《复变函数》考试试题(四)

合集下载

复变函数题库(包含好多考试卷,后面都有问题详解)

复变函数题库(包含好多考试卷,后面都有问题详解)
4.有界整函数必为常数. ( )
5.如z0是函数f(z)的本性奇点,则 一定不存在. ( )
6.若函数f(z)在z0可导,则f(z)在z0解析. ( )
7.若f(z)在区域D解析,则对D任一简单闭曲线C .
( )
8.若数列 收敛,则 与 都收敛. ( )
9.若f(z)在区域D解析,则|f(z)|也在D解析. ( )
1.设 ,则 .
2.若 ,则 ______________.
3.函数ez的周期为__________.
4.函数 的幂级数展开式为__________
5.若函数f(z)在复平面上处处解析,则称它是___________.

证明 是一个至多n次的多项式或一常数。
《复变函数》考试试题(四)
一. 判断题. (20分)
1.若f(z)在z0解析,则f(z)在z0处满足柯西-黎曼条件.()
2.若函数f(z)在z0可导,则f(z)在z0解析.()
3.函数 与 在整个复平面有界.()
4.若f(z)在区域D解析,则对D任一简单闭曲线C都有 .
7.方程 在单位圆的零点个数为________.
8.设 ,则 的孤立奇点有_________.
9.函数 的不解析点之集为________.
10. .
三.计算题. (40分)
1.求函数 的幂级数展开式.
2.在复平面上取上半虚轴作割线.试在所得的区域取定函数 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 处的值.
3.计算积分: ,积分路径为(1)单位圆( )的右半圆.
4.求 .
四.证明题. (20分)
1.设函数f(z)在区域D解析,试证:f(z)在D为常数的充要条件是 在D解析.

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一)三 . 计算题( 40 分):dz1、|z z 0 | 1 ( z z )n__________. ( n 为自然数)f ( z)12.sin 2 z cos 2z _________.3. 函数sin z的周期为 ___________.f (z)14. z 2 1 ,则f ( z)的孤立奇点有 __________.设 5. 幂级数nz n的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ... z n7. 若 n,则 nn ______________.Res(ez8.n,0)z________,其中 n 为自然数 .9.sin z的孤立奇点为 ________ .z10. 若zlimf (z) ___是f (z) 的极点,则z z.1. 设( z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1}内的罗朗展式 .1dz.2.|z| 1cos zf ( z) 3 2 71,其中 C { z :| z |3} ,试求 f '(1 i ).3.d设Czwz 14. 求复数 z 1 的实部与虚部 .四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数, 那么它在 D 内为常数 .2. 试证 :f (z)z(1 z) 在割去线段 0 Re z 1 的 z 平面内能分出两个单值解析分支 , 并求出支割线 0 Re z 1 上岸取正值的那支在 z 1 的值 .《复变函数》考试试题(二)二. 填空题 . (20 分)1.设z i ,则| z |__,arg z__, z__2.设 f ( z)(x2 2 xy) i (1 sin( x2y2 ), z x iy C,则lim f (z)________.z1idz_________. (n为自然数)3.|z z0 |1 ( z z )n4.幂级数nz n的收敛半径为 __________ .n05.若 z0是 f(z) 的 m 阶零点且 m>0,则 z0是f ' ( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.18.设 f ( z)1z2,则 f ( z) 的孤立奇点有_________.9.函数 f (z)| z |的不解析点之集为________.10.Res( z41,1)____ . z三.计算题 . (40 分)1.求函数sin(2z3)的幂级数展开式 .2. 在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z i 处的值.计算积分: Ii1)单位圆(| z |1)3.| z | dz,积分路径为(i的右半圆 .sin zdzz22( z)4.求2.四. 证明题 . (20 分)1.设函数 f(z) 在区域 D 内解析,试证:f(z)在 D 内为常数的充要条件是 f ( z)在D内解析.2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(三)二. 填空题 .(20 分)11.设 f ( z),则f(z)的定义域为___________.z212.函数 e z的周期为_________.3.若 z nn 2 i (1 1 )n,则 lim z n __________.1 nn n4. sin 2 z cos 2z___________.dz5.|z z 0 | 1 ( z z )n_________. ( n 为自然数)6.幂级数nx n的收敛半径为 __________.n 07.设f (z)1,则 f ( z ) 的孤立奇点有 __________.z218. 设ez1,则 z___ .9.若z 0 是 f (z) 的极点,则 limf ( z) ___ .z z 010.Res( e z,0)____.z n三. 计算题 . (40分)11.将函数 f ( z)z 2e z在圆环域 0z内展为 Laurent 级数 .n!n2. 试求幂级数nnz的收敛半径 .n3. 算下列积分:e zdz,其中C 是| z| 1.Cz 2 (z29)4. 求z 9 2z 6z28z 2 0 在 | z |<1内根的个数 .四 . 证明题 . (20 分)1.函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设f (z) 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及 M ,使得当| z|R 时| f (z) |M | z |n ,证明f (z) 是一个至多 n 次的多项式或一常数。

复变函数试题(4)答案

复变函数试题(4)答案

复变函数试题(六)答案一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.z=2-2i,|z2|=(= |z|2)A.2B.8C.4D.82.复数方程z=cost+isint的曲线是()A.直线B.圆周C.椭圆D.双曲线3.Re(e2x+iy)=()A.e2xB.e yC.e2x cosyD.e2x siny4.下列集合为有界单连通区域的是()A.0<|z-3|<2B.Rez>3C.|z+a|<1D.π≤<πargz215.设f(z)=x3-3xy2+(ax2y-y3)i在Z平面上解析,则a=(u x=v y)A.-3B.1C.2D.36.若f(z)=u(x,y)+iv(x,y)在Z平面上解析,v(x,y)=e x(ycosy+xsiny),则u(x,y)=()A.e x(ycosy-xsiny)B.e x(xcosy-xsiny)C.e x(ycosy-ysiny)D.e x(xcosy-ysiny)7.⎰=-3|iz|zdz=()A.0B.2πC.πiD.2πi8.⎰=---11212zzsinzdz| z|=(|1|1s i n z d z(z3)(z4)z-=+-⎰)12 A.0 B.2πisin1 C.2πsin1D.1sin 21iπ9.⎰32dz zcosz =(321s i n z 2)A.21sin9 B.21cos9C.cos9D.sin910.若f(z)=tgz ,则Res[f(z),2π ]=( 一级极点 )A.-2πB.-πC.-1D.011.f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( )A.0B.1C.2D.312.z=0为函数cos z1的( )A.本性奇点B.极点C.可去奇点D.解析点13.f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是(=11221z z ⋅--+ D )[排除法可去掉AB]A.∑∞=-01n nnz )(B.∑∞=-021n nz)z (C.∑∞=-02n n)z (D.∑∞=---0121n n n )z ()(14.线性变换ω=iz z i +-(=[]i z i z a ez iz aθ---+- )A.将上半平面Imz>0映射为上半平面Im ω>03 B.将上半平面Imz>0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 15.函数f(t)=t 的傅氏变换J [f(t)]为(12()[()]()()1[]2()w F tf t iF w f t F t i w πδπδ←−→⎫⎪''==⇒=⎬⎪⎭微分性(p159))A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω)二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

