江苏省盐城市中考数学试卷含答案解析
盐城市中考数学试题、答案解析版
2021年市中考数学试题、答案〔解析版〕〔总分值:150分考试时间:120分钟〕一、选择题〔本大题共8小题,每题3分,总分值24分.在每题给出的四个选项中,恰有一项是符合题目要求的〕1.如图,数轴上点 A表示的数是〔〕A. 12.以下图形中,既是轴对称图形又是中心对称图形的是〔〕A B C D3.假设x 2有意义,那么x的取值围是〔〕A.x≥2B.x≥2C.x>2D.x>24.如图,点D、E分别是△ABC边BA、BC的中点,AC3,那么DE的长为〔〕B.4 D.332〔第4题〕〔第5题〕5.如图是由6个小正方体搭成的物体,该所示物体的主视图是〔〕A B C D6.以下运算正确的选项是〔〕A.a5a2a10B.a3aa2C.2a a2a2D.a23a57.正在建设中的北京大兴国际机场规划建设面积约1400000平方米的航站楼,数据1400000用科学记数法应表示为〔〕A.108B.107C.106D.141058.关于x的一元二次方程x2kx20〔k为实数〕根的情况是〔〕A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定二、填空题〔本大题共8小题,每题3分,共24分〕9.如图,直线a∥b, 1 50,那么2.〔第9题〕〔第11题〕10.分解因式:x21.如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影局部的概率为.12.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是s2,乙的方差是s2,这5次短跑训练成绩较稳定的是.〔填“甲〞或“乙〞〕13.设x1、x2是方程x23x20的两个根,那么x1x2x1gx2.14.?,那么EC.如图,点A、B、C、D、E在eO上,且AB为50〔第14题〕〔第15题〕〔第16题〕15.如图,在△ABC中,BC62,C45,AB 2AC,那么AC的长为.16.如图,在平面直角坐标系中,一次函数y2x1的图象分别交x、y轴于点A 、将直线AB B绕点B按顺时针方向旋转45,交x轴于点C,那么直线BC的函数表达式是.三、解答题〔本大题共有11小题,共102分,解答时应写出文字说明、推理过程或演算步骤〕17.〔此题总分值6分〕计算:|2|sin361024tan45.x>,1218.〔此题总分值6分〕解不等式组:≥12x3x.219.〔此题总分值8分〕如图,一次函数y x 1的图象交y轴于点A,与反比例函数y kx>0x的图象交于点Bm,2.1〕求反比例函数的表达式;(2〕求△AOB的面积.20.〔此题总分值8分〕在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色外都相同.〔1〕搅匀后从中任意摸出1个球,摸到红球的概率是.〔2〕搅匀后先从中任意摸出1个球〔不放回〕,再从余下的球中任意摸出都摸到红球的概率.〔用树状图或表格列出所有等可能出现的结果〕1个球.求两次〔此题总分值8分〕如图,AD是△ABC的角平分线.1〕作线段AD的垂直平分线EF,分别交AB、AC于点E、F;〔用直尺和圆规作图,标明字母,保存作图痕迹,不写作法〕〔2〕连接DE、DF,四边形AEDF是形.〔直接写出答案〕22.〔此题总分值10分〕体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.1〕每只A型球、B型球的质量分别是多少千克?2〕现有A型球、B型球的质量共17千克,那么A型球、B型球各有多少只?〔此题总分值10分〕某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取局部销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.频数分布表组别销售数量频数频率〔件〕A20≤x<403B40≤x<607C60≤x<8013aD80≤x<100m4E100≤x<120合计b1请根据以上信息,解决以下问题:〔1〕频数分布表中,a、b;2〕补全频数分布直方图;(3〕如果该季度销量不低于80件的销售人员将被评为“优秀员工〞,试估计该季度被评为“优秀员工〞的人数.24.〔此题总分值10分〕如图,在Rt△ABC中,ACB为直径的eO分别交AC、BC于点M、N,过点,CD是斜边AB上的中线,以CDN作NE AB,垂足为E.〔1〕假设eO的半径为5,AC6,求BN的长;2〔2〕求证:NE与eO相切.25.〔此题总分值10分〕如图①是一矩形纸片,按以下步骤进行操作:〔Ⅰ〕将矩形纸片沿DF 折叠,使点A落在CD边上点E处,如图②;〔Ⅱ〕在第一次折叠的根底上,过点C 再次折叠,使得点B落在边CD上点B处,如图③,两次折痕交于点O;〔Ⅲ〕展开纸片,分别连接OB、OE、OC、FD,如图④.图①图②图③图④【探究】1〕证明:△OBC≌△OED;〔2〕假设AB8,设BC为x,OB2为y,求y关于x的关系式.〔此题总分值12分〕【生活观察】甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:第一次:菜价3元/千克质量金额甲1千克3元乙1千克3元第二次:菜价2元/千克质量金额甲1千克元乙千克3元〔1〕完成上表;〔2〕计算甲两次买菜的均价和乙两次买菜的均价.〔均价总金额总质量〕【数学思考】设甲每次买质量为m千克的菜,乙每次买金额为n元的菜,两次的单价分别是a元/千克、b元/千克,用含有m、n、a、b的式子,分别表示出甲、乙两次买菜的均价x甲、x乙,比拟x甲、x乙的大小,并说明理由.【知识迁移】某船在相距为s的甲、乙两码头间往返航行一次.在没有水流时,船的速度为v,所需时间为t1;如果水流速度为p时〔p<v〕,船顺水航行速度为〔v p〕,逆水航行速度为〔v p〕,所需时间为t2.请借鉴上面的研究经验,比拟t1、t2的大小,并说明理由.27.〔此题分14分〕如下图,二次函数ykx2kx k2 12的图象与一次函数y的图象交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0.〔1〕求A、B两点的横坐标;〔2〕假设△OAB是以OA为腰的等腰三角形,求k的值;〔3〕二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得ODC2BEC,假设存在,求出k的值;假设不存在,说明理由.2021年市中考数学答案解析一、选择题【答案】C【解析】由数轴可知,点A表示的数在0与2之间,应选 C.【考点】数轴的意义【答案】B【解析】选项A仅是轴对称图形;选项B既是轴对称图形,又是中心对称图形;选项C仅既不是中心对称图形;选项D既不是中心对称图形,也不是轴对称图形;应选B.【考点】轴对称图形,中心对称图形的意义【答案】A【解析】由题意,得x2≥0,解得x≥2,应选A.【考点】二次根式有意义的条件【答案】D【解析】Q点D、E分别是△ABC的边BA、BC的中点,AC3,DE 1AC3,应选22D.【考点】三角形的中位线定理【答案】C 【解析】从正面观察物体,看到3列,从左到右第1列有一层,第2列有两层,第三列有一层,故主视图有3列,从左到右第1列有一个正方形,第2列有2个正方形,第3列有1个正方形,应选 C.【考点】主视图的意义6.【答案】B【解析】a5a2a52a7,选项A不正确;a3aa31a2,选项B正确;2aa21a3a,选项C不正确;a23a23a6,选项D不正确,应选B.【考点】幂的运算法那么以及合并同类项法那么【答案】C【解析】1400000106,应选C.【考点】科学记数法的意义【答案】A【解析】Qb24ac k2 4 i (2) k28 0,关于x的一元二次方程x2kx 20有两个不相等的实数根,应选 A.【考点】一元二次方程的根的判别式二、填空题【答案】50【解析】Qa∥b,150,2150.【考点】平行线的性质【答案】(x1)(x1)【解析】x2 1 (x 1)(x1)11.【考点】运用平方差公式因式分解1【答案】2【解析】扇形中一共有6个形状相同的扇形,其中3个扇形含有阴影,P〔指针落在阴影部3 1分〕.6212. 【考点】等可能条件下的概率【答案】乙【解析】Q >2>2这5次短跑训练成绩较稳定的是乙.,即s 甲 s 乙,【考点】方差的意义【答案】1【解析】Qx 1,x 2是方程x 2 3x 20的两个根, x 1x 23,x 1x 2 2,x 1 x 2 x 1x 2 3 2 1.【考点】一元二次方程根与系数的关系【答案】155【解析】如下图,连接OA 、OB 、AE .? 为50 ,AOB50.BEA 1 AOB25.QAB2Q四边形ACDE 是eO的 接 四 边 形 ,C AED180, 即CDEB BEA 180.C DEB 180 BEA 180 25155【考点】圆的根本性质【答案】2【解析】如下图,过点A 作AD BC 于点D ,那么 ADC 90.在Rt △ACD 中,Q C 45,DAC 90C 904545.DACC .AD CD .设ADCDx ,在Rt △ACD 中,由勾股定理得 AC AD 2 CD 2 x 2x 4 2x .QAB2AC ,AB 22x 2x .在Rt △ACD 中,由勾股定理得 B D AB 2 AD 2 (2x)2 x 23x ,BC BD CD 3x x (31)x .QBC6 22 3 1,(31)x2(31) .解得x2. AC 2.16. 【考点】解三角形【答案】y 1x13【解析】在y2x 1中,当x 0时,y1;当y1 0时,x.21 , OA1 1.B(0,1),A,0,OB22如下图,过A 作AD AB 交BC 于点D ,过点D 作DEx 轴于点E .QAOB90,OABOBA90,EADOBA .在Rt △ABD 中,Q ABD 45, ADB 90 ABD 90 45 45.ABDADB .AB AD .在△OAB 与.△EDA 中,AOB A ED, OBAE AD, AB AD,△OAB ≌△EDA .AE OB 1,DE1OA.2OE OA AE1 1 3 .22D3,1.22设真线BC 的函数表达式为y kx b .把B0,1、D3 , 1代入,得2 21 b13kb.22解得k1 1,,b3直线BC 的函数装达式为 y 1x 1.3【考点】一次函数图像的旋转及解析式的求解三、解答题17.【答案】解:原式21212.【解析】解题的关键是掌握绝对值、零次籍、算术平方根、特殊角的三角函数等知识.先分别计算出绝对值、零次、算术平方根、特殊角的三角函数,然后再进行加减运算.【考点】实数的运算x>①12,18.【答案】解:≥1②2x3x.2由①得x>1,由②得x≥2,不等式组的解集为x>1.【解析】解题的关键是正确求解不等式组的解集,先分别解出不等式组中每个不等式的解集,再确定出各个解集的公共局部.【考点】一元一次不等式组的解法19.【答案】解:〔1〕把B m,2代入y x1,得2m1,解得m1.B1,2.把B1,2代入y k k2.,得2,kx12反比例函数表达式为y.x〔2〕在y x 1中,当x0时,y1,A0,1.OA 1.又QB1,2,如下图,过点B作BC y轴于点C,那么BC1,S△AOB 1OAgBC1111. 222【解析】解题的关键是掌握待定系数法.〔1〕先将点B的坐标代入一次函数关系式,求出横坐标m的值,再将点B的坐标代入反比例函数关系式,求出k的值,从而得到反比例函数关系式;2〕先求出点A的坐标,再过点B作△OAB的边OA上的高,由点A、B的坐标确定出OA长、及OA边上的高的长,最后求出△OAB的面积.【考点】反比例函数,一次函数以及待定系数法【答案】〔1〕解:Q布袋中有2个红球,1个白球,一共有3个球,P〔摸出一个球是红球〕2 . 3〔2〕给红球标号:红1,红2,用表格列出所有可能出现的结果如下:由表格可知,一共有6种可能出现的结果,它们是等可能的,其中两次都摸到红球的有2种,21P〔两次都摸到红球〕.63【解析】解题的关键是用列表法或树状图法列出所有的等可能事件.【考点】等可能条件下的概率21.【答案】解:〔1〕如图1,直线EF即为所求作的垂直平分线;〔2〕菱【解析】解题的关键是握根本的尺规作图和判定菱形的方法.1〕利用作垂直平分线的尺规作图方法作图即可;2〕先证明四边形AEDF是平行四边形,再根据邻边相等〔或对角线互相垂直〕判别出四边形AEDF为菱形.理由如下:如图2,连接ED,FD,QEF是AD的垂直平分线,AE ED,EAD EDA,又QAD是△ABC的角平分线,EAD FAD,EDA FAD,ED∥AF.四边形AEDF为菱形.【考点】尺规作图,菱形的判定22.【答案】解:〔1〕设每只A型球的质量为x千克,每只B型球的质量为y千克.x y7,根据题意,得3x y13,x3,解得y 4.答:每只A型球的质量为3千克,每只B型球的质量为4千克.〔2〕设A型球有a只,B型球有b只.根据题意,得3a4b17,174b a.3Qa0,174b>0.3解得b<17. 4由题意知a、b为正整数,b的正整数解为1,2,3,4.当b1时,a 174113〔不是整数,舍去〕;33当b2时,a17423〔符合题意〕;3当b3时,a17435〔不是整数,舍去〕;33当b4时,a17441〔不是整数,舍去〕.3350答:A型球有3只,B型球有2只.【解析】解题的关键是列出二元一次方程组和二元一次方程.〔1〕根据两个相等关系“1只A型球与1只B型球的质盘共7千克〞“3只A型球与1只B型球的质量共13千克〞列二元一次方程组求解;〔2〕根据相等关系“A型球、B型球的质量共17千克〞列二元一次方程,再求它的正整数解.【考点】二元一次方程组的应用,二元一次方程的应用【答案】〔1〕〔2〕如下图.〔3〕解:由频数分布表可知,该季度销量不低于80件的销售人员在D、E两组,这两组的频率分别为,0.08.估计该季度被评为“优秀员工〞的人数为400〔〕216〔人〕.答:估计该季度有216人被评为“优秀员工〞.【解析】解题的关键是识别出图表中相关联的数据.〔1〕根据“各组频率之和等于1〞得a1.根据“频数总数频率〞可知,假设选择A组,那么3b,解得b50.〔2〕根据“各组频数之和等于总数〞,又由〔1〕知总数为50,所以m50 3 7 13 423.据此可补全频数分布直方图.〔3〕由频数分布表可知,该季度销量不低于80件的销售人员在D、E两组,用这两组的频率之和乘以总人数即可求解.【考点】频数分布直方图,统计表,频率以及用样本估计总体【答案】〔1〕如图1所示,连接DM、DN.Q ACB 90,CD是斜边AB的中线,CD AD BD.QCD是eO的直径,DMC DNC 90.又QACB90,四边形CMDN是矩形..CM DN.QDMC90,DM AC.又QCD AD,CM 1AC163. 22DN3.QeO的半径为5,BDCD5.2在Rt△BDN中,由勾股定理得BN BD2ND252324.〔2〕如图2所示,连接ON、DN,由〔1〕知CD BD,CND 90,BN CN.又QOCOD,ON∥BD.又QNEDB,NEON.NE与eO相切.【解析】解题的关键是掌握团的根本性质以及切线的判定方法.〔1〕连接DM、DN.由CD是Rt△ABC斜边AB上的中线可得△ACD、△BCD是等腰三角形.由CD是直径及ACB90可得四边形CMDN是矩形,在△ACD中利用“三线合一〞得到CM长为AC的1,进面得到ND的长.由△BCD是等腰三角形及eO的半径为5可22得BD长,最后在Rt△BDN中利用勾股定理求得BN的长;〔2〕连接ON,先在等腰三角形BCD利用“三线合一〞证明点N为BC的中点,再在△BCD 中利用三角形的中位线定理证明ON∥BD,再结合条件NEAB证出ONNE,从而得到NE与eO相切.【考点】圆周角定理的推论,直角三角形斜边上中线的性质,勾股定理以及切线的判定【答案】〔1〕证明:连接EF.Q四边形ABCD是矩形,AD BC,ABC BCD ADE D AF 90.由折叠得DEF DAF,AD DE,DEF 90.又Q ADE D AF 90,四边形ADEF是矩形.又QAD DE,四边形ADEF是正方形.AD EF DE,FDE 45.QAD BC,BC DE.由折叠得BCO DCO 45.BCO DCO FDE.BC,DE在△OBC与△OED,BCO FDE,OC,OD△OBC△OED SAS.〔2〕解:如图2所示.连接EF、BE.Q四边形ABCD是矩形,.CDAB8.由〔1〕知,BC DE,QBC x,DE=x.CE8x.由〔1〕知△OBC△OED,OB OE,OED0BC.QOED0EC180,在四边形OBCE中,BCE90,BCE OBC OEC BOE360,BOE90.在Rt△OBE中,OB2OE2BE2.在Rt△BCE中,BC2EC2BE2.OB2OE2BC2CE2.QOB2y,y y x282 x.y x 2 8x 32,即y 关于x 的关系式为 y x 2 8x32.【解析】解题的关键是掌握折叠的性质以及正方形的性质.〔1〕连接EF .由折叠知BCODCOFDE45.所以OCOD .由第一次折叠知四边形 ADEF 是正方形,结合四边形 BCEF 是矩形得BCEFDE .26.利用“SAS 〞证得△OBC △OED .2〕连接BE .先由〔1〕中结论△OBC △OED 得到OBOE ,再在Rt △BCE 、Rt △BOE 分别利用勾股定理表示 BE 2列出等式,最后用含 x 、y 的代数式表示该等式中的线段长,从而得到y 与x 的关系式.【考点】翻折变换,全等三角形的判定与性质,正方形的判定以及勾股定理【答案】解:【生活观察】〔1〕2〔2〕甲两次买菜的均价为3 2〔元/千克〕;11乙两次买菜的均价为 3 31〔元/千克〕〕【数学思考】 x 甲≥x 乙 .理由是:am bm ab , x 乙n n2n2ab ,甲Qxm2 n nn(ba) abma bab甲乙ab 2ab (ab)2 4ab (ab)2 .xx2ab2(a b)2(a b)2Qa >0,b >0,a b≥0,(a b) 22(a≥0,b)即x 甲x 乙≥0.x 甲≥x 乙.t 1<t 2 s s 2s 【知识迁移】 .理由是:Qt 1v.v vt2v s s s(v p)s(v p)2sv. p vp(v p)(v p)v2p2t1t22s2sv2sv2p22sv22sp2vv2p2vv2p2vv2.p2 Qs>0,p>0,v0,v p,Q2sp20,即t1t2>0.2p2vvt1<t2.【解析】解题的关键是正确列出代数式,并掌握代数式大小比拟的方法.【生活观察】〔1〕由第二次的表格可知,菜价2元/千克,所以质量为1千克时,金额为2元;金额为3元时,质量为千克;〔2〕利用“均价总金额总质量〞求解.【数学思考】先用含a、b、m、n的代数式分别表示出x甲、x乙,再利用“作差法〞比拟大小.【知识迁移】先用含s、v、p的代数式分别表示出t1、t2,再利用“作差法〞比拟大小.【考点】列代数式,平均数,分式的计算以及分式的实际应用27.【答案】解:〔1〕将方程组y k(x22消去y,得kx12kxk21)2y kx k2k(x 1)(x 2)0.Qk0,x10或x20.x1或2.Q点B在点A的右侧,点A的横坐标为1,点B的横坐标为2.〔2〕在ykx k2中,当x1时,y kxk22;当x 2时,y kx k 2 k 1 2.A1,2,B2,k 2.当OA OB且B在x轴上方时,如图1所示,过点A作AM y轴于点M,过点B作BN x轴于点N,那么AMO BNO90.QA1,2,B2,k2,AM1,OM2,ON2,BNk2.OM ON.在Rt△OAM和Rt△OBN中,OA,Rt△OAM Rt△OBN.OBOM ON,AM BN.1k2.解得k1,满足k<0,k1符合题意.当OA OB且B在x轴下方时,如图2所示,过点A作AM y轴于点M,过点B作BN x轴.同理可得Rt△OAM Rt△OBN.BN AM1,k11,解得k3,满足k<0,k3符合题意.当OA OB时,如图3所示,过点A作AP y轴于点P,过点B作BQPQ交PA的延长线于点Q.QA〔12,〕,B2,k2,AP 1,OP2,Q〔2,2〕.AQ 2 11.AP AQ.在Rt△APO与Rt△AQB中,Rt△APO Rt△AQB.BQ OP 2.OA AB,AP AQ,QQ2,2,B2,k 2,BQ 2 k 2k.k 2,满足k<0,.k2符合题意.综上所述,k的值为1或2或3.〔3〕当点B在x轴上方时,如图4所示,过点B作BG x轴于点G,在线段EG取点H,使得BH EH.BEC E BH,BHC BEC E BH 2BEC.Q ODC 2BEC,BHC ODC.又Q OCD HCB,.△ODC:△BHC.HBC DOC 90.设EHBHm.由〔2〕知B2,k2,BG k 2.2由y〔kx1〕2知对称轴为直线x 1.E〔10,〕.EG211.HG1m.在Rt△BHG中,由勾股定理得BH2HG2BG2.m2(1m)2(k2)2m1k22k5.22HG1k22k3.22在y kx k2中,当y0k2时,x.kC k2,0,kGC k22k2.k kQ HBC BGC90,BHG HBG HBG GBC.又QHGBCGB90,△GHB:△GBC.GB2GHgGC.(k2)21k22k3g k2,即(k2)21k22k3g k2.22k22k QBH>0,〔否那么BEC0不符合题意〕,k2>0.k21k22k31.22k解得k3.Qk<0,k3.当点B在x轴下方时,如图5所示.同理可求BG〔k2〕,k2 GC,1k23kGH2k.22同理求证BG2GHgGC.[(k2)]21k22k3g k2.22k Qk 20,k21k22k3g1.22k47.解得k3Qk<0,k2<0,47k.3综上,k的值为3或47.3【解析】解题的关键是分类讨论以及构造二倍的角.〔1〕方程k(x1)22kx k2的根就是点A、B的横坐标;〔2〕分OA OB、OA AB两种情形求解,每种情形作x、y轴的平行线构造三角形,证明三角形全等,将OA OB〔或OA AB〕转化为“横平竖直〞的线段间关系,进而转化为点的坐标之间的关系,从而求得k的值;〔3〕先构造出BEC的2倍角,然后寻找BEC的2倍角与ODC所在三角形之间的关系,得到BEC的2倍角所在的三角形是直角三角形,进而过点B作x轴的垂线得到相似三角形,利用相似三角形的对应边成比例列方程求解.需要注意的是:要按点B在x轴上方和点B在x轴下方两种情形求解.【考点】二次函数的图像与性质,一次函数的图像与性质,等腰三角形,相似三角形的判定与性质以及数形结合思想。
2022年江苏省盐城市中考数学试卷原卷附解析
2022年江苏省盐城市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是()A.路灯的左侧B.路灯的右侧C.路灯的下方D.以上都可以2.若α是锐角,且sinα=34,则()A.60°<a<90°B. 45°<α<60°C. 30°<α<45°D.0°<a<30°3.如图,AB切⊙O于B,割线ACD经过圆心O,若∠BCD=70°则∠A的度数为()A.20°B.50°C.40°D.80°4.给出下列四个事件:(1)打开电视,正在播广告;(2)任取一个负数,它的相反数是负数;(3)掷一枚均匀的骰子,骰子停止转动后偶数点朝上;(4)取长度分别为2,3,5的三条线段,以它们为边组成一个三角形.其中不确定事件是()A.(1)(2)B.(1)(3)C.(2)(3)D.(2)(4)5.如图,AB、CD 是⊙O的两条直径,∠1≠∠2,则图中相等的弧(半圆除外)共有()A.8对B.6 对C.4对D.2 对6.王京从点O出发.先向西走40米,再向南走30米,到达点M.如果点M的位置用(-40,-30)表示,从点M继续向东走50米,再向北走50米,到达点N,那么点N的坐标是()A.(-l0,10)B.(10,-l0)C.(10,-20)D.(10,20)7.如图,一只小狗在方砖上走来走去,则最终停在阴影方砖上的概率是()A.415B.13C.15D.2158.下面每组图形中的两个图形不是通过相似变换得到的是()9.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形10.将叶片图案旋转l80°后,得到的图形是( )11.如图所示,已知∠1=∠2,AD=CB ,AC ,BD 相交于点0,MN 经过点O ,则图中全等三角形的对数为( ) A .4对B .5对C .6对D .7对12.下列图形中.成轴对称图形的是 ( )13.“羊”字象征着美好和吉祥,下列图案都与“羊”字有关,其中轴对称图形的个数是 ( )A .1个B .2个C .3个D .4个二、填空题14.如图,⊙O 的半径为4cm ,直线l ⊥OA ,垂足为O ,则直线l 沿射线OA 方向平移________cm 时与⊙O 相切.15.如图是两棵小树在同一时刻的影子,请问它们的影子是在 灯光 光线下形成的.(填“太阳”或“灯光”)16.某青年棒球队14名队员的年龄如下表:1年龄(岁)192021221人数(人)3722则出现次数最多的年龄是.17.如图,在△ABC中,∠A=80°,BD=BE,CD=CF,则∠EDF .18.在存折中有 3000 元,取出 2600 元,又存入500 元后,如果不考虑利息,存折中还有元.19.聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是.三、解答题20.如图,AB为⊙O的直径,P为AB的延长线上一点,PT切⊙O于T,若PT=6,PB=3,求⊙O的直径.21.如图①,在矩形 ABCD 中,AB =20 cm,BC=4 cm,点 P从A 开始沿折线A B C D---以 4 cm/s 的速度移动,点Q从C开始沿 CD 边以 1 cm/s 的速度移动,如果点P、Q分别从A、C 同时出发,当其中一点到达 D 时,另一点也随之停止运动,设运动时间为 t(s).(1)t 为何值时,四边形 APQD 为矩形?(2)如图②,如果⊙P 和⊙Q 的半径都是2 cm,那么t为何值时,OP 与⊙Q外切?图1图222.武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44减至32,已知原台阶AB 的长为5米(BC 所在地面为水平面). (1)改善后的台阶会加长多少?(精确到0.01米) (2)改善后的台阶多占多长一段地面?(精确到0.01米)23.如图,已知点 A .B 和直线l ,求作一圆,使它经过A 、B 两点,且圆心在直线l 上.24.在△ABC 中,P 是BC 上一动点,过点P 作PE ∥AC 交AB 于点E ,过点P 作PF ∥AB 交AC 于点F ,当点P 运动到什么位置时,四边形AEPF 是菱形?25.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC BE .26.如图所示是小孔成像原理的示意图,你能根据图中所标的尺寸求出在暗盒中所成像的 高度吗?说说其中的道理...lB A27.为了了解某校七年级学生的视力情况,抽测了一批同学的视力,检测结果如下表:视力情况差中良优合计人数(人)7203百分比(%)1410028.在一次美化校园的活动中,老师安排32人除草,20人植树.后来发现人手不够,就增派20人去支援,并且使除草的人数是植树人数的2倍.问:增派的20人中,支援除草的有多少人?29.下列表述中字母各表示什么?(1)正方形的面积为2a;(2)买 5 斤桔子需5a元钱;(3)七年级甲班有40 人,乙班人数为40x 人.30.文明于世的埃及字塔、形似方锥,大小各异,这些金字塔的高与底面边长的比都接近于黄金比,胡夫金字塔是埃及现存规模最大的金字塔,破喻为“世界古代七大奇观之一”,底面呈正方形,每边长约为230m.请估计该金字塔的高度(精确到1 m).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.B5.C6.D7.B8.D9.D10.D11.C12.D13.B二、填空题 14. 415.灯光16.20岁17.50°18.90019.31三、解答题 20. 921.(1)当四边形 APQD 为矩形时,DQ=AP,20-t=4t,t=4(s)(2)∵r=2,∴当 PQ=4 时,⊙P 与⊙Q 外切,即四边形APQD 为矩形 20-t=4t,t=4(s).22.解:(1)如图,在Rt ABC △中,sin 445sin 44 3.473AC AB ==≈.在Rt ACD △中,3.4736.554sin 32sin 32AC AD ==≈, 6.5545 1.55AD AB ∴-=-≈.即改善后的台阶会加长1.55米. (2)如图,在Rt ABC △中,cos 445cos 44 3.597BC AB ==≈.在Rt ACD △中,3.4735.558tan 32tan 32AC CD ==≈,5.558 3.597 1.96BD CD BC ∴=-=-≈. 即改善后的台阶多占1.96米长的一段地面.23.画AB 的垂直平分线与直线l 的交点就是圆心,图略.24.P 运动到∠A 的平分线与BC 的交点25.(1)解:图2中ABE ACD △≌△. 证明如下:ABC △与AED △均为等腰直角三角形, AB AC ∴=,AE AD =,90BAC EAD ∠=∠=.BAC CAE EAD CAE ∴∠+∠=∠+∠,即BAE CAD ∠=∠,ABE ACD ∴△≌△.(2)证明:由(1)ABE ACD △≌△知45ACD ABE ∠=∠=,又45ACB ∠=,90BCD ACB ACD ∴∠=∠+∠=,DC BE ∴⊥.26.3 cm ,理由略27.表中依次填:20,50;40,40,628.设支援除草的有x 人,则支援植树的有(20—x )人, 由题意得322(40)x x +=- ,x=16,∴支援除草的有16 人.29.(1)a 表示正方形的边长 (2)a 表示桔子的单价 (3)x 表示乙班比甲班多x 人30.设该金字塔的高度为 x (m).由题意得230x =,1)x =,142x ≈ 答:该金字塔高度约为 142 m .。
