命题与证明的知识点总结

合集下载

2.2 命题与证明

2.2 命题与证明

第2章
三角形
【预习诊断】 (对的打“√”,错的打“×”) 1.原命题是真命题,那么它的逆命题也是真命题.( × ) 2.如果两个命题是互逆定理,那么这两个命题都是真命题.( √ )
第2章
三角形
探究点断命题的真假.
(1)负数都小于零;
(2)过直线l外一点作l的平行线; (3)如果a>b,a>c,那么b=c. 【导学探究】 判断命题的关键是看它是否做出了 判断 . 解:(1)是命题,是真命题. (2)不是命题,没有对一件事情做出判断.
证明:如图, ∵∠BAF=∠2+∠3, ∠CBD= ∠1+∠3 ∠ACE=∠1+∠2, ∴∠BAF+∠CBD+∠ACE=2(∠1+∠2+∠3)(等式的 性质). ∵∠1+∠2+∠3=180°(
三角形内角和定理
,
),
∴∠BAF+∠CBD+∠ACE=2×180°=360°.
第2章
三角形
【测控导航表】 知识点 命题 互逆命题 几何命题的证明 题号 1 、2 、6 、8 3 、7 、9 4、5、10
(C)无理数包括正无理数、0、负无理数
(D)两点之间,线段最短 解析:A、B、D都是真命题,都正确,C.0不是无理数,所以该命题错误,故 选C.
第2章
三角形
变式训练1-2:已知下列命题: ①若a>0,b>0,则a·b>0; ②若x≥1,则|x-1|=x-1;
③内错角相等;
④直角都相等. 其中原命题是真命题并且逆命题是假命题的是( A )
【导学探究】 1.要证明BD∥CE,需先证得∠3= 2.由∠1=∠2,可证得AD∥ BE 证明:∵∠1=∠2(已知), ∴AD∥BE(内错角相等,两直线平行), ∴∠D=∠DBE(两直线平行,内错角相等). ∠DBE . ,进一步证明∠D= ∠DBE .

中考数学复习考点知识与题型专题讲解28---命题与证明(解析版)

中考数学复习考点知识与题型专题讲解28---命题与证明(解析版)

中考数学复习考点知识与题型专题讲解专题28 命题与证明【知识要点】命题的概念:像这样判断一件事情的语句,叫做命题。

命题的形式:“如果…那么…”。

(如果+题设,那么+结论)真命题的概念:如果题设成立,那么结论一定成立,这样的命题叫做真命题。

假命题的概念:如果题设成立,不能保证结论一定成立,这样的命题叫做假命题。

如何说明一个命题是假命题:只需要举出一个反例即可。

定义、命题、公理和定理之间的关系:这四者都是句子,都可以判断真假,即定义、公理和定理也是命题,不同的是定义、公理和定理都是真命题,都可以作为进一步判断其他命题真假的依据,而命题不一定是真命题,因而它不一定能作为进一步判断其它命题真假的依据。