(完整版)《复变函数》考试试题与答案(四)

(完整版)《复变函数》考试试题与答案(四)

《复变函数》考试试题(四)一. 判断题. (20分)1. 若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件. ( )2. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )3. 函数z sin 与z cos 在整个复平面内有界. ( )4. 若f (z )在区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f .( )5. 若)(lim 0z f zz →存在且有限,则z 0是函数的可去奇点. ( )6. 若函数f (z )在区域D 内解析且0)('=z f ,则f (z )在D 内恒为常数. ( )7. 如果z 0是f (z )的本性奇点,则)(lim 0z f zz →一定不存在. ( )8. 若0)(,0)(0)(0==z f z f n ,则0z 为)(z f 的n 阶零点. ( )9. 若)(z f 与)(z g 在D 内解析,且在D 内一小弧段上相等,则D z z g z f ∈≡),()(. ( )10. 若)(z f 在+∞<<||0z 内解析,则)),((Res )0),((Res ∞-=z f z f . ( )二. 填空题. (20分)1. 设iz -=11,则___Im __,Re ==z z .2. 若ξ=∞→n n z lim ,则=+++∞→nz z z nn ...lim 21______________.3. 函数e z 的周期为__________.4. 函数211)(zz f +=的幂级数展开式为__________ 5. 若函数f (z )在复平面上处处解析,则称它是___________.6. 若函数f (z )在区域D 内除去有限个极点之外处处解析,则称它是D 内的_____________. 7. 设1|:|=z C ,则___)1(=-⎰Cdz z .8. zz sin 的孤立奇点为________.9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10.=)0,(Res n zze _____________.三. 计算题. (40分)1. 解方程013=+z .2. 设1)(2-=z e z f z,求).),((Re ∞z f s3..))(9(2||2⎰=+-z dz i z z z.4. 函数()f z =z e z111--有哪些奇点?各属何类型(若是极点,指明它的阶数).四. 证明题. (20分) 1. 证明:若函数)(z f 在上半平面解析,则函数)(z f 在下半平面解析.2. 证明0364=+-z z 方程在2||1<<z 内仅有3个根.《复变函数》考试试题(四)参考答案一. 判断题.1.√ 2.× 3.× 4.× 5.× 6.√ 7.×8.× 9.√10.√ . 二. 填空题.1. 12, 12; 2. ξ; 3. 2()k ik z π∈; 4.20(1)(1)n nn zz ∞=-<∑; 5. 整函数;6. 亚纯函数;7. 0;8. 0z =;9. ∞; 10. 1(1)!n +.三. 计算题. 1.i i z i z ii z k k i k z z 232135sin 35cos1sin cos 23213sin 3cos 2,1,032sin 32cos1:3213-=+=-=+=+=+==+++=⇒-=ππππππππππ解2. 解 11Re ()12z z z e e s f z z ====+, 111Re ()12z z z e e s f z z -=-=-==+-. 故原式1112(Re ()Re ())()z z i s f z s f z i e e ππ-==-=+=-.3. 解 原式22Re ()295z iz izi s f z iz πππ=-=-===-.4. 解 z e z 111--=)1(1-+-z ze z e z ,令0)1(=-z e z ,得i k z z π2,0==,Λ,2,1±±=k 而 z z zz z z z z z ze e e z e e z z e +--=-+-=--→→→11lim )1(1lim )111(lim 00021lim 0-=++-=→z z z z z ze e e e 0=∴z 为可去奇点当i k z π2=时,01),0(≠+-≠ze z k 而[]0212)1(≠=+-=='-ik z ze ei k z zezzzππ i k z π2=∴为一阶极点.四. 证明题.1. 证明 设()()F z f z =, 在下半平面内任取一点0z , z 是下半平面内异于0z 的点, 考虑 000000000()()()()()()limlim limz z z z z z F z F z f z f z f z f z z z z z z z →→→---==---. 而0z , z 在上半平面内, 已知()f z 在上半平面解析, 因此00()()F z f z ''=, 从而()()F z f z =在下半平面内解析.2. 证明 令()63f z z =-+, 4()z z ϕ=, 则()f z 与()z ϕ在全平面解析, 且在1:2C z =上, ()15()16f z z ϕ≤<=,故在2z <内11(,)(,)4N f C N C ϕϕ+==.在2:1C z =上, ()3()1f z z ϕ≥>=,故在1z <内22(,)(,)1N f C N f C ϕ+==.所以f ϕ+在12z <<内仅有三个零点, 即原方程在12z <<内仅有三个根.。

复变函数论试题库及答案

复变函数论试题库及答案

《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 的某个圆恒等于常数,则f(z)在区域D 恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 的罗朗展式.2..cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D 为常数.2. 试证: ()f z 0Re 1z ≤≤的z 平面能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 连续,则u (x,y )与v (x,y )都在D 连续.( )2. cos z 与sin z 在复平面有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 解析,则|f (z )|也在D 解析. ( ) 10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 解析,试证:f (z )在D 为常数的充要条件是)(z f 在D 解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 解析且在D 的某个圆恒为常数,则数f (z )在区域D 为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z 的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数试题

复变函数试题

《复变函数》模拟考试试题《复变函数》考试试题(一)一、 判断题(4x10=40分):1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。

