,B 两点,线段AB 中点M 到y 轴距离为1,则|AB |=( ) A .2 B .52C .3D .45.抛物线2(0)y mx m =≠的准线与直线1y =的距离为3,则此抛物线的方程为( ) A .216x y =-B .28x y =C .216x y =或28x yD .28x y =或216x y =-6.若抛物线22y px =的焦点与双曲线22154x y -=的右焦点重合,则下列各点中,在抛物线22y px =上的是( ) A .(1,2) B .(3,6)-C .(2,2)-D .7.已知抛物线22(0)y px p =>上一点M 到其准线及对称轴的距离分别为3和,则p =( ) A .2 B .2或4 C .1或2D .18.已知抛物线28x y =的焦点为F ,点P 在抛物线上,且6PF =,点Q 为抛物线准线与其对称轴的交点,则PFQ ∆的面积为( )A .B .C .D .9.如果1P ,2P ,…,n P 是抛物线C :()220y px p =>上的点,它们的横坐标依次为1x ,2x ,…,n x ,点F 是抛物线C 的焦点.若12+n x x x ++…=10,12+++n PF P F P F …=10+n ,则p 等于( ) A .2 B .32C .52D .410.已知抛物线2:2(0)C y px p =>的焦点为F ,点A ,B 在抛物线C 上,过线段AB 的中点M 作抛物线C 的准线的垂线,垂足为N ,若90AFB ∠=︒,则||||AB MN 的最小值为( )A .1 BC .2D11.若抛物线2:2(0)C x py p =>上的点P 到焦点的距离为8,到x 轴的距离为6,则抛物线C 的方程是_________.12.在平面直角坐标系xOy 中,若抛物线()220x py p =>上纵坐标为1的一点到焦点的距离为4,则该抛物线的焦点到准线的距离为______.13.已知点1(,0)2A -,抛物线22y x =的焦点为F ,点P 在抛物线上,且|||AP PF =,则||___.OP = 14.已知抛物线C :()220x py p =>的焦点为F ,准线为l ,点P 在C 上,过点P 作l 的垂线交l 于点E ,且60PFE ∠=,4PF =,则抛物线C 的方程为:______________.15.已知点(0,2)A ,抛物线22(0)y px p =>的焦点为F ,准线为l ,线段FA 交抛物线于点B .过B 作l 的垂线,垂足为M ,若AM MF ⊥,则三角形AFM 的面积S =__________. 16.已知动圆M 过点(2,0)F ,且与直线2x =-相切. (1)求圆心M 的轨迹E 的方程;(2)斜率为1的直线l 经过点F ,且直线l 与轨迹E 交于点,A B ,求线段AB 的垂直平分线方程.17.已知抛物线22(0)i C y px p =>过点()1,1,(1)求物线C 的方程;(2)O 为坐标原点,A 、B 为抛物线C 上异于原点O 的不同两点,直线,OA OB 的斜率分别为12,k k ,若122k k =-,求证:直线AB 过定点.18.已知抛物线C 的顶点在原点,对称轴是x 轴,并且经过点()1,2-,抛物线C 的焦点为F ,准线为l . (1)求抛物线C 的方程;(2)过F 的直线h 与抛物线C 相交于两点A 、B ,过A 、B 分别作准线l 的垂线,垂足分别为D 、E ,求四边形ABED 的面积.1.【2020年高考全国Ⅰ卷理数】已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p = A .2 B .3C .6D .92.【2020年高考全国Ⅰ卷理数】设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E两点,若OD OE ⊥,则C 的焦点坐标为A . 1,04⎛⎫⎪⎝⎭B . 1,02⎛⎫ ⎪⎝⎭C . (1,0)D . (2,0)3.【2020年高考北京】设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线A . 经过点OB . 经过点PC . 平行于直线OPD . 垂直于直线OP4.【2019年高考全国Ⅱ卷理数】若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .85.【2018新课标I 理】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5 B .6 C .7D .86.【2017新课标全国I 理科】已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16 B .14 C .12D .107.【2017新课标全国II 理科】已知F 是抛物线:C 28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN =_______________.8.【2018新课标Ⅰ理】已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=︒,则k =________.9.【2020年新高考全国ⅠC :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB=________.10.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,32与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若,求|AB |.11.【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.12.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .3AP PB =(1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.13.【2018新课标Ⅱ理】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.1.【答案】2 【分析】设点P 的横坐标为()0m m >,利用抛物线的定义和条件建立方程求出m 即可. 【详解】设点P 的横坐标为()0m m >因为抛物线的方程为24y x =,所以其准线方程为1x =-所以根据抛物线的定义可得,点P 到焦点的距离为+1m ,所以+1=2m m ,解得1m = 所以点P 到焦点的距离为2. 故答案为:2. 2.【答案】C 【分析】依题意,画出草图,则8BF =,30DBF ∠=︒,即可求出p ,即可得解; 【详解】解:依题意,设准线l 与y 轴相交于点D ,则8BF =,60ABF ∠=︒,所以30DBF ∠=︒,所以4DF =,即4p =,所以抛物线方程为28x y =故选:C【点睛】本题考查抛物线的简单几何性质,属于基础题. 3.【答案】C【分析】根据条件作出图示,分别表示出22,,MO MM M O ,利用勾股定理求解出抛物线方程中参数p 的值,由此确定出C 的方程. 【详解】设抛物线的方程为22y px =,连接MO ,过M 作1MM ⊥准线,交y 轴于2M ,因为32M p MF x ==+,所以232M pMM x ==-,所以2M M O y === 在2Rt OMM 中有:22222M O M M MO +=,所以2263122p p p ⎛⎫-+-= ⎪⎝⎭,解得:2p =,所以抛物线的方程为:24y x =,故选:C. 【点睛】结论点睛:本题考查圆与抛物线的综合应用,其中涉及抛物线的焦半径公式的运用,属于中档题.抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02pPF x =-+;(3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02pPF y =+;(4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02pPF y =-+.4.【答案】A 【分析】设直线AB 的方程为2p my x =-,与抛物线方程联立,化为2220y pmy p --=,利用根与系数的关系即可得出 【详解】解:设直线AB 的方程为2pmy x =-,设1122(,),(,)A x y B x y , 联立222p my x y px ⎧=-⎪⎨⎪=⎩, 消去x 化为2220y pmy p --=,所以21212,2y y p y y pm =-+=,所以2212121212()()()2224p p mp p x x my my m y y y y =++=+++22222244mp p p p m mp =-+⨯+=, 所以21221244y y p px x -==-, 故选:A 【点睛】结论点睛:此题考查抛物线的焦点弦问题,焦点弦有如下常用的结论设AB 是过抛物线22(0)y px p =>的焦点F 的弦,若1122(,),(,)A x y B x y ,则(1)2212124p x x y y p ==-;(2)弦长1222sin pAB x x p α=++=(α是直线AB 的倾斜角); (3)112FA FB p+= 5.【答案】6【分析】根据抛物线方程求得准线方程,过点M 作MN 垂直于准线于N ,根据抛物线的定义判断MN MF =,问题转化为求||||MA MN +的最小值,根据A 在圆C 上,判断出当,,M N C 三点共线时,||||MA MN +有最小值,进一步求出结果 【详解】解:M 是抛物线24y x =上一点,抛物线的准线方程为1x =-, 过点M 作MN 垂直于准线于N ,则MN MF =, 所以||||MA MF MA MN +=+,因为点A 在圆C 上,圆22:(6)(1)1C x y -++=的圆心(6,1)C -,半径为1, 所以当,,M N C 三点共线时,||||MA MN +取得最小值6, 故答案为:6【点睛】关键点点睛:此题考查了抛物线的简单性质的应用,解题的关键是利用了抛物线的定义,结合图形将||||MA MF +转化为||||MA MN +进行求解,考查数形结合的思想和转化思想,属于中档题.1.