盐城中考数学试题及答案
盐城中考数学试题及答案第一部分选择题1.已知函数y=2x+3,该函数的图像经过点(1,5),则x=____。
A. 1B. 2C. 3D. 4答案:A2.已知平行四边形ABCD中,AB=6cm,BC=8cm,角A的度数为60°,则BD的长度为____。
A. 3cmB. 5cmC. 7cmD. 9cm答案:B3.三角形ABC中,AB=AC,角B=30°,则角A的度数为____。
A. 30°B. 60°C. 90°D. 120°答案:B4.化简√(18+2√32)的值是____。
A. √2B. √3C. 2√2D. 4√2答案:D5.已知等差数列{an}的公差为2,首项为3,若a5=9,则a10的值为____。
A. 13B. 15C. 17D. 19答案:C第二部分解答题1. 计算直角三角形中,一直角的两条腿分别为5cm和12cm,斜边的长度为多少?解:根据勾股定理,斜边的长度可以通过计算得出:斜边= √(5^2 + 12^2) = √(25 + 144) = √169 = 13cm因此,斜边的长度为13cm。
2. 已知函数y=f(x)的图像上任意一点M的坐标为(x, f(x)),且点A(1,4)在图像上。
若函数经过原点O,则函数的解析式为什么?解:由已知条件可得:f(1) = 4又因为函数经过原点O,即f(0) = 0由此可知,函数经过两个点A(1,4)和O(0,0),可以确定一条直线。
设函数的解析式为y=f(x)=kx,其中k为常数。
代入点A得:4 = k * 1,解得k=4。
因此,函数的解析式为y=f(x)=4x。
3. 某饭店开业前三天的销售额分别为10万元、12万元和15万元。
若开业第四天的销售额为k万元,则四天的平均销售额是多少?解:四天的总销售额为10万元+12万元+15万元+k万元。
因为平均销售额等于总销售额除以天数,所以四天的平均销售额为:(10+12+15+k)/4 = (37+k)/4 万元。
江苏省盐城市2024年中考数学试题(含答案)
2024年扬州市中考数学试题一、选择题(本题有8小题,每小题3分,共24分)1.-3的肯定值是【】A.3 B.-3 C.-3 D.1 32.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.平行四边形B.等边三角形C.等腰梯形D.正方形3.今年我市参与中考的人数大约有41300人,将41300用科学记数法表示为【】A.413×102B.41.3×103C.4.13×104D.0.413×103 4.已知⊙O1、⊙O2的半径分别为3cm、5cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系是【】A.外切B.相交C.内切D.内含5.如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是【】A.4个B.5个C.6个D.7个6.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是【】A.y=(x+2)2+2 B.y=(x+2)2-2C.y=(x-2)2+2 D.y=(x-2)2-27.某校在开展“爱心捐助”的活动中,初三一班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是【】A.10 B.9 C.8 D.48.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2024,则m的值是【】A.43 B.44 C.45 D.46二、填空题(本大题共10小题,每小题3分,共30分)9.扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是.10.一个锐角是38度,则它的余角是度.11.已知2a-3b2=5,则10-2a+3b2的值是.12.已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是cm.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.如图,P A、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上,假如∠ACB=70°,那么∠P的度数是.15.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处.若ABBC=23,则tan∠DCF的值是.16.如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是.17.已知一个圆锥的母线长为10cm,将侧面绽开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是cm.18.如图,双曲线y=kx经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为5,则k的值是.三、解答题(本大题共有10小题,共96分)19.(1)计算:9-(-1)2+(-2024)0;(2)因式分解:m3n-9mn.20.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的a值代入计算.21.扬州市中小学全面开展“体艺2+1”活动,某校依据学校实际,确定开设A:篮球,B:乒乓球,C:声乐,D:塑身操等四中活动项目,为了解学生最喜爱哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有人.(2)请你将统计图1补充完整.(3)统计图2中D项目对应的扇形的圆心角是度.(4)已知该校学生2400人,请依据调查结果估计该校最喜爱乒乓球的学生人数.22.一个不透亮的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出其次个乒乓球.(1)共有种可能的结果.(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.23.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.24.为了改善生态环境,防止水土流失,某村安排在荒坡上种480棵树,由于青年志愿者的支援,每日比原安排多种13,结果提前4天完成任务,原安排每天种多少棵树?25.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就马上指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离(结果精确到0.1海里,参考数据:2≈1.41,3≈1.73).26.如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.(1)求证:AC平分BAD;(2)若AC=25,CD=2,求⊙O的直径.27.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,干脆写出全部符合条件的点M的坐标;若不存在,请说明理由.28.如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y 轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.(1)①干脆写出点E的坐标:;②求证:AG=CH.(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.(3)在(2)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.参考答案一、选择题(本题有8小题,每小题3分,共24分)1.(2024•扬州)-3的肯定值是( )A.3B.-3 C.-3 D.考点:肯定值。
最新江苏省盐城市中考数学真题试卷附解析
江苏省盐城市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,已知点 P 是△ABC 的边 AB 上一点,且满足△APC ∽△ACB ,则下列的比例式:① AP AC PC CB =;②AC AB AP AC=;③PC AC PB AP =;④AC PC AB PB =.其中正确的比例式的序号是( ) A . ①② B .③④ C .①②③ D . ②③④2.已知四边形ABCD 中,90A B C ===∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .∠D=90°B .AB=CDC .AD=BCD .BC=CD3.如图,AB ,CD 相交于点0,则下列条件中能得到AC ∥BD 且AC=BD 的是( )A .∠A=∠B ,∠C=∠DB .OA=BC .OC=ODD .∠A=∠B ,OA=OB4.如图是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是( )A . 60分B . 70分C .75分D . 80分 5.分式221m m m m -+-约分后的结果是( ) A 1m m n -+ B .1(1)m m m --+ C .1m m - D .1(1)m m m -+ 6.20人一行外出旅游住旅社,因特妹原因,服务员安排房间时每间比原来多住 1 人,结 果比原来少用了一个房间. 若原来每间住 x 人,则x 应满足的关系式为( ) A .202011x x -=+ B .202011x x -=- C .202011x x -=- D .202011x x -=+ 90 85 80 75 70 65 60 55 分数7.如图所示,△ABC 和△A ′B ′C ′关于直线l 对称,那么下列结论中正确的有( ) ①△ABC ≌△A ′B ′C ′;②∠BAC=∠A ′B ′C ′;③l 垂直平分CC ′;④直线BC 和B ′C ′的交点不一定在l 上.A .4个B .3个C .2个D .1个8.下列计算结果为负数的是( )A .3-B .3--||C .2(3)-D .3(3)-- 9.火车票上的车次号有两个意义:(1)数字越小表示车速越快,如 1~98次为特快列车,101~198次直快列车,301~398次为普快列车,401~498次为普客列车;(2)奇数与偶数表示不同的行驶方向,例如:奇数表示从北京开出,偶数表示开往北京. 根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )A . 20B .119C .120D .319二、填空题10.若反比例函数1y x=-的图象上有两点A (1,y 1),B (2,y 2),则y 1______ y 2(填“>”或“=”或“<”). 11.在“We like maths .”这个句子的所有字母中,字母“e ”出现的频率约为 (结果保留2个有效数字).12. 完成下列配方过程.(1)26x x ++( )=2(3)x +;(2)2x - +916=23()4x -; (3)25x x -+ =2(___)x -(4)222x x -+ =2(__)x -.13.关于x 的方程22(23)103a x ax ---=是一元二次方程,则a 的取值范围是 . 14. 从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是________15.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中的等腰三角形分别是 .16.如图所示,△ABC 是等腰直角三角形,AD ⊥BC ,则△ABD 可以看做是由△ACD 绕 点逆时针旋转 得到的. 17.在括号内填上适当的代数式,使等式成立. (1)()b a a a +=-;(2)322323()y x x y y x --=-;(3)216()324ab a a=;(4)39()()x x x y x y +=+ 解答题18.用四舍五入法,保留l 个有效数字,则取80600的近似值为 ,保留2个有效数 字的近似值为 .19.如果 -22 元表示亏损 22 元,那么 45 元表示 .20.若关于x 的方程39x =与4x k +=有相同的解,则代数式212kk -的值为 .三、解答题21.如图,已知直角梯形 AECD 和直角梯形A ′B ′C ′D ′中,∠A=∠A ′=∠B=∠B ′= 90°, ∠D= ∠D ′ ,AB : A ′B ′= BC : B ′C ′,求证:梯形ABCD ∽梯形A ′B ′C ′D ′.22.如图,在△ABC 中,DE ∥FG ∥BC ,DE 、FG 将△ABC 的面积三等分,若 BC = 12 cm ,求 FG 的长.23.在一块边长为1m 的正方形铁板上截出一个面积为800cm 2的矩形铁板,使长比宽多20cm ,问矩形铁板的长和宽各为多长?24.一个台阶如图,阶梯每一层的高为 15 cm ,宽为 25 cm ,长为 60 cm.一只蚂蚁从 A 点爬到B 点最短路程是多少?25.解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来.26.某班组织一次数学测试,全班学生分为两组,这两组成绩(单位:分)的分布情况如下图所示. (1)全班学生数学成绩的众数是 分.全班学生数学成绩为众数的有 人,全班学生数学成绩的中位数是 分;(2)分别计算这两个小组超过全班数学成绩中位数的人数占全班人数的百分比.1 2 3 0 1- 2- 3-27.先化简,再求值:22()a b a ba b b a ab++÷--,其中31a=,31b=.28.先化筒,再求值:2(32)(32)5(1)(21)x x x x x+-----,其中13x=-.29.在“跳蚤市场”活动中初一(1)班的销售额为n元,初一(2)班的销售额是初一(1)班的的2倍少28元,初一(3)班的销售额比初一(1)班的一半多42元,问三个班一共销售商品多少元?30.浙江省的民营企业在市场经济的运作下,迅速壮大起来.从下面一个企业提供的数据之中,我们就能感觉到中国经济迅猛发展的趋势:1997年产值110万,l999年产值200万,2001年产值500万,2002年产值900万,2003年产值1700万.请你设计一张统计表,简明地表达这一段文字的信息.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.D4.C5.C6.A7.B8.B9.C二、填空题10.11.0.1812.(1)9;(2)32x ;(3)254,52;(4)13.23a ≠14. 32 15. △ABD ,△CBD,△ABC16.D ,90°17.(1)a b --;(2)32x y -;(3)2b ;(4)23()x y +18.8×lO 4,8.1×1O 419.盈利 45 元20.1349-三、解答题21.连结 AC 、A ′C ′.在△ABC 和△A ′B ′C ′ 中,AB BC A B B C ='''',∠B=∠B ′,∴△ABC ∽△A ′B ′C ′,∴∠1=∠5 ,∠3 =∠7. AC AB A C A B =''''.在△ADC 和△A ′D ′C ′中,∠2=90°-∠1 ,∠6=90°-∠5 ,∴∠2=∠6, 又∠D=∠D ′,∴△ADC ∽△A ′D ′C ′. ∴AD AC DC A D A C D C =-='''''',∠4=∠8,∴AB BC DC AD A B B C D C A D ===''''''''又∵∠BCD=∠B ′C ′D ′,∴梯形ABCD ∽梯形A ′B ′C ′D ′.22.∵DE ∥FG ∥BC ,∴△ADE ∽△AFG ∽△ABC. 又∵23AFG ABC S S ∆∆=,∴23FG BC =,∴46FG =㎝.23.长 40 cm ,宽 20 cm24.100 cm25.解:去括号,得51286x x --≤.移项,得58612x x --+≤.合并,得36x -≤.系数化为1,得2x -≥.不等式的解集在数轴上表示如下:(1)95,20,92.5; (2)第一组超过全班数学成绩中位数的人数占全班人数的百分比为111100%24%50+⨯=,第二组超过全班数学成绩中位数的人数占全班人数的百分比为94100%26%50+⨯=. 27.ab ,228.95x -,-829.(3.5n+14)元30.略 12301-2-3-26.。
盐城市中考数学试题及答案
盐城市中考数学试题及答案一、选择题1. 【选择题】已知函数 f(x) = 3x - 2,那么 f(2) 的值是多少?A. -4B. -1C. 1D. 4答案:B. -1解析:将 x = 2 代入函数 f(x),得到 f(2) = 3 × 2 - 2 = 6 - 2 = 4 - 2 = -1。
2. 【选择题】已知等差数列的第一项是 a,公差是 d,若其第 n 项为 20,第 m 项为 50,且 n > m,那么 a 的值是多少?A. 10B. 12C. 15D. 18答案:B. 12解析:设第 m 项为 a_m,则有 a_m + (n-m)d = 20,设第 n 项为 a_n,则有 a_n = a + (n-1)d = 50。
联立以上两式,解得 a = 8,d = 2,所以 a 的值为 a_m = a + (m-1)d = 8 + (m-1)2 = 2m + 6。
由 n > m 知 2m + 6 < 20,解得m ≤ 7,代入选项发现只有 B. 12 满足条件。
二、填空题3. 【填空题】已知长方形的长是 8 cm,宽是 6 cm,那么其对角线的长是多少 cm?答案:10解析:根据勾股定理,对角线的长度d = √(长^2 + 宽^2) = √(8^2 + 6^2) = √(64 + 36) = √100 = 10。
4. 【填空题】若正方形的边长为 5 cm,则其面积为 ____________ 平方厘米。
答案:25解析:正方形的面积等于边长的平方,所以面积为 5^2 = 25 平方厘米。
三、解答题5. 【解答题】已知函数 f(x) = x^2 + bx + c,其图像与 x 轴交于点 A 和点 B,交于 y 轴的点为 C,且 AC = BC。
求满足条件的 b 和 c 的值。
答案:b = 0,c = 0;或者说 f(x) = x^2。
解析:由题意可知,当函数 f(x) 与 x 轴交于两个不同的点时,对应的二次项系数和常数项为 0。
2022年江苏省盐城市中考数学试题(含解析)
2022年江苏省盐城市初中学业水平考试一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 2022的倒数是( )A. 2022B. 2022-C. 12022D. 12022- 2. 下列计算正确的是( )A. 23a a a +=B. 236()a a =C. 236a a a ⋅=D. 632a a a ÷= 3. 下列四幅照片中,主体建筑的构图不对称的是( )A. B. C. D. 4. 盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为( )A. 70.1610⨯B. 71.610⨯C. 61.610⨯D. 51610⨯ 5. 一组数据2-,0,3,1,1-的极差是( )A. 2B. 3C. 4D. 56. 正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A. 强B. 富C. 美D. 高7. 小明将一块直角三角板摆放在直尺上,如图所示,则ABC ∠与DEF ∠的关系是( )A. 互余B. 互补C. 同位角D. 同旁内角8. “跳眼法”是指用手指和眼睛估测距离的方法步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测,点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为()A. 40米B. 60米C. 80米D. 100米二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9. 1x-x的取值范围是_______.10. 已知反比例函数的图象过点(2,3),则该函数的解析式为_____.11. 分式方程1121xx+=-的解为__________.12. 如图所示,电路图上有A,B,C三个开关和一个小灯泡,闭合开关C或者同时闭合开关A,B,都可使小灯泡发光.现任意闭合其中一个开关,则小灯泡发光的概率等于____________13. 如图,AB 、AC 是O 的弦,过点A 的切线交CB 的延长线于点D ,若35BAD ∠=︒,则C ∠=___________°.14. 如图,在矩形ABCD 中,22AB BC ==,将线段AB 绕点A 按逆时针方向旋转,使得点B 落在边CD 上的点B '处,线段AB 扫过的面积为___________.15. 若点(),P m n 在二次函数222=++y x x 的图象上,且点P 到y 轴的距离小于2,则n 的取值范围是____________.16. 《庄子▪天下篇》记载“一尺之锤,日取其半,万世不竭.”如图,直线11:12l y x =+与y 轴交于点A ,过点A 作x 轴的平行线交直线2:l y x =于点1O ,过点1O 作y 轴的平行线交直线1l 于点1A ,以此类推,令1OA a =,112O A a =,,11n n n O A a --=,若12n a a a S +++≤对任意大于1的整数n 恒成立,则S 的最小值为___________.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17. ()03tan 4521-+︒--. 18. 解不等式组:()212,12142x x x x +≥+⎧⎪⎨-<+⎪⎩. 19. 先化简,再求值:()()()2443x x x +-+-,其中2310x x -+=.20. 某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A 、B 、C ,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)21. 小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发,两人离甲地的距离y (m )与出发时间x (min )之间的函数关系如图所示.(1)小丽步行的速度为__________m/min ;(2)当两人相遇时,求他们到甲地的距离.22. 证明:垂直于弦AB 的直径CD 平分弦以及弦所对的两条弧.23. 如图,在ABC 与A B C '''中,点D 、D 分别在边BC 、B C ''上,且ACD A C D '''∽△△,若___________,则ABD A B D '''△∽△.请从①BD B D CD C D ''='';②AB A B CD C D ''='';③BAD B A D '''∠=∠这三个选项中选择一个作为条件(写序号),并加以证明.24. 合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:中国营养学会推荐的三大营养素供能比参考值蛋白质10%~15% 脂肪20%~30% 碳水化合物 50%~65%注:供能比为某物质提供的能量占人体所需总能量的百分比.(1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.25. 2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离;(2)求OD 长.(结果精确到0.1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,5 2.24≈) 26. 【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法图1是其中一种方法的示意图及部分辅助线.在ABC 中,90ACB ∠=︒,四边形ADEB 、ACHI 和BFGC 分别是以Rt ABC 的三边为一边的正方形.延长IH 和FG ,交于点L ,连接LC 并延长交DE 于点J ,交AB 于点K ,延长DA 交IL 于点M .(1)证明:AD LC =;(2)证明:正方形ACHI 的面积等于四边形ACLM 的面积;(3)请利用(2)中的结论证明勾股定理.(4)【迁移拓展】如图2,四边形ACHI 和BFGC 分别是以ABC 的两边为一边的平行四边形,探索在AB 下方是否存在平行四边形ADEB ,使得该平行四边形的面积等于平行四边形ACHI 、BFGC 的面积之和.若存在,作出满足条件的平行四边形ADEB (保留适当的作图痕迹);若不存在,请说明理由.27. 【发现问题】小明在练习簿的横线上取点O 为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图象上.(1)【分析问题】小明利用已学知识和经验,以圆心O 为原点,过点O 的横线所在直线为x 轴,过点O 且垂直于横线的直线为y 轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为___________.(2)【解决问题】请帮助小明验证他的猜想是否成立.(3)【深度思考】小明继续思考:设点()0,P m ,m 为正整数,以OP 为直径画M ,是否存在所描的点在M 上.若存在,求m 的值;若不存在,说明理由.2022年江苏省盐城市初中学业水平考试一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 2022的倒数是( )A. 2022B. 2022-C. 12022D. 12022- 【答案】C【解析】【分析】根据倒数的定义作答即可.【详解】2022的倒数是12022, 故选:C .【点睛】本题考查了倒数的概念,即乘积为1的两个数互为倒数,牢记倒数的概念是解题的关键. 2. 下列计算正确的是( )A. 23a a a +=B. 236()a a =C. 236a a a ⋅=D. 632a a a ÷=【答案】B【解析】【分析】根据合并同类项,幂的乘方以及同底数幂的乘除法求解即可.【详解】解:A .2a a 、不是同类项,不能合并,选项错误,不符合题意;B .236()a a =,选项正确,符合题意;C .235a a a ⋅=,选项错误,不符合题意;D .633a a a ÷=,选项错误,不符合题意;故选B .【点睛】此题考查了合并同类项,幂的乘方以及同底数幂的乘除法,掌握它们的运算法则是解题的关键. 