( )2、有界整函数必在整个复平面为常数。

( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。

( )4、cos z 与sin z 在复平面内有界。

( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。

( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。

( )7、若)(limz f z z →存在且有限,则z 0是函数的可去奇点。

( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。

( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。

( ) 10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。

( ) 二、填空题(4x5=20分)1、若C 是单位圆周,n 是自然数,则=-⎰Cndz z z )(10__________。

2、设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz _________。

3、设11)(2+=z z f ,则f (z )的定义域为___________。

4、∑+∞=0n n nz 的收敛半径为_________。

5、=)0,(Res nz ze _____________。

三、计算题(8x5=40分):1、设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D内的罗朗展式。

2、求⎰⎰==+--+3||1||1)4)(1(21sin z z z z z dzizdz eπ。

《复变函数论》精彩试题库及问题详解

《复变函数论》精彩试题库及问题详解

《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z n z z dz__________.(n 为自然数) 2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(z z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式.2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数复习资料

复变函数复习资料

《复变函数》考试复习模拟卷注意:(以通信专业考过复变函数的经验,挂科的情况比较多,题目题型都是以大题的形式出现,本类复习模拟卷,主要是让大家熟悉知识点,考试题型并非如此;另本模拟卷可能涉及我们没讲的知识点,大家可以忽略,还有共有14套卷子比较多,大家有选择的去做一下 祝大家考出好成绩)《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()(1)f z z z =-在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(z z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式.2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=ii z z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z nz z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数试题解读

复变函数试题解读

《复变函数》模拟考试试题《复变函数》考试试题(一)一、 判断题(4x10=40分):1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。