【答案】D 【分析】求出1216p =,即得抛物线214x y =的准线方程. 【详解】 因为124p =, 所以1216p =, 故准线方程为116y =-. 故选:D 2.【答案】C 【分析】求出抛物线的准线方程,利用抛物线的定义转化求解即可. 【详解】抛物线24y x =的焦点()10F ,,准线为1x =-,由M 到焦点的距离为10, 可知M 到准线的距离也为10,故到M 到的距离是9,故选C . 【点睛】本题考查抛物线的简单性质的应用,考查计算能力. 3.【答案】A 【分析】利用抛物线的定义、焦半径公式列方程即可得出. 【详解】由抛物线2:C y x =可得11,224p p ==, 准线方程14x =-,0(A x ,0)y 是C 上一点,054AF x =,00x >. ∴00051442p x x x =+=+, 解得01x =. 故选:A .4.【答案】C 【分析】设焦点为F ,过A ,B ,M 分别作准线12x =-的垂线,垂足为A′,B′,M′,求出3||2MM '=,即得解.【详解】设焦点为F ,过A ,B ,M 分别作准线12x =-的垂线,垂足为A′,B′,M′,则有|AA′|=|AF |,|BB′|=|BF |,|AA′|+|BB′|=2|MM′|, ∵M 到y 轴距离为1, ∴3||2MM '=, ∴|AB |=|AF |+|BF |=2|MM′|=3. 故选:C . 【点睛】本题主要考查抛物线的定义和几何性质,意在考查学生对这些知识的理解掌握水平. 5.【答案】D 【分析】将抛物线的方程化为标准形式,求出准线方程14y m =-,根据题意可得124m -=-或144m-=,解方程即可. 【详解】将2(0)y mx m =≠化为21x y m=, 其准线方程为14y m=-.由题意知124m -=-或144m-=,解得18m =或116m =-.则所求抛物线的标准方程为28x y =或216x y =-. 故选:D 【点睛】本题考查了抛物线的标准方程、由抛物线的定义求标准方程,属于基础题. 6.【答案】B 【分析】求出双曲线的焦点,即为抛物线的焦点,根据焦点坐标求出抛物线的方程,逐项验证点的坐标是否满足抛物线的范围即可. 【详解】因为双曲线22154x y -=的右焦点为(3,0),所以抛物线22y px =的焦点为(3,0),因此362pp =⇒=,则抛物线方程为212y x =, 当3x =时,2366y y =⇒=±,所以点(3,6)-在该抛物线上. 故选:B 【点睛】本题考查双曲线的焦点、根据焦点求抛物线的方程,属于基础题. 7.【答案】B 【分析】由题意,得到32M M y px ⎧=⎪⎨+=⎪⎩,结合抛物线方程,即可求出结果. 【详解】因为抛物线22(0)y px p =>上一点M 到其准线及对称轴的距离分别为3和所以32M M y p x ⎧=⎪⎨+=⎪⎩,即32M M y p x ⎧=⎪⎨=-⎪⎩,代入抛物线方程可得8232p p ⎛⎫=- ⎪⎝⎭, 整理得2680p p -+=,解得2p =或4p =.故选:B. 8.【答案】D 【分析】先由抛物线的方程得到焦点坐标和准线方程,进而求出点Q 的坐标,再由定义求出点P 坐标,结合三角形面积公式可得出结果. 【详解】因为28x y =,所以其焦点()02F ,,准线为y 2=-,所以()0,2Q -设().P m n ,由6PF =得26n +=,所以4n =,所以m =±则11S 422PFQ FQ m ∆=⨯⨯=⨯⨯=【点睛】本题主要考查抛物线的简单性质,属于基础题型. 9.【答案】A 【分析】根据抛物线的定义得n 个等式,相加后,利用已知条件可得结果. 【详解】抛物线C :()220y px p =>的准线为2px =-, 根据抛物线的定义可知,11||2p PF x =+,22||2p PF x =+,,||2n n p PF x =+, 所以1212||||||222n n p p pPF PF PF x x x +++=++++++,所以12102n npn x x x +=++++,所以10102npn +=+,所以2p =.故选:A 【点睛】关键点点睛:利用抛物线的定义解题是解题关键,属于基础题. 10.【答案】B 【分析】设AF m =,BF n =,由抛物线的定义可得112AA BB MN +=再根据勾股定理及不等式求出2||AB数值,代入22||||AB MN 化简即得答案.【详解】设AF m =,BF n =,过点A ,B 分别作抛物线C 的准线的垂线,垂足分别为1A ,1B ,由抛物线的定义可得1AA m =,1BB n =,因为M 为线段AB 的中点,所以112AA BB MN +==2m n+,又90AFB ∠=︒,所以222||AB m n =+,所以()()()2222224||241||m n AB mn MN m n m n ⎡⎤+==-⎢⎥++⎢⎥⎣⎦,又()24m n mn +≥,所以()2212mnm n ≤+,当且仅当m n =时取等号,所以22||1412||2AB MN ⎛⎫≥⨯-= ⎪⎝⎭,即AB MN≥AB MNB .【点睛】本题考查抛物线的定义、简单几何性质,基本不等式求最值,勾股定理的应用等知识,属于中档题. 11.【答案】28x y = 【分析】根据抛物线的定义,可得结果. 【详解】 根据抛物线定义,8622p=-=,解得4p =, 故抛物线C 的方程是28x y =. 故答案为:28x y = 【点睛】本题考查抛物线的定义,一般来讲,抛物线中焦点和准线伴随出现,属基础题. 12.【答案】6 【分析】根据抛物线的定义可得,点到准线的距离也是4,从而可得p ,即可求抛物线的焦点到准线的距离. 【详解】因为抛物线()220x py p =>上纵坐标为1的一点到焦点的距离为4,所以由抛物线定义可知该点到准线的距离也是4,即142p+=, 所以6p,即该抛物线的焦点到准线的距离为6.故答案为:6 【点睛】本题主要考查抛物线的定义,根据定义两种距离的相互转化是求解的关键,侧重考查数学运算的核心素养.13【分析】 设21,2P m m ⎛⎫⎪⎝⎭,根据条件结合距离公式求出21m =,即可求得||OP . 【详解】 由已知可得1,02F ⎛⎫⎪⎝⎭,设21,2P m m ⎛⎫⎪⎝⎭,|||AP PF =,222AP PF ∴=则22222211()2()2222m m m m ⎡⎤++=-+⎢⎥⎣⎦,解得21m =,∴OP ===.. 14.【答案】24x y = 【分析】如图作PE l ⊥,60PFE ∠=,由抛物线定义知PFE △是等边三角形,再过焦点F 作FM PE ⊥,知M 为PE 的中点,所以2PM ME ==,即焦点到准线的距离是2p =,即可求得抛物线方程.【详解】抛物线C :()220x py p =>,焦点(0,)2p F ,准线:2p l y =-如图,PE l ⊥,60PFE ∠=,4PF =,由抛物线定义知4PF PE ==,故PFE △是等边三角形, 过焦点F 作FM PE ⊥,交PE 于M ,则M 为PE 的中点,所以2PM ME ==,即焦点到准线的距离是2p = 故答案为:24x y =【点睛】关键点睛:本题考查球抛物线的方程,解题的关键是要熟悉抛物线的定义,动点到定点的距离与动点到定直线的距离相等,即可知PF PE =,再利用60PFE ∠=知PFE △是等边三角形,再利用等边三角形性质求解,考查学生的逻辑推导能力,属于中档题.15 【分析】由抛物线的定义可知BF BM =,(2pF ,0),再由直角三角形的性质可知,点B 为AF 的中点,利用中点坐标公式求出点B 的坐标,代入抛物线方程求出p 的值,根据2AFM BMF S S ∆∆=即可算出结果.【详解】 解:如图所示:,由抛物线的定义可知BF BM =,(2pF ,0), 又AM MF ⊥,∴由直角三角形的性质可知,点B 为AF 的中点,(4pB ∴,1),把点(4p B ,1)代入抛物线方程:22(0)y px p =>得,124p p =⨯,解得p =,4B ∴,1),1221()2424AFM BFM S S ∆∆∴==⨯⨯⨯+=,. 【点睛】关键点点睛:本题主要考查了抛物线的性质,解题的关键是结合图形由抛物线的定义得BF BM =,(2pF ,0),再由直角三角形的性质得,点B 为AF 的中点,利用中点坐标公式表示出点B 的坐标,考查了直角三角形的性质,是中档题. 16.【答案】(1)28y x =;(2)100x y +-=. 【分析】(1)由题意得圆心M 到点(2,0)F 等于圆心到直线2x =-的距离,利用两点间距离公式,列出方程,即可求得答案.(2)求得直线l 的方程,与椭圆联立,利用韦达定理,可得1212,x x x x +的值,即可求得AB 中点00(,)P x y 的坐标,根据直线l 与直线AB 垂直平分线垂直,可求得直线AB 垂直平分线的斜率,利用点斜式即可求得方程. 【详解】(1)设动点(,)M x y |2|x =+, 化简得轨迹E 的方程:28y x =;(2)由题意得:直线l 的方程为:2y x =-,由228y x y x=-⎧⎨=⎩,得21240x x -+=,2124140∆=-⨯⨯>, 设1122(,),(,)A x y B x y ,AB 中点00(,)P x y 则121212,4x x x x +==, 所以12062x x x +==,0024y x =-=, 又AB 垂直平分线的斜率为-1,所以AB 垂直平分线方程为100x y +-=. 【点睛】本题考查抛物线方程的求法,抛物线的几何性质,解题的关键是直线与曲线联立,利用韦达定理得到1212,x x x x +的表达式或值,再根据题意进行化简和整理,考查计算求值的能力,属基础题.17.【答案】(1)2y x =;(2)证明见解析. 【分析】(1)根据抛物线22(0)i C y px p =>过点()1,1,由12p =求解.