3. 下列四幅照片中,主体建筑的构图不对称的是( ) A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的定义,逐项判断即可求解.【详解】解:A 、主体建筑的构图对称,故本选项不符合题意;B 、主体建筑的构图不对称,故本选项符合题意;C 、主体建筑的构图对称,故本选项不符合题意;D 、主体建筑的构图对称,故本选项不符合题意;故选B .【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.4. 盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为( )A. 70.1610⨯B. 71.610⨯C. 61.610⨯D. 51610⨯【答案】C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a ≤<n 为整数,确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同,当原数绝对值≥10时, n 是正数,当原数的绝对值<1时, n 是负数.【详解】解:61600000 1.610=⨯.故选:C .【点睛】本题主要考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中110,a ≤<n 为整数,正确确定a 的值及n 的值是解此题的关键.5. 一组数据2-,0,3,1,1-的极差是( )A. 2B. 3C. 4D. 5【答案】D【解析】【分析】极差:一组数据中最大值与最小值的差,根据极差的定义进行计算即可.【详解】解:∵这组数据中最大的为3,最小的为2,-∴极差为最大值3与最小值2-的差为:()325--=,故选D .【点睛】本题考查的是极差的含义,掌握“极差的定义”是解本题的关键.6. 正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A. 强B. 富C. 美D. 高【答案】D【解析】【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,即可求解.【详解】解:根据题意得: “盐”字所在面相对的面上的汉字是“高”,故选D【点睛】本题主要考查了正方体的平面展开图的特征,熟练掌握正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键.7. 小明将一块直角三角板摆放在直尺上,如图所示,则ABC ∠与DEF ∠的关系是( )A. 互余B. 互补C. 同位角D. 同旁内角【答案】A【解析】 【分析】利用平行线的性质可得出答案.【详解】解:如图,过点G 作GH 平行于BC ,则GH DE ∥,ABC AGH ∴∠=∠,DEF FGH ∠=∠,90AGH FGH ∠+∠=︒,90ABC DEF ∴∠+∠=︒,故选A .【点睛】本题考查了平行线的性质,灵活运用性质解决问题是解题的关键.8. “跳眼法”是指用手指和眼睛估测距离的方法步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测,点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为()A. 40米B. 60米C. 80米D. 100米【答案】C【解析】【分析】参照题目中所给的“跳眼法”的方法估测出距离即可.【详解】由“跳眼法”的步骤可知被测物体与观测点的距离是横向距离的10倍.观察图形,横向距离大约是汽车长度的2倍,为8米,所以汽车到观测点的距离约为80米,故选C.【点睛】本题主要考查了测量距离,正确理解“跳眼法”测物距是解答本题的关键.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9. 1x-x的取值范围是_______.【答案】1x【解析】【分析】根据二次根式的被开方数是非负数列出不等式10x-,解不等式即可求得x的取值范围.【详解】解:根据题意得10x-,解得1x.故答案为:1x.【点睛】本题考查了二次根式有意义的条件,解题的关键是利用被开方数是非负数得出不等式.10. 已知反比例函数的图象过点(2,3),则该函数的解析式为_____.【答案】y=6x.【解析】【分析】待定系数法求反比例函数解析式.首先设反比例函数解析式k y x =,再根据反比例函数图象上点的坐标特点可得,236k ,=⨯= 进而可得反比例函数解析式.【详解】解:设反比例函数解析式为k y x=, 23反比例函数图象经过点(,),236k ∴=⨯=, 6y x∴=反比例函数解析式为, 6.y x=故答案为 【点睛】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.11. 分式方程1121x x +=-的解为__________. 【答案】2x =【解析】【分析】方程两边同时乘以2x -1,然后求出方程的解,最后验根.【详解】解:方程两边同乘()21x -得121x x +=-解得2x =,经检验,2x =是原分式方程的根,故答案为:2x =.【点睛】本题主要考查了解分式方程的知识,解答本题的关键是掌握解分式方程的步骤,注意要验根. 12. 如图所示,电路图上有A ,B ,C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A ,B ,都可使小灯泡发光.现任意闭合其中一个开关,则小灯泡发光的概率等于____________【答案】13【解析】【分析】根据概率公式知,共有3个开关,只闭一个开关时,只有闭合C 时才发光,所以小灯泡发光的概率等于13.【详解】解:根据题意,三个开关,只有闭合C 小灯泡才发光,所以小灯泡发光的概率等于13. 【点睛】本题考查随机事件概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n =. 13. 如图,AB 、AC 是O 的弦,过点A 的切线交CB 的延长线于点D ,若35BAD ∠=︒,则C ∠=___________°. 【答案】35【解析】【分析】连接AO 并延长,交O 于点E ,连接BE ,首先根据圆周角定理可得90E BAE ∠+∠=︒,再根据AD 为O 的切线,可得90BAE BAD ∠+∠=︒,可得35EBAD ,再根据圆周角定理即可求得. 【详解】解:如图,连接AO 并延长,交O 于点E ,连接BE . AE ∵为O 的直径,90ABE ∴∠=︒,90E BAE ∴∠+∠=︒,AD 为O 的切线,90DAE ∴∠=︒,90BAEBAD , 35EBAD , 35C E .故答案为:35.【点睛】本题考查了圆周角定理,切线的性质,作出辅助线是解决本题的关键.14. 如图,在矩形ABCD 中,22AB BC ==,将线段AB 绕点A 按逆时针方向旋转,使得点B 落在边CD上的点B '处,线段AB 扫过的面积为___________.【答案】π3##13π 【解析】 【分析】由旋转的性质可得'2,AB AB ==由锐角三角函数可求'60,DAB ∠=︒从而得出'30,BAB ∠=︒由扇形面积公式即可求解.【详解】解:22,AB BC ==1,BC ∴=∵矩形ABCD 中,1,90,AD BC D DAB ∴==∠=∠=︒由旋转可知AB AB '=,∵22AB BC ==,∴'2,AB AB == ''1cos ,2AD DAB AB ∠== '60,DAB ∴∠=︒ '30,BAB ∴∠=︒∴线段AB 扫过的面积2302.3603ππ︒⨯⨯==︒ 故答案为:.3π【点睛】本题主要考查了旋转的性质,矩形的性质,扇形面积公式,锐角三角函数等知识,灵活运用这些性质解决问题是解此题的关键.15. 若点(),P m n 在二次函数222=++y x x 的图象上,且点P 到y 轴的距离小于2,则n 的取值范围是____________.【答案】110n ≤<【解析】【分析】先判断22m -<<,再根据二次函数的性质可得:()222211n m m m =++=++,再利用二次函数的性质求解n 的范围即可.【详解】解:点P 到y 轴的距离小于2,22m ∴-<<,点(),P m n 在二次函数222=++y xx 的图象上, ()222211n m m m ∴=++=++,∴当1m =-时,n 有最小值为1. 当2m =时,()221110n =++=, n ∴的取值范围为110n ≤<.故答案为:110n ≤<【点睛】本题考查的是二次函数的性质,掌握“二次函数的增减性”是解本题的关键.16. 《庄子▪天下篇》记载“一尺之锤,日取其半,万世不竭.”如图,直线11:12l y x =+与y 轴交于点A ,过点A 作x 轴的平行线交直线2:l y x =于点1O ,过点1O 作y 轴的平行线交直线1l 于点1A ,以此类推,令1OA a =,112O A a =,,11n n n O A a --=,若12n a a a S +++≤对任意大于1的整数n 恒成立,则S 的最小值为___________.【答案】2【解析】【分析】先由直线2:l y x =与y 轴的夹角是45°,得出1OAO △,112O AO ,…都是等腰直角三角形, 1OA O A ∴=,1121O A O A =,2232O A O A =,…,得出点1O 的横坐标为1,得到当1x =时,131122y =⨯+=,点1A 的坐标为31,2⎛⎫ ⎪⎝⎭,112131122O A O A ==-=,点2O 的横坐标13122+=,当32x =时,1371224y =⨯+=,得出点2A 的坐标为37,24⎛⎫ ⎪⎝⎭,以此类推,最后得出结果. 【详解】解:直线2:l y x =与y 轴的夹角是45°,1OAO ∴△,112O AO ,…都是等腰直角三角形,1OA O A ∴=,1121O A O A =,2232O A O A =,…点A 的坐标为()0,1,∴点1O 的横坐标为1,当1x =时,131122y =⨯+=,∴点1A 的坐标为31,2⎛⎫ ⎪⎝⎭, 112131122O A O A ∴==-=, ∴点2O 的横坐标13122+=, 当32x =时,1371224y =⨯+=, ∴点2A 的坐标为37,24⎛⎫⎪⎝⎭, 32227111424O A O A ∴==--=,…… 以此类推,得11OA a ==,11212O A a ==,22314O A a ==,33418O A a ==,……,11112n n n n O A a ---==, 123111*********n n n a a a a S --∴++++=++++=-≤, S ∴的最小值为2.【点睛】本题考查了此题考查一次函数图象上的点的坐标特征,探究以几何图形为背景的问题时,一是要破解几何图形之间的关系,二是实现线段长度和点的坐标的正确转换,三是观察分析所得数据并找出数据之间的规律.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17. )03tan 451-+︒-. 【答案】3【解析】【分析】先计算)01,化简绝对值、代入tan45°,最后加减.【详解】解:)03tan 451-+︒- 311=+-3=.【点睛】本题考查了实数的运算,掌握零指数幂的意义、绝对值的意义及特殊角的三角函数值是解决本题的关键.18. 解不等式组:()212,12142x x x x +≥+⎧⎪⎨-<+⎪⎩. 【答案】12x ≤<【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的方法部分即可. 【详解】()212,12142x x x x +≥+⎧⎪⎨-<+⎪⎩解不等式212x x +≥+,得1≥x , 解不等式()12142x x -<+,得2x <, 所以不等式组的解集是12x ≤<【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.19. 先化简,再求值:()()()2443x x x +-+-,其中2310x x -+=.【答案】2267x x --,-9【解析】【分析】根据平方差公式和完全平方公式可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:原式221669x x x =-+-+ 2267x x =--.2310x x -+=,231x x ∴-=-,原式()()22372179x x =--=⨯--=- 【点睛】本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的方法.20. 某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A 、B 、C ,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)【答案】2 3【解析】【分析】画树状图,共有9种等可能的结果,其中甲、乙两人在不同检测点做核酸有6种结果,再由概率公式求解即可.【详解】解:画树状图如下:由图可知,共有9种等可能的结果,其中甲、乙两人不在同一检测点参加检测的结果有6种,故甲、乙两人不在同一检测点参加检测的概率为62 93 .【点睛】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21. 小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发,两人离甲地的距离y(m)与出发时间x(min)之间的函数关系如图所示.(1)小丽步行的速度为__________m/min;(2)当两人相遇时,求他们到甲地的距离.【答案】(1)80 (2)960m【解析】【分析】(1)由图象可知小丽行走的路程与时间,根据速度=路程÷时间计算即可;(2)方法一:根据两函数图象的交点坐标来求解;方法二:根据行程问题中的相遇问题列出一元一次方程求解.【小问1详解】解:由图象可知,小丽步行30分钟走了2400米,小丽的速度为:2400÷30=80 (m/min),故答案为:80.【小问2详解】解法1:小丽离甲地的距离y (m )与出发时间x (min )之间的函数表达式是()80030y x x =≤≤丽, 小华离甲地的距离y (m )与出发时间x (min )之间的函数表达式是()1202400020y x x =-+≤≤华, 两人相遇即y y =丽华时,801202400x x =-+,解得12x =,当12x =时,80960y x ==丽(m ).答:两人相遇时离甲地的距离是960m .解法2:设小丽与小华经过t min 相遇,由题意得801202400t t +=,解得12t =,所以两人相遇时离甲地的距离是8012960⨯=m .答:两人相遇时离甲地的距离是960m .【点睛】本题考查函数的图象,两直线相交问题,一元一次方程的应用,从图象中获取有用的信息是解题关键.22. 证明:垂直于弦AB 的直径CD 平分弦以及弦所对的两条弧.【答案】见解析【解析】【分析】根据命题的题设:垂直于弦AB 的直径CD ,结论:CD 平分AB ,CD 平分,,ADB ACB 写出已知,求证,再利用等腰三角形的性质,圆心角与弧之间的关系证明即可.【详解】已知:如图,CD 是O 的直径,AB 是O 的弦,AB CD ⊥,垂足为P .求证:PA PB =,AD BD =,AC BC =.证明:如图,连接OA 、OB .因为 OA OB =,OP AB ⊥,所以PA PB =,AOD BOD ∠=∠.所以AD BD =,AOC BOC ∠=∠.所以AC BC =.【点睛】本题考查的是命题的证明,圆心角与弧,弦之间的关系,等腰三角形的性质,熟练的运用在同圆与等圆中,相等的圆心角所对的弧相等是解本题的关键.23. 如图,在ABC 与A B C '''中,点D 、D 分别在边BC 、B C ''上,且ACD A C D '''∽△△,若___________,则ABD A B D '''△∽△.请从①BD B D CD C D ''='';②AB A B CD C D ''='';③BAD B A D '''∠=∠这三个选项中选择一个作为条件(写序号),并加以证明.【答案】见解析.【解析】【分析】根据相似三角形的判定定理证明即可.【详解】解:若选①BD B D CD C D''='', 证明:∵ACD A C D '''∽△△, ∴ADC A D C '''∠=∠,AD CD A D C D ='''', ∴ADB A D B '''∠=∠,∵BD B D CD C D ''='', ∴BD CD B D C D ='''', ∴AD BD A D B D ='''', 又ADB A D B '''∠=∠,∴ABD A B D '''△∽△.选择②BA B A CD C D ''='',不能证明ABD A B D '''△∽△. 若选③BAD B A D '''∠=∠,证明:∵ACD A C D '''∽△△,∴ADC A D C ''∠'=,∴ADB A D B '''∠=∠,又∵BAD B A D '''∠=∠,∴ABD A B D '''△∽△.【点睛】本题考查相似三角形的判定定理,解题的关键是掌握相似三角形的判定方法.24. 合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:中国营养学会推荐的三大营养素供能比参考值蛋白质10%~15% 脂肪20%~30% 碳水化合物 50%~65%(1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.【答案】(1)抽样调查(2)样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%(3)答案见解析【解析】【分析】(1)由全面调查与抽样调查的含义可得答案;(2)利用加权平均数公式可得:求解三个年级的人数分别乘以各自的平均供能比的和,再除以总人数即可得到整体的平均数;(3)结合中国营养学会推荐的三大营养素供能比参考值,把求解出来的平均值与标准值进行比较可得:蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,再提出合理建议即可.【小问1详解】解:由该校1380名学生中调查了100名学生的膳食情况,可得:本次调查采用抽样的调查方法;故答案为:抽样【小问2详解】样本中所有学生的脂肪平均供能比为3536.6%2540.4%4039.2%100%38.59%352540⨯+⨯+⨯⨯=++, 样本中所有学生的碳水化合物平均供能比为3548.0%2544.1%4047.5%100%46.825%352540⨯+⨯+⨯⨯=++. 答:样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%.【小问3详解】该校学生蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,膳食不合理,营养搭配不均衡,建议增加碳水化合物的摄入量,减少脂肪的摄人量.(答案不唯一,建议合理即可)【点睛】本题考查的是全面调查与抽样调查的含义,加权平均数的计算,利用平均数作决策,掌握“计算加权平均数的方法”是解本题的关键.25. 2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离;(2)求OD 长.(结果精确到0.1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈5 2.24≈)【答案】(1)6.7m(2)4.5m【解析】【分析】(1)连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H ,根据锐角三角函数定义和勾股定理即可解决问题.(2)过点A 作AG DC ⊥,垂足为G ,根据锐角三角函数定义和勾股定理即可解决问题.【小问1详解】解:如图2,连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H .在Rt ABH 中,18037ABH ABC ∠=︒-∠=︒,sin 37AH AB︒=,所以sin373m AH AB =⋅︒≈, cos37BH AB︒=,所以cos374m BH AB =⋅︒≈, 在Rt ACH 中,3AH =m ,6CH BC BH =+=m ,根据勾股定理得2235 6.7AC CH AH =+=≈m ,答:A 、C 两点之间的距离约6.7m .【小问2详解】如图2,过点A 作AG DC ⊥,垂足为G ,则四边形AGDO 为矩形,1GD AO ==m ,AG OD =,所以5CG CD GD =-=m ,在Rt ACG 中,35AG =,5CG =m ,根据勾股定理得2225 4.5AG AC CG =-=≈m .4.5OD AG ∴==m .答:OD 的长为4.5m .【点睛】求角的三角画数值或者求线段的长时,我们经常通过观察图形将所求的角成者线段转化到直角三角形中(如果没有直角三角形,设法构造直角三角形),再利用锐角三角画数求解 26. 【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法图1是其中一种方法的示意图及部分辅助线.在ABC 中,90ACB ∠=︒,四边形ADEB 、ACHI 和BFGC 分别是以Rt ABC 的三边为一边的正方形.延长IH 和FG ,交于点L ,连接LC 并延长交DE 于点J ,交AB 于点K ,延长DA 交IL 于点M .(1)证明:AD LC =;(2)证明:正方形ACHI 的面积等于四边形ACLM 的面积;(3)请利用(2)中的结论证明勾股定理.(4)【迁移拓展】如图2,四边形ACHI 和BFGC 分别是以ABC 的两边为一边的平行四边形,探索在AB 下方是否存在平行四边形ADEB ,使得该平行四边形的面积等于平行四边形ACHI 、BFGC 的面积之和.若存在,作出满足条件的平行四边形ADEB (保留适当的作图痕迹);若不存在,请说明理由.【答案】(1)见解析 (2)见解析(3)见解析 (4)存在,见解析【解析】【分析】(1)根据正方形的性质和SAS 证明△ACB ≌△HCG ,可得结论;(2)证明S △CHG =S △CHL ,所以S △AMI =S △CHL ,由此可得结论;(3)证明正方形ACHI 的面积+正方形BFGC 的面积=▱ADJK 的面积+▱KJEB 的面积=正方形ADEB ,可得结论;(4)如图2,延长IH 和FG 交于点L ,连接LC ,以A 为圆心CL 为半径画弧交IH 于一点,过这一点和A 作直线,以A 为圆心,AI 为半径作弧交这直线于D ,分别以A ,B 为圆心,以AB ,AI 为半径画弧交于E ,连接AD ,DE ,BE ,则四边形ADEB 即为所求.【小问1详解】证明:如图1,连接HG ,。
2024年江苏省盐城市中考数学试卷及答案解析
2024年江苏省盐城市中考数学试卷及答案解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2024的相反数是()A.2024B.﹣2024C.D.【解答】解:2024的相反数是﹣2024,故选:B.2.(3分)下列四幅图片中的主体事物,在现实运动中属于翻折的是()A.工作中的雨刮器B.移动中的黑板C.折叠中的纸片D.骑行中的自行车【答案】C.3.(3分)下列运算正确的是()A.a6÷a2=a4B.2a﹣a=2C.a3•a2=a6D.(a3)2=a5【分析】利用同底数幂乘法及除法法则,合并同类项法则,幂的乘方法则逐项判断即可.【解答】解:a6÷a2=a4,则A符合题意;2a﹣a=a,则B不符合题意;a3•a2=a5,则C不符合题意;(a3)2=a6,则D不符合题意;故选:A.4.(3分)盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为()A.0.24×107B.24×105C.2.4×107D.2.4×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:2400000=2.4×106,故选:D.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(3分)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都【分析】正方体的表面展开图相对的面之间一定相隔一个正方形,根据这一特点进行作答.【解答】解:正方体的表面展开图相对的面之间一定相隔一个正方形,“地”与“都”是相对面,“之”与“盐”是相对面,“湿”与“城”是相对面,故选:C.【点评】本题主要考查了正方体相对两个面上的文字,关键在于要注意正方体的空间图形,从相对面入手解答问题.6.(3分)小明将一块直角三角板摆放在直尺上,如图,若∠1=55°,则∠2的度数为()A.25°B.35°C.45°D.55°【分析】由两直线平行,内错角相等,可求得∠3的度数,然后求得∠2的度数.【解答】解:如图:∵直尺的两边平行,∠1=55°,∴∠ABC=∠1=55°,∵∠BAC=90°,∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣90°﹣55°=35°,∴∠2=∠ACB=35°.故选:B.【点评】此题考查了平行线的性质.注意两直线平行,内错角相等定理的应用是解此题的关键.7.(3分)矩形相邻两边长分别为cm、cm,设其面积为S cm2,则S在哪两个连续整数之间()A.1和2B.2和3C.3和4D.4和5【答案】C.8.(3分)甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况()A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢【解答】解:甲家公司的利润增长较快,理由是:甲公司从2019﹣2023年,利润增长了210﹣100=110(万元),增长率为×100%=110%,乙公司从2019﹣2023年利润增长了160﹣120=40(万元),增长率为,×100%≈33.3%,因此甲公司利润始终比乙增长快.故选:A.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.(3分)若有意义,则x的取值范围是.【解答】解:若有意义,则x的取值范围是x≠1.故答案为:x≠1.10.(3分)分解因式:x2+2x+1=.【解答】解:x2+2x+1=(x+1)2.故答案为:(x+1)2.【点评】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).11.(3分)两个相似多边形的相似比为1:2,则它们的周长的比为.【分析】直接根据相似多边形周长的比等于相似比进行解答即可.【解答】解:∵两个相似多边形的相似比为1:2,∴两个相似多边形周长的比等于1:2,故答案为:1:2.12.(3分)如图,△ABC是⊙O的内接三角形,∠C=40°,连接OA、OB,则∠OAB=°.【解答】解:∵∠C=40°,∴∠AOB=80°,∵OA=OB,∴∠OAB=∠OBA,∵∠OAB+∠OBA+∠AOB=180°,∴∠OAB=50°,故答案为:50.13.(3分)已知圆锥的底面半径为4,母线长为5,该圆锥的侧面积为.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:由圆锥的底面半径为4,母线长为5,则圆锥的侧面积为×2π×4×5=20π.故答案为:20π.【点评】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.14.(3分)中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为尺.【解答】解:设该问题中的竿子长为x尺,则绳索长为(x+5)尺,根据题意得:x﹣(x+5)=5,解得:x=15,∴该问题中的竿子长为15尺.故答案为:15.15.(3分)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m的点P处,测得教学楼底端点A的俯角为37°,再将无人机沿教学楼方向水平飞行26.6m至点Q处,测得教学楼顶端点B 的俯角为45°,则教学楼AB的高度约为m.