( )2、有界整函数必在整个复平面为常数。

( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。

( )4、cos z 与sin z 在复平面内有界。

( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。

( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。

( )7、若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点。

( ) 8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。

( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。

( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。

( )二、填空题(4x5=20分)1、若C 是单位圆周,n 是自然数,则=-⎰C ndz z z )(10__________。

2、设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f i z _________。

3、设11)(2+=z z f ,则f (z )的定义域为___________。

4、∑+∞=0n n nz 的收敛半径为_________。

5、=)0,(Res n zze _____________。

三、计算题(8x5=40分):1、设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式。

2、求⎰⎰==+--+3||1||1)4)(1(21sin z z z z z dz i zdz e π。

复变函数考题及答案

复变函数考题及答案

复变函数考题及答案【篇一:复变函数试题与答案】>一、选择题1.当z?1?i时,z100?z75?z50的值等于() 1?i(a)i (b)?i(c)1 (d)?12.设复数z满足arc(z?2)??3,arc(z?2)?5?,那么z?() 61331?i (d)??i 2222(a)?1?3i (b)?3.复数z?tan??i(3?i (c)??????)的三角表示式是() 2 ???)?i??)] (b)sec?(a)sec22??3?3???)?i??)] 22?(c)?sec3?3?????)?i??)](d)?sec???)?i??)] 2222224.若z为非零复数,则z?与2z的关系是()2222(a)z??2z (b)z??2z22(c)z??2z (d)不能比较大小5.设x,y为实数,则动点(x,y)z1?x??yi,z2?x??yi且有z1?z2?12,的轨迹是()(a)圆(b)椭圆(c)双曲线(d)抛物线6.一个向量顺时针旋转?3,向右平移3个单位,再向下平移1个单位后对应的复数为1?3i,则原向量对应的复数是()(a)2(b)1?i (c)3?i (d)3?i17.使得z2?z成立的复数z是() 2(a)不存在的(b)唯一的(c)纯虚数(d)实数8.设z为复数,则方程z??2?i的解是()(a)?3333?i (b)?i (c)?i (d)??i 44449.满足不等式z?i?2的所有点z构成的集合是() z?i(a)有界区域(b)无界区域(c)有界闭区域(d)无界闭区域10.方程z?2?3i?2所代表的曲线是()(a)中心为2?3i,半径为2的圆周(b)中心为?2?3i,半径为2的圆周(c)中心为?2?3i,半径为2的圆周(d)中心为2?3i,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()(a)z?1?2 (b)z?3?z?3?4 z?2z?a?1(a?1) (d)z?a?z?a?c?0(c?0) 1?az(c)12.设f(z)?1?,z1?2?3i,z2?5?i,,则f(z1?z2 )(a)?4?4i(b)4?4i(c)4?4i(d)?4?4i13.limim(z)?im(z0)() x?x0z?z0(a)等于i(b)等于?i(c)等于0(d)不存在14.函数f(z)?u(x,y)?iv(x,y)在点z0?x0?iy0处连续的充要条件是()(a)u(x,y)在(x0,y0)处连续(b)v(x,y)在(x0,y0)处连续(c)u(x,y)和v(x,y)在(x0,y0)处连续(d)u(x,y)?v(x,y)在(x0,y0)处连续 2z2?z?115.设z?c且z?1,则函数f(z)?的最小值为() z (a)?3 (b)?2(c)?1 (d)1二、填空题1.设z?(1?i)(2?i)(3?i),则z? (3?i)(2?i)2.设z?(2?3i)(?2?i),则argz?3.设z?,arg(z?i)?3?,则z? 4(cos5??isin5?)24.复数的指数表示式为 2(cos3??isin3?)5.以方程z?7?i的根的对应点为顶点的多边形的面积为6.不等式z?2?z?2?5所表示的区域是曲线的内部 67.方程2z?1?i?1所表示曲线的直角坐标方程为2?(1?i)z8.方程z?1?2i?z?2?i所表示的曲线是连续点和的线段的垂直平分线9.对于映射??2i22,圆周x?(y?1)?1的像曲线为 z410.lim(1?z?2z)? z?1?i三、若复数z满足z?(1?2i)z?(1?2i)?3?0,试求z?2的取值范围.四、设a?0,在复数集c中解方程z2?2z?a.五、设复数z??i,试证z是实数的充要条件为z?1或im(z)?0. 21?z3六、对于映射??11(z?),求出圆周z?4的像. 2z七、试证1.z1?0(z2?0)的充要条件为z1?z2?z1?z2; z2z1?0(zj?0,k?j,k,j?1,2,?,n))的充要条件为 z22.z1?z2???zn?z1?z2???zn.八、若limf(z)?a?0,则存在??0,使得当0?z?z0??时有f(z)?x?x01a. 2九、设z?x?iy,试证x?y2?z?x?y.十、设z?x?iy,试讨论下列函数的连续性: ?2xy,z?0?1.f(z)??x2?y2 ?0,z?0??x3y?,z?02.f(z)??x2?y2.?0,z?0?第二章解析函数一、选择题:1.函数f(z)?3z在点z?0处是( )(a)解析的(b)可导的(c)不可导的(d)既不解析也不可导2.函数f(z)在点z可导是f(z)在点z解析的( )4 2(a)充分不必要条件(b)必要不充分条件(c)充分必要条件(d)既非充分条件也非必要条件3.下列命题中,正确的是( )(a)设x,y为实数,则cos(x?iy)?1(b)若z0是函数f(z)的奇点,则f(z)在点z0不可导(c)若u,v在区域d内满足柯西-黎曼方程,则f(z)?u?iv在d内解析(d)若f(z)在区域d内解析,则在d内也解析4.下列函数中,为解析函数的是( )(a)x2?y2?2xyi(b)x2?xyi(c)2(x?1)y?i(y2?z?x20?2x)(d)x3?iy35.函数f(z)?z2im(z)在处的导数( )(a)等于0 (b)等于1 (c)等于?1(d)不存在6.若函数f(z)?x2?2xy?y2?i(y2?axy?x2)在复平面内处处解析,那么实常数a?( )(a)0(b)1(c)2(d)?27.如果f?(z)在单位圆z?1内处处为零,且f(0)??1,那么在z?1内f(z)?( )(a)0(b)1(c)?1(d)任意常数8.设函数f(z)在区域d内有定义,则下列命题中,正确的是(a)若f(z)在d内是一常数,则f(z)在d内是一常数(c)若f(z)与f(z)在d内解析,则f(z)在d内是一常数(d)若argf(z)在d内是一常数,则f(z)在d内是一常数9.设f(z)?x2?iy2,则f?(1?i)?( )5【篇二:复变函数期末考试复习题及答案详解】=txt>1、 ?|z?z?1(z?z)n?0|__________.(n为自然数) 022.sinz?cos2z? _________.3.函数sinz的周期为___________.f(z)?14.设z2?1,则f(z)的孤立奇点有__________.?5.幂级数?nzn的收敛半径为__________.n?06.若函数f(z)在整个平面上处处解析,则称它是__________. lim 1?z2?...?zn7.若nlim??zn??z,则n??n?______________.zres(ezn,0)?8.________,其中n为自然数.9. sinzz的孤立奇点为________ .limf(10.若z0是f(z)z?zz)?___的极点,则0.三.计算题(40分):f(z)?11. 设(z?1)(z?2),求f(z)在d?{z:0?|z|?1}内的罗朗展式.1dz2. ?|z|?1cosz.2??13. 设f(z)??3??7c??zd?,其中c?{z:|z|?3},试求f(1?i).w?z?14. 求复数z?1的实部与虚部.四. 证明题.(20分) 1. 函数f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内为常数.2. 试证: f(z)在割去线段0?rez?1的z平面内能分出两个单值解析分支, 并求出支割线0?rez?1上岸取正值的那支在z??1的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设z??i,则|z|?__,argz?__,?__2.设f(z)?(x2?2xy)?i(1?sin(x2?y2),?z?x?iy?c,则zlim?1?if(z)?________.3.?dz|z?z0|?1(z?zn?_________.(n为自然数)0)?4. 幂级数?nzn的收敛半径为__________ .n?05. 若z0是f(z)的m阶零点且m0,则z0是f(z)的_____零点.6. 函数ez的周期为__________.7. 方程2z5?z3?3z?8?0在单位圆内的零点个数为________.8. 设f(z)?11?z2,则f(z)的孤立奇点有_________.9. 函数f(z)?|z|的不解析点之集为________.10. res(z?1z4,1)?____. 三. 计算题. (40分)1. 求函数sin(2z3)的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z?i处的值.i3. 计算积分:i???i|z|dz,积分路径为(1)单位圆(|z|?1)的右半圆.sinzz?24. 求(z?dz)22.四. 证明题. (20分)1. 设函数f(z)在区域d内解析,试证:f(z)在d内为常数的充要条件是f(z)在d内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设f(z)?1z2?1,则f(z)的定义域为___________. 2. 函数ez 的周期为_________.3. 若zn?21?n?i(1?1n?n)n,则limn??zn?__________.4. sin2z?cos2z?___________.dz5. ?|z?z?0|?1(z?zn_________.(n为自然数) )?6. 幂级数?nxn的收敛半径为__________.n?07. f(z)?1设z2?1,则f(z)的孤立奇点有__________.8. 设ez??1,则z?___. 9. 若z0是f(z)的极点,则limz?zf(z)?___.z10. res(ezn,0)?____.三. 计算题. (40分)11. 将函数f(z)?z2ez在圆环域0?z??内展为laurent级数.??2. 试求幂级数?n!nzn的收敛半径. n?n3. 算下列积分:?ezdzcz2(z2?9),其中c是|z|?1.4. 求z9?2z6?z2?8z?2?0在|z|1内根的个数.四. 证明题. (20分) 1. 函数f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内为常数.2. 设f(z)是一整函数,并且假定存在着一个正整数n,以及两个正数r及m,使得当|z|?r时|f(z)|?m|z|n,证明f(z)是一个至多n次的多项式或一常数。

复变函数考试卷试题及答案

复变函数考试卷试题及答案

应用数理统计应用数理统计 试题试题第 1 页 共 4 页复变函数考试卷一、单项选择题(15分,每小题3分)分)1. 设()2,00,0z z f z zz ì¹ï=íï=î,则()f z 的连续点集合为(的连续点集合为()。

(A )单连通区域)单连通区域 (B )多连通区域)多连通区域 (C )开集非区域)开集非区域 (D )闭集非闭区域)闭集非闭区域 2. 设()(,)(,)f z u x y iv x y =+,那么(,)u x y 与(,)v x y 在点()00,x y 可微是()f z 在点000z x i y =+可微的(可微的()。

()()()()A B C D 充分但非必要条件必要但非充分条件充分必要条件既非充分也非必要条件3. 下列命题中,不正确的是(下列命题中,不正确的是()。

()()()()()()()()()0R e s ,0I m 1.zz A f z f z B f z D z f z D C e i Dz e iwp w ¥¥=-=<<<+如果无穷远点是的可去奇点,那么若在区域内任一点的邻域内展开成泰勒级数,则在内解析.幂级数的和函数在收敛圆内是解析函数.函数将带形域0()映射为单位圆4. 设c 是()1z i t =+,t 从1到2的线段,则arg d cz z ò( )。