(2)设点A 、B 的坐标分别为()()221122,,,y y y y ,由122k k =-,易得1212y y =-,当直线AB 的斜率存在时,设直线AB 的方程为(0)y kx m m =+≠,联立方程2y x y kx m⎧=⎨=+⎩,利用韦达定理由1212m y y k ==-求解即可.注意直线AB 的斜率不存在的情况. 【详解】(1)因为抛物线22(0)i C y px p =>过点()1,1,所以12p =,解得12p =, 所以抛物线C 的方程为2y x =.(2)设点A 、B 的坐标分别为()()221122,,,y y y y , 所以121222112211,y y k k y y y y ====, 由题意有121212k k y y ==-,得1212y y =-, ①当直线AB 的斜率不存在时,此时12y y =-,直线AB 的方程为12x =, ②当直线AB 的斜率存在时,设直线AB 的方程为(0)y kx m m =+≠,联立方程2y x y kx m⎧=⎨=+⎩,消去x 后整理为20ky y m -+=,可得1212m y y k ==-,得2k m =-, 直线AB 的方程为2y mx m =-+,可化为122y m x ⎛⎫=--⎪⎝⎭, 由①②知直线AB 过定点1,02⎛⎫ ⎪⎝⎭. 【点睛】方法点睛:定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意. 18.【答案】(1)24y x =;(2)9【分析】(1)设抛物线为()220y px p =>,根据点()1,2-在抛物线上,求出p ,得到结果;(2)不妨设()11,A x y ,()22,B x y ,直线h的方程为)1y x =-,联立直线与抛物线得231030x x -+=,解出方程,然后求解A 、B 坐标,转化求解四边形的面积.【详解】(1)根据题意,设抛物线为()220y px p =>,因为点()1,2-在抛物线上,所以()222p -=,即2p =,所以抛物线的方程为24y x =.(2)由(1)可得焦点()10F ,,准线为:1l x =-, 不妨设()11,A x y ,()22,B x y ()12x x >,过F的直线h的方程为)1y x =-,由)24 1y x y x ⎧=⎪⎨=-⎪⎩,得231030x x -+=,所以13x =,213x =,代入)1y x =-,得1y =2y =,所以(3,A,1,3B ⎛ ⎝⎭, 所以142p AD x +==,2423p BE x +==,12DE y y =-= 因为四边形ABED 是直角梯形,所以四边形ABED 的面积为()129AD BE DE +⨯=.【点睛】本题考查抛物线方程的求法,直线与抛物线的位置关系的综合应用,考查转化思想以及计算能力,是中档题.1.【答案】C【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C .【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题. 2.【答案】B【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B .【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 3.【答案】B【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P . 故选:B .【点睛】本题主要考查抛物线的定义的应用,属于基础题. 4.【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,。
2021届新高考版高考数学一轮复习课件:§9.5 抛物线(讲解部分)
则x1+x2=12,x1x2=4,
由抛物线定义知|FP|=x1+2,|FQ|=x2+2,
所以 1 + 1 = 1 + 1 = x1 x2 4 = 12 4 = 1 ,故选A.
|FP| |FQ| x1 2 x2 2 x1x2 2(x1 x2 ) 4 4 2 12 4 2
解法二:由题意知k≠0.
(3)定义中定点与定直线的位置关系为:定点F不能在定直线l上.若定点F在 定直线l上,则动点的轨迹为过点F且垂直于l的一条直线,因此在用抛物线 定义解决动点轨迹问题前,应首先判断定点与定直线的位置关系. 2.抛物线的标准方程 在抛物线中,记焦点F到准线l的距离为p,以抛物线的焦点F到准线l的垂线 段的中点为坐标原点,以抛物线的轴为坐标轴建立坐标系,可以得到抛物线 的四种不同形式的标准方程y2=±2px,x2=±2py,其中p>0.
1⊥l于点B1,MM1⊥l于点M1,由抛物线的方程知p=12 ,由抛物线定义知|AA1|+|
BB1|=|AF|+|BF|=3,所以点M到y轴的距离为|MM1|-
p 2
=1
2
(|AA1|+|BB1|)-
p 2
=
1 2
×3-
1 = 5 ,故选C.
44
(2)设抛物线的焦点为F.如图所示,作PM⊥l2于点M,PN⊥l1于点N,由抛物线y 2=4x知其准线方程为x=-1,由抛物线定义可知点P到直线l1:x=-1的距离|PN| 等于点P到焦点F的距离|PF|,∴点P到直线l1的距离与点P到直线l2的距离之 和|PM|+|PN|=|PM|+|PF|,当P,M,F三点共线时,|PM|+|PF|取得最小值,为点F
高考数学一轮复习第8章解析几何第7讲抛物线
第七讲 抛物线知识梳理·双基自测 知识梳理知识点一 抛物线的定义 抛物线需要满足以下三个条件: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离__相等__; (3)定点F 与定直线l 的关系为__点F ∉l __. 知识点二 抛物线的标准方程与几何性质标准 方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝⎛⎭⎫p 2,0 F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p 2 离心率 e =__1__ 准线 方程 __x =-p 2____x =p 2____y =-p 2____y =p 2__范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 向上 向下 焦半径 (其中P (x 0,y 0)) |PF |=__x 0+p2__|PF |=__-x 0+p2__|PF |=__y 0+p2__|PF |=__-y 0+p2__重要结论抛物线焦点弦的处理规律直线AB 过抛物线y 2=2px (p >0)的焦点F ,交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如图.(1)y 1y 2=-p 2,x 1x 2=p 24. (2)|AB |=x 1+x 2+p ,x 1+x 2≥2x 1x 2=p ,即当x 1=x 2时,弦长最短为2p . (3)1|AF |+1|BF |=2p. (4)弦长AB =2psin 2α(α为AB 的倾斜角).(5)以AB 为直径的圆与准线相切.(6)焦点F 对A ,B 在准线上射影的张角为90°. (7)A 、O 、D 三点共线;B 、O 、C 三点共线.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a4.( × ) (3)抛物线既是中心对称图形,又是轴对称图形.( × ) (4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝⎛⎭⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ )题组二 走进教材2.(必修2P 69例4)(2021·甘肃张掖诊断)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( B )A .9B .8C .7D .6[解析] 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.3.(2021·河南郑州名校调研)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( B ) A .-1716B .-1516C .716D .1516[解析] 由抛物线的方程y =-4x 2,可得标准方程为x 2=-14y ,则焦点坐标为F ⎝⎛⎭⎫0,-116,准线方程为y =116,设M (x 0,y 0),则由抛物线的定义可得-y 0+116=1,解得y 0=-1516.故选B . 题组三 走向高考4.(2019·课标全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( D ) A .2 B .3 C .4D .8[解析] ∵抛物线y 2=2px (p >0)的焦点坐标为⎝⎛⎭⎫p 2,0, ∴椭圆x 23p +y 2p =1的一个焦点为⎝⎛⎭⎫p 2,0, ∴3p -p =p 24,∴p =8.故选D .5.(2020·新课标Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( C )A .2B .3C .6D .9[解析] A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,因为抛物线上的点到焦点的距离和到准线的距离相等,故有:9+p2=12⇒p =6;故选C .考点突破·互动探究考点一 抛物线的定义及应用——多维探究 角度1 轨迹问题例1 (1)动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是( D ) A .直线 B .椭圆 C .双曲线D .抛物线[解析] 设动圆的圆心为C ,则C 到定圆A :(x +2)2+y 2=1的圆心的距离等于r +1,而动圆的圆心到直线x =1的距离等于r ,所以动圆到直线x =2距离为r +1,即动圆圆心到定点(-2,0)和定直线x =2的距离相等,根据抛物线的定义知,动圆的圆心轨迹为抛物线,所以答案为D .