(精确到1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【解答】解:如图,令AB的延长线于PQ的延长线交于点C,由题意,知AC=30m,PQ=26.6m,∠APC=37°,∠BQC=45°,在Rt△APC中,PC=≈=40(m),∴QC=PC﹣PQ=40﹣26.6=13.4(m),在Rt△BQC中,BC=QC=13.4m,∴AB=AC﹣BC=30﹣13.4=16.6≈17(m),故答案为:17.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,理解题意,能熟练运用三角函数关系是解题的关键.16.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,点D是AC的中点,连接BD,将△BCD 绕点B旋转,得到△BEF.连接CF,当CF∥AB时,CF=或.【解答】解:作BG⊥CF于点G,如图所示,∵∠ACB=90°,AC=BC=2,点D是AC的中点,∴CD=,∠ABC=45°,∴BD===,由旋转的性质可知:△DCB≌△FEB,∴BD=BF=,∵CF∥AB,∴∠ABC=∠BCG=45°,∴CG=BC•sin∠BCG=2×=2,∴BG==2,∴GF===,∴CF=CG+GF=2+;当点D运动点F′时,此时CF′∥AB,同理可得,GF′=,CG=2,∴CF′=﹣2;故答案为:2+或﹣2.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:|﹣2|﹣(1+π)0+4sin30°.【分析】利用绝对值的性质,零指数幂,特殊锐角三角函数值计算即可.【解答】解:原式=2﹣1+4×=2﹣1+2=3.【点评】本题考查实数的运算,绝对值的性质,零指数幂,特殊锐角三角函数值,熟练掌握相关运算法则是解题的关键.18.(6分)求不等式≥x﹣1的正整数解.【分析】根据解一元一次不等式的步骤对所给不等式进行求解,并写出正整数解即可.【解答】解:,1+x≥3x﹣3,x﹣3x≥﹣3﹣1,﹣2x≥﹣4,x≤2.所以此不等式的正整数解为:1,2.【点评】本题考查一元一次不等式的整数解,熟知解一元一次不等式的步骤是解题的关键.19.(8分)先化简,再求值:1﹣÷,其中a=4.【分析】先计算分式的除法,再计算分式的减法,把原式化简,把a的值代入计算即可.【解答】解:原式=1﹣•=1﹣=﹣=,当a=4时,原式==.【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.20.(8分)在“重走建军路,致敬新四军”红色研学活动中,学校建议同学们利用周末时间自主到以下三个基地开展研学活动.A.新四军纪念馆(主馆区);B.新四军重建军部旧址(泰山庙);C.新四军重建军部纪念塔(大铜马).小明和小丽各自随机选择一个基地作为本次研学活动的第一站.(1)小明选择基地A的概率为;(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.【分析】(1)直接根据概率公式求解即可;(2)列出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【解答】解:(1)∵共有三个基地开展研学活动,∴小明选择基地A的概率为;故答案为:;(2)画树状图如下:由上可得,一共有9种等可能性,其中小明和小丽选择相同基地的可能性有3种,∴小明和小丽选择相同基地的概率为=.【点评】此题考查了树状图法求概率.树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)已知:如图,点A、B、C、D在同一条直线上,AE∥BF,AE=BF.若,则AB=CD.请从①CE∥DF;②CE=DF;③∠E=∠F这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.【分析】选择①,利用AAS证明△AEC≌△BFD,即可得到AC=BD,减去公共边BC,得到AB=CD;选择②,无法证明;选择③,利用ASA证明△AEC≌△BFD,即可得到AC=BD,减去公共边BC,得到AB=CD.【解答】证明:选择①,∵AE∥BF,∴∠A=∠FBD,∵CE∥DF,∴∠ACE=∠D,在△AEC和△BFD中,,∴△AEC≌△BFD(AAS),∴AC=BD,∴AB=CD;选择③,∵AE∥BF,∴∠A=∠FBD,在△AEC和△BFD中,,∴△AEC≌△BFD(ASA),∴AC=BD,∴AB=CD.【点评】本题考查了全等三角形的性质与判定,平行线的性质与判定,掌握性质和判定方法是解题的关键.22.(10分)小明在草稿纸上画了某反比例函数在第二象限内的图象,并把矩形直尺放在上面,如图.请根据图中信息,求:(1)反比例函数表达式;(2)点C坐标.【分析】(1)根据图象信息可知A(﹣3,2),待定系数法求出反比例函数解析式即可;(2)由图象可知,BC的解析式为y=﹣,与反比例函数解析式联立方程组求出点C坐标即可.【解答】解:(1)由图可知点A的坐标为(﹣3,2),∵反比例函数图象上过点A,设反比例函数关系式为y=,∴k=﹣6,∴反比例函数解析式为y=﹣;(2)直线OA的解析式为y=﹣x,由图象可知,直线OA向上平移三个单位得到直线BC的解析式为y=﹣,联立方程组,解得,(舍去),∴C(﹣,4).【点评】本题考查了反比例函数图象与性质,熟练掌握联立方程组求出交点坐标是关键.23.(10分)如图,点C在以AB为直径的⊙O上,过点C作⊙O的切线l,过点A作AD⊥l,垂足为D,连接AC、BC.(1)求证:△ABC∽△ACD;(2)若AC=5,CD=4,求⊙O的半径.【分析】(1)先证明OC∥AD,得到∠CAD=∠ACO=∠CAB,再根据∠D=∠ACB=90°,得到△ABC ∽△ACD;(2)根据△ABC∽△ACD,得到,求出AB,得到半径.【解答】(1)证明:连接OC,∵l是⊙O的切线,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠CAD=∠ACO=∠CAB,∵∠D=∠ACB=90°,∴△ABC∽△ACD;(2)解:∵AC=5,CD=4,∠ADC=90°,∴AD==3,∵△ABC∽△ACD,∴,∴,∴AB=,∴半径为.【点评】本题考查了相似三角形的性质与判定,切线的性质,圆周角定理等,综合运用性质与判定是解题的关键.24.(10分)阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为t h,调查问卷设置了四个时间选项:A.t<1;B.1≤t<1.5;C.1.5≤t <2;D.t≥2),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为,该地区七年级学生“每天阅读时间不少于1小时”的人数约为人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.【分析】(1)把条形统计图各组人数相加可得样本容量;用该地区七年级学生总人数乘样本中“每天阅读时间不少于1小时”的人数所占比例即可求出该地区七年级学生“每天阅读时间不少于1小时”的人数;(2)分别求出12月份和9月份“每天阅读时间不少于1小时”所占百分比即可解答;(3)答案不唯一,只要合理均可.【解答】解:(1)2023年9月份抽样调查的样本容量为:80+320+280+120=800;该地区七年级学生“每天阅读时间不少于1小时”的人数约为:8000×=7200(人),故答案为:800,7200;(2)12月份“每天阅读时间不少于1小时”的占比为(1﹣5%)=95%,9月份“每天阅读时间不少于1小时”的占比为×100%=90%,[(1﹣5%)﹣×100%]÷(×100%)≈5.56%,故该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率为5.56%;(3)该地区出台相关激励措施的做法收到了良好的效果,“每天阅读时间少于1小时”的比例由9月份的10%减少到12份的5%,“每天阅读时间大约于1.5小时”的比例也有大幅度上升.25.(10分)如图1,E、F、G、H分别是▱ABCD各边的中点,连接AF、CE交于点M,连接AG、CH交于点N,将四边形AMCN称为▱ABCD的“中顶点四边形”.(1)求证:中顶点四边形AMCN为平行四边形;(2)①如图2,连接AC、BD交于点O,可得M、N两点都在BD上,当▱ABCD满足时,中顶点四边形AMCN是菱形;②如图3,已知矩形AMCN为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG,四边形AFCH均为平行四边形,进而得到:AM∥CN,AN∥CM,即可得证;(2)①根据菱形的性质结合图形即可得出结果;②连接AC,作直线MN,交于点O,然后作ND=2ON,MB=2OB,然后连接AB、BC、CD、DA即可得出点M和N分别为△ABC△ADC的重心,据此作图即可.【解答】(1)证明:∵▱ABCD,∴AB∥CD,AD∥BC,AB=CD,AD=BC,∵点E、F、G、H分别是▱ABCD各边的中点,∴,AE∥CG,∴四边形AECG为平行四边形,同理可得:四边形AFCH为平行四边形,∴AM∥CN,AN∥CM,∴四边形AMCN是平行四边形;(2)解:①当平行四边形ABCD满足AC⊥BD时,中顶点四边形AMCN是菱形,由(1)得四边形AMCN是平行四边形,∵AC⊥BD,∴MN⊥AC,∴中顶点四边形AMCN是菱形,故答案为:AC⊥BD;②如图所示,即为所求,连接AC,作直线MN,交于点O,然后作ND=2ON,MB=2OM,然后连接AB、BC、CD、DA即可,∴点M和N分别为△ABC和△ADC的重心,符合题意;证明:矩形AMCN,∴AC=MN,OM=ON,∵ND=2ON,MB=2OM,∴OB=OD,∴四边形ABCD为平行四边形;分别延长CM、AM、AN、CN交四边于点E、F、G、H如图所示:∵矩形AMCN,∴AM∥CN,MO=NO,由作图得BM=MN,∴△MBF∽△NBC,∴,∴点F为BC的中点,同理得:点E为AB的中点,点G为DC的中点,点H为AD的中点.26.(12分)请根据以下素材,完成探究任务.制定加工方案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.【分析】任务1:根据题意安排x名工人加工“雅”服装,y名工人加工“风”服装,得出加工“正”服装的有(70﹣x﹣y)人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:x[100﹣2(x﹣10)],然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【解答】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x名工人加工“雅”服装,y名工人加工“风”服装,∴加工“正”服装的有(70﹣x﹣y)人,∵“正”服装总件数和“风”服装相等,∴(70﹣x﹣y)×1=2y,整理得:;任务2:根据题意得:“雅”服装每天获利为:x[100﹣2(x﹣10)],∴w=2y×24+(70﹣x﹣y)×48+x[100﹣2(x﹣10)],整理得:w=(﹣16x+1120)+(﹣32x+2240)+(﹣2x2+120x),∴w=﹣2x2+72x+3360(x>10),任务3:由任务2得w=﹣2x2+72x+3360=﹣2(x﹣18)2+4008,∴当x=18时,获得最大利润,,∴x≠18,∵开口向下,∴取x=17或x=19,当x=17时,,不符合题意;当x=19时,,符合题意;∴70﹣x﹣y=34,综上:安排19名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.【点评】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键.27.(14分)发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽.提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n个籽,每列有k个籽,行上相邻两籽、列上相邻两籽的间距都为d(n,k均为正整数,n>k≥3,d>0),如图1所示.小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为,共铲行,则铲除全部籽的路径总长为;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为;方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长.解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.【分析】方案1:根据题意列出代数式即可求解;方案2:根据题意列出代数式即可求解;方案3:根据图得出斜着铲每两个点之间的距离为,根据题意得一共有2n列,2k行,斜着铲相当于有n条线段长,同时有2k﹣1个,即可得出总路径长;解决问题:利用作差法比较三种方案即可.【解答】解:方案1:根据题意每行有n个籽,行上相邻两籽的间距为d,∴每行铲的路径长为(n﹣1)d,∵每列有k个籽,呈交错规律排列,∴相当于有2k行,∴铲除全部籽的路径总长为2(n﹣1)dk,故答案为:(n﹣1)d;2k;2(n﹣1)dk;方案2:根据题意每列有k个籽,列上相邻两籽的间距为d,∴每列铲的路径长为(k﹣1)d,∵每行有n个籽,呈交错规律排列,∴相当于有2n列,∴铲除全部籽的路径总长为2(k﹣1)dn,故答案为:2(k﹣1)dn;方案3:由图得斜着铲每两个点之间的距离为,根据题意得一共有2n列,2k行,斜着铲相当于有n条线段长,同时有2k﹣1个,∴铲除全部轻的路径总长为:;解决问题由上得:2(n﹣1)dk﹣2(k﹣1)dn=2ndk﹣2dk﹣2ndk+2dn=2d(n﹣k)>0,∴方案1的路径总长大于方案2的路径总长;,∵n>k≥3,当k=3时,,,∴方案3铲籽路径总长最短,销售员的操作方法是选择最短的路径,减少对菠萝的损耗.。
2023年江苏省盐城市中考数学真题卷(含答案与解析)_8652
2023年江苏省盐城市初中学业水平考试数学试卷本试卷共6页,满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1. 下列数中,属于负数的是( )A. 2023B. 2023-C. 12023D. 02. 在平面直角坐标系中,点2(1)A ,在( ) A 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 下列图形中,属于中心对称图形的是( )A B.C. D.4. 下列每组数分别表示3根小木棒的长度(单位:cm ),其中能搭成一个三角形的是( )A. 5,7,12B. 7,7,15C. 6,9,16D. 6,8,125. 2023年5月21日,盐城市家长学校总校五月课堂正式开讲,直播点击量达105000人次.数据105000用科学记数法表示为( )A. 51.0510⨯B. 410.510⨯C. 60.10510⨯D. 61.0510⨯ 6. 由六块相同的小正方体搭成的几何体如图所示,则它的俯视图是( )..A. B.C. D.7. 小华将一副三角板(90C D ∠=∠=︒,30B ∠=︒,45E ∠=︒)按如图所示的方式摆放,其中AB EF ∥,则1∠的度数为( )A. 45︒B. 60︒C. 75︒D. 105︒8. 如图,关于x 的函数y 的图象与x 轴有且仅有三个交点,分别是()()()301030--,,,,,,对此,小华认为:①当0y >时,31x -<<-;②当3x >-时,y 有最小值;③点(),1P m m --在函数y 的图象上,符合要求的点P 只有1个;④将函数y 的图象向右平移1个或3个单位长度经过原点.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共8小题,每小题3分,共24分)9. 在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为__________.10. 因式分解:2x xy -=__________________.11. 在ABC 中,D ,E 分别为边AB ,AC 的中点,10cm BC =,则DE 的长为__________cm. 12. 如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为__________.13. 我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为__________.14. 如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB 表示“铁军”雕塑的高,点B ,C ,D 在同一条直线上,且60ACB ∠=︒,30ADB ∠=︒,17.5m CD =,则线段AB 的长约为__________m. 1.7≈)15. 如图,在Rt ABC △中,90ACB ∠=︒,=60B ∠︒,3BC =,将ABC 绕点C 逆时针旋转到EDC △的位置,点B 的对应点D 首次落在斜边AB 上,则点A 的运动路径的长为_________.16. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数()0k y x x=>的图象上,延长AB 交y 轴于点C ,过点A 作AD y ⊥轴于点D ,连接BD 并延长,交x 轴于点E ,连接CE .若2AB BC =,BCE 的面积是4.5,则k 的值为_________.三、解答题(本大题共11小题,共102分.解答时应写出文字说明、证明过程或演算步骤)17. 计算:()1014cos 6052π-⎛⎫+︒-- ⎪⎝⎭. 18. 解不等式4233x x --<,并把它的解集在数轴上表示出来.19. 先化简,再求值:()()()2333a b a b a b +++-,其中2a =,1b =-.20. 随着盐城交通的快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路A 和省级公路B 两条路线;从乙镇到盐城南洋国际机场,有省级公路C 、高速公路D 和城市高架E 三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).(1)从甲镇到乙镇,小华所选路线是乡村公路A 的概率为_________.(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.21. 如图,AB AE =,BC ED =,B E ∠=∠.(1)求证:AC AD =;(2)用直尺和圆规作图:过点A 作AF CD ⊥,垂足为F .(不写作法,保留作图痕迹)22. 盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.某校生物兴趣小组去实地调查,绘制出如下统计图.(注:麋鹿总头数=人工驯养头数+野生头数)解答下列问题:(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为_________°;②在折线统计图中,近6年野生麋鹿头数的中位数为_________头.(2)填表: 年份 2017 2018 2019 2020 2021 2022人工驯养麋鹿头数 3473 3531 3666 3861 _________ 3917(3)结合以上统计和计算,谈谈你对该保护区的建议或想法.23.课堂上,老师提出了下面的问题:已知30a b >>,a M b =,13a Nb +=+,试比较M 与N 的大小. 的小华:整式的大小比较可采用“作差法”.老师:比较21x +与21x -的大小.小华:∵()()()222121121110x x x x x +--=+-+=-+>, ∴2121x x +>-.老师:分式大小比较能用“作差法”吗?…(1)请用“作差法”完成老师提出的问题.(2)比较大小:2368__________2265.(填“>”“=”或“<”) 24. 如图,在ABC 中,O 是AC 上(异于点A ,C )的一点,O 恰好经过点A ,B ,AD CB ⊥于点D ,且AB 平分CAD ∠.(1)判断BC 与O 位置关系,并说明理由;(2)若10AC =,8DC =,求O 的半径长.25. 某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买m 本硬面笔记本(m 为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.26. 定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】的的(1)现有以下两个函数:①21y x =-;②2y x x =-,其中,_________为函数1y x =-的轴点函数.(填序号)【尝试应用】(2)函数y x c =+(c 为常数,0c >)的图象与x 轴交于点A ,其轴点函数2y ax bx c =++与x 轴的另一交点为点B .若14OB OA =,求b 的值. 【拓展延伸】(3)如图,函数12y x t =+(t 为常数,0t >)的图象与x 轴、y 轴分别交于M ,C 两点,在x 轴的正半轴上取一点N ,使得ON OC =.以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE .若函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++的顶点P 在矩形MNDE 的边上,求n 的值.27. 综合与实践【问题情境】如图1,小华将矩形纸片ABCD 先沿对角线BD 折叠,展开后再折叠,使点B 落在对角线BD 上,点B 的对应点记为B ',折痕与边AD ,BC 分别交于点E ,F .【活动猜想】(1)如图2,当点B '与点D 重合时,四边形BEDF 是哪种特殊的四边形?答:_________.【问题解决】(2)如图3,当4AB =,8AD =,3BF =时,求证:点A ',B ',C 在同一条直线上.【深入探究】(3)如图4,当AB 与BC 满足什么关系时,始终有A B ''与对角线AC 平行?请说明理由.(4)在(3)的情形下,设AC 与BD ,EF 分别交于点O ,P ,试探究三条线段AP ,B D ',EF 之间满足的等量关系,并说明理由.参考答案一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1. 下列数中,属于负数的是( )A. 2023B. 2023-C. 12023D. 0 【答案】B【解析】【分析】根据小于0的数即为负数解答可得.【详解】2023-是负数,2023和12023是正数,0既不是正数也不是负数 故选:B .【点睛】本题主要考查正数和负数,熟练掌握负数的概念是解题的关键. 2. 在平面直角坐标系中,点2(1)A ,在( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】根据各象限内点的坐标特征解答.【详解】点(1,2)所在的象限是第一象限.故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−). 3. 下列图形中,属于中心对称图形的是( )A. B.C. D.【答案】B【解析】【分析】根据中心对称图形的定义进行逐一判断即可:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.由定义可判定A 、C 、D 选项的图形不是中心对称图形,故不符合题意;B 选项的图形是中心对称图形,符合题意.故选:B .【点睛】本题主要考查了中心对称图形,熟知中心对称图形的定义是解题的关键.4. 下列每组数分别表示3根小木棒的长度(单位:cm ),其中能搭成一个三角形的是( )A. 5,7,12B. 7,7,15C. 6,9,16D. 6,8,12【答案】D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【详解】A 、5712+=,不能构成三角形,故此选项不合题意;B 、771415+=<,不能构成三角形,故此选项不合题意;C 、691516+=<,不能构成三角形,故此选项不合题意;D 、681412+=>,能构成三角形,故此选项符合题意.故选:D .【点睛】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.5. 2023年5月21日,盐城市家长学校总校五月课堂正式开讲,直播点击量达105000人次.数据105000用科学记数法表示为( )A. 51.0510⨯B. 410.510⨯C. 60.10510⨯D. 61.0510⨯ 【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为10n a ⨯,n 为正整数,且n 比原数的整数位数少1,据此可以解答.【详解】解:数据105000用科学记数法表示为51.0510⨯ .故选:A .【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.6. 由六块相同的小正方体搭成的几何体如图所示,则它的俯视图是( )A. B.C. D.【答案】D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】观察图形可知,该几何体的俯视图如下:.故选:D .【点睛】本题考查了简单组合体的三视图的知识,俯视图是从物体的上面看得到的视图. 7. 小华将一副三角板(90C D ∠=∠=︒,30B ∠=︒,45E ∠=︒)按如图所示的方式摆放,其中AB EF ∥,则1∠的度数为( )A. 45︒B. 60︒C. 75︒D. 105︒【答案】C【解析】 【分析】根据平行线的性质得出45AGF F ∠=∠=︒,然后根据三角形内角和定理求解即可.【详解】解:如图:设AB FD 、交于点G ,∵AB EF ∥,∴45AGF F ∠=∠=︒,∵60A ∠=︒,∴1180180604575A AGF ∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查了三角形内角和定理、平行线的性质等知识点,熟练掌握平行线的性质是解题的关键.8. 如图,关于x 的函数y 的图象与x 轴有且仅有三个交点,分别是()()()301030--,,,,,,对此,小华认为:①当0y >时,31x -<<-;②当3x >-时,y 有最小值;③点(),1P m m --在函数y 的图象上,符合要求的点P 只有1个;④将函数y 的图象向右平移1个或3个单位长度经过原点.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个【答案】C【解析】 【分析】结合函数图象逐个分析即可.【详解】由函数图象可得:当0y >时,31x -<<-或3x >;故①错误;当3x >-时,y 有最小值;故②正确;点(),1P m m --在直线=1y x --上,直线=1y x --与函数图象有3个交点,故③错误;将函数y 的图象向右平移1个或3个单位长度经过原点,故④正确;故选:C .【点睛】本题考查了函数的图象与性质,一次函数图象,解题的关键是数形结合.二、填空题(本大题共8小题,每小题3分,共24分)9. 在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为__________.【答案】3【解析】【分析】根据频数定义可得答案.【详解】在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为3,故答案为:3.【点睛】此题主要考查了频数,关键是掌握频数是指每个对象出现的次数.10. 因式分解:2x xy -=__________________.