()()()()()11444AB iC iD i ppp ++5. 设()f z 在01z <<内解析且()0lim 1z zf z ®=,那么()()Res ,0f z =( )。

()()()()2211A iB iCD p p --二、填空题(15分,每空3分)分) 1.()Ln 1i -的主值为的主值为。

2.函数()()Re Im f z z z z ()=+仅在点z = 处可导。

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模,幅角。

2.-8i 的三个单根分别为: , , 。

3.Ln z 在 的区域内连续。

4.z z f =)(的解极域为:。

5.xyi y x z f 2)(22+-=的导数=')(z f。

6.=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s。

7.指数函数的映照特点是: 。

8.幂函数的映照特点是:。

9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f。

10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知222121),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数,且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.⎰=-2||)1(z z z dz2.⎰-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。

五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。

1.1||0<-<i z 2.+∞<-<||1i z六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。

(2))(2ωπδ=⎰∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。

八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1. 22942ln π+ ,ππk arctg 22ln 32+-2. 3-i 2i 3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 07.将常形域映为角形域8. 角形域映为角形域 9.⎰∞+∞-ωωπωωd e F i )(2110. ⎰∞+-0)(dt e t f st二、解:∵yu x x v ∂∂-=-=∂∂ xuy y v ∂∂==∂∂∴c xy u +=(5分)c xy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0 c =0 (3分)∴222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=(2分)三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z(2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) 23126⨯⨯i π=i 63π- 四、1.解:原式⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221(3分) z 1=0 z 2=1]11[2+-=i π=0 (2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π-五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=2)(120)(11+∞=-=∑n n n i z i 2)(--∞=-=∑n n n i z i (2分) 六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰ (3分) ∴结论成立(2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-⎰ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-⎰dt e t i(2分)七、解:∵⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX (3分)S (2)-(1): ∴⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s (3分)∴cht e e t Y t t -=--=-121211)( 八、解:①定义; ②C-R 充要条件Th ; ③v 为u 的共扼函数 10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解复变函数期末考试试卷及答案详解《复变函数》考试试题(一) 三.计算题(40分):dz1,1、 __________.(为自然数)nn,f(z),|z,z|,10(zz),0D,{z:0,|z|,1}(z,1)(z,2)f(z),求在1. 设22sinz,cosz,2. _________. 内的罗朗展式.1sinz3.函数的周期为___________. dz.,|z|,1cosz2. 12f(z),,,,,3712,f(z)fzd,()z,1C,{z:|z|,3}f'(1,i).,C4.设,则的孤立奇点有__________. ,z,3. 设,其中,试求,z,1nw,nz5.幂级数的收敛半径为__________. ,z,14. 求复数的实部与虚部. n0,6.若函数f(z)在整个平面上处处解析,则称它是__________. 四. 证明题.(20分)zzz,,...,1. 函数在区域D内解析. 证明:如果在D内为常数,f(z)|f(z)|12n,limlimz,,n,,nnn,,7.若,则______________.D那么它在内为常数. zesRe(,0),n0Re1,,z2. 试证: 在割去线段的平面内能分出两zfzzz()(1),,z8.________,其中n为自然数.z,,10Re1,,z个单值解析分支, 并求出支割线上岸取正值的那支在sinz的值.9. 的孤立奇点为________ .《复变函数》考试试题(二) z二. 填空题. (20分)limf(z),___zf(z)z,z0010.若是的极点,则.13sin(2z)1. 设,则 z,,i|z|,__,argz,__,z,__的幂级数展开式. 1. 求函数2222.设,则f(z),(x,2xy),i(1,sin(x,y),,z,x,iy,C2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正z实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点________. limf(z),z,1,i处的值. z,idz,3. _________.(为自然数) inn,|z,z|,10(zz),0I,|z|dz3. 计算积分:,积分路径为(1)单位圆()|z|,1,,i,nnz4. 幂级数的收敛半径为__________ . 的右半圆. ,n0,sinzdz,z,25. 若z是f(z)的m阶零点且m>0,则z是的_____零点. ,f'(z)002(,)z24. 求 .z6. 函数e的周期为__________.四. 证明题. (20分) 537. 方程在单位圆内的零点个数为________. 2z,z,3z,8,0f(z)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是1f(z),8. 设,则的孤立奇点有_________. f(z)2在D内解析. 1,z2. 试用儒歇定理证明代数基本定理. 9. 函数的不解析点之集为________.f(z),|z|《复变函数》考试试题(三)二. 填空题. (20分) z,1110. . Res(,1),____f(z),1. 设,则f(z)的定义域为___________. 42z,1zz三. 计算题. (40分) 2. 函数e的周期为_________.2n,21n,,z,,i(1,)3. 若,则__________. limz,nnn!n,,1,nnn的收敛半径.2. 试求幂级数z,n22n4. ___________. sinz,cosz,n,dzzedz,5. _________.(为自然数) nn,|z,z|,13. 算下列积分:,其中是.C|z|,10(zz),22,0Cz(z,9),nnx6. 幂级数的收敛半径为__________. ,962n,0z,2z,z,8z,2,04. 求在|z|<1内根的个数.四. 证明题. (20分) 1f(z),7. 设,则f(z)的孤立奇点有__________. 21. 函数在区域D内解析. 证明:如果在D内为常f(z)|f(z)|z,1z数,那么它在D内为常数. 8. 设,则. z,___e,,12. 设是一整函数,并且假定存在着一个正整数n,以及两个正数f(z)z9. 若是的极点,则. f(z)limf(z),___0z,z0R及M,使得当时 |z|,Rzen10. Res(,0),____. n|f(z)|,M|z|, z三. 计算题. (40分) 证明是一个至多n次的多项式或一常数。

复变函数试题库(南信大数统院)

复变函数试题库(南信大数统院)

《复变函数论》试题库 《复变函数》考试试题(一)1、 =-⎰=-1||00)(z z n z z dz__________.(n 为自然数) 2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z 0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分) 1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin .四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________. 3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z nz z dz_________.(n 为自然数)6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C zz z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数与积分变换试题(四).

复变函数与积分变换试题(四).