一个命题的正确性需经过推理,才能作出判断,这个推理过程叫做证明。

证明的依据:可以是已知条件,也可以是学过的定义、基本事实或定理等。

【考查题型】考查题型一判断是否命题及命题真假典例1.(2021·广西贵港市·中考真题)下列命题中真命题是( )A 的算术平方根是2B .数据2,0,3,2,3的方差是65C .正六边形的内角和为360°D .对角线互相垂直的四边形是菱形【答案】B【分析】A.根据算术平方根解题;B.根据方差、平均数的定义解题;C.根据多边形的内角和为180(n 2)︒⨯-解题;D.根据菱形、梯形的性质解题.【详解】A. 2=,2,故A 错误;B. 数据2,0,3,2,3的平均数是20323=25++++,方差是 2222216(22)(02)(32)(22)(32)55⎡⎤-+-+-+-+-=⎣⎦,故B 正确; C. 正六边形的内角和为180(62)720︒⨯-=︒,故C 错误;D. 对角线互相垂直的四边形不一定是菱形,可能是梯形,故D 错误,故选:B .【点睛】本题考查判断真命题,其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识,是基础考点,难度较易,掌握相关知识是解题关键.变式1-1.(2021·四川雅安市·中考真题)下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c =【答案】B【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【详解】解:由题意可知,A 、对顶角相等,故选项是命题;B 、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C 、三角形任意两边之和大于第三边,故选项是命题;D 、如果a b a c ==,,那么b c =,故选项是命题;故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.变式1-2.(2021·内蒙古通辽市·中考真题)从下列命题中,随机抽取一个是真命题的概率是( ) (1)无理数都是无限小数;(2)因式分解()()211ax a a x x -=+-; (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ;(4)弧长是20cm π,面积是2240cm π的扇形的圆心角是120︒.A .14B .12C .34D .1 【答案】C分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解()()211ax a a x x -=+-,是真命题, (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ,是真命题,(4)设扇形半径为r ,圆心角为n ,∵弧长是20cm π,则180n r π=20π,则3600nr =,∵面积是2240cm π,则2360n r π=240π,则2nr =360×240, 则2360240243600nr r nr ⨯===,则n=3600÷24=150°, 故扇形的圆心角是150︒,是假命题, 则随机抽取一个是真命题的概率是34, 故选C.【点睛】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.变式1-3.(2021·湖北宜昌市·中考真题)能说明“锐角α,锐角β的和是锐角”是假命题的例证图是( ).A .B .C .D .【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案.【详解】解:A 、如图1,∠1是锐角,且∠1=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;B 、如图2,∠2是锐角,且∠2=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;C 、如图3,∠3是钝角,且∠3=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是假命题,故本选项符合题意;D 、如图4,∠4是锐角,且∠4=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意.故选:C .【点睛】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.变式1-4.(2021·安徽中考真题)已知点,,A B C 在O 上.则下列命题为真命题的是( ) A .若半径OB 平分弦AC .则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形.则120ABC ∠=︒C .若120ABC ∠=︒.则弦AC 平分半径OBD .若弦AC 平分半径OB .则半径OB 平分弦AC【答案】B【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.【详解】A .∵半径OB 平分弦AC ,∴OB ⊥AC ,AB=BC ,不能判断四边形OABC 是平行四边形,假命题;B .∵四边形OABC 是平行四边形,且OA=OC,∴四边形OABC 是菱形,∴OA=AB=OB ,OA ∥BC ,∴△OAB 是等边三角形,∴∠OAB=60º,∴∠ABC=120º,真命题;C .∵120ABC ∠=︒,∴∠AOC=120º,不能判断出弦AC 平分半径OB ,假命题;D .只有当弦AC 垂直平分半径OB 时,半径OB 平分弦AC ,所以是假命题,故选:B .【点睛】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假.考查题型二写一个命题的逆命题典例2.(2021·广东广州市·九年级二模)下列命题的逆命题成立的是()A.全等三角形的对应角相等B.两个角都是45,则这两个角相等C.有两边相等的三角形是等腰三角形D.菱形的对角线互相垂直【答案】C【分析】写出每个命题的逆命题,然后逐一判断逆命题的真假,即可.【详解】A.全等三角形的对应角相等的逆命题是:“对应角相等的三角形是全等三角形”,不成立;B. 两个角都是45,则这两个角相等的逆命题是:“两个角相等,则这两个角都是45°”不成立;C. 有两边相等的三角形是等腰三角形的逆命题是:“等腰三角形有两边相等”,成立D. 菱形的对角线互相垂直的逆命题是:“对角形相互垂直的四边形是菱形”,不成立故选C.【点睛】本题主要考查命题的逆命题,熟练掌握全等三角形的性质,等腰三角形的定义,菱形的性质,是解题的关键.变式2-1.(2021·莆田擢英中学九年级零模)下列命题中,逆命题为真命题的是()A.对顶角相等B.邻补角互补C.两直线平行,同位角相等D.互余的两个角都小于90°【答案】C【分析】先写出各个命题的逆命题,再进一步判断真假,即可.【详解】A.对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题;B.邻补角互补的逆命题是互补的角是邻补角,逆命题是假命题;C.两直线平行,同位角相等逆命题是同位角相等,两直线平行,逆命题是真命题;D.互余的两个角都小于90°的逆命题是都小于90°的角互余,逆命题是假命题;故选:C.【点睛】本题主要考查逆命题与真假命题,能写出原命题的逆命题是解题的关键.变式2-2.数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a >2,那么a2>4.下列命题中,具有以上特征的命题是()A.两直线平行,同位角相等B.如果|a|=1,那么a=1C.全等三角形的对应角相等D.如果x>y,那么mx>my【答案】C【分析】分别判断原命题和其逆命题的真假后即可确定正确的选项.【详解】解:A、原命题正确,逆命题为同位角相等,两直线平行,正确,为真命题,不符合题意;B 、原命题错误,是假命题;逆命题为如果a =1,那么|a |=1,正确,是真命题,不符合题意;C 、原命题正确,是真命题;逆命题为:对应角相等的三角形全等,错误,是假命题,符合题意;D 、当m =0时原命题错误,是假命题,不符合题意,故选:C .【点睛】考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,难度不大. 考查题型三 用反证法证明命题典例3.(2021·河北九年级二模)求证:两直线平行,内错角相等如图1,若//AB CD ,且AB 、CD 被EF 所截,求证:AOF EO D '∠=∠以下是打乱的用反证法证明的过程①如图2,过点O 作直线A B '',使A OF EO D ''∠=∠,②依据理论依据1,可得//A B CD '',③假设AOF EO D '∠≠∠,④AOF EO D '∴∠=∠.⑤与理论依据2矛盾,∴假设不成立.证明步骤的正确顺序是( )A .①②③④⑤B .①③②⑤④C .③①④②⑤D .③①②⑤④【答案】D【分析】根据反证法的证明步骤分析即可.【详解】解:假设AOF EO D '∠≠∠,如图2,过点O 作直线A B '',使A OF EO D ''∠=∠,∴//A B CD '',这与平行公理“过直线外一点,有且只有一条直线与已知直线平行”矛盾,∴假设不成立,∴AOF EO D '∠=∠.故选:D【点睛】本题考查了反证法,反证法的证明步骤一般先假设与要求证结的相反的命题,再根据已知条件进行正面,最后得出的结论与已知或数学定理矛盾,从而说明要求证命题正确.变式3-1.(2021·浙江九年级其他模拟)能说明命题“若a >b ,则3a >2b “为假命题的反例为( )A .a =3,b =2B .a =﹣2,b =﹣3C .a =2,b =3D .a =﹣3,b =﹣2【答案】B【分析】本题每一项代入题干命题中,不满足题意即为反例.【详解】解:当a =﹣2,b =﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),即a >b 时,3a =2b ,∴命题“若a >b ,则3a >2b ”为假命题,故选:B .【点睛】本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.变式3-2.(2021·浙江杭州市·八年级其他模拟)用反证法证明“ABC 中,若A B C ∠∠∠>>,则A 60∠>”,第一步应假设()A .A 60∠=B .A 60∠<C .A 60∠≠D .A 60∠≤【答案】D【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断;需注意的是∠A >60°的反面有多种情况,应一一否定.【详解】解:∠A 与60°的大小关系有∠A >60°,∠A=60°,∠A <60°三种情况,因而∠A >60°的反面是∠A≤60°.因此用反证法证明“∠A >60°”时,应先假设∠A≤60°.故选:D变式3-3.(2021·河北唐山市·中考模拟)已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②【答案】B【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC ,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B <90°,原题正确顺序为:③④①②,故选B .【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.变式3-4.(2021·浙江宁波市·九年级一模)能说明命题“若一次函数经过第一、二象限,则k+b >0”是假命题的反例是( )A .y 2x 3=+B .y 2x 3=-C .y 3x 2=--D .y 3x 2=-+【答案】D【分析】利用命题与定理,首先写出假命题进而得出答案.【详解】解:一次函数y=kx+b的图象经过第一、二象限,则k>0,b>0或k<0,b>0,故选D.【点睛】此题主要考查了反证法的证明举例,训练了学生对举反例法的掌握情况.。