【答案】()x x y -【解析】【分析】根据观察可知公因式是x ,因此提出x 即可得出答案.【详解】解:x 2-xy = x (x -y ).故答案:()x x y -【点睛】提公因式法因式分解是本题的考点,通过观察正确找出公因式是解题的关键.11. 在ABC 中,D ,E 分别为边AB ,AC 的中点,10cm BC =,则DE 的长为__________cm.【答案】5【解析】【分析】由于D 、E 分别为AB 、AC 边上的中点,那么DE 是ABC 的中位线,根据三角形中位线定理可求DE .【详解】如图所示,D 、E 分别为AB 、AC 边上的中点,DE ∴是ABC 的中位线,12DE BC ∴=; 又∵10cm BC =, ∴15cm 2DE BC ==; 故答案为:5.【点睛】本题考查了三角形中位线定理.三角形的中位线等于第三边的一半.12. 如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为__________.【答案】59【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】解:设小正方形的边长为1,则总面积为9,其中阴影部分面积为5, ∴飞镖落在阴影部分的概率是59, 故答案为:59. 【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.13. 我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为__________.【答案】7人【解析】【分析】设共有x 人,价格为y 钱,根据题意列出二元一次方程组即可求解.【详解】解:设共有x 人,价格为y 钱,依题意得:8374x y x y -=⎧⎨+=⎩, 解得:753x y =⎧⎨=⎩, 答:物品价格为53钱,共同购买该物品的人数有7人,故答案为:7.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程组即可求解.14. 如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB 表示“铁军”雕塑的高,点B ,C ,D 在同一条直线上,且60ACB ∠=︒,30ADB ∠=︒,17.5m CD =,则线段AB 的长约为__________m. 1.7≈)【答案】15【解析】【分析】由60ACB ∠=︒,30ADB ∠=︒可得30ADB CAB CAD ∠︒=∠=∠=,可推得17.5m AC CD ==,由三角函数求出AB 即可.【详解】∵60ACB ∠=︒,30ADB ∠=︒,ACB ADB CAD ∠=∠+∠,∴30ADB CAD ∠=∠=︒,∴17.5m AC CD ==,又∵90ABC ∠=︒,∴906030CAB ∠=︒-︒=︒, ∵cos ∠=AB CAB AC,17.5AB = 解得15AB ≈,故答案为:15.【点睛】此题主要考查了解直角三角形的应用,正确得出AC 的长是解题关键.15. 如图,在Rt ABC △中,90ACB ∠=︒,=60B ∠︒,3BC =,将ABC 绕点C 逆时针旋转到EDC △的位置,点B 的对应点D 首次落在斜边AB 上,则点A 的运动路径的长为_________.【解析】【分析】首先证明BCD △是等边三角形,再根据弧长公式计算即可.【详解】解:在Rt ABC △中,∵90ACB ∠=︒,=60B ∠︒,3BC =,∴26AB BC ==,由旋转的性质得CE CA ===,90ACE BCD ACD ∠=∠=︒-∠,CB CD =,∴BCD △是等边三角形,∴60BCD ACE ∠=︒=∠,∴点A =..【点睛】本题考查了旋转变换,含30︒直角三角形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是证明BCD △是等边三角形.16. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数()0k y x x=>的图象上,延长AB 交y 轴于点C ,过点A 作AD y ⊥轴于点D ,连接BD 并延长,交x 轴于点E ,连接CE .若2AB BC =,BCE 的面积是4.5,则k 的值为_________.【答案】6【解析】【分析】过点B 作BF AD ⊥于点F ,连接AE ,设点A 的坐标为,k a a ⎛⎫ ⎪⎝⎭,点B 的坐标为,k b b ⎛⎫ ⎪⎝⎭,则,AD a =,k k AF a b BF b a=-=-,证明∽ ABF ACD ,则AB AF AC AD =,得到3a b =,根据29ABE S BCE == ,进一步列式即可求出k 的值.【详解】解:过点B 作BF AD ⊥于点F ,连接AE ,设点A 的坐标为,k a a ⎛⎫ ⎪⎝⎭,点B 的坐标为,k b b ⎛⎫ ⎪⎝⎭,则,AD a =,k k AF a b BF b a =-=-, ∵2AB BC =, ∴23AB AC =,∵AD y ⊥轴于点D ,∴CD BF ,∴∽ ABF ACD , ∴AB AF AC AD=, ∴23AB a b AC a -==, ∴3a b =,∵2AB BC =,BCE 的面积是4.5,∴29ABE S BCE == , ∴11922AD BF AD OD ⋅+⋅=, ∴11922k k k a a b a a⎛⎫-+⋅= ⎪⎝⎭, 则113392323k k k b b b b b ⎛⎫-+⋅= ⎪⎝⎭, 即3119222k k k -+=,解得6k =,故答案为:6【点睛】此题考查反比例函数的图象和性质、相似三角形的判定和性质等知识,求出3a b =是解题的关键.三、解答题(本大题共11小题,共102分.解答时应写出文字说明、证明过程或演算步骤)17. 计算:()1014cos 6052π-⎛⎫+︒-- ⎪⎝⎭. 【答案】3【解析】【分析】直接利用负整数指数幂的性质、特殊角的三角函数值、零指数幂分别化简,进而得出答案. 【详解】原式124132=+⨯-=. 【点睛】此题主要考查了实数的运算,正确化简各数是解题关键.18. 解不等式4233x x --<,并把它的解集在数轴上表示出来.【答案】1x <,数轴见详解【解析】【分析】根据解一元一次不等式的步骤解答即可. 【详解】4233x x --< 去分母得:()3234x x -<-,去括号得:694x x -<-,移项得:694x x -<-,合并同类项得:55x <,系数化为1:1x <.在数轴上可表示为:.【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.19. 先化简,再求值:()()()2333a b a b a b +++-,其中2a =,1b =-.【答案】226a ab +,4-【解析】【分析】根据完全平方公式和平方差公式展开后化简,最后代入求值即可.【详解】()()()2333a b a b a b +++- 2222699a ab b a b =+++-226a ab =+当2a =,1b =-时,原式()2226214=⨯+⨯⨯-=-. 【点睛】本题考查整式混合运算的化简求值,解题的关键是根据完全平方公式和平方差公式展开. 20. 随着盐城交通快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路A 和省级公路B 两条路线;从乙镇到盐城南洋国际机场,有省级公路C 、高速公路D 和城市高架E 三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).(1)从甲镇到乙镇,小华所选路线是乡村公路A 的概率为_________.(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.【答案】(1)12(2)16【解析】【分析】(1)根据概率公式计算即可;(2)列表表示出所有的可能性,再根据概率公式计算即可.的【小问1详解】从甲镇到乙镇,小华所选路线是乡村公路A 的概率为12, 故答案为:12.【小问2详解】列表如下:C D E AAC AD AE B BC BD BE 共有6种等可能的结果,其中两段路程都选省级公路只有BC ,共1种, ∴小华两段路程都选省级公路的概率16. 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m PA n =. 21. 如图,AB AE =,BC ED =,BE ∠=∠.(1)求证:AC AD =;(2)用直尺和圆规作图:过点A 作AF CD ⊥,垂足为F .(不写作法,保留作图痕迹)【答案】(1)见解析(2)见解析 【解析】【分析】(1)根据边角边证明ABC AED ≌△△即可证明结论成立; (2)根据过直线外一点向直线最垂线的作法得出即可.【小问1详解】证明:∵AB AE =,B E ∠=∠,BC ED =,∴()SAS ABC AED ≌,∴AC AD;【小问2详解】解:所作图形如图,.【点睛】本题主要考查了全等三角形的判定和性质,过直线外一点向直线最垂线的作法,熟练记忆正确作法是解题关键.22. 盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.某校生物兴趣小组去实地调查,绘制出如下统计图.(注:麋鹿总头数=人工驯养头数+野生头数)解答下列问题:(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为_________°;②在折线统计图中,近6年野生麋鹿头数的中位数为_________头.(2)填表:年份2017 2018 2019 2020 2021 2022人工驯养麋鹿头数 3473 3531 3666 3861 _________ 3917(3)结合以上的统计和计算,谈谈你对该保护区的建议或想法.【答案】(1)14.4︒,1585(2)3980(3)见解析【解析】【分析】(1)先计算哺乳类所占百分比,再计算该部分扇形圆心角的度数;(2)先排序,再计算中间的两个数的平均数;(3)从人工驯养和野生保护两个方面表述即可.【小问1详解】解:①在扇形统计图中,哺乳类所占的百分比为:154%32%10%4%---=,∴哺乳类所在扇形的圆心角度数为:3604%14.4︒⨯=︒;②在折线统计图中,近6年野生麋鹿头数按从小到大顺序排序为: 765,1025,1350,1820,2503,3116,近6年野生麋鹿头数的中位数为1350182015852+=, 故答案为:14.4︒,1585;【小问2详解】解:648325033980-=,故答案为:3980;【小问3详解】加强对野生麋鹿的保护的同时,提高人工驯养的技术.【点睛】本题考查了扇形统计图和拆线统计图,中位数,掌握从图形中获取信息的方法是解题的关键. 23. 课堂上,老师提出了下面的问题:已知30a b >>,a M b =,13a Nb +=+,试比较M 与N 的大小. 小华:整式的大小比较可采用“作差法”.老师:比较21x +与21x -的大小.小华:∵()()()222121121110x x x x x +--=+-+=-+>, ∴2121x x +>-.老师:分式大小比较能用“作差法”吗?…(1)请用“作差法”完成老师提出的问题.(2)比较大小:2368__________2265.(填“>”“=”或“<”) 【答案】(1)M N >(2)<【解析】【分析】(1)根据作差法求M N -的值即可得出答案;(2)根据作差法求23226865-的值即可得出答案. 【小问1详解】 解:()()()()()311333333a b b a a a ab a ba b a b M N b b b b b b b b +-+++----=-===++++, 30a b >> ,()3>03a b b b -∴+, >M N ∴; 【小问2详解】解:2322149514961=<06865442044204420--=-, 2322<6865∴. 故答案为:<.【点睛】本题考查分式运算的应用,解题关键是理解材料,通过作差法求解,掌握分式运算的方法. 24. 如图,在ABC 中,O 是AC 上(异于点A ,C )一点,O 恰好经过点A ,B ,AD CB ⊥于点D ,且AB 平分CAD ∠.的的(1)判断BC 与O 的位置关系,并说明理由;(2)若10AC =,8DC =,求O 的半径长.【答案】(1)见解析(2)O 的半径长为154. 【解析】【分析】(1)连接OB ,证明OB AD ∥,即可证得OB BC ⊥,从而证得BC 是圆的切线;(2)设OB OA x ==,则10OC AC OA x =-=-,利用勾股定理求得6AD =,推出COB CAD ∽△△,利用相似三角形的性质列得比例式,据此求解即可.【小问1详解】证明:连接OB ,如下图所示,∵AB 是CAD ∠的平分线,∴BAD BAO ∠=∠,又∵OB OA =,∴OAB OBA ∠=∠,∴BAD OBA ∠=∠,∴OB AD ∥,∴90OBC D ∠=∠=︒,即OB BC ⊥,又∵BC 过半径OB 的外端点B ,∴BC 与O 相切;【小问2详解】解:设OB OA x ==,则10OC AC OA x =-=-,∵在ADC △中,90D Ð=°,10AC =,8DC =,∴6AD ==,∵OB AD ∥,∴COB CAD ∽△△, ∴OB OC AD AC=,即10610x x -=, 解得154x =. 故O 的半径长为154. 【点睛】本题考查了切线的判定,相似三角形的判定和性质,以及勾股定理,熟练掌握切线的判定是解本题的关键.25. 某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买m 本硬面笔记本(m 为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.【答案】(1)甲商店硬面笔记本的单价为16元(2)乙商店硬面笔记本的原价18元【解析】【分析】(1)根据“硬面笔记本数量=软面笔记本数量”列出分式方程,求解检验即可;(2)设乙商店硬面笔记本的原价为a 元,则软面笔记本的单价为()3a -元,由再多购买5本的费用恰好与按原价购买的费用相同可得()()53ma m a =+-,再根据30530m m <⎧⎨+≥⎩且m ,均为正整数,即可求解. 【小问1详解】解:设硬面笔记本的单价为x 元,则软面笔记本的单价为()3x -元,根据题意得 2401953x x =-,解得16x =,经检验,16x =是原方程的根,且符合题意,故甲商店硬面笔记本单价为16元;【小问2详解】设乙商店硬面笔记本的原价为a 元,则软面笔记本的单价为()3a -元,由题意可得30530m m <⎧⎨+≥⎩, 解得2530m ≤<,根据题意得()()53ma m a =+-, 解得3155m a +=, m 为正整数, 25m ∴=,26,27,28,29,分别代入3155m a +=, 可得18a =,18.6,19.2,19.8,20.4,由单价均为整数可得18a =,故乙商店硬面笔记本的原价18元.【点睛】本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是找准等量关系,正确列出相应方程.26. 定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①21y x =-;②2y x x =-,其中,_________为函数1y x =-的轴点函数.(填序号)【尝试应用】(2)函数y x c =+(c 为常数,0c >)的图象与x 轴交于点A ,其轴点函数2y ax bx c =++与x 轴的另一交点为点B .若14OB OA =,求b 的值. 【拓展延伸】 的(3)如图,函数12y x t =+(t 为常数,0t >)的图象与x 轴、y 轴分别交于M ,C 两点,在x 轴的正半轴上取一点N ,使得ON OC =.以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE .若函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++的顶点P 在矩形MNDE 的边上,求n 的值.【答案】(1)①;(2)5b =或3-;(3)1n =或n =14n = 【解析】 【分析】(1)求出函数1y x =-与坐标轴的交点,再判断这两个点在不在二次函数图象上即可; (2)求出函数y x c =+与坐标轴的交点,再由14OB OA =求出点B 坐标,代入二次函数解析式计算即可; (3)先求出M ,C 的坐标,再根据2y mx nx t =++的顶点P 在矩形MNDE 的边上分类讨论即可.【详解】(1)函数1y x =-交x 轴于()1,0,交y 轴于()0,1-,∵点()1,0、()0,1-都在21y x =-函数图象上∴①21y x =-为函数1y x =-的轴点函数;∵点()0,1-不在2y x x =-函数图象上∴②2y x x =-不是函数1y x =-的轴点函数;故答案为:①;(2)函数y x c =+交x 轴于(),0A c -,交y 轴于()0,c , ∵函数y x c =+的轴点函数2y ax bx c =++∴(),0A c -和()0,c 都在2y ax bx c =++上,∵0c >∴OA c = ∵14OB OA =, ∴14OB c = ∴1,04B c ⎛⎫- ⎪⎝⎭或1,04B c ⎛⎫ ⎪⎝⎭当1,04B c ⎛⎫-⎪⎝⎭时,把(),0A c -1,04B c ⎛⎫- ⎪⎝⎭代入2y ax bx c =++得 221101640ac bc c ac bc c⎧=-+⎪⎨⎪=-+⎩,解得5b =, 当1,04B c ⎛⎫ ⎪⎝⎭时,把(),0A c -1,04B c ⎛⎫ ⎪⎝⎭代入2y ax bx c =++得 221101640ac bc c ac bc c⎧=++⎪⎨⎪=-+⎩,解得3b =-, 综上,5b =或3-;(3)函数12y x t =+交x 轴于()2,0M t -,交y 轴于()0,C t , ∵ON OC =,以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE∴(),0N t ,(),2D t t ,()2,2E t t -, ∵函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++ ∴()2,0M t -和()0,C t 在2y mx nx t =++上∴()()2022m t n t t =-+-+,整理得4210mt n -+= ∴122n mt =+∴2y mx nx t =++的顶点P 坐标为24,24n mt n m m ⎛⎫-- ⎪⎝⎭, ∵函数2y mx nx t =++的顶点P 在矩形MNDE 的边上。
2024年江苏省盐城市中考真题数学试卷含答案解析
2024年江苏省盐城市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.有理数2024的相反数是( )A .2024B .2024-C .12024D .12024-【答案】B【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024的相反数是2024-,故选:B .2.下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A .工作中的雨刮器B .移动中的黑板C .折叠中的纸片D .骑行中的自行车【答案】C【分析】本题考查了折叠,根据折叠的定义逐项判断即可求解,掌握折叠的定义是解题的关键.【详解】解:A 、工作中的雨刮器,属于旋转,不合题意;B 、移动中的黑板,属于平移,不合题意;C 、折叠中的纸片,属于翻折,符合题意;D 、骑行中的自行车,属于平移,不合题意;故选:C .3.下列运算正确的是( )A .624a a a ÷=B .22a a -=C .326a a a ⋅=D .()235a a =【答案】A【分析】本题考查了同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等知识点,熟知相关运算法则是解本题的关键.根据同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等运算法则分别计算即可得出答案.【详解】解:A 、624a a a ÷=,正确,符合题意;B 、2a a a -=,错误,不符合题意;C 、325a a a ⋅=,错误,不符合题意;D 、()236a a =,错误,不符合题意;故选:A .4.盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( )A .70.2410⨯B .52410⨯C .72.410⨯D .62.410⨯5.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A .湿B .地C .之D .都【答案】C 【分析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.【详解】解:由正方体表面展开图的特征可得:“盐”的对面是“之”,“地”的对面是“都”,“湿”的对面是“城”,故选C .6.小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒【答案】B 【分析】此题考查了平行线的性质,根据平行线的性质得到3155∠=∠=︒,再利用平角的定义即可求出2∠的度数.【详解】解:如图,∵155∠=︒,AB CD∴3155∠=∠=︒,∴21802335∠=︒-∠-∠=︒,故选:B7,设其面积为2cm S ,则S 在哪两个连续整数之间( )A .1和2B .2和3C .3和4D .4和58.甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况()A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢【答案】A【分析】本题考查了折线统计图,根据折线统计图即可判断求解,看懂折线统计图是解题的关键.【详解】解:由折线统计图可知,甲公司2019~2021年利润增长50万元,2021~2023年利润增长70万元,乙公司2019~2021年利润增长20万元,2021~2023年利润增长20万元,∴甲始终比乙快,故选:A.二、填空题9.若分式11x-有意义,则x的取值范围是.故答案为:1x ≠.10.分解因式:x 2+2x +1= 【答案】()21x +/()21x +【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.【详解】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.【点睛】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).11.两个相似多边形的相似比为12∶,则它们的周长的比为 .12.如图,ABC 是O 的内接三角形,40C ∠=︒,连接OA OB 、,则OAB ∠= ︒.【答案】50【分析】本题考查主要考查圆周角定理、等腰三角形的性质、三角形内角和定理,先根据圆周角定理计算出280AOB C ∠=∠=︒,再根据等边对等角得出OAB OBA ∠=∠,最后利用三角形内角和定理即可求出OAB ∠.【详解】解: 40C ∠=︒,∴280AOB C ∠=∠=︒,13.已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是.【答案】20π【分析】结合题意,根据圆锥侧面积和底面圆半径、母线的关系式计算,即可得到答案.【详解】解:∵圆锥的底面圆半径为4,母线长为5∴圆锥的侧面积4520=⨯⨯=Sππ故答案为:20π.【点睛】本题考查了圆锥的知识,解题的关键是熟练掌握圆锥的性质,从而完成求解.14.中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为尺.15.如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m的点P处,测得教学楼底端点A的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m至点Q处,测得教学楼顶端点B的俯角为45︒,则教学楼AB的高度约为m.(精确到1m,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)由题意知30m AH =,在Rt PHA △中,tan AH PHA PH∠=解得40m PH =,∴4026.613.4QH PH PQ =-=-=16.如图,在ABC 中,90ACB ∠=︒,AC BC ==,点D 是AC 的中点,连接BD ,将BCD 绕点B 旋转,得到BEF .连接CF ,当CF AB ∥时,CF = .∵CF ∥AB ,∴45FCB CBA ∠=∠=︒,∴BCG 是等腰直角三角形,且22BC =,∴22222CG BG BC ===⨯=,三、解答题17.计算:()0214sin30π--++︒18.求不等式113x x +≥-的正整数解.【答案】1,2.【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键.【详解】解:去分母得,()131x x +≥-,去括号得,133x x +≥-,移项得,331x x -≥--,合并同类项得,24x -≥-,系数化为1得,2x ≤,∴不等式的正整数解为1,2.19.先化简,再求值:22391a a a a a---÷+,其中4a =.20.在“重走建军路,致敬新四军”红色研学活动中,学校建议间学们利用周末时间自主到以下三个基地开展研学活动.A.新四军纪念馆(主馆区);B.新四军重建军部旧址(泰山庙):C.新四军重建军部纪念塔(大铜马),小明和小丽各自随机选择一个基地作为本次研学活动的第一站.(1)小明选择基地A的概率为________:(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.21.已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =.若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.【答案】①或③(答案不唯一),证明见解析【分析】题目主要考查全等三角形的判定和性质,①根据平行线的性质得出,A FBD D ECA ∠=∠∠=∠,再由全等三角形的判定和性质得出AC BD =,结合图形即可证明;②得不出相应的结论;③根据全等三角形的判定得出(SAS)AEC BFD ≌,结合图形即可证明;熟练掌握全等三角形的判定和性质是解题关键.【详解】解:选择①CE DF ∥;∵AE BF ∥,CE DF ∥,∴,A FBD D ECA ∠=∠∠=∠,∵AE BF =,∴(AAS)AEC BFD ≌ ,∴AC BD =,∴AC BC BD BC -=-,即AB CD =;选择②CE DF =;无法证明AEC BFD △≌△,无法得出AB CD =;选择③E F ∠=∠;∵AE BF ∥,∴A FBD ∠=∠,∵AE BF =, E F ∠=∠,∴()ASA AEC BFD ≌,∴AC BD =,∴AC BC BD BC -=-,即AB CD =;故答案为:①或③(答案不唯一)22.小明在草稿纸上画了某反比例函数在第二象限内的图像,并把矩形直尺放在上面,如图.请根据图中信息,求:(1)反比例函数表达式;(2)点C 坐标.由图可得3AD =,2OD =,设点C 的坐标为6,m m ⎛⎫- ⎪⎝⎭,则CE ∴63BE OE OB m=-=--, 矩形直尺对边平行,23.如图,点C 在以AB 为直径的O 上,过点C 作O 的切线l ,过点A 作AD l ⊥,垂足为D ,连接AC BC 、.(1)求证:ABC ACD △△∽;(2)若5AC =,4CD =,求O 的半径.∵CD 是O 的切线,点∴OCD OCA ∠∠=+∴ACD OCB ∠∠=,24.阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为h t ,调查问卷设置了四个时间选项:A .1t <;B .1 1.5t ≤<;C .1.52t ≤<;D .2t ≥),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.9月份学生每天阅读时间条形统计图12月份学生每天阅读时间扇形统计图请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为________,该地区七年级学生“每天阅读时间不少于1小时”的人数约为________人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.25.如图1,E、F、G、H分别是平行四边形ABCD各边的中点,连接AF CE、交于点M,连接AG、CH交于点N,将四边形AMCN称为平行四边形ABCD的“中顶点四边形”.(1)求证:中顶点四边形AMCN为平行四边形;、交于点O,可得M、N两点都在BD上,当平行四边形ABCD满(2)①如图2,连接AC BD足________时,中顶点四边形AMCN是菱形;②如图3,已知矩形AMCN为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)(2)①当平行四边形ABCD 满足AC BD ⊥时,中顶点四边形AMCN 是菱形,由(1)得四边形AMCN 是平行四边形,∵AC BD ⊥,∴MN AC ⊥,∴中顶点四边形AMCN 是菱形,故答案为:AC BD ⊥;②如图所示,即为所求,连接AC ,作直线MN ,交于点O ,然后作2,2ND ON MB OM ==(或作BM=MN=ND ),然后连接AB BC CD DA 、、、即可,∴点M 和N 分别为ABC ADC 、的重心,符合题意;证明:矩形AMCN ,∴,AC MN OM ON ==,∵2,2ND ON MB OM ==,∴OB OD =,∴四边形ABCD 为平行四边形;分别延长CM AM AN CN 、、、交四边于点E 、F 、G 、H 如图所示:∵矩形AMCN ,∴AM CN ∥,MO NO =,由作图得BM MN =,∴MBF NBC ∽,∴12BF BM BC BN ==,∴点F 为BC 的中点,同理得:点E 为AB 的中点,点26.请根据以下素材,完成探究任务.制定加工方案背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.生产背景背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.探究任务任务3拟定加工方案制定使每天总利润最大的加工方案.27.发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽.提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n个籽,每列有k个籽,行上相邻两籽、列上相邻两籽的间距都为d(n,k均为正整数,>≥,0n k3d>),如图1所示.小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为________,共铲________行,则铲除全部籽的路径总长为________;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为________;方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长.解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.。