1《复变函数与积分变换》试题(四)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设z=1+2i ,则Im z 3=( ) A.-2 B.1 C.8D.142.z=(1+cost)+i(2+sint),0≤t<2π所表示的曲线为( ) A.直线 B.双曲线 C.抛物线D.圆3.ln(-1)为( ) A.无定义的 B.0C.πiD.(2k+1)πi(k 为整数)4.设z=x+iy,则(1+i )z 2的实部为( ) A.x 2-y 2+2xy B.x 2-y 2-2xy C.x 2+y 2+2xyD.x 2+y 2-2xy5.设z=x+iy ,解析函数f(z)的虚部为v=y 3-3x 2y ,则f(z)的实部u 可取为( ) A.x 2-3xy 2 B.3xy 2-x 3 C.3x 2y-y 3D.3y 3-3x 36.设C 为正向圆周|z|=1,则⎰=C2z dz( )A.0B.1C.πiD.2πi7.设C 为从-i 到i 的直线段,则⎰=Cdz |z |( )A.iB.2iC.-iD.-2i 8.设C 为正向圆周|z|=1,则⎰=-C z dz 1e zsin ( )A.2πi ·sin 1B.-2πiC.0D.2πi29.复数列i 2n n e z π=的极限为( ) A.-1 B.0 C.1D.不存在10.以z=0为本性奇点的函数是( ) A.z z sinB.)1z (z 1-C.2z z cos 1-D.z1sin11.1e 1)z (f z-=在z=πi 处的泰勒级数的收敛半径为( ) A.πi B.2πi C.πD.2π12.设∑∞==n n!n z )z (f ,则f (10)(0)为( ) A.0 B.!101 C.1D.10!13.设函数22iz)1z (e )z (f +=,则Res[f(z),-i]=( )A.0B.4ie - C.4ieD.4e 14.把点z=1,i,-1分别映射为点w=∞,-1,0的分式线性映射为( )A.1z 1z w +-= B.z 1)1z (i w -+=C.z11z w -+=D.1z )1z (i w +-=15.w=e z 把带形区域0<Im z<2π映射成W 平面上的( ) A.上半复平面B.整个复平面C.割去负实轴及原点的复平面D.割去正实轴及原点的复平面二、填空题(本大题共5小题,每小题2 分,共10分) 请在每小题的空格中填上正确答案。

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解《复变函数》考试试题(一) 三.计算题(40分):dz1,1、 __________.(为自然数)nn,f(z),|z,z|,10(zz),0D,{z:0,|z|,1}(z,1)(z,2)f(z),求在1. 设22sinz,cosz,2. _________. 内的罗朗展式.1sinz3.函数的周期为___________. dz.,|z|,1cosz2. 12f(z),,,,,3712,f(z)fzd,()z,1C,{z:|z|,3}f'(1,i).,C4.设,则的孤立奇点有__________. ,z,3. 设,其中,试求,z,1nw,nz5.幂级数的收敛半径为__________. ,z,14. 求复数的实部与虚部. n0,6.若函数f(z)在整个平面上处处解析,则称它是__________. 四. 证明题.(20分)zzz,,...,1. 函数在区域D内解析. 证明:如果在D内为常数,f(z)|f(z)|12n,limlimz,,n,,nnn,,7.若,则______________.D那么它在内为常数. zesRe(,0),n0Re1,,z2. 试证: 在割去线段的平面内能分出两zfzzz()(1),,z8.________,其中n为自然数.z,,10Re1,,z个单值解析分支, 并求出支割线上岸取正值的那支在sinz的值.9. 的孤立奇点为________ .《复变函数》考试试题(二) z二. 填空题. (20分)limf(z),___zf(z)z,z0010.若是的极点,则.13sin(2z)1. 设,则 z,,i|z|,__,argz,__,z,__的幂级数展开式. 1. 求函数2222.设,则f(z),(x,2xy),i(1,sin(x,y),,z,x,iy,C2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正z实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点________. limf(z),z,1,i处的值. z,idz,3. _________.(为自然数) inn,|z,z|,10(zz),0I,|z|dz3. 计算积分:,积分路径为(1)单位圆()|z|,1,,i,nnz4. 幂级数的收敛半径为__________ . 的右半圆. ,n0,sinzdz,z,25. 若z是f(z)的m阶零点且m>0,则z是的_____零点. ,f'(z)002(,)z24. 求 .z6. 函数e的周期为__________.四. 证明题. (20分) 537. 方程在单位圆内的零点个数为________. 2z,z,3z,8,0f(z)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是1f(z),8. 设,则的孤立奇点有_________. f(z)2在D内解析. 1,z2. 试用儒歇定理证明代数基本定理. 9. 函数的不解析点之集为________.f(z),|z|《复变函数》考试试题(三)二. 填空题. (20分) z,1110. . Res(,1),____f(z),1. 设,则f(z)的定义域为___________. 42z,1zz三. 计算题. (40分) 2. 函数e的周期为_________.2n,21n,,z,,i(1,)3. 若,则__________. limz,nnn!n,,1,nnn的收敛半径.2. 试求幂级数z,n22n4. ___________. sinz,cosz,n,dzzedz,5. _________.(为自然数) nn,|z,z|,13. 算下列积分:,其中是.C|z|,10(zz),22,0Cz(z,9),nnx6. 幂级数的收敛半径为__________. ,962n,0z,2z,z,8z,2,04. 求在|z|<1内根的个数.四. 证明题. (20分) 1f(z),7. 设,则f(z)的孤立奇点有__________. 21. 函数在区域D内解析. 证明:如果在D内为常f(z)|f(z)|z,1z数,那么它在D内为常数. 8. 设,则. z,___e,,12. 设是一整函数,并且假定存在着一个正整数n,以及两个正数f(z)z9. 若是的极点,则. f(z)limf(z),___0z,z0R及M,使得当时 |z|,Rzen10. Res(,0),____. n|f(z)|,M|z|, z三. 计算题. (40分) 证明是一个至多n次的多项式或一常数。