角度2 到焦点与到定点距离之和最小问题(2)①(2021·河北保定七校联考)已知M是抛物线x2=4y上一点,F为其焦点,C为圆(x+1)2+(y-2)2=1的圆心,则|MF|+|MC|的最小值为(B)A.2 B.3C.4 D.5②(2021·山西运城联考)已知抛物线C:x2=8y的焦点为F,O为原点,点P是抛物线C的准线上的一动点,点A在抛物线C上,且|AF|=4,则|P A|+|PO|的最小值为(B)A.4 2 B.213C.313 D.4 6[解析]①设抛物线x2=4y的准线方程为l:y=-1,C为圆(x+1)2+(y-2)2=1的圆心,所以C的坐标为(-1,2),过M作l的垂线,垂足为E,根据抛物线的定义可知|MF|=|ME|,所以问题求|MF|+|MC|的最小值,就转化为求|ME|+|MC|的最小值,由平面几何的知识可知,当C,M,E在一条直线上时,此时CE⊥l,|ME|+|MC|有最小值,最小值为|CE|=2-(-1)=3,故选B.②由抛物线的定义知|AF|=y A+p2=y A+2=4,∴y A=2,代入x2=8y,得x A=±4,不妨取A(4,2),又O关于准线y=-2的对称点为O′(0,-4),∴|P A|+|PO|=|P A|+|PO′|≥|AO′|=(-4-2)2+(0-4)2=213,当且仅当A、P、O′共线时取等号,故选B.[引申]本例(2)①中,(ⅰ)|MC|-|MF|的最大值为__2__;最小值为__-2__;(ⅱ)若N为⊙C上任一点,则|MF|+|MN|的最小值为__2__.角度3到准线与到定点距离之和最小问题(3)已知圆C:x2+y2+6x+8y+21=0,抛物线y2=8x的准线为l,设抛物线上任意一点P到直线l的距离为d,则d+|PC|的最小值为(A)A.41 B.7C.6 D.9[解析]由题意得圆的方程为(x+3)2+(y+4)2=4,圆心C的坐标为(-3,-4).由抛物线定义知,当d+|PC |最小时为圆心与抛物线焦点间的距离,即d +|PC |=(-3-2)2+(-4)2=41.角度4 到两定直线的距离之和最小问题(4)(2021·北京人大附中测试)点P 在曲线y 2=4x 上,过P 分别作直线x =-1及y =x +3的垂线,垂足分别为G ,H ,则|PG |+|PH |的最小值为( B )A .322B .2 2C .322+1D .2+2[解析] 由题可知x =-1是抛物线的准线,焦点F (1,0),由抛物线的性质可知|PG |=|PF |,∴|PG |+|PH |=|PF |+|PH |≤|FH |=|1-0+3|2=22,当且仅当H 、P 、F 三点共线时取等号,∴|PG |+|PH |的最小值为22.故选B .名师点拨利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线. (2)距离问题:涉及抛物线上的点到焦点的距离和到准线的距离问题时,注意在解题中利用两者之间的关系进行相互转化.(3)看到准线想焦点,看到焦点想准线,这是解决抛物线焦点弦有关问题的重要途径. 〔变式训练1〕(1)(角度1)到定点A (0,2)的距离比到定直线l :y =-1大1的动点P 的轨迹方程为__x 2=8y __. (2)(角度1)(2021·吉林省吉林市调研)已知抛物线y 2=4x 的焦点F ,点A (4,3),P 为抛物线上一点,且P 不在直线AF 上,则△P AF 周长取最小值时,线段PF 的长为( B )A .1B .134C .5D .214(3)(角度2)(2021·山西大学附中模拟)已知点Q (22,0)及抛物线y =x 24上一动点P (x ,y ),则y +|PQ |的最小值是__2__.(4)(角度3)(2021·上海虹口区二模)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和l 2的距离之和的最小值为( C )A .3716B .115C .2D .74[解析] (1)由题意知P 到A 的距离等于其到直线y =-2的距离,故P 的轨迹是以A 为焦点,直线y =-2为准线的抛物线,所以其方程为x 2=8y .(2)求△P AF 周长的最小值,即求|P A |+|PF |的最小值,设点P 在准线上的射影为D ,根据抛物线的定义,可知|PF |=|PD |,因此,|P A |+|PF |的最小值,即|P A |+|PD |的最小值.根据平面几何知识,可得当D ,P ,A 三点共线时|P A |+|PD |最小,此时P (94,3),且|PF |=94+1=134,故选B .(3)抛物线y =x 24即x 2=4y ,其焦点坐标为F (0,1),准线方程为y =-1.因为点Q 的坐标为(22,0),所以|FQ |=(22)2+12=3.过点P 作准线的垂线PH ,交x 轴于点D ,如图所示.结合抛物线的定义,有y +|PQ |=|PD |+|PQ |=|PH |+|PQ |-1=|PF |+|PQ |-1≥|FQ |-1=3-1=2,即y +|PQ |的最小值是2.(4)直线l 2:x =-1是抛物线y 2=4x 的准线,抛物线y 2=4x 的焦点为F (1,0),则点P 到直线l 2:x =-1的距离等于PF ,过点F 作直线l 1:4x -3y +6=0的垂线,和抛物线的交点就是点P ,所以点P 到直线l 1:4x -3y +6=0的距离和到直线l 2:x =-1的距离之和的最小值就是点F (1,0)到直线l 1:4x -3y +6=0的距离,所以最小值为|4-0+6|32+42=2,故选C .考点二 抛物线的标准方程——自主练透例2 (1)过点P (-3,2)的抛物线的标准方程为__y 2=-43x 或x 2=92y __.(2)焦点在直线x -2y -4=0上的抛物线的标准方程为__y 2=16x 或x 2=-8y __,准线方程为__x =-4或y =2__.(3)如图,过抛物线y 2=2px (p >0)的焦点F 的直线依次交抛物线及准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程为( B )A .y 2=32xB .y 2=3xC .y 2=92xD .y 2=9x[解析] (1)设所求抛物线的方程为y 2=-2px (p >0)或x 2=2py (p >0). ∵过点(-3,2),∴4=-2p ·(-3)或9=2p ·2. ∴p =23或p =94.∴所求抛物线的标准方程为y 2=-43x 或x 2=92y .(2)令x =0,得y =-2,令y =0,得x =4. ∴抛物线的焦点为(4,0)或(0,-2). 当焦点为(4,0)时,p2=4,∴p =8,此时抛物线方程为y 2=16x ; 当焦点为(0,-2)时,p2=2,∴p =4,此时抛物线方程为x 2=-8y .∴所求的抛物线的标准方程为y 2=16x 或x 2=-8y , 对应的准线方程分别是x =-4,y =2.(3)如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得|BC |=2a ,由定义得|BD |=a ,故∠BCD =30°. 在直角三角形ACE 中,∵|AE |=|AF |=3,|AC |=3+3a ,2|AE |=|AC |, ∴3+3a =6,从而得a =1.∵BD ∥FG ,∴|BD ||FG |=|BC ||FC |,即1p =23,求得p =32,因此抛物线的方程为y 2=3x .名师点拨求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,若焦点位置确定,因为未知数只有p ,所以只需一个条件确定p 值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.一般焦点在x 轴上的抛物线的方程可设为y 2=ax (a ≠0);焦点在y 轴上的抛物线的方程可设为x 2=ay (a ≠0).〔变式训练2〕(1)(2021·重庆沙坪坝区模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,过点(p,0)且垂直于x 轴的直线与抛物线C 在第一象限内的交点为A ,若|AF |=1,则抛物线C 的方程为( A )A .y 2=43xB .y 2=2xC .y 2=3xD .y 2=4x(2)(2021·安徽蚌埠一中期中)已知抛物线的顶点在原点,焦点在y 轴上,其上的点P (m ,-3)到焦点的距离为5,则抛物线方程为( D )A .x 2=8yB .x 2=4yC .x 2=-4yD .x 2=-8y[解析] (1)由题意知x A =p ,又|AF |=x A +p 2=3p 2=1,∴p =23,∴抛物线C 的方程为y 2=43x ,故选A .(2)由题意可知抛物线的焦点在y 轴负半轴上,故设其方程为x 2=-2py (p >0),所以3+p2=5,即p =4,所以所求抛物线方程为x 2=-8y ,故选D .考点三 抛物线的几何性质——师生共研例3 (1)(2021·广西四校联考)已知抛物线y 2=2px (p >0)上横坐标为4的点到此抛物线焦点的距离为9,则该抛物线的焦点到准线的距离为( C )A .4B .9C .10D .18(2)(2021·四川眉山模拟)点F 为抛物线C :y 2=2px (p >0)的焦点,过F 的直线交抛物线C 于A ,B 两点(点A 在第一象限),过A 、B 分别作抛物线C 的准线的垂线段,垂足分别为M 、N ,若|MF |=4,|NF |=3,则直线AB 的斜率为( D )A .1B .724C .2D .247[解析] (1)抛物线y 2=2px 的焦点为⎝⎛⎭⎫p 2,0,准线方程为x =-p 2.由题意可得4+p2=9,解得p =10,所以该抛物线的焦点到准线的距离为10.故选C .(2)由抛物线定义知|AM |=|AF |,|BN |=|BF |,∴∠AFM +∠BFM =360°-∠MAF -∠NBF2=90°,∴∠MFN =90°, 又|MF |=4,|NF |=3, ∴|MN |=5,∴p =|KF |=|MF |·|NF ||MN |=125, 又∠AFM =∠AMF =∠MFK ,∴k AB =tan(180°-2∠MFK )=-2tan ∠MFK 1-tan 2∠MFK =-831-⎝⎛⎭⎫432=247.