2022年江苏省盐城市中考数学试题(含答案解析)
2022年江苏省盐城市初中学业水平考试一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.(2022江苏盐城,1,3分)2022的倒数是( ) A.2022-B.12022C.2022D.12022-2.(2022江苏盐城,2,3分)下列计算,正确的是( ) A.23a a a +=B.236a a a ⋅=C.632a a a ÷=D.()326aa =3.(2022江苏盐城,3,3分)下列四幅照片中,主体建筑的构图不对称的是( )A. B. C. D.4.(2022江苏盐城,4,3分)盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为( ) A.70.1610⨯B.71.610⨯C.61.610⨯D.51610⨯5.(2022江苏盐城,5,3分)一组数据2-,0.3,1,1-的极差是( ) A.2 B.3 C.4 D.56.(2022江苏盐城,6,3分)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A.强B.富C.美D.高7.(2022江苏盐城,7,3分)小明将一块直角三角板摆放在直尺上,如图所示,则ABC ∠与DEF ∠的关系是( )A.互余B.互补C.同位角D.同旁内角8.(2022江苏盐城,8,3分)“跳眼法”是指用手指和眼睛估测距离的方法步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测,点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为( ) A.40米 B.60米C.80米D.100米二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.(2022江苏盐城,9,3x 的取值范围是__________.10.(2022江苏盐城,10,3分)已知反比例函数的图象经过点()2,3,则该函数表达式为__________.11.(202江苏盐城,1,3分)分式方程1121x x +=-的解为__________. 12.(2022江苏盐城,12,3分)如图,电路图上有A ,B ,C 3个开关和1个小灯泡,闭合开关C 或同时闭合开关A 、B 都可以使小灯泡发亮.任意闭合其中的1个开关,小灯泡发亮的概率是__________.13.(2022江苏盐城,13,3分)如图,AB 、AC 是O 的弦,过点A 的切线交CB 的延长线于点D ,若35BAD ∠=︒,则C ∠=___________°.14.(2022江苏盐城,14,3分)如图,在矩形ABCD 中,22AB BC ==,将线段AB 绕点A 按逆时针方向旋转,使得点B 落在边CD 上的点B '处,线段AB 扫过的面积为___________.15.(2022江苏盐城,15,3分)若点(),P m n 在二次函数222y x x =++的图象上,且点P 到y 轴的距离小于2,则n 的取值范围是____________.16.(2022江苏盐城,16,3分)《庄子▪天下篇》记载“一尺之锤,日取其半,万世不竭.”如图,直线11:12l y x =+与y 轴交于点A ,过点A 作x 轴的平行线交直线2:l y x =于点1O ,过点1O 作y 轴的平行线交直线1l 于点1A ,以此类推,令1OA a =,112O A a =,,11n n n O A a --=,若12n a a a S +++≤对任意大于1的整数n 恒成立,则S 的最小值为___________.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(2022江苏盐城,17,6分))3tan 451-+︒-.18.(2022江苏盐城,18,6分)解不等式组:()212,12142x x x x +≥+⎧⎪⎨-<+⎪⎩. 19.(2022江苏盐城,19,6分)先化简,再求值:()()()2443x x x +-+-,其中2310x x -+=. 20.(2022江苏盐城,20,8分)某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A 、B 、C ,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)21.(2022江苏盐城,21,8分)小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发两人离甲地的距离y (m )与出发时间x (min )之间的函数关系如图所示.(1)小丽步行的速度为__________m/min ; (2)当两人相遇时,求他们到甲地的距离.22.(2022江苏盐城,22,10分)证明:垂直于弦AB 的直径CD 平分弦以及弦所对的两条弧.23.(2022江苏盐城,23,10分)如图,在ABC △与A B C '''△中,点D 、D '分别在边BC 、B C ''上,且ACD A C D '''△△∽,若___________,则ABD A B D '''△△∽.请从①BD B D CD C D ''='';②AB A B CD C D ''='';③BAD B A D '''∠=∠这三个选项中选择一个作为条件(写序号),并加以证明.24.(2022江苏盐城,24,10分)合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:注:供能比为某物质提供的能量占人体所需总能量的百分比.(1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m. (1)求A 、C 两点之间的距离; (2)求OD 长.(结果精确到0.1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈ 2.24≈)26.(2022江苏盐城,26,12分) 【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法图是其中一种方法的示意图及部分辅助线.在ABC △中,90ACB ∠=︒,四边形ADEB 、ACHI 和BFGC 分别是以Rt ABC △的三边为一边的正方形.延长IH 和FG ,交于点L ,连接LC 并延长交DE 于点J ,交AB 于点K ,延长DA 交IL 于点M .(1)证明:AD LC =;(2)证明:正方形ACHI 的面积等于四边形ACLM 的面积; (3)请利用(2)中的结论证明勾股定理. 【迁移拓展】(4)如图,四边形ACHI 和BFGC 分别是以ABC △的两边为一边的平行四边形,探索在AB 下方是否存在平行四边形ADEB ,使得该平行四边形的面积等于平行四边形ACHI 、BFGC 的面积之和.若存在,作出满足条件的平行四边形ADEB (保留适当的作图痕迹);若不存在,请说明理由.27.(2022江苏盐城,27,14分) 【发现问题】小明在练习簿的横线上取点O 为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律. 【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图象上.【分析问题】小明利用已学知识和经验,以圆心O 为原点,过点O 的横线所在直线为x 轴,过点O 且垂直于横线的直线为y 轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为___________. 【解决问题】请帮助小明验证他的猜想是否成立. 【深度思考】小明继续思考:设点()0,P m ,m 为正整数,以OP 为直径画M ,是否存在所描的点在M 上.若存在,求m 的值;若不存在,说明理由.2022年江苏省盐城市初中学业水平考试答案一、选择题 1.B 2022的倒数是12022,故选B. 2.D a 与2a 不是同类项,无法合并,选项A 错误;235a a a ⋅=,选项B 错误;633a a a ÷=,选项C 错误;()326a a =,选项D 正确.故选D.3.B 四幅图片中只有B 中图片不能满足:将图形沿一条直线折叠,直线两旁的部分能够互相重合,故选B.4.C 61600000 1.610=⨯.故选C.5.D 最大值3与最小值2-的差为()325--=,故选D.6.D 正方体的展开图中“城”“强”“富”“美”可组成正方体的前后左右面,所以“盐”字所在面相对的面上的汉字是“高”,故选D.7.A 如图,过点G 作GH 平行于BC ,则GHDE ,ABC AGH ∴∠=∠,DEF FGH ∠=∠, 90AGH FGH ∠+∠=︒,90ABC DEF ∴∠+∠=︒,故选A.8.C 由“跳眼法”的步骤可知被测物体与观测点的距离是横向距离的10倍.观察图形,横向距离大约是汽车长度的2倍,为8米,所以汽车到观测点的距离约为80米,故选C. 二、填空题 9.答案 1x ≥解析 根据二次根式的被开方数大于等于0,可得10x -≥,解得1x ≥. 10.答案 6y x=解析 点()2,3在反比例函数k y x =的图象上,则326k =⨯=.所以反比例函数表达式为6y x=. 11.答案 2x =解析 方程两边同乘()21x -得121x x +=-.解得2x =,经检验,2x =是原分式方程的根. 12.答案13解析 任意闭合一个开关,有3种等可能结果,只闭合A 或B 小灯泡不发亮,只闭合C 小灯泡发亮,所以任意闭合一个开关,小灯泡发亮的概率为13. 13.答案 35解析 如图,连接AO 并延长,交O 于点E ,连接BE .AE 为O 的直径,90ABE ∴∠=︒, 90E BAE ∴∠+∠=︒,AD 为O 的切线,90BAE BAD ∴∠+∠=︒,35E BAD ∴∠=∠=︒,根据圆周角定理得35C E ∠=∠=︒.14.答案π3解析 过点B '作B E AB '⊥,则B E BC '=,由旋转可知AB AB '=,因为22AB BC ==,所以2AB B E ''=,所以30BAB '∠=︒,所以线段AB 扫过的面积230π2π3603⋅⋅==. 15.答案 110n ≤<解析 点P 到y 轴的距离小于2,22m ∴-<<,点(),P m n 在二次函数222y x x =++的图象上,()222211n m m m ∴=++=++, ∴当1m =-时,n 有最小值为1.当2m =时,()221110n =++=,n ∴的取值范围为110n ≤<.16.答案 2 解析 方法一:直线2:l y x =与y 轴的夹角是45°,1OAO ∴△,112O A O △,…都是等腰直角三角形, 1OA O A ∴=,1121O A O A =,2232O A O A =,……点A 的坐标为()0,1,∴点1O 的横坐标为1, 当1x =时,131122y =⨯+=,∴点1A 的坐标为31,2⎛⎫ ⎪⎝⎭, 112131122O A O A ∴==-=, ∴点2O 的横坐标13122+=,当32x =时,1371224y =⨯+=,∴点2A 的坐标为37,24⎛⎫⎪⎝⎭,32227111424O A O A ∴==--=,…… 以此类推,得11OA a ==,11212O A a ==,22314O A a ==,33418O A a ==,……,11112n n n n O A a ---==,123111111122422n n n a a a a S --∴++++=++++=-≤, S ∴的最小值为2.方法二:设1l ,2l 的交点为B ,联立11,2,y x y x ⎧=+⎪⎨⎪=⎩ 解得2,2,x y =⎧⎨=⎩()2,2B ∴,过点B 作BD x ⊥轴于D 点, 由已知可得112211n n AOAO A O A O --,112231n nAO AO A O A Ox -轴,122n a a a BD ∴+++≤=,S ∴的最小值为2.三、解答题17.解析)3tan 451-+︒-311=+-3=.18.解析 解不等式212x x +≥+,得1x ≥,解不等式()12142x x -<+,得2x <, 所以不等式组的解集是12x ≤<.19.解析 原式221669x x x =-+-+2267x x =--.2310x x -+=,231x x ∴-=-,原式()()22372179x x =--=⨯--=-. 20.解析 解法一:画树状图如下:由图可知,共有9种等可能的结果,其中甲、乙两人不在同一检测点参加检测的结果有6种,故甲、乙两人不在同一检测点参加检测的概率为6293=. 解法二:列表如下:6种,所以所求概率为6293=. 21.解析 (1)80.(2)解法1:小丽离甲地的距离y (m )与出发时间x (min )之间的函数表达式是()80030y x x =≤≤丽,小华离甲地的距离y (m )与出发时间x (min )之间的函数表达式是()1202400020y x x =-+≤≤华,两人相遇即y y =丽华时,801202400x x =-+,解得12x =, 当12x =时,80960y x ==丽(m ). 答:两人相遇时离甲地的距离是960m.解法2:设小丽与小华经过t min 相遇,由题意得801202400t t +=,解得12t =, 所以两人相遇时离甲地的距离是8012960⨯=m. 答:两人相遇时离甲地的距离是960m. 22.解析 已知:如图,CD 是O 的直径,AB 是O 的弦,AB CD ⊥,垂足为P .求证:PA PB =,AD BD =,AC BC =.证明:如图,连接OA 、OB . 因为 OA OB =,OP AB ⊥, 所以PA PB =,AOD BOD ∠=∠. 所以AD BD =,AOC BOC ∠=∠. 所以AC BC =.23.解析 若①BD B D CD C D''='', 证明:因为ACD A C D '''△△∽,所以ADC A D C '''∠=∠,AD CDA D C D ='''', 所以ADB A D B '''∠=∠,因为BD B D CD C D ''='',所以BD CD B D C D ='''', 所以AD BD A D B D ='''', 又ADB A D B '''∠=∠, 所以ABD A B D '''△△∽.选择②BA B A CD C D ''=''不能证明ABD A B D '''△△∽. 若③BAD B A D '''∠=∠, 证明:因为ACD A C D '''△△∽,所以ADC A D C '''∠=,所以ADB A D B '''∠=∠, 又BAD B A D '''∠=∠,所以ABD A B D '''△△∽. 24.解析 (1)抽样调查(2)样本中所有学生的脂肪平均供能比为3536.6%2540.4%4039.2%100%38.59%352540⨯+⨯+⨯⨯=++,样本中所有学生的碳水化合物平均供能比为3548.0%2544.1%4047.5%100%46.825%352540⨯+⨯+⨯⨯=++.答:样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%.(2)该校学生蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,膳食不合理,营养搭配不均衡,建议增加碳水化合物的摄入量,减少脂肪的摄人量.(答案不唯一,建议合理即可)25.解析 (1)解法1:如图1,连接AC ,过点C 作CF AB ⊥,交AB 的延长线于F . 在Rt BCF △中,18037CBF ABC ∠=︒-∠=︒,sin 37CFBC ︒=,所以sin37 1.2CF BC =⋅︒≈m , cos37BFBC︒=,所以cos37 1.6BF BC =⋅︒≈m , 在Rt ACF △中, 1.2CF =m , 6.6AF AB BF =+=m ,根据勾股定理得 6.7AC ==≈m. 答:A 、C 两点之间的距离约6.7m.解法2:如图2,连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H . 在Rt ABH △中,18037ABH ABC ∠=︒-∠=︒,sin 37AHAB ︒=,所以sin373m AH AB =⋅︒≈, cos37BHAB︒=,所以cos374m BH AB =⋅︒≈, 在Rt ACH △中,3AH =m ,6CH BC BH =+=m ,根据勾股定理得 6.7AC ==≈m , 答:A 、C 两点之间的距离约6.7m.(2)如图2,过点A 作AG DC ⊥,垂足为G ,则四边形AGDO 为矩形,1GD AO ==m ,AG OD =,所以5CG CD GD =-=m ,在Rt ACG △中,AG =,5CG =m ,根据勾股定理得 4.5AG ==≈m.4.5OD AG ∴==m.答:OD 的长为4.5m.26.解析 (1)证明:由正方形ADEB 可得490B D ∠=︒,AD AB =,由正方形ACHI 可得90ACH CHI ∠=∠=︒,AC CH =,由正方形BFGC 可得90BCG CGF ∠=∠=︒,CB CG =,所以90CHL CGL ∠=∠=︒, 又因为90ACB ∠=︒,所以90HCG ∠=︒,所以四边形CGLH 是矩形,所以HL CG CB ==,在ABC △和CLH △中,AC CH =,90ACB CHL ∠=∠=︒,CB HL =,所以()ABC CLH SAS ≌△△,所以AB LC =,因为AD AB =,所以AD LC =.(2)证明:因为ABC CLH ≌△△,所以CAB HCL ∠=∠,又90ACH ∠=︒,所以90ACK HCL ∠+∠=︒,所以90ACK CAB ∠+∠=︒,所以90AKC ∠=︒,所以90BAD AKC ∠=∠=︒,所以AD LC . 因为四边形ACHI 是正方形,所以ACHI S AC HC =⋅正方形,AC IH , 右AD LC ,所以四边形ACLM 是平行四边形,ACLM S AC HC =⋅四边形,ACHI ACLM S S ∴=正方形四边形. (3)证明:由正方形ADEB 可得AB DE , 又AD LC ,所以四边形ADJK 是平行四边形,由(2)知,四边形ACLM 是平行四边形,由(1)知,AD LC =,所以ACHI ADJK ACLM S S S ==正方形平行四边形平行四边形,延长EB 交LG 于Q ,同理有BFGC KJEB CBQL S S S ==正方形平行四边形平行四边形,所以+ACHI BFGC ADEB ADJK KJEB S S S S S +==正方形正方形正方形平行四边形平行四边形.所以222AC BC AB +=.(4)如图为所求作的平行四边形ADEB .(方法中唯一,合理即可)27.解析 【分析问题】()3,4-或()3,4.【解决问题】小明的猜想成立.解法1:设半径为n 的圆与直线1y n =-的交点为P (),1x n -.因为OP n =,所以()2221x n n +-=,即221x n =-, 所以21122n x =+, 所以211122y n x =-=-上,小明的猜想成立. 解法2:设半径为n 的圆与直线1y n =-交点为(),1P x n -,因为OP n =,所以()2221x n n +-=,解得x =,所以()1P n -. 1x y n ⎧=⎪⎨=-⎪⎩,消去n ,得21122y x =-, ∴点在抛物线21122y x =-上,小明的猜想成立. 解法3:根据图中点的位置,猜想抛物线的对称轴是y 轴,所以设抛物线的解析式为2y ax c =+.在描出的点中,取两点,如),)2, 代入得3152a c a c +=⎧⎨+=⎩,解得1212a c ⎧=⎪⎪⎨⎪=-⎪⎩,所以21122y x =-,按规律所描的点为)1P n -或()1P n -,当x =时,211122y n =-=-,所以)1P n -在抛物线上,同理()1P n -在抛物线上, 所以点P 在抛物线21122y x =-上,小明的猜想成立. 【深度思考】存在所描的点在M 上,理由:设所描的点()()0N n n >在M 上,则MO MN =,因为0,2m M ⎛⎫⎪⎝⎭,所以(22222m m n ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭, 化简得221mn n n =++, 所以12m n n =++,因为m ,n 都是正整数,所以只有1n =,4m =满足要求.因此,存在唯一满足要求的m ,其值是4。
江苏省盐城市中考数学试卷及答案解析
盐城市二○一一年高中阶段教育招生统一考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.-2的绝对值是A .-2B .- 12C .2D .12【答案】C 。
【考点】绝对值。
【分析】根据绝对值的定义,直接得出结果。
2.下列运算正确的是A .x 2+ x 3= x 5B .x 4·x 2= x 6C .x 6÷x 2= x 3D .( x 2)3= x 8【答案】B 。
【考点】同底幂的乘法。
【分析】42426x x x x +⋅==3.下面四个几何体中,俯视图为四边形的是【答案】D 。
【考点】几何体的三视图。
【分析】根据几何体的三视图,直接得出结果。
4.已知a -b =1,则代数式2a -2b -3的值是 A .-1 B .1 C .-5 D .5【答案】A 。
【考点】代数式代换。
【分析】()22323231a b a b --=--=-=-5.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离 【答案】B 。
【考点】圆心距。
【分析】126464<O O <-+∴ Q 两圆相交。
6.对于反比例函数y =1x,下列说法正确的是A BC DA .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C 。
【考点】反比例函数。
【分析】根据反比例函数性质,直接得出结果。
最新江苏省盐城市中考数学测试试题附解析