《复变函数论》试题库

《复变函数论》试题库

《复变函数》考试试题(一)一、 判断题.(正确者在括号内打√,错误者在括号内打×,每题2分) 1.当复数0z =时,其模为零,辐角也为零. ( )2.若0z 是多项式110()n n n n P z a z a z a --=+++ (0)n a ≠的根,则0z 也()P z 是的根.( ) 3.如果函数()f z 为整函数,且存在实数M ,使得Re ()f z M <,则()f z 为一常数.( ) 4.设函数1()f z 与2()f z 在区域内D 解析,且在D 内的一小段弧上相等,则对任意的z D ∈,有1()f z 2()f z ≡. ( )5.若z =∞是函数()f z 的可去奇点,则Re ()0z s f z =∞=. ( )二、填空题.(每题2分)1.23456i i i i i ⋅⋅⋅⋅= _____________________. 2.设0z x iy =+≠,且arg ,arctan22y z xππππ-<≤-<<,当0,0x y <>时,arg arctany x =+________________.3.函数1w z=将z 平面上的曲线22(1)1x y -+=变成w 平面上的曲线______________.4.方程440(0)z a a +=>的不同的根为________________. 5.(1)i i +___________________.6.级数20[2(1)]n n z ∞=+-∑的收敛半径为____________________.7.cos nz 在z n <(n 为正整数)内零点的个数为_____________________.8.函数336()6sin (6)f z z z z =+-的零点0z =的阶数为_____________________.9.设a 为函数()()()z f z z ϕψ=的一阶极点,且()0,()0,()0a a a ϕψψ'≠=≠,则()Re ()z af z sf z ='=_____________________.10.设a 为函数()f z 的m 阶极点,则()Re ()z af z sf z ='=_____________________.三、计算题(50分)1.设221(,)ln()2u x y x y =+。