沪科8年级数学上册第13章2 命题与证明

沪科8年级数学上册第13章2 命题与证明

作为进一步判断其他命题真假的依据,只不过基本事实
(公理) 是最原始的依据;而命题不一定是真命题,因而不
能直接用来作为判断其他命题真假的依据.
例 4 填写下列证明过程中推理的依据.
知4-练
如图13.2-1,已知AC,BD相交于点O,DF平分
∠CDO与AC相交于点F,BE平分
∠ABO与AC相交于点E,∠A=∠C.
知识点 5 三角形内角和定理及推论1, 2
知5-讲
1. 定理 三角形的内角和等于180°. 几何语言:在△ABC中,∠A+∠B+∠C=180°.
2. 三角形内角和定理的证明
知5-讲
证明方法 方法一
图示
证明过程
如图,过点A作l∥BC,则 ∠2=∠B,∠3=∠C. 因为 ∠1+∠2+∠3=180°,所 以∠1+∠B+∠C=180°.
知1-练
解:(1)(2)(3)(4)(5)(7)是命题,其中(2)(3)是真命题, (1)(4)(5)(7)是假命题.(6)不是命题.
知1-练
1-1. [期末·宿州桥区]下列命题是真命题的是( C ) A. 如果AB=BC,那么点C是AB的中点 B. 三条线段的长分别为a,b,c,如果a+b > c,那 么这三条线段一定能组成三角形 C. 三角形的内角和等于180° D. 如果| a |=| b |,那么a=b
续表: 证明方法
方法二
图示
知5-讲
证明过程 如图, 过点C作CD∥AB, 则∠1=∠A,∠2=∠B. 因 为∠1+∠2+∠ACB= 180°,所以∠A+∠B+ ∠ACB=180°.
续表: 证明方法
方法三
图示
知5-讲
证明过程 如图,过点D作DE∥AB, DF∥AC,则∠1=∠C, ∠2=∠4,∠3=∠B,∠A =∠4. 所以∠2=∠A. 因为 ∠1+∠2+∠3=180°,所 以∠A+∠B+∠C=180°.