江苏省盐城市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若半径为3,5的两个圆相切,则它们的圆心距为( )A .2B .8C .2或8D .1或42.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,且AB=5,AC=4,AD=x ,AE=y ,则y 与x 的关系式是( )A .x y 5=B .x y 54=C .x y 45=D .x y 209= 3.如图,A 、B 、C 是⊙O 上三点,∠AOB= 50°,则∠ACB= ( )A .25°B .50°C .30°D .100° 4.把y =-x 2-4x +2化成y =a (x +m )2+n 的形式是( )A .y =-(x -2)2 -2B .y =-(x -2)2 +6C .y =-(x +2)2 -2D .y =-(x +2)2+65.方程29x =的解是( )A .9x =B .19x =,29x =-C .3x =D .13x =,23x =-6.若2a a >,则a 应满足( )A .0a <B .01a <<C .11a -<<D .1a >或0a < 7.掷一枚均匀的骰子,骰子停止转动后朝上一面的点数出现以下情况的概率最小的是( ) A .偶数B .奇数C .比5小的数D .数6 8.如图所示,在4×4的正方形网格中,∠l ,∠2,∠3的大小关系是( ) A .∠l>∠2>∠3B .∠1=∠2>∠3C .∠l<∠2=∠3D .∠l=∠2=∠39.下面结论中,错误的是( )A .一个数的平方不可能是负数B .一个数的平方一定是正数C.一个非 0有理数的偶数次方是正数D.一个负数的奇数次方还是负数10.已知矩形的周长是24 cm,相邻两边之比是1:2,那么这个矩形的面积是()A.24 cm2B.32 cm2 C.48 cm2 D.128 cm2二、填空题11.如图,ABCD 是矩形,AB= 12 厘米,BC=16 厘米,⊙O1、⊙O2分别为△ABC、△ADC 的内切圆,E、F为切点,则 EF 的长是厘米.12.已知反比例函数8yx=-的图象经过点P(a-1,4),则a=_____.-113.已知Rt△ABC的两直角边的长分别为6cm和8cm,则它的外接圆的半径为___________cm.14.如图所示的抛物线,当x _时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小;当 x 时,y有最大值.15.已知一种卡车每辆至多能载4吨货物,现有38吨黄豆,若要一次运完这批黄豆,至少需要这种卡车辆.16.林城是一个美丽的城市,为增强市民的环保意识,配合6月5日的“世界环境日”活动,某校初三(1)班50名学生调查了各自家庭一天丢弃塑料袋的情况,统计结果如下:这50个同学家一天丢弃废塑料袋的众数是;17.如图,平面镜A 与B之间的夹角为 120°,光线经平面镜A 反射到平面镜B上,再反射出去.若∠1=∠2,则∠1 的度数为 .18.若4y-3x=0 ,则y yx+= .19.如图,在△ABC中,∠BAC=45,现将△ABC绕点A逆时针旋转30至△ADE的位置.则∠DAC= .20.被减式为232x xy-,差式为2243x xy y-+,则减式为.三、解答题21.根据生物学家的研究,人体的许多特征都是由基因控制的,有的人是单眼皮,有的人是双眼皮,这是由一对人体基因控制的,控制单眼皮的基因f是隐性的,控制双眼皮的基因F是显性的,这样控制眼皮的一对基因可能是ff、FF或Ff,基因ff的人是单眼皮,基因FF或Ff的人是双眼皮.在遗传时,父母分别将他们所携带的一对基因中的一个遗传给子女,而且是等可能的,例如,父母都是双眼皮而且他们的基因都是Ff,那么他们的子女只有ff、FF或Ff三种可能,具体可用下表表示:你能计算出他们的子女是双眼皮的概率吗?如果父亲的基因是Ff,母亲的基因是ff呢?22.如图,点 P 的坐标为(4,0),OP 的半径为 5,且⊙P与x 轴交于点A、B,与y轴交于点C、D,试求出点A、B、C、D 的坐标.23.如图,梯形ABCD中,DC∥AB,DE∥BC交AB于E,已知△ADE的周长为12cm,CD=5 cm.求梯形的周长.24.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数.方案4 所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.25.已知等腰三角形△ABC中,AB=AC,AC边上的中线BD将它的周长分成9 cm和8 cm两部分,求腰长.26.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1, 连结DF、BF,线段DF与BF的长相等.若正确请说明理由;若不正确,请举出反例;(2)若将正方形AEFG绕点A按顺时针方向旋转, 连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.27.在某次美化校园活动中,先安排34人去拔草,l8人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和支援植树的分别有多少人?28.小明买了6个梨的总质量是0.95 kg,那么平均每个梨的质量约为多少(精确到0.01 kg)?29.若 a-1 的相反数是 2,b 的绝对值是 3,求a-b的值.30.如图,某班教室中有9排5列座位,请根据下列四位同学的描述.在图中标出“5号”孙靓的位置.1号同学说:“孙靓在我的后方.”2号同学说:“孙靓在我的左后方.”3号同学说:“孙靓在我的左前方.”4号同学说:“孙靓离1号同学和3号同学的距离一样远.”【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.A4.D5.D6.D7.D8.B9.B10.B二、填空题11.412.13.514.≤2,≥2,215.1016.217.30°18.37 19. 15°20.223x xy y ---三、解答题21. 概率为43. 若父亲的基因是Ff ,母亲的基因是ff 时,子女出现双眼皮的概率为21(50%). 22.∵点 P 的坐标为 (4,0),∴OP=4 ,∵⊙P 的半径为 5,∴AP=PB= 5,∴OA=AP-OP= 5- 4 = 1,OB=OP+PB=4+5 = 9,∴A(-1,0) ,B(9 ,0)连结 PC 、PD ,在 Rt △POO 中,PC=5,OP=4,∴OC= 3,同理 OD=3,∴C(0,3) ,D(0,-3)23.22 cm24.解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.7 10+++⨯+⨯+=;方案2最后得分:1(7.07.83838.4)8 8++⨯+⨯=;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.25.6cm或163cm26.(1)正确,理由略,(2)DG=BE27.拔草14人,植树6人28.0.16 kg29.-4或230.如图:。
2022年江苏省盐城市中考数学试卷附解析
2022年江苏省盐城市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米 B.6米 C.7.2米 D.8米下列图形中,不是正方体平面展开图的是()3.如图,有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则CF的长为()A.0.5 B.0.75 C.1 D.1.254.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线互相平分的四边形是平行四边形C.四条边相等的四边形是菱形D.对角线互相垂直且相等的四边形是正方形5.下列命题中正确的是()A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱形C.对角线互相垂直且相等的四边形是正方形D.对角线相等的平行四边形是矩形6.在平行四边形ABCD中,AB=2,BC=3,∠B=60°,则平行四边形ABCD的面积为()A.6 B.332C.3D.37.下列交通标志中既是中心对称图形,又是轴对称图形的是()8.如图,将矩形ABCD沿AE折叠,已知∠CED′=60°则∠AED等于()A.75°B.60°C.55°D.50°9. 已知m 是整数,且满足210521m m ->⎧⎨->-⎩,则关于x 的方程2242(2)34mx x m x x --=+++的解为( )A .12x =-,232x =-B .12x =,232x =C .67x =-D .12x =-,232x =-或67x =- 10.已知120x x +<,且120x x ⋅<,下列判断正确的是( )A .10x <,0z x >B .10x >,20x <C .1x ,2x 同号D .1x ,2x 异号且负数的绝对值较大 11.如图,在等腰△ABC 中,AB=AC ,∠A=44°,CD ⊥AB 于D ,则∠DCB 等于( )A . 68°B .46°C .44°D .22°12.下列说法:①直线向两方无限延伸,它无长短之分,但有粗细之别;②两条直线相交, 只有一个交点;③点a 在直线AB 外;④直线动经过点P .其中不正确的有( )A .1个B .2个C .3个D .4个 13.9416 ) A .34 B .324±C .223D 173414.把方程0382=+-x x 化成n m x =+2)(的形式,则n m ,的值( )A .4、13B .-4、19C .-4、13D .4、19二、填空题15.已知两数 1 和一2,请你再写出两个数,使它们与 1、一2 能构成一个比例式,则这两个数可以是 .16.如图,0BCD 是边长为1的正方形,∠Box=60°,则点B 的坐标为 .17.△ABC 的两边分别为5,12,另一边c 为奇数,且a+b+c•是3•的倍数,•则c•应为________,此三角形为________三角形.18.若代数式31 x 有意义,则实数x 的取值范围是 .19.由一个圆平均分成8个相等扇形的转盘,每个扇形内标有如图数字,固定指针,转动转盘,则指针指到负数的概率是 .20.小舒 t(h)走了 s(km)的路程,则小舒走路的平均速度是 km/h.三、解答题21.如图,BC 是⊙O 的直径,0 是圆心,P 是BC 延长线上一点,PA 切⊙O 于点 A ,若 ∠B=30°,问 AB 与 AP 是否相等?请说 明理由.22.如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.23.近年来某市政府不断加大对城市绿化的经济投入,使全市绿地面积不断增加,从2004年底到2006年底城市绿地面积变化如图所示,那么绿地面积的年平均增长率是.24.已知:如图,直线l是一次函数y kx b=+的图象.求:(1)这个函数的解析式;(2)当4x=时,y的值.25.当x取什么值时,代数式5134xx+-的值为:(1)负数;(2)非负数;(3)小于2.26.将下列各图形的变换与变换的名称用线连起来:平移变换相似变换旋转变换轴对称变换27.有个多项式,它的前后两项被墨水污染了看不清,已知它的中间项是12xy,且每一项的系数均为整数,请你把前后两项补充完整,使它成为完全平方式,并将它进行因式分解.你有几种方法?试试看!多项式:■+12xy+■=( )228.如果25xy=⎧⎨=-⎩和11xy=⎧⎨=-⎩是方程15mx ny+=的两个解,求m,n的值.29.去括号,并合并同类项:(1)2(3)(72)x y y----+(2)23(21)2(32)a a---++30.用计算器计算:(1)25.15+(-3.2)+18.36;(2)6×182-25;(3)(-5)4-2×(-3)2;(4)48+24×53÷(-21.5-3.5).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.D5.D6.C7.D8.B9.D10.D11.D12.C13.D14.C二、填空题15.2、一4(不唯一).16. (12,32) 17.13,直角18.3 x 19.83 20. s t三、解答题21.AB=AP.理由如下:连结AO.∵OA=OB ,∴∠OAB=∠B=30°,∵AP 切⊙O 于点A ,∴∠OAP= 90°,∴∠BAP=120°,∴∠P=180°- 120°'-30°= 30°=∠B ,∴AB=AP .22.(1)略;(2)△BEF 为等边三角形;(3)设BE=BF=EF= x ,则S=243x当BE ⊥AD 时, x 最小=3,∴S 最小=433. 当BE 与AB 重合时,x 最大=2,∴S 最大=3. ∴3433≤≤S . 23.10%24.解:(1)依题意,得201k b b -+=⎧⎨=⎩,.,解得112k b ==,. 112y x =+∴. (2)当4x =时,3y =.25. (1)17x >;(2)17x ≤;(3)x>-1 26.略.27.2224129(23)x xy y x y ++=+或2221236(6)x xy y x y ++=+或2229124(32)x xy y x y ++=+或 22236121(61)x y xy xy ++=+或2221236(6)x y xy xy ++=+等28.m=20 ,n= 529.(1)27x y -++ (2)129a +30.(1)40.31 (2)77.76 (3)607 (4)-72。
2023年江苏省盐城市中考数学试卷原卷附解析
2023年江苏省盐城市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.随机掷一枚均匀的硬币两次,两次都是反面朝上的概率是( ) A .1B .34C .12D .142. 边长为4的正方形ABCD 的对称中心是坐标原点O,AB ∥x 轴,BC ∥y 轴, 反比例函数y =2x 与y =-2x 的图象均与正方形ABCD 的边相交,则图中的阴影部分的面积是( ) A .2B .4C .8D .63.抛物线()223y x =++的顶点坐标是( ) A .(-2,3) B .(2,3) C .(-2,-3) D .(2,-3) 4.关于x 的一元二次方程(m -3)x 2+x +m 2-m -6=0的一个根是0,则m 的值为( ) A .-1或6B .-2C .3D .-2或35. 一个矩形的长比宽多 4m ,面积是100 m 2.若设矩形的长为 x (m ),根据题意列出下列方程,正确的是( ) A . 241000x x +-= B .241000x x --= C .241000x x ++=D .241000x x -+=6.与如图所示的三视图相对应的几何体是( )A .B .C .D .7.一个几何体的三视图如下图所示,则这个几何体应该是 ( )A .B .C .D .8. 如图,给出了过直线外一点作已知直线的平行线的方法, 其依据是( ) A .同位角相等,两直线平行 B .内错角相等,两直线平行 C .同旁内角互补,两直线平行 D .两直线平行,同位角相等9.如图所示,在图①中,Rt △OAB 绕其直角顶点0每次旋转90°,旋转3次得到右边的图形,在图②中,四边形OABC 绕0点每次旋转120°,旋转2次得到右边的图形.以下四个图形中,不能通过上述方式得到的是( )10.近似数5.60所表示的准确数的范围是( ) A .5.595至5.605之间B .5.50至5.70之间C .5.55至5.64之间D .5.600至5.605之间 11.下列各组量中具有相反意义的量是( ) A .向东行 4km 与向南行4 km B .队伍前进与队伍后退 C .6 个小人与 5 个大人 D .增长3%与减少2%二、填空题12.已知直角三角形的两条边长分别是方程214480x x -+=的两个根,则此三角形的第三边是_______ .13.在□ABCD 中,∠A :∠B :∠C=2:3:2,则∠D= .14.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的21.。
2022年江苏省盐城市中考数学测试试题附解析
2022年江苏省盐城市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,在平行四边形ABCD 中,CE ⊥AB ,E 为垂足.如果∠A=125°,则∠BCE=( ) A .55° B .35° C .25°D .30°2.在菱形ABCD 中,若∠A :∠B=2:1,则∠CAD 的平分线AE 与边CD 间的关系是( )A .相等B .互相垂直但边CD 不一定被AE 平分C .不垂直但边CD 被AE 平分 D .垂直且边CD 被AE 平分3.2b ≥中,二次根式的个数是( ) A .2 个 B .3 个 C .4 D .5 个 4.在x 轴上的点的横坐标是( )A .0B . 正数C .负数D . 实数5.不改变分式yx x 7.0213.1--的值,把它的分子、分母的系数化为整数,其结果正确的是( ) A .yx x 72113--B .yx x 721013--C .yx x 7201013--D .yx x 720113--6.下列方程中,解是2x =的是( ) A .2514x x =+B .1102x -=C .3(1)1x -=D .2x 51-=7.温度上升了3-℃后,又下降2℃,这一过程的温度变化是( ) A .上升1℃ B .上升5℃ C .下降1℃ D .下降5℃ 8.下列近似数中,含有3个有效数字的是( )A .5.430B .65.43010⨯C . 0.5430D .5.43万二、填空题9.10 张卡片分别写有 0 到 9 这十个数字,将它们放入口袋中,任意摸出一张,则摸到奇数的概率是 .10.在直角三角形ABC 中,∠A=090,AC=5,AB=12,那么tan B = .11.如图,铁道口栏杆的短臂长为1.2m ,长臂长为8m ,当短臂端点下降0.6m 时,长臂端点升高________m (杆的粗细忽略不计).12.已知函数3()2f xx=+,则(1)f= .13.已知A(1,n),B(b,-2).(1)若A、B关于x轴对称,则a= ,b= ;(2)若A、B关于y轴对称,则n= ,b= ;(3)若线段AB上x轴,则a= ,b= .14.一个几何体的主视图、左视图和俯视图都是正方形,那么这个几何体是;如果都是圆,那么这个几何体是.15.如图,DE∥BC,且∠ADE= 62°,∠DEC=112°,则∠B= ,∠C= .16.如图,AC、BC被AB所截的同旁内角是.17.看图填空.(A、0、B在一条直线上)(1)∠AOD= + =∠AOE- ;(2)∠BOE+∠EOC= ;(3)∠EOA-∠AOD= ;(4)∠AOC+ = 180°;(5)若0C平分∠AOD,0E平分∠BOD,则∠AOD=2 =2 .∠BOE= =12.18.若(a+2)2+│b-3│=0,则b a=________.19.如果 -22 元表示亏损 22 元,那么 45 元表示.三、解答题20.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数 1 2 3 4 5 6 出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么? (3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.21.在△ABC 中,∠C=90°,a+b=14,c=10,求cosA,ABC S .22.观察下列各图,填写表格:一边上的小圆圈数 1 2 3 45 小圆圈的总数13610 15(2)如果用 n 表示等边三角形一边上的小圆圈数,用 m 表示这个三角形中小圆圈的总数,那么m 和n 的关系是什么?是哪种函数关系?23.如图,已知,EF ⊥AB ,CD ⊥AB ,G 在AC 边上,DG ∥BC . 求证:∠1=∠2.21GFE D CB A24.国家规定“中小学生每天在校体育活动的时间不低于1 h”.为此,某市就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:0.5t<h; B组:0.51t≥ h≤< D组: 1.5h t hh t h≤< C组:1 1.5请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该辖区约有24000名初中孚至确估计其中达到国家规定体育活动时间的人约有多少?25.如图所示,□ABCD中,E,F分别为AD,BC的中点,AF与BE交于点G,DF与CE交于点H,则四边形EGFH是平行四边形吗?请说明理由.26.某校要从甲、乙两名跳远运动员中挑选一人参加全市比赛,在最近的l0次选拔赛中,他们的成绩(单位:cm)如下:甲:585,596,610,598, 612, 597,604,600,613,601;乙:613,618,580,574,618,593,585,590,598,604.(1)他们的平均成绩分别是多少?(2)甲、乙两人这l0次比赛成绩的方差分别是多少?(3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到5.96 m就很可能冠军,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10 m就能打破记录,那么你认为为了打破记录应选谁参加这项比赛?27.某商店销售一种衬衫,四月份的营业额为 5000 元,为了扩大销售,在五月份将每件衬衫按原价的 8 折销售,销售量比四月份增加了 40 件,营业额比四月份增加了600 元,求四月份每件衬衫的售价.28.某商场进了一批布,出售时要在进价的基础上加一定的利润,其数量x与售价y如下表:(1)(2)某日,该商场出售此种布的总价为2158元,问总共卖了多少米布?29.据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率.(取2≈1.41)30.某商店以销售 1000 元为基准,超过 50 元记作+50 元,不足 30 元记作 -30 元,那么销售 1120 元、销售 860 元各记作什么?+ 220 元、-15 元各表示什么意思?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题 1. B2.D3.B4.D5.C6.B7.D8.D二、填空题 9.1210. 12511.412.113.(1)2,1;(2)-2,-l ;(3)≠-2,=114.正方体,球15.62°,68°16.∠A 和∠417.(1)∠AOC ,∠COD ,∠DOE (2)∠BOC (3)∠DOE (4)∠COB (5)∠AOC ,∠COD ,∠DOE ,∠BOD18.-819.盈利 45 元三、解答题 20.解:(1)“3点朝上”出现的频率是616010=; “5点朝上”出现的频率是201603=; (2)小颖的说法是错误的.这是因为,“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的频率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次. (3)列表如下:1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 567891011小红投掷的点数 小颖投掷 的点数67 8 9 10 11 12∴121(3)363P ==点数之和为的倍数. 21.cosA=53或54,ABC S ∆=24.22.(1)第 6 个图形中应有 21 个小圆圈 (2)123m n =++++,即(1)2n n m +=,是二次函数关系. 23.略24.(1)120人 (2)C (3)14400人25.证明四边形AFCE ,EBFD 是平行四边形,得AF ∥CE ,BE ∥DF ,即四边形EGFH 是平行四边形26.(1)601.6x =甲cm ,597.3x =乙cm ;(2)265S =甲.84cm 2,2221.41S =乙cm 2 ;(3)略; (4)为了夺冠,应选甲参赛,为了打破纪录,应选乙参赛27.50 元28.(1)8.3y x = (2)260 米29.解:设我省每年产出的农作物秸杆总量为a ,合理利用量的增长率是x ,由题意得: 30%a (1+x )2=60%a ,即(1+x )2=2∴x 1≈0.41,x 2≈-2.41(不合题意舍去),∴x ≈0.41 即我省每年秸秆合理利用量的增长率约为41% .30.+120 元、-140 元;1220 元、985 元。
初中毕业升学考试(江苏盐城卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(江苏盐城卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】﹣5的相反数是()A.﹣5 B.5 C .﹣ D.【答案】B.【解析】试题分析:﹣5的相反数是5.故选B.考点:相反数.【题文】计算的结果是()A. B.﹣ C. D.﹣【答案】A.【解析】试题分析:=.故选A.考点:幂的乘方与积的乘方.【题文】我国2016年第一季度GDP总值经初步核算大约为159000亿元,数据159000用科学记数法表示为()A.1.59×104 B.1.59×105 C.1.59×104 D.15.9×104【答案】B.【解析】试题分析:159000=1.59×105,故选B.考点:科学记数法—表示较大的数.【题文】下列实数中,是无理数的为()A.﹣4 B.0.101001 C. D.【答案】D.【解析】试题分析:解:A.﹣4是整数,是有理数,故本选项不符合题意;B.0.101001是小数,属于分数,故本选项不符合题意;是无理数,故本选项符合题意;C.是小数,属于分数,故本选项不符合题意;D.是无理数,正确;故选D.考点:无理数.【题文】下列调查中,最适宜采用普查方式的是()A. 对我国初中学生视力状况的调查B. 对量子科学通信卫星上某种零部件的调查C. 对一批节能灯管使用寿命的调查D. 对“最强大脑”节目收视率的调查【答案】B【解析】试题分析:A.对我国初中学生视力状况的调查,人数太多,调查的工作量大,适合抽样调查,故此选项错误;B.对量子科学通信卫星上某种零部件的调查,关系到量子科学通信卫星的运行安全,必须全面调查,故此选项正确;C.对一批节能灯管使用寿命的调查具有破坏性,适合抽样调查,故此选项错误;D.对“最强大脑”节目收视率的调查,人数较多,不便测量,应当采用抽样调查,故本选项错误;故选B.考点:全面调查与抽样调查.【题文】如图,已知a、b、c、d四lA.0个 B.1个 C.2个 D.3个【答案】C.【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF 相似的三角形有2个.故选C.考点:相似三角形的判定;平行四边形的性质.【题文】若a、b、c为△ABC的三边长,且满足,则c的值可以为()A.5 B.6 C.7 D.8【答案】A.【解析】试题分析:∵,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选A.考点:三角形三边关系;非负数的性质:绝对值;非负数的性质:算术平方根.【题文】分解因式:=.【答案】a(a﹣b).【解析】试题分析:=a(a﹣b).故答案为:a(a﹣b).考点:因式分解-提公因式法.【题文】当x=时,分式的值为0.【答案】1.【解析】试题分析:当x﹣1=0时,x=1,此时分式的值为0.故答案为:1.考点:分式的值为零的条件.【题文】如图,转盘中6个小扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向红色区域的概率为.【答案】.【解析】试题分析:∵圆被等分成6份,其中红色部分占2份,∴落在阴影区域的概率==,故答案为:.考点:几何概率.【题文】如图,正六边形ABCDEF内接于半径为4的圆,则B、E两点间的距离为.【答案】8.【解析】试题分析:连接BE、AE,如右图所示,∵六边形ABCDEF是正六边形,∴∠BAF=∠AFE=120°,FA=FE,∴∠FAE=∠FEA=30°,∴∠BAE=90°,∴BE是正六边形ABCDEF的外接圆的直径,∵正六边形ABCDEF内接于半径为4的圆,∴BE=8,即则B、E两点间的距离为8,故答案为:8.考点:正多边形和圆;推理填空题.【题文】如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为.【答案】5.【解析】试题分析:主视图如图所示,∵由6个棱长均为1的正方体组成的几何体,∴主视图的面积为5×12=5,故答案为:5.考点:简单组合体的三视图.【题文】已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.【答案】8π.【解析】试题分析:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.故答案为:8π.考点:圆锥的计算.【题文】方程的正根为.【答案】x=2.【解析】试题分析:去分母得,整理得,解得,,经检验,都是分式方程的解,所以原方程的正根为x=2.故答案为:x=2.考点:分式方程的解.【题文】李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需分钟.【答案】40.【解析】试题分析:设李师傅加工1个甲种零件需要x分钟,加工1个乙种零件需要y分钟,依题意得:,由①+②,得:7x+14y=140,所以x+2y=20,则2x+4y=40,所以李师傅加工2个甲种零件和4个乙种零件共需40分钟.故答案为:40.考点:二元一次方程组的应用.【题文】已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC 面积的所有可能值为.【答案】8或24.【解析】试题分析:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为:8或24.考点:解直角三角形;分类讨论.【题文】如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【答案】.【解析】试题分析:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF •sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴,解得:y=0.25,∴AE=1.75,∴EH=AE ﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.