故选D .名师点拨在解决与抛物线的性质有关的问题时,要注意利用几何图形形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.〔变式训练3〕(1)(2021·广东茂名五校联考)设抛物线y 2=2px (p >0)的焦点为F (1,0),过焦点的直线交抛物线于A 、B 两点,若|AF |=4|BF |,则|AB |=__254__.(2)(2021·湖北荆州模拟)从抛物线y 2=4x 在第一象限内的一点P 引抛物线准线的垂线,垂足为M ,且|PM |=9,设抛物线的焦点为F ,则直线PF 的斜率为( C )A .627B .1827C .427D .227[解析] (1)∵p2=1,∴p =2,不妨设直线AB 方程为x =my +1, A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=4x x =my +1,得y 2-4my -4=0, ∴y 1y 2=-4,又|AF |=4|BF |,∴y 1=-4y 2, ∴y 2=-1,从而x 2=14,∴|BF |=1+14=54,∴|AB |=5|BF |=254.(2)设P (x 0,y 0),由抛物线y 2=4x , 可知其焦点F 的坐标为(1,0), 故|PM |=x 0+1=9,解得x 0=8, 故P 点坐标为(8,42), 所以k PF =0-421-8=427.故选C .考点四 直线与抛物线的综合问题——师生共研例4 (1)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 212-y 24=1的一个焦点重合,直线y =x -4与抛物线交于A ,B 两点,则|AB |等于( B )A .28B .32C .20D .40(2)(2021·陕西师大附中期中)已知抛物线y 2=4x 的一条弦AB 恰好以P (1,1)为中点,则弦AB 所在直线的方程是( B )A .y =x -1B .y =2x -1C .y =-x +2D .y =-2x +3(3)(2021·湖南五市十校联考)已知抛物线C :y 2=2px (p >0),直线y =x -1与C 相交所得的长为8. ①求p 的值;②过原点O 的直线l 与抛物线C 交于M 点,与直线x =-1交于H 点,过点H 作y 轴的垂线交抛物线C 于N 点,求证:直线MN 过定点. [解析] (1)双曲线x 212-y 24=1的焦点坐标为(±4,0),故抛物线的焦点F 的坐标为(4,0).因此p =8,故抛物线方程为y 2=16x ,易知直线y =x -4过抛物线的焦点.设A 、B 两点坐标分别为(x 1,y 1),(x 2,y 2).由⎩⎪⎨⎪⎧y 2=16x ,y =x -4,可得x 2-24x +16=0,故x 1+x 2=24. 故|AB |=x 1+x 2+p =24+8=32.故选B .(2)设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=2,由⎩⎪⎨⎪⎧y 21=4x 1y 22=4x 2,知k AB =y 1-y 2x 1-x 2=4y 1+y 2=2, ∴AB 的方程为y -1=2(x -1),即2x -y -1=0,故选B .(3)①由⎩⎪⎨⎪⎧y 2=2px y =x -1,消x 可得y 2-2py -2p =0,∴y 1+y 2=2p ,y 1y 2=-2p ,∴弦长为1+12·(y 1+y 2)2-4y 1y 2=2·4p 2+8p =8,解得p =2或p =-4(舍去),∴p =2,②由①可得y 2= 4x ,设M ⎝⎛⎭⎫14y 20,y 0, ∴直线OM 的方程y =4y 0x , 当x =-1时,∴y H =-4y 0, 代入抛物线方程y 2=4x ,可得x N =4y 20, ∴N ⎝⎛⎭⎫4y 20,-4y 0, ∴直线MN 的斜率k =y 0+4y 0y 204-4y 20=4y 0y 20-4, 直线MN 的方程为y -y 0=4y 0y 20-4⎝⎛⎭⎫x -14y 20,整理可得y =4y 0y 20-4(x -1), 故直线MN 过点(1,0).名师点拨(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要将两方程联立,消元,用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率问题一般用“点差法”求解.〔变式训练4〕(1)(2021·甘肃诊断)直线l 过抛物线y 2=2px (p >0)的焦点,且交抛物线于A ,B 两点,交其准线于C 点,已知|AF |=4,CB →=3BF →,则p =( C )A .2B .43C .83D .4(2)(2021·安徽皖南八校模拟)已知抛物线C :y 2=2px (p >0)的焦点F 到直线x -y +1=0的距离为2. ①求抛物线C 的方程;②过点F 的直线l 与C 交于A ,B 两点,交y 轴于点P .若|AB →|=3|BP →|,求直线l 的方程.[解析] (1)过A ,B 分别作准线的垂线交准线于E ,D 两点,设|BF |=a ,根据抛物线的性质可知,|BD |=a ,|AE |=4,根据平行线段比例可知|BD ||AE |=|CB ||AC |, 即a 4=3a 3a +a +4,解得a =2, 又|BD ||GF |=|BC ||CF |,即a p =3a 4a, 解得p =43a =83,故选C .(2)①由抛物线C :y 2=2px (p >0),可得焦点F ⎝⎛⎭⎫p 2,0,因为焦点到x -y +1=0的距离为2,即⎪⎪⎪⎪p 2+12=2,解得p =2,所以抛物线C 的方程y 2=4x .②由①知焦点F (1,0),设直线l :y =k (x -1),A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,整理得 k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2+4k2, ① x 1x 2=1,②又由|AB →|=3|BP →|,得AB →=3BP →,可得x 1=4x 2,③ 由②③,可得x 1=2,x 2=12, 代入①,可得2+4k 2=52,解得k =±22, 所以直线l 的方程为22x - y -22=0或22x +y -22=0.名师讲坛·素养提升巧解抛物线的切线问题例5 (1)抛物线C 1:x 2=2py (p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( D )A .316B .38C .233D .433(2)(2019·新课标Ⅲ,节选)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .证明:直线AB 过定点.[解析] (1)抛物线C 1:x 2=2py (p >0)的焦点坐标为⎝⎛⎭⎫0,p 2,双曲线x 23-y 2=1的右焦点坐标为(2,0),两点连线的方程为y =-p 4(x -2),联立⎩⎨⎧ y =-p 4(x -2),y =12p x 2,得2x 2+p 2x -2p 2=0.设点M 的横坐标为m ,易知在M 点处切线的斜率存在,则在点M 处切线的斜率为y ′⎪⎪⎪⎪x =m =⎝⎛⎭⎫12p x 2′x=m =m p. 又双曲线x 23-y 2=1的渐近线方程为x 3±y =0,其与切线平行,所以m p =33,即m =33p ,代入2x 2+p 2x -2p 2=0,得p =433或p =0(舍去). (2)设D ⎝⎛⎭⎫t ,-12,A (x 1,y 1),则x 21=2y 1,由于y ′=x , ∴切线DA 的斜率为x 1,故y 1+12x 1-t=x 1, 整理得:2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0.故直线AB 的方程为2tx -2y +1=0,即y -12=tx . ∴直线AB 过定点⎝⎛⎭⎫0,12.名师点拨利用导数工具解决抛物线的切线问题,使问题变得巧妙而简单,若用判别式解决抛物线的切线问题,计算量大,易出错.注意:直线与抛物线只有一个公共点是直线与抛物线相切的必要不充分条件,过抛物线外一点与抛物线只有一个公共点的直线有0条或3条;过抛物线上一点和抛物线只有一个公共点的直线有2条.〔变式训练5〕(1)已知抛物线C :y 2=2px (p >0),过点M ⎝⎛⎭⎫-p 2,0作C 的切线,则切线的斜率为__±1__. (2)已知抛物线x 2=8y ,过点P (b,4)作该抛物线的切线P A ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( C )A .(4,0)B .(3,2)C .(0,-4)D .(4,1)[解析] (1)设斜率为k ,则切线为y =k ⎝⎛⎭⎫x +p 2代入y 2=2px 中得k 2x 2+p (k 2-2)x +k 2p 24=0. Δ=0,即p 2(k 2-2)2-4·k 2·k 2p 24=0.解得k 2=1,∴k =±1.(2)设A ,B 的坐标为(x 1,y 1),(x 2,y 2),∵y =x 28,y ′=x4,∴P A ,PB 的方程y -y 1=x 14(x -x 1),y -y 2=x 24(x -x 2),由y 1=x 218,y 2=x 228,可得y =x 14x -y 1,y =x 24x -y 2,∵切线P A ,PB 都过点P (b,4),∴4=x 14×b -y 1,4=x 24×b -y 2,故可知过A ,B 两点的直线方程为4=b4x -y ,当x =0时,y =-4,∴直线AB 恒过定点(0,-4).故选C .。
高考数学一轮总复习课件:抛物线(二)
2.(课本习题改编)过点(0,1)作直线,使它与抛物线y2=4x
仅有一个公共点,这样的直线有( C )
A.1条
B.2条
C.3条
D.4条
解析 两条切线,另一条平行于对称轴.