复变函数考题及答案

复变函数考题及答案

复变函数考题及答案【篇一:复变函数试题与答案】>一、选择题1.当z?1?i时,z100?z75?z50的值等于() 1?i(a)i (b)?i(c)1 (d)?12.设复数z满足arc(z?2)??3,arc(z?2)?5?,那么z?() 61331?i (d)??i 2222(a)?1?3i (b)?3.复数z?tan??i(3?i (c)??????)的三角表示式是() 2 ???)?i??)] (b)sec?(a)sec22??3?3???)?i??)] 22?(c)?sec3?3?????)?i??)](d)?sec???)?i??)] 2222224.若z为非零复数,则z?与2z的关系是()2222(a)z??2z (b)z??2z22(c)z??2z (d)不能比较大小5.设x,y为实数,则动点(x,y)z1?x??yi,z2?x??yi且有z1?z2?12,的轨迹是()(a)圆(b)椭圆(c)双曲线(d)抛物线6.一个向量顺时针旋转?3,向右平移3个单位,再向下平移1个单位后对应的复数为1?3i,则原向量对应的复数是()(a)2(b)1?i (c)3?i (d)3?i17.使得z2?z成立的复数z是() 2(a)不存在的(b)唯一的(c)纯虚数(d)实数8.设z为复数,则方程z??2?i的解是()(a)?3333?i (b)?i (c)?i (d)??i 44449.满足不等式z?i?2的所有点z构成的集合是() z?i(a)有界区域(b)无界区域(c)有界闭区域(d)无界闭区域10.方程z?2?3i?2所代表的曲线是()(a)中心为2?3i,半径为2的圆周(b)中心为?2?3i,半径为2的圆周(c)中心为?2?3i,半径为2的圆周(d)中心为2?3i,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()(a)z?1?2 (b)z?3?z?3?4 z?2z?a?1(a?1) (d)z?a?z?a?c?0(c?0) 1?az(c)12.设f(z)?1?,z1?2?3i,z2?5?i,,则f(z1?z2 )(a)?4?4i(b)4?4i(c)4?4i(d)?4?4i13.limim(z)?im(z0)() x?x0z?z0(a)等于i(b)等于?i(c)等于0(d)不存在14.函数f(z)?u(x,y)?iv(x,y)在点z0?x0?iy0处连续的充要条件是()(a)u(x,y)在(x0,y0)处连续(b)v(x,y)在(x0,y0)处连续(c)u(x,y)和v(x,y)在(x0,y0)处连续(d)u(x,y)?v(x,y)在(x0,y0)处连续 2z2?z?115.设z?c且z?1,则函数f(z)?的最小值为() z (a)?3 (b)?2(c)?1 (d)1二、填空题1.设z?(1?i)(2?i)(3?i),则z? (3?i)(2?i)2.设z?(2?3i)(?2?i),则argz?3.设z?,arg(z?i)?3?,则z? 4(cos5??isin5?)24.复数的指数表示式为 2(cos3??isin3?)5.以方程z?7?i的根的对应点为顶点的多边形的面积为6.不等式z?2?z?2?5所表示的区域是曲线的内部 67.方程2z?1?i?1所表示曲线的直角坐标方程为2?(1?i)z8.方程z?1?2i?z?2?i所表示的曲线是连续点和的线段的垂直平分线9.对于映射??2i22,圆周x?(y?1)?1的像曲线为 z410.lim(1?z?2z)? z?1?i三、若复数z满足z?(1?2i)z?(1?2i)?3?0,试求z?2的取值范围.四、设a?0,在复数集c中解方程z2?2z?a.五、设复数z??i,试证z是实数的充要条件为z?1或im(z)?0. 21?z3六、对于映射??11(z?),求出圆周z?4的像. 2z七、试证1.z1?0(z2?0)的充要条件为z1?z2?z1?z2; z2z1?0(zj?0,k?j,k,j?1,2,?,n))的充要条件为 z22.z1?z2???zn?z1?z2???zn.八、若limf(z)?a?0,则存在??0,使得当0?z?z0??时有f(z)?x?x01a. 2九、设z?x?iy,试证x?y2?z?x?y.十、设z?x?iy,试讨论下列函数的连续性: ?2xy,z?0?1.f(z)??x2?y2 ?0,z?0??x3y?,z?02.f(z)??x2?y2.?0,z?0?第二章解析函数一、选择题:1.函数f(z)?3z在点z?0处是( )(a)解析的(b)可导的(c)不可导的(d)既不解析也不可导2.函数f(z)在点z可导是f(z)在点z解析的( )4 2(a)充分不必要条件(b)必要不充分条件(c)充分必要条件(d)既非充分条件也非必要条件3.下列命题中,正确的是( )(a)设x,y为实数,则cos(x?iy)?1(b)若z0是函数f(z)的奇点,则f(z)在点z0不可导(c)若u,v在区域d内满足柯西-黎曼方程,则f(z)?u?iv在d内解析(d)若f(z)在区域d内解析,则在d内也解析4.下列函数中,为解析函数的是( )(a)x2?y2?2xyi(b)x2?xyi(c)2(x?1)y?i(y2?z?x20?2x)(d)x3?iy35.函数f(z)?z2im(z)在处的导数( )(a)等于0 (b)等于1 (c)等于?1(d)不存在6.若函数f(z)?x2?2xy?y2?i(y2?axy?x2)在复平面内处处解析,那么实常数a?( )(a)0(b)1(c)2(d)?27.如果f?(z)在单位圆z?1内处处为零,且f(0)??1,那么在z?1内f(z)?( )(a)0(b)1(c)?1(d)任意常数8.设函数f(z)在区域d内有定义,则下列命题中,正确的是(a)若f(z)在d内是一常数,则f(z)在d内是一常数(c)若f(z)与f(z)在d内解析,则f(z)在d内是一常数(d)若argf(z)在d内是一常数,则f(z)在d内是一常数9.设f(z)?x2?iy2,则f?(1?i)?( )5【篇二:复变函数期末考试复习题及答案详解】=txt>1、 ?|z?z?1(z?z)n?0|__________.(n为自然数) 022.sinz?cos2z? _________.3.函数sinz的周期为___________.f(z)?14.设z2?1,则f(z)的孤立奇点有__________.?5.幂级数?nzn的收敛半径为__________.n?06.若函数f(z)在整个平面上处处解析,则称它是__________. lim 1?z2?...?zn7.若nlim??zn??z,则n??n?______________.zres(ezn,0)?8.________,其中n为自然数.9. sinzz的孤立奇点为________ .limf(10.若z0是f(z)z?zz)?___的极点,则0.三.计算题(40分):f(z)?11. 设(z?1)(z?2),求f(z)在d?{z:0?|z|?1}内的罗朗展式.1dz2. ?|z|?1cosz.2??13. 设f(z)??3??7c??zd?,其中c?{z:|z|?3},试求f(1?i).w?z?14. 求复数z?1的实部与虚部.四. 证明题.(20分) 1. 函数f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内为常数.2. 试证: f(z)在割去线段0?rez?1的z平面内能分出两个单值解析分支, 并求出支割线0?rez?1上岸取正值的那支在z??1的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设z??i,则|z|?__,argz?__,?__2.设f(z)?(x2?2xy)?i(1?sin(x2?y2),?z?x?iy?c,则zlim?1?if(z)?________.3.?dz|z?z0|?1(z?zn?_________.(n为自然数)0)?4. 幂级数?nzn的收敛半径为__________ .n?05. 若z0是f(z)的m阶零点且m0,则z0是f(z)的_____零点.6. 函数ez的周期为__________.7. 方程2z5?z3?3z?8?0在单位圆内的零点个数为________.8. 设f(z)?11?z2,则f(z)的孤立奇点有_________.9. 函数f(z)?|z|的不解析点之集为________.10. res(z?1z4,1)?____. 三. 计算题. (40分)1. 求函数sin(2z3)的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z?i处的值.i3. 计算积分:i???i|z|dz,积分路径为(1)单位圆(|z|?1)的右半圆.sinzz?24. 求(z?dz)22.四. 证明题. (20分)1. 设函数f(z)在区域d内解析,试证:f(z)在d内为常数的充要条件是f(z)在d内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设f(z)?1z2?1,则f(z)的定义域为___________. 2. 函数ez 的周期为_________.3. 若zn?21?n?i(1?1n?n)n,则limn??zn?__________.4. sin2z?cos2z?___________.dz5. ?|z?z?0|?1(z?zn_________.(n为自然数) )?6. 幂级数?nxn的收敛半径为__________.n?07. f(z)?1设z2?1,则f(z)的孤立奇点有__________.8. 设ez??1,则z?___. 9. 若z0是f(z)的极点,则limz?zf(z)?___.z10. res(ezn,0)?____.三. 计算题. (40分)11. 将函数f(z)?z2ez在圆环域0?z??内展为laurent级数.??2. 试求幂级数?n!nzn的收敛半径. n?n3. 算下列积分:?ezdzcz2(z2?9),其中c是|z|?1.4. 求z9?2z6?z2?8z?2?0在|z|1内根的个数.四. 证明题. (20分) 1. 函数f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内为常数.2. 设f(z)是一整函数,并且假定存在着一个正整数n,以及两个正数r及m,使得当|z|?r时|f(z)|?m|z|n,证明f(z)是一个至多n次的多项式或一常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《复变函数》考试试题(四)
一. 判断题. (20分)
1. 若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件. ( )
2. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )
3. 函数z sin 与z cos 在整个复平面内有界. ( )
4. 若f (z )在区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰C dz z f .
( )
5. 若)(lim 0
z f z z →存在且有限,则z 0是函数的可去奇点. ( ) 6. 若函数f (z )在区域D 内解析且0)('=z f ,则f (z )在D 内恒为常数. ( )
7. 如果z 0是f (z )的本性奇点,则)(lim 0
z f z z →一定不存在. ( ) 8. 若0)(,0)(0)(0==z f z f n ,则0z 为)(z f 的n 阶零点. ( )
9. 若)(z f 与)(z g 在D 内解析,且在D 内一小弧段上相等,则D z z g z f ∈≡),()(. ( )
10. 若)(z f 在+∞<<||0z 内解析,则
)),((Res )0),((Res ∞-=z f z f . ( )
二. 填空题. (20分)
1. 设i z -=
11,则___Im __,Re ==z z . 2. 若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i)
21______________. 3. 函数e z 的周期为__________. 4. 函数211
)(z z f +=的幂级数展开式为__________
5. 若函数f (z )在复平面上处处解析,则称它是___________.
6. 若函数f (z )在区域D 内除去有限个极点之外处处解析,则称它是D 内的
_____________.
7. 设1|:|=z C ,则___)1(=-⎰C dz z .
8. z z sin 的孤立奇点为________.
9. 若0z 是)(z f 的极点,则___)(lim 0
=→z f z z .
10. =)0,(
Res n z z e _____________. 三. 计算题. (40分) 1. 解方程013=+z
.
2. 设1)(2-=z e
z f z ,求).),((Re ∞z f s 3. .)
)(9(2||2⎰=+-z dz i z z z
.
4. 函数()f z =z e z 1
11--有哪些奇点?各属何类型(若是极点,指明它的阶数).
四. 证明题. (20分)
1. 证明:若函数)(z f 在上半平面解析,则函数)(z f 在下半平面解析.
2. 证明0364
=+-z z 方程在2||1<<z 内仅有3个根.。

相关文档
最新文档