考点:菱形的性质;翻折变换(折叠问题).【题文】计算:(1);(2).【答案】(1)﹣1;(2).【解析】试题分析:(1)根据负整数指数幂的意义和绝对值的意义计算;(2)利用平方差公式和二次根式的乘法法则运算.试题解析:(1)原式=2﹣3=﹣1;(2)原式==.考点:二次根式的混合运算.【题文】先化简,再求的值,其中x=3.【答案】,1.【解析】试题分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把x的值代入计算即可求出值.试题解析:原式===当x=3时,原式=1.考点:分式的化简求值.【题文】甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?【答案】(1)甲成绩的中位数是90,乙成绩的中位数是93;(2)甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.【解析】试题分析:(1)将一组数据按照从小到大(或从大到小)的顺序排列,处于中间位置的数就是这组数据的中位数进行分析;(2)数学综合素质成绩=数与代数成绩×+空间与图形成绩×+统计与概率成绩×+综合与实践成绩×,依此分别进行计算即可求解.试题解析:(1)甲的成绩从小到大的顺序排列为:89,90,90,93,中位数为90;乙的成绩从小到大的顺序排列为:86,92,94,94,中位数为(92+94)÷2=93.答:甲成绩的中位数是90,乙成绩的中位数是93;(2)6+3+2+2=10.甲90×+93×+89×+90×=27+27.9+17.8+18=90.7(分);乙94×+92×+94×+86×=28.2+27.6+18.8+17.2=91.8(分);答:甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.考点:中位数;加权平均数.【题文】一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字.(1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率.【答案】(1);(2).【解析】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率==;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率==.考点:列表法与树状图法;概率公式.【题文】如图,已知△ABC中,∠ABC=90°.(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①作线段AC的垂直平分线l,交AC于点O;②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;③连接DA、DC.(2)判断四边形ABCD的形状,并说明理由.【答案】(1)作图见解析;(2)四边形ABCD是矩形.【解析】试题分析:(1)①利用线段垂直平分线的作法得出即可;②利用射线的作法得出D点位置;③连接DA、DC即可求解;(2)利用直角三角形斜边与其边上中线的关系进而得出AO=CO=BO=DO,进而得出答案.试题解析:(1)①如图所示:②如图所示:③如图所示:(2)四边形ABCD是矩形,理由:∵Rt△ABC中,∠ABC=90°,BO是AC边上的中线,∴BO=AC,∵BO=DO ,AO=CO,∴AO=CO=BO=DO,∴四边形ABCD是矩形.考点:作图—基本作图;矩形的判定.【题文】我市某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线的一部分,请根据图中信息解答下列问题:(1)求k的值;(2)恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有多少小时?【答案】(1)240;(2)15.【解析】试题分析:(1)直接将点A坐标代入即可;(2)观察图象可知:三段函数都有y≥15的点,而且AB段是恒温阶段,y=20,所以计算AD和BC两段当y=15时对应的x值,相减就是结论.试题解析:(1)把B(12,20)代入中得:k=12×20=240;(2)设AD的解析式为:y=mx+n.把(0,10)、(2,20)代入y=mx+n中得:,解得:,∴AD的解析式为:y=5x+10.当y=15时,15=5x+10,x=1,15=,x==16,∴16﹣1=15.答:恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有15小时.考点:反比例函数的应用;分段函数.【题文】如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.如图,已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=﹣2x+4是“平行一次函数”.(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1:2,求函数y=kx+b的表达式.【答案】(1)7;(2)y=﹣2x+2或y=﹣2x﹣2.【解析】试题分析:(1)根据平行一次函数的定义可知:k=﹣2,再利用待定系数法求出b的值即可;(2)根据位似比为1:2可知:函数y=kx+b与两坐标的交点坐标,再利用待定系数法求出函数y=kx+b的表达式.试题解析:(1)由已知得:k=﹣2,把点(3,1)和k=﹣2代入y=kx+b中得:1=﹣2×3+b,∴b=7;(2)根据位似比为1:2得:函数y=kx+b的图象有两种情况:①不经过第三象限时,过(1,0)和(0,2),这时表达示为:y=﹣2x+2;②不经过第一象限时,过(﹣1,0)和(0,﹣2),这时表达示为:y=﹣2x﹣2;考点:位似变换;两条直线相交或平行问题;分类讨论.【题文】如图,在四边形ABCD中,AD∥BC,AD=2,AB=,以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F.(1)求∠ABE的大小及的长度;(2)在BE的延长线上取一点G,使得上的一个动点P到点G的最短距离为,求BG的长.【答案】(1)45°,;(2)4.【解析】试题分析:(1)连接AE,如图1,根据圆的切线的性质可得AE⊥BC,解Rt△AEB可求出∠ABE,进而得到∠DAB,然后运用圆弧长公式就可求出的长度;(2)如图2,根据两点之间线段最短可得:当A、P、G三点共线时PG最短,此时AG=AP+PG==AB,根据等腰三角形的性质可得BE=EG,只需运用勾股定理求出BE,就可求出BG的长.试题解析:(1)连接AE,如图1,∵AD为半径的圆与BC相切于点E,∴AE⊥BC,AE=AD=2.在Rt△AEB中,sin∠ABE===,∴∠ABE=45°.∵AD∥BC,∴∠DAB+∠ABE=180°,∴∠DAB=135°,∴的长度为=;(2)如图2,根据两点之间线段最短可得:当A、P、G三点共线时PG最短,此时AG=AP+PG==,∴AG=AB.∵AE⊥BG,∴BE=EG.∵BE===2,∴EG=2,∴BG=4.考点:切线的性质;弧长的计算;动点型;最值问题.【题文】某地拟召开一场安全级别较高的会议,预估将有4000至7000名人员参加会议,为了确保会议的安全,会议组委会决定对每位入场人员进行安全检查,现了解到安检设各有门式安检仪和手持安检仪两种:门式安检仪每台3000元,需安检员2名,每分钟可通过10人;手持安检仪每只500元,需安检员1名,每分钟可通过2人,该会议中心共有6个不同的入口,每个入口都有5条通道可供使用,每条通道只可安放一台门式安检仪或一只手持安检仪,每位安检员的劳务费用均为200元.(安检总费用包括安检设备费用和安检员的劳务费用)现知道会议当日人员从上午9:00开始入场,到上午9:30结束入场,6个入口都采用相同的安检方案,所有人员须提前到达并根据会议通知从相应入口进入.(1)如果每个入口处,只有2个通道安放门式安检仪,而其余3个通道均为手持安检仪,在这个安检方案下,请问:在规定时间内可通过多少名人员?安检所需要的总费用为多少元?(2)请你设计一个安检方案,确保安检工作的正常进行,同时使得安检所需要的总费用尽可能少.【答案】(1)在规定时间内可通过4680名人员,安检所需要的总费用为53400元;(2)每个入口处,有4个通道安放门式安检仪,而其余1个通道均为手持安检仪,安检所需要的总费用最少..【解析】试题分析:(1)依题意直接列式计算即可;(2)设设每个入口处,有n个通道安放门式安检仪,而其余(5﹣n)个通道均为手持安检仪(0≤n≤5的整数),根据题意列出不等式求出安检方案,用总费用函数关系式确定出安检所需要的总费用最少的方案.试题解析:(1)根据题意,得(10×2+2×3)×6×30=4680(名)安检所需要的总费用为:(2×3000+2×2×200+3×500+3×1×200)×6=53400(元).答:在规定时间内可通过4680名人员,安检所需要的总费用为53400元.(2)设每个入口处,有n个通道安放门式安检仪,而其余(5﹣n)个通道均为手持安检仪(0≤n≤5的整数),根据题意得,[10n+2(5﹣n)]×6×30≥7000,解不等式得,n≥3.5,∵0≤n≤5的整数,∴n=4或n=5;安检所需要的总费用:w=[3000n+2n×200+500(5﹣n)+(5﹣n)×1×200]×6=16200n+21000当n越小,安检所需要的总费用越少,∴n=4时,安检所需要的总费用最少,为85800.即:每个入口处,有4个通道安放门式安检仪,而其余1个通道均为手持安检仪,安检所需要的总费用最少.考点:一元一次不等式组的应用;最值问题;方案型.【题文】如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线过A、B两点,且与x轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内以点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.【答案】(1)b=﹣2,c=3;(2)M(,);(3)①证明见解析;②PA+PC+PG的最小值为,此时点P的坐标(﹣,).【解析】试题分析:(1)把A(﹣3,0),B(0,3)代入抛物线即可解决问题.(2)首先求出A、C、D坐标,根据BE=2ED,求出点E坐标,求出直线CE,利用方程组求交点坐标M.(3)①欲证明PG=QR,只要证明△QAR≌△GAP即可.②当Q、R、P、C共线时,PA+PG+PC最小,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K,由sin∠ACM==求出AM,CM,利用等边三角形性质求出AP、PM 、PC,由此即可解决问题.试题解析:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,∴A(﹣3,0),B(0,3),∵抛物线过A、B两点,∴,解得:,∴b=﹣2,c=3.(2),对于抛物线,令y=0,则,解得x=﹣3或1,∴点C坐标(1,0),∵AD=DC=2,∴点D坐标(﹣1,0),∵BE=2ED,∴点E坐标(,1),设直线CE为y=kx+b,把E 、C代入得到:,解得:,∴直线CE为,由,解得或,∴点M坐标(,).(3)①∵△AGQ,△APR是等边三角形,∴AP=AR,AQ=AG,∠QAC=∠RAP=60°,∴∠QAR=∠GAP,在△QAR 和△GAP中,∵AQ=AG,∠QAR=∠GAP,AR=AP,∴△QAR≌△GAP,∴QR=PG.②如图3中,∵PA+PB+PC=QR+PR+PC=QC,∴当Q、R、P、C共线时,PA+PG+PC最小,作QN⊥OA于N,AM⊥QC 于M,PK⊥OA于K.∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q坐标(﹣6,),在RT△QCN中,QN=,CN=7,∠QNC=90°,∴QC==,∵sin∠ACM==,∴AM=,∵△APR是等边三角形,∴∠APM=60°,∵PM=PR,cos30°=,∴AP=,PM=RM=,∴MC==,∴PC=CM﹣PM=,∵,∴CK=,PK=,∴OK=CK﹣CO=,∴点P坐标(﹣,),∴PA+PC+PG的最小值为,此时点P的坐标(﹣,).考点:二次函数综合题;旋转的性质;最值问题;压轴题.。
2022年江苏省盐城市中考数学经典试题附解析
PB A O 2022年江苏省盐城市中考数学经典试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果60APB ∠=,8PA =,那么弦AB 的长是( )A .4B .8C .43D .83 2.△ABC的三边长分别为 6、8、10,并且以A 、B 、C 三点分别为圆心,作两两相切的圆,那么这三个圆的半径分别为( ) A .3、4、5 B .2、4、6 C .6、8、10 D .4、6、8 3.如图,已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( )A .sin 40mB .cos 40mC .tan 40mD .tan 40m 4.若x 是3和6的比例中项,则x 的值为( )A . 23B . 23-C . 23±D .32±5.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A .%10B .%15C .%20D .%256.下列命题中,是真命题的是 ( )A .一组对角相等,一组对边相等的四边形是平行四边形B .若a b =,则a b =C .一组对边相等,另一组对边平行的四边形是平行四边形D .夹在两条平行线之间的平行线段相等7. 下列长度的三条线段不能..组成三角形的是( ) A .1,2,3B .2,3,4C .3,4,5D .4,5,6 8. 如图所示,将△ABC 沿着XY 方向平移一定的距离就得到△MNL ,则下列结论中正确的是( )①AM ∥BN ;②AM=BN ;③BC=ML ;④∠ACB=∠MNLA .1个B .2个C .3个D .4个 9.在下图中,与图形变换相同的是( )10.如图所示,△ABC 平移后得到△DEF ,若∠BNF=100°,则∠DEF 的度数是( )A .120°B .100°C .80°D .50°11.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1-1、图1-2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1-1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219,423.x y x y ⎧⎨⎩+=+=,类似地,图1-2所示的算筹图我们可以表述为( )A .2114327x y x y ⎧⎨⎩+=+= B .2114322x y x y ⎧⎨⎩+=+= C .3219423x y x y ⎧⎨⎩+=+= D .264327x y x y ⎧⎨⎩+=+=二、填空题12.为了解某地初中三年级男生的身高情况,从该地的一所中学选取容量为60的样本(60名学生的身高,单位:厘米),分组情况如下:则a = 、m = .13.已知□ABCD 的两条对角线相交于直角坐标系的原点.点A ,B 的坐标分别为(-1,-5),(-1,2).则C ,D 的坐标分别为 .14.在平面直角坐标系中,点P(-l ,2)到y 轴的距离是 .15.已知AD 是△ABC 的对称轴,AC=8 cm ,DC=4 cm ,则△ABC 的周长为 cm . 16.有下列再句:①作射线DC=4cm ;②延长线段AB 到点 C ,使AC =12BC ;③反向延长射线 OP 到点 M ,使OM=OP ;④如果∠1 与∠2互为余角,∠2与∠B 互为余角,那么∠1=∠B ;⑤由两个直角组成的图形叫做平角;⑥几个角的和为90°,则这几个角互余.其中正确的有 (填序号).17.若x=1 是方程2155(1)0.30.33x x a ax -+-=-的解,那么式子21a a ++的值是 .三、解答题18.如图,在某建筑物 AC 上,挂着宣传条幅BC,小明站在点 F处,看条帽顶端 B,测得仰角为 30°;再往条幅方向前行 20m 到达点E处,看条幅顶点 B,测得仰角为 60°,求宣传条幅 BC 的长. (小明的身高忽略不计,结果精确到0.1 m)19.在如图所示的矩形ABCD 中,AB=3,BC=4,P 是 BC 边上与点B、C不重合的任意一点,设 PA=x,D 到PA 的距离为 y,求:(1)y 关于x 的函数解析式,并写出自变量x 的取值范围;(2)画出函数的图象.20.某中学部分同学参加全国初中数学竞赛,取得了优异的成绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频数分布直方图.请回答:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?(3)图中还提供了其它信息,例如该中学没有获得满分的同学等等.请再写出两条信息.21.阅读下列题目的计算过程: 23211x x x ---+ =32(1)(1)(1)(1)(1)x x x x x x ---+-+- ① =32(1)x x --- ②=32x 2x --+ ③=1x -- ④(1)上述计算过程,从哪一步开始出现错误?请写出该步的代号: .(2)错误的原因是 .(3)本题目的正确结论是 .22.分析如图(1)、(2)、(4)中阴影部分的分布规律,按此规律在如图(3)中画出其中的阴影部分.23. 请你先将分式2211x x x x x ---+化简. 再选取一个使原式有意义,而你又喜爱的数代入求值.24.请你用正方形、三角形、•圆设计一个有具体形象的轴对称图形(例如下图的脸谱),并给你的作品取一个适当的名字.25.化简求值: )3)(3()5()4(222-+-+-+x x x x ,其中x=-2.26.任意给一个非零数,按图中的程序计算下去,试写出输出的结果.27.如图所示,表示出阴影部分的面积.2(2)(2)224a x b x ab ax bx x --=--+28.为了解班级中10名男生,l0名女生的记忆能力,进行了如下的实验:先让他们观察一 段展示10种水果的录像(一遍),然后请这20名同学写出他们所观察到的水果种类,结果如下(单位:种).8 7(女) 5 6 8(女)7 4 5 6(女) 910(女) 9(女) 7(女) 4 7(女)8(女) 5 9(女) 6 8(女)(1)这组数据是通过什么方法获得的?(2)学生的记忆能力与性别有关吗?为了回答这个问题,你将怎样处理这组数据?你的结论是什么?29.为了了解某校七年级学生的视力情况,抽测了一批同学的视力,检测结果如下表:30.计算:(1) (-53)×(-9999 );(2)11 (37)()(3)88-⨯---⨯;(3)3711 (1)1 48127--⨯【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.B4.C5.C6.D7.A8.B9.B10.C11.A二、填空题12.0.45,613.C(1,5), D(1,-2)14.115.2416.③,④17.3三、解答题18.∵∠BFC=30°,∠BEC=60°,∠BCF=90°,∴∠EBF=∠EBC=30°,∴BE= EF=20 , 在 Rt △BCE 中,060BC BE Sin =⋅32017.3=≈(m) 答:宣传条幅 BC 的长约为 1.3m. 19.(1)过:D 作 DE ⊥AP ,垂足为 E ,连结 DP ,1122ADP S AB AD AP DE ∆=⋅=⋅, ∴113422xy ⨯⨯=,12y x=.∵AB<AP<AC,∴35x << (2)画图略. 注意x 的取值范围,它的图象是一段曲线.20.⑴32人;⑵ 43.75%;⑶该中学参赛同学的成绩均不低于60分.成绩在80-90分数的人数最多.21.(1) ②;(2)错用了解分式方程的去分母法则. (3)11x -- 22.如图:23.22x-(代入0,1x≠-的数都可以)24.略25.6x+16=4.26.输出的数等于输入的数27.2(2)(2)224a xb x ab ax bx x--=--+28.(1)实验 (2)把数据按男、女生分类,并将数据按从小到大的次序排列结论:女生的记忆力普遍比男生好29.表中依次填:20,50;40,40,630.(1)529947 (2)5 (3) 19 21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
).
16.如图,在直角
中,
,
,
,
、
分别为边
、
上的两个动点,若要使
是等腰三角形且
是直角三角形,则
________.
三、解答题
17.计算: 18. 解 不 等 式 : 来. 19.先化简,再求值: ,其中 . . , 并 把 它 的 解 集 在 数 轴 上 表 示 出
20.端午节是我国传统佳节.小峰同学带了 4 个粽子(除粽馅不同外,其它均相同),其中有 两个肉馅粽子、 一个红枣馅粽子和一个豆沙馅粽子, 准备从中任意拿出两个送给他的好朋友 小悦. (1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果; (2)请你计算小悦拿到的两个粽子都是肉馅的概率. 21.在正方形 中,对角线 所在的直线上有两点 、 满足 ,连接
均不与
的周长之比为________(用含
在平面直角坐标系 27.如图①, 两点,且与 轴交于点 .
中, 抛物线
经过点
、
(1)求抛物线的表达式; (2)如图②,用宽为 4 个单位长度的直尺垂直于 边所在的直线与抛物线相交于 上方抛物线上有一动点 、 两点 (点 、 轴,并沿 在点 轴左右平移,直尺的左右两 , 在线段 ,求
下时,停在地板中阴影部分的概率为________.
13. 将 一 个 含 有
角的直角三角板摆放在矩形上,如图所示,若
,则
________.
14.如图,点
为矩形
的
边的中点,反比例函数
的图象经过点
,交
边于点
.若
的面积为 1,则
________。
15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相 关数据:半径 , . 则右图的周长为 ________ (结果保留
边上移动,保持三角板与 是否存在某一位置,使
、
Hale Waihona Puke 的 平分,如图②所示.问点
?若存在,求出 中,
的值;若不存在,请说明理由. ,点 为 边的中点,将三角形 、
(3)【探索】如图③,在等腰 透明纸板的一个顶点放在点 于点 与 、 (点 、
处 (其中
) , 使两条边分别交边 的顶点重合),连接 的表达式表示). .设 ,则
B. 有一个根为 1,则 B. 2
C. 的值为( C. -4 )
D.
D. 4
二、填空题
9.根据如图所示的车票信息,车票的价格为________元.
10.要使分式 11.分解因式:
有意义,则
的取值范围是________. ________.
12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停
5. 如 图 是 由 5 个 大 小 相 同 的 小 正 方 体 组 成 的 几 何 体 , 则 它 的 左 视 图 是 (
A.
B.
C.
D.
6.一组数据 2,4,6,4,8 的中位数为( A. 2 7.如图, 为 的直径, B. 4 是
) C. 6 的弦, , 则 D. 8 的度数为 ( )
A. 8.已知一元二次方程 A. -2
请根据图中提供的信息,解答下列问题: (1)在这次抽样调查中,共调查了________名学生; (2)补全条形统计图,并在扇形统计图中计算 类所对应扇形的圆心角的度数;
(3)根据抽样调查结果,估计该校 2000 名学生中“家长和学生都未参与”的人数. 23.一商店销售某种商品,平均每天可售出 20 件,每件盈利 40 元.为了扩大销售、增加盈利, 该店采取了降价措施,在每件盈利不少于 25 元的前提下,经过一段时间销售,发现销售单 价每降低 1 元,平均每天可多售出 2 件. (1)若降价 3 元,则平均每天销售数量为________件; (2)当每件商品降价多少元时,该商店每天销售利润为 1200 元? 24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两 人都匀速步行且同时出发,乙先到达目的地.两人之间的距离 (米)与时间 (分钟)之
的延长线上取一点
(3)在(2)的条件下,分别延长线段 求线段 的长.
【发现】如图①,已知等边 26. (1) 边上(点 不与点 、
,将直角三角形的 、
角顶点 于点
任意放在 、 .
重合),使两边分别交线段
①若 ②求证:
,
,
,则 .________ 在
________;
(2) 【思考】若将图①中的三角板的顶点 两个交点 且 、 都存在,连接 平分
间的函数关系如图所示.
(1)根据图象信息,当 (2)求出线段 25.如图,在以线段
________分钟时甲乙两人相遇,甲的速度为________米/分钟;
所表示的函数表达式. 为直径的 上取一点,连接 、 .将 沿 翻折后
得到
.
(1)试说明点 (2)在线段
在
上; ,使 、 相交于点 .求证: ,若 为 , 的切线; ,
的左侧) , 连接 的横坐标为
,连接
.(Ⅰ)若点
面积的最大值,并求此时点 (Ⅱ)直尺在平移过程中, 请说明理由.
的坐标; 面积是否有最大值?若有,求出面积的最大值;若没有,
答案解析部分
一、选择题 1.【答案】A 【考点】相反数及有理数的相反数 【解析】【解答】解:-2018 的相反数是 2018。故答案为 A 【分析】负数的相反数是它的绝对值;-2018 只要去掉负号就是它的相反数 2.【答案】D 【考点】轴对称图形,中心对称及中心对称图形 【解析】【解答】解:A、既不是轴对称图形,也不是中心对称图形,故 A 不符合题意;B、 是轴对称图形,但不是中心对称图形,故 B 不符合题意; C、是轴对称图形,但不是中心对称图形,故 C 不符合题意; D、是轴对称图形,但不是中心对称图形,故 D 符合题意; 故答案为:D 【分析】轴对称图形:沿着一条线折叠能够完全重合的图形;中心对称图形:绕着某一点旋 转 180°能够与自身重合的图形;根据定义逐个判断即可。 3.【答案】C 【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,合并同类项法则及应用 【解析】【解答】解:A、 合题意; C. D. 故答案为:C 【分析】根据合并同类项法则、同底数幂的乘除法则即可。 4.【答案】A 【考点】科学记数法—表示绝对值较大的数 【解析】【解答】解:146000=1.46 = 故答案为:A ,其中 1≤|a|<10,且 n 为正 ,故 C 符合题意; ,故 D 不符合题意; ,故 A 不符合题意;B、 ,故 B 不符
、
、
、
,如图所示.
(1)求证: (2)试判断四边形
; 的形状,并说明理由.
22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的 一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取 部分学生作调查,把收集的数据分为以下 4 类情形: .仅学生自己参与; 生一起参与; .仅家长自己参与; .家长和学生都未参与. .家长和学
江苏省盐城市 2018 年中考数学试卷
一、选择题
1.-2018 的相反数是( A. 2018 ) B. -2018 C. ) D.
2.下列图形中,既是轴对称图形又是中心对称图形的是(
A.
B.
C.
D.
3.下列运算正确的是( A.
) B. C. D.
4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁 6 座,桥梁的总长度约为 146000 米, 将数据 146000 用科学记数法表示为( A. B. ) C. D. )