3.(2020·辽宁五校期末联考)已知AB是抛物线y2=2x的一条
【解析】 设斜率为k,则切线为y=k x+p2 ,代入y2=2px 中,得k2x2+p(k2-2)x+k24p2=0.
Δ=0,即p2(k2-2)2-4·k2·k24p2=0.解得k2=1,∴k=±1.
(2)(2021·河南新乡市模拟)若抛物线x2=ay(a≠0)的准线与抛
物线y=-x2-2x+1相切,则a=( B )
=2.故选C.
5.(2021·湖南长沙质检)设经过抛物线C的焦点的直线l与抛
物线C交于A,B两点,那么抛物线C的准线与以AB为直径的圆
的位置关系为( B )
A.相离
B.相切
C.相交但不经过圆心 D.相交且经过圆心
解析 设圆心为M,过点A,B,M分别作准线l的垂线,垂
足分别为A1,B1,M1(图略),则|MM1|=
【证明】 (1)∵y2=2px(p>0)的焦点为Fp2,0, 当k不存在时,直线方程为x=p2. 这时y1=p,y2=-p,则y1y2=-p2,x1x2=p42.
当k存在时,设直线方程为y=kx-p2(k≠0). 由y=kx-p2,消去x,得ky2-2py-kp2=0.①
y2=2px ∴y1y2=-p2,x1x2=(y41py22)2=p42. 因此,总有y1y2=-p2,x1x2=p42成立.
斜角为
π 6
的直线交C于A,B两点.若线段AB中点的纵坐标为
高三数学总复习抛物线PPT课件
2.过抛物线 y2=4x 的焦点 F 的直线交该抛物线于 A,B 两点, 若|AF|=3,则|BF|=________.
解析:因为抛物线 y2=4x 的焦点 F(1,0). 显然,当 AB 垂直于 x 轴时,|AF|≠3, 所以 AB 的斜率 k 存在, 设 AB 的方程为 y=k(x-1),与抛物线 y2=4x 联立, 消去 y 得 k2x2-2k2x-4x+k2=0, 即 k2x2-(2k2+4)x+k2=0,
(4)求定值.可借助于已知条件,将直线与抛物线联立,寻 找待定式子的表达式,化简即可得到.
已知过点 A(-4,0)的动直线 l 与抛物线 G:x2=
2py(p>0)相交于
B,C
两点.当直线
l
的斜率是1时, 2
。
(1)求抛物线 G 的方程; (2)设线段 BC 的中垂线在 y 轴上的截距为 b,求 b 的取值范围.
半轴上,所以焦点坐标为0,18.
4.抛物线的焦点为椭圆
x2 9
+
y2 4
=1的左焦点,
顶点为椭圆中心,则抛物线方程为________.
解析:由c2=9-4=5,得F(- 5,0), 则抛物线方程为y2=-4 5x. 答案:y2=-4 5x
5.设抛物线 y2=2px(p>0)的焦点为 F,点 A(0,2).若线
则抛物线的方程是( )
A.y2=-8x
B.y2=-4x
C.y2=8x
D.y2=4x
解析:选C 由抛物线准线方程为x=-2知p= 4,且开口向右,故抛物线方程为y2=8x.
2.抛物线 y=1x2 的准线方程是( ) 4
A.y=-1
B.y=-2
C.x=-1
D.x=-2
抛物线的几何性质课件-2022届高三数学一轮复习
当 90 时,| AB | 2 p 也成立 sin 2
抛物线y2=2px ( p> 0 ) 的焦点弦的性质
如图所示:已知线段AB是抛物线y2=2px 弦,设A(x1, y1), B(x2, y2)
(
p>y0
l
)
的焦A点
3、当直线AB的倾斜角为θ时,
2p
| AB | sin2
2P
当直线AB⊥x轴时,即θ=900时,
y y0
与 y2 2 px联立,可得B点的纵坐标为 y p2 .
x p 2
y02 p 2p 2
.
BB1 / / x轴.
y0
典例9.
y2 3x
y l
A
o
F
x
DB
方法二:对f(θ)求导,研究单调性更简单
抛物线y2=2px ( p> 0 ) 的焦点弦的性质
如图所示:已知线段AB是抛物线y2=2px
x0= x1 2 x2
点P到准线的距离d=
x1
x2
p
x1
x2
p
OF B
x
点P到准线的距离d
2AB
2 r
2
2
抛物线y2=2px ( p> 0 ) 的焦点弦的性质
如弦图,所过示A,B:两已点知分线别段作A准B是线抛的物垂线线y,2A=21pxl y( p> 0 ) 的焦点
垂足分别为A1,B1,准线l与对称轴相
y
A
x2 y2
如图所示:在椭圆 a2 b2 1 和
x2
双曲线 a2
y2 b2
1 中,我们把过一
个焦点且垂直于对称轴的弦叫作
OF
x
通径
抛物线课件高三数学一轮复习
=0,解得 p =-42(舍去)或 p =6.故选C.
法二
根据抛物线的定义及题意得,点 A 到 C 的准线 x =- 的距离为
2
12,因为点 A 到 y 轴的距离为9,所以 =12-9,解得 p =6.故选C.
2
目录
高中总复习·数学(提升版)
2. (2024·全国乙卷13题)已知点 A (1, 5 )在抛物线 C : y 2=2 px
1|≥3,故点 M 到 x 轴的距离 d ≥2,故最短距离为2.
目录
高中总复习·数学(提升版)
抛物线的标准方程与几何性质
【例3】 (1)已知 F 为抛物线 C : y 2=2 px ( p >0)的焦点,过 F
作垂直于 x 轴的直线交抛物线于 M , N 两点,以 MN 为直径的圆交 y 轴
于 C , D 两点,且| CD |=3,则抛物线方程为(
上,则 A 到 C 的准线的距离为
9
4
.
解析:∵点 A (1, 5 )在抛物线 y 2=2 px 上,∴5=2 p ,得 p =
5
5
9
,∴点 A 到准线的距离为 xA + =1+ = .
2
2
4
4
目录
高中总复习·数学(提升版)
直线与抛物线的位置关系
【例4】 (多选)(2024·新高考Ⅱ卷10题)设 O 为坐标原点,直线 y
2. 抛物线性质的应用技巧
(1)利用抛物线方程确定其焦点、准线时,关键是将抛物线方程
化成标准方程;
(2)要结合图形分析,灵活运用平面图形的性Байду номын сангаас简化运算.
目录
高中总复习·数学(提升版)
培优专题 抛物线焦点弦的性质与应用课件——2024届高三数学一轮复习
∴∆ =2 (两等号可同时取得)
结论7 A、O、B1三点共线,
B、O、A1三点共线
证明:
由A(x1,y1),B(x2,y2)得:A1(-
,y1),B1(- ,y2)
−
∴ =
=
=
−
− −
答案:(1)C
[实战演练] (2)(2022·山东潍坊三模)已知F是抛物线y2=2px(p>0)的焦点,过F作两条互
2
y1 y2
∴y= + 代入①式可得:y1y2=2px
2
y y
∵弦AB过焦点F,由焦点弦性质可知y1y2=-p2 ,∴x=- ,即交点P坐标为(- , 1+ 2).
2
2 2
结论延伸:切线交点P与弦中点Q 连线平行于对称轴
结论发散:当弦AB不过焦点即切线交点P不在准线上时,切线交点与弦中点的连线也平行于对称轴.
4
2
p
焦点在y正半轴( 2 =2py (p>0)): y1 y2
, x1 x2 p 2
4
性质2.抛物线焦半径的长度与倾斜角的关系:
焦点在x正半轴
E
A1
p
| AF |
( 长)
1 cosθ
p
| BF |
(短)
1 cos
向量 AF 在 AA1 投影
A
B
F
焦点在y轴正半轴
结论3:M平分PQ.
结论4:PA平分∠A1AB,PB平分∠B1BA.
高三数学复习课件【抛物线】
[题点全练]
返回
角度(一) 利用抛物线的定义解决最值、距离问题
1.若点 A 的坐标为(3,2),F 是抛物线 y2=2x 的焦点,点 M 在抛
物线上移动时,使|MF|+|MA|取得最小值的 M 的坐标为( )
A.(0,0)
B.12,1
C.(1, 2)
D.(2,2)
解析:过点 M 作准线的垂线,垂足是 N,则|MF|+|MA|=|MN|
x2= -2py(p>0)
p的几何意义:焦点F到准线l的距离
图形
返回
顶点
O(0,0)
对称轴
x轴
y轴
焦点 离心率
Fp2,0
F-p2,0
F0,p2 e= 1
F0,-p2
准线方程 x=-p2
x=p2
y=-p2
y=p2
范围
x≥0,y∈
R
x≤0,y∈R y≥0,x∈R y≤0,x∈R
开口方向 焦半径 (其中
点 B 垂直于 y 轴的直线与线段 BF 的垂直平分线交于点 M,
则点 M 的轨迹是
()
A.双曲线
B.椭圆
C.圆
D.抛物线
解析:由已知得|MF|=|MB|,根据抛物线的定义知,点 M
的轨迹是以点 F 为焦点,直线 l 为准线的抛物线.
答案:D
3.抛物线 8x2+y=0 的焦点坐标为________. 解析:由 8x2+y=0,得 x2=-18y. ∴2p=18,p=116, ∴焦点为0,-312. 答案:0,-312
答案:D
返回
2.已知抛物线 y2=2px(p>0)的准线经过点(-1,1),则该抛物线
的焦点坐标为
()
A.(-1,0)
中学高三数学抛物线综合复习课复习课件新人教A版
4.已知抛y2物 6x线 ,过点 P(4,1)引一条 ,使弦 它恰P在
被平,则 分这条弦所在 程的 是 _3_x直 __y线 _1方1 0
看答案
4.已知抛y2物 6x线 ,过点 P(4,1)引一条 ,使弦 它恰P在
被平,则 分这条弦所在 程的 是 _3_x直 _ _y线 _1方 1 0
例 :抛物线 F在 x 的 轴,焦 并 上点 且A 经 (m ,3 过 ),
|A|F 5,求抛物 . 线方程
解二 设抛物线 y2方 2P或 x程 y2为 2p(xP0).
y
点A(m,3)在抛物(如 线图 )上 ,
(3)2 2Pm
F
o
x
由焦 F (p,0)点 得 |A| F(m p)295
A
2
2
解方 (程 m92 p组 )2 2 p9m 2得 5p1或 9.
中学高三数学抛物线综合复习课复习课件新 人教A版
图形
焦点
y
o
F
x
F ( p ,0) 2
y
p
F
o
x
F ( ,0) 2
y
F
x o
y
o x
F
F (0, p ) 2
F (0, p ) 2
准线
x p 2
x p 2
y p 2
y p 2
标准方程
y 2 2 px ( p 0) y 2 2 px ( p 0)
x 2 2 py ( p 0) x 2 2 py ( p 0)
练习:已知抛物线的焦点为F(-2,0)
准线方程x=2,则抛物线方程为( )
A. y2 4x
B. y2 8x C.
第2章 2.7.1 抛物线的标准方程-人教B版(2021)高中数学选择性必修第一册讲义
2.7 抛物线及其方程2.7.1抛物线的标准方程学习目标核心素养1.理解抛物线的定义、标准方程及其推导过程.(重点)2.掌握抛物线的定义及其标准方程的应用.(难点) 1.通过抛物线的定义、标准方程的学习,培养数学抽象、直观想象素养.2.借助于标准方程的推导过程,提升逻辑推理,数学运算素养.在某电视剧中敌我双方都曾使用一种单兵便携式火炮——击炮,击炮是一种曲射炮,发射后炮弹先飞向空中,飞过一个抛物线形的弹道后再砸向地面,很难防,地面上要防击炮的工事就必须是有顶盖的.对于躲在战壕中的敌人,击炮的密集发射无疑是一场灾难.因此研究抛物线是很有必要的,这节课我们就要“走入”抛物线看一看追击炮的弹道曲线.1.抛物线的定义[提示]不一定.当直线l经过点F时,点的轨迹是过定点F且垂直于定直线l的一条直线;l不经过点F时,点的轨迹是抛物线.2.抛物线的标准方程图形标准方程焦点坐标准线方程y2=2px(p>0)⎝⎛⎭⎪⎫p2,0x=-p2y2=-2px(p>0)⎝⎛⎭⎪⎫-p2,0x=p2x2=2py(p>0)⎝⎛⎭⎪⎫0,p2y=-p2x2=-2py(p>0)⎝⎛⎭⎪⎫0,-p2y=p2提示:确定两个量,一个是p,另一个是一次项系数的正负.[提示]一次项变量为x(或y),则焦点在x轴(或y轴)上;若系数为正,则焦点在正半轴上;系数为负,则焦点在负半轴上.焦点确定,开口方向也随之确定.1.思考辨析(正确的打“√”,错误的打“×”)(1)标准方程y2=2px(p>0)中的p的几何意义是焦点到准线的距离.()(2)抛物线的焦点位置由一次项及一次项系数的正负决定.()(3)平面内到一定点距离与到一定直线距离相等的点的轨迹是抛物线.( )[答案] (1)√ (2)√ (3)×[提示] (1)√ 抛物线的标准方程中p (p >0)即为焦点到准线的距离. (2)√ 一次项决定焦点所在的坐标轴,一次项系数的正负决定焦点是在正半轴还是负半轴上.(3)× 当定点在直线上时,不表示抛物线.2.抛物线y =ax 2的准线方程是y =2,则实数a 的值为( ) A .18 B .-18 C .8 D .-8 B [由y =ax 2,得x 2=1a y ,14a =-2,a =-18.] 3.抛物线y 2=-16x 的焦点坐标为( ) A .(-4,0) B .(4,0) C .(0,4)D .(0,-4) A [y 2=-16x ,∴p =-8,∴p2=-4,开口方向向左, ∴焦点坐标为(-4,0).]4.抛物线x 2=16y 的准线方程为 .y =-4 [抛物线的焦点在y 轴上,开口方向向上,故准线方程为y =-p2,且2p =16,∴p2=4,∴准线方程为y =-4.]求抛物线的标准方程【例1】(1)过点M (-6,6);(2)焦点F 在直线l :3x -2y -6=0上. [思路探究][解](1)由于点M(-6,6)在第二象限,∴过M的抛物线开口向左或开口向上.若抛物线开口向左,焦点在x轴上,设其方程为y2=-2px(p>0),将点M(-6,6)代入,可得36=-2p×(-6),∴p=3.∴抛物线的方程为y2=-6x.若抛物线开口向上,焦点在y轴上,设其方程为x2=2py(p>0),将点M(-6,6)代入可得,36=2p×6,∴p=3,∴抛物线的方程为x2=6y.综上所述,抛物线的标准方程为y2=-6x或x2=6y.(2)①∵直线l与x轴的交点为(2,0),∴抛物线的焦点是F(2,0),∴p2=2,∴p=4,∴抛物线的标准方程是y2=8x.②∵直线l与y轴的交点为(0,-3),即抛物线的焦点是F(0,-3),∴p2=3,∴p=6,∴抛物线的标准方程是x2=-12y.综上所述,所求抛物线的标准方程是y2=8x或x2=-12y.求抛物线的标准方程主要利用待定系数法,其步骤为:(1)依据条件设出抛物线的标准方程的类型;(2)求参数p的值;(3)确定抛物线的标准方程.提醒:当焦点位置不确定时,应分类讨论,也可以设y2=ax或x2=ay(a≠0)的形式,以简化讨论过程.[跟进训练]1.已知抛物线顶点在原点,对称轴是x轴,点P(-5,25)到焦点的距离为6,求抛物线的标准方程.[解]设焦点F(a,0),|PF|=(a+5)2+20=6,即a2+10a+9=0,解得a=-1,或a=-9.当焦点为F(-1,0)时,p=2,抛物线的开口向左,其方程为y2=-4x;当焦点为F(-9,0)时,p=18,抛物线开口向左,其方程为y2=-36x.抛物线定义的应用[探究问题[提示]抛物线定义的实质可归结为“一动三定”,一个动点,设为M;一个定点F,即抛物线的焦点;一条定直线l,即为抛物线的准线;一个定值,即点M与点F的距离和M到l的距离之比等于1.定点F不能在直线上,否则,动点M的轨迹就不是抛物线.[提示]焦点在抛物线开口方向的内部,而准线在外部,即“怀抱焦点,背着准线”.[提示]抛物线的标准方程中参数p的几何意义是:抛物线的焦点到准线的距离(即焦准距),所以p的值永远大于0.当抛物线标准方程中一次项的系数为负值时,不要出现p <0的错误.【例2】 若位于y 轴右侧的动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12.求点M 的轨迹方程.[思路探究] 把|MF |比M 到y 轴的距离大12,转化为|MF |与点M 到x =-12的距离相等,从而利用抛物线定义求解.[解] 由于位于y 轴右侧的动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12,所以动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离与它到直线l :x =-12的距离相等.由抛物线的定义知动点M 的轨迹是以F 为焦点,l 为准线的抛物线(不包含原点),其方程应为y 2=2px (p >0)的形式,而p 2=12,所以p =1,2p =2,故点M 的轨迹方程为y 2=2x (x ≠0).1.(变换条件、改变问法)若本例中点M 所在轨迹上一点N 到点F 的距离为2,求点N 的坐标.[解] 设点N 的坐标为(x 0,y 0),则|NF |=2,即⎝ ⎛⎭⎪⎫x 0-122+y 20=4 ①,又由例题的解析知点M 的轨迹方程为y 2=2x (x ≠0),故y 20=2x 0 ②,由①②可得⎩⎨⎧x 0=32,y 0=3,或⎩⎨⎧x 0=32,y 0=-3,故点N 的坐标为⎝ ⎛⎭⎪⎫32,3或⎝ ⎛⎭⎪⎫32,-3. 2.(变换条件、改变问法)若本例中增加一点A (3,2),其他条件不变,求|MA |+|MF |的最小值,并求出点M 的坐标.[解] 如图,由于点M 在抛物线上,所以|MF |等于点M 到其准线l 的距离|MN |,于是|MA |+|MF |=|MA |+|MN |,所以当A 、M 、N 三点共线时,|MA |+|MN |取最小值,亦即|MA|+|MF|取最小值,最小值为3+12=7 2.这时点M的纵坐标为2,可设M(x0,2),代入抛物线方程得x0=2,即M(2,2).抛物线定义的两种应用(1)实现距离转化,根据抛物线的定义,抛物线上任意一点到焦点的距离等于它到准线的距离,因此,由抛物线定义可以实现点点距与点线距的相互转化,从而简化某些问题.(2)解决最值问题,在抛物线中求解与焦点有关的两点间距离和的最小值时,往往用抛物线的定义进行转化,即化折线为直线解决最值问题.抛物线的实际应用【例3】点处,已知灯口直径是60 cm,灯深40 cm,则光源到反光镜顶点的距离是() A.11.25 cm B.5.625 cmC.20 cm D.10 cm(2)某抛物线形拱桥跨度是20米,拱桥高度是4米,在建桥时,每4米需用一根支柱支撑,求其中最长支柱的长.(1)B[如图,建立直角坐标系,设抛物线方程是y2=2px(p>0).∵A(40,30)在抛物线上,∴302=2p×40,∴p=454,∴光源到反光镜顶点的距离为p 2=4542=458=5.625(cm).](2)解:如图,建立直角坐标系,设抛物线方程为x2=-2py(p>0).依题意知,点P(10,-4)在抛物线上,∴100=-2p×(-4),2p=25.即抛物线方程为x2=-25y.∵每4米需用一根支柱支撑,∴支柱横坐标分别为-6,-2,2,6.由图知,AB是最长的支柱之一.设点B的坐标为(2,y B),解得y B=-425,点A的坐标为(2,-4),∴|AB|=y B-(-4)=-425+4=3.84,∴最长支柱的长为3.84米.求抛物线实际应用的五个步骤(1)建立适当的坐标系.(2)设出合适的抛物线方程. (3)通过计算求出抛物线的标准方程. (4)求出需要求出的量.(5)还原到实际问题中,从而解决实际问题.[跟进训练][解] 如图所示,以拱桥的拱顶为原点,以过拱顶且平行于水面的直线为x 轴,建立平面直角坐标系.设抛物线方程为x 2=-2py (p >0),由题意可知点B (4,-5)在抛物线上,故p =85,得x 2=-165y .当船面两侧和抛物线接触时,船不能通航, 设此时船面宽为AA ′,则A (2,y A ), 由22=-165y A ,得y A =-54.又知船面露出水面上的部分高为0.75 m , 所以h =|y A |+0.75=2(m).所以水面上涨到与抛物线形拱桥顶相距2 m 时,小船开始不能通航.1.抛物线的定义中不要忽略条件:点F 不在直线l 上.2.确定抛物线的标准方程,从形式上看,只需求一个参数p ,但由于标准方程有四种类型,因此,还应确定开口方向,当开口方向不确定时,应进行分类讨论.有时也可设标准方程的统一形式,避免讨论,如焦点在x 轴上的抛物线标准方程可设为y 2=2mx (m ≠0),焦点在y 轴上的抛物线标准方程可设为x 2=2my (m ≠0).1.抛物线y 2=4x 上的点M (4,y 0)到其焦点F 的距离为( ) A .3 B .4 C .5D .6C [由抛物线y 2=4x ,得F (1,0),如图,|FM |=4+p2=4+1=5.]2.抛物线的准线方程为x =-4,则抛物线方程为( ) A .x 2=16y B .x 2=8y C .y 2=16xD .y 2=8xC [抛物线的准线为x =-4,易知抛物线是开口向右的抛物线.设方程为y 2=2px (p >0),则p2=4,p =8,抛物线方程为y 2=16x .]3.若抛物线y 2=2px (p ≠0)的焦点与椭圆x 26+y 22=1的右焦点重合,则实数p= .4 [因为椭圆x 26+y 22=1,所以a 2=6,b 2=2, 所以c 2=a 2-b 2=4,故c =2, 所以右焦点为(2,0),所以p2=2,p =4.]4.抛物线y 2=-2px (p >0)上有一点M 的横坐标为-9,它到焦点的距离为10,求此抛物线方程和M 点的坐标.11 [解] 设焦点为F ⎝ ⎛⎭⎪⎫-p 2,0,M 点到准线的距离为d ,则d =|MF |=10,即9+p 2=10,∴p =2,∴抛物线方程为y 2=-4x .将M (-9,y )代入抛物线的方程,得y =±6.∴M 点坐标为(-9,6)或(-9,-6).。