命题与证明定义命题

命题与证明定义命题

04 命题的真假判定
真值表判定法
01
列出命题的所有可能取值情况 ,并判断每个取值下命题的真 假。
02
真值表可以清晰地展示命题的 真假情况,有助于判断命题的 真假。
03
真值表适用于简单的命题,但 对于复杂的复合命题,可能存 在较多的取值情况,导致真值 表难以完全列举。
归结推理判定法
01
将复合命题转化为简单命题,通过逻辑推理判断其真假。
03 反证法适用于一些难以直接证明的命题,但需要 有一定的推理技巧和逻辑思维能力。
05 命题的应用与实例分析
数学中的应用
几何学
在几何学中,命题通常用来描述图形的性质和关系,如“ 等腰三角形的两底角相等”或“两点之间线段最短”。
代数
在代数中,命题常用来描述数和代数式的性质,如“负数 的平方是正数”或“任何数的零次方等于1(除了0的0次 方)”。
推理的定义与分类
定义
推理是从一个或多个命题得出另一个命题的思维过程。
分类
根据不同的标准,推理可以分为不同的类型,如演绎推理、归纳推理、类比推理等。
推理的逻辑结构
前提
推理所依据的前提是已知的事实 或命题。
结论
由前提推导出的结果或命题。
逻辑形式
推理的逻辑形式是指推理过程中 前提与结论之间的结构关系。正 确的逻辑形式能够保证推理的有 效性。
归纳推理
通过观察一系列实例,总结出一般规律的推理过程。例如,观察到许多正方形都有四个相等的边和四 个相等的角,可以归纳出所有正方形都有这些性质。
日常生活中的应用
科学决策
在日常生活中,我们经常需要根据已知 的信息和经验做出决策。这些已知的信 息和经验可以看作是命题。例如,根据 天气预报的命题(今天会下雨),我们 可以决定带伞出门。

命题与定理知识点总结

命题与定理知识点总结

命题与定理知识点总结命题和定理是数学中非常重要的概念,它们是推理和证明的基础,也是数学研究的重要工具。

在数学中,命题是一个陈述句,它要么为真,要么为假。

而定理则是已经经过证明的命题,它是数学研究的成果之一。

在数学中,命题与定理的概念有很重要的地位,下面我们将对命题与定理的知识点进行总结。

一、命题1. 命题的定义命题是陈述句,它要么为真,要么为假。

命题是可以判断真假的陈述句,而不能同时为真和假的陈述句不能称为命题。

比如:“1+1=2”、“地球是圆的”等句子都是命题。

2. 命题的类型(1)简单命题简单命题是最基本的命题,它不含有任何连接词或者其他命题,并且可以明确的判断真假。

(2)合取命题合取命题由多个简单命题用“且”连接而成,形式为p,q,r,...,这种形式的合取命题,只有所有的简单命题都为真时,该合取命题才为真,否则为假。

(3)析取命题析取命题是由多个简单命题用“或”连接而成,形式为p,q,r,...,这种形式的析取命题,只有有一个简单命题为真时,该析取命题就为真,否则为假。

(4)否定命题否定命题是由一个简单命题用“非”连接而成,形式为~p,这种形式的否定命题,当原命题为真时,否定命题为假,当原命题为假时,否定命题为真。

二、定理1. 定理的定义定理是数学中已经经过证明的命题,它是数学研究的成果之一。

定理是经过科学验证的,可以用来解决具体问题的命题。

在数学上,定理是通过数学推理和证明得出的数学结论。

2. 定理的特点(1)定理是经过证明的命题定理是经过严格的数学证明和验证的,它是数学研究的成果之一。

(2)定理可以用来解决问题定理是经过科学验证的,可以用来解决具体问题的命题,它是数学研究的重要工具。

(3)定理可以推广和应用定理可以根据特定的条件进行推广和应用,可以在实际问题中得到应用。

三、命题与定理的关系1. 命题与定理的联系命题与定理是数学中非常重要的概念,它们有着密切的联系。

命题是数学研究的基础,而定理则是通过命题推理和证明得出的数学结论。

命题与证明--知识讲解

命题与证明--知识讲解
不一定成立; 3.能用基本的逻辑术语、几何证明的步骤、格式和规范进行演绎证明.
【要点梳理】 要点一、命题、公理、定理、推论 1.命题
判断一件事情的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫 做假命题.
命题通常由题设、结论两个部分组成,通常可以写成“如果……那么……”的形式. 要点诠释:
命题与证明--知识讲解
撰稿:张晓新 审稿:孙景艳 【学习目标】 1.了解命题、定义、公理、定理、证明及推论的含义,会区分命题的题设(条件)和结论,
会在简单情况下判断一个命题的真假,理解证明的必要性,体会证明的过程要步步有据; 2.理解逆命题、逆定理的概念,会识别互逆命题与互逆定理,并知道原命题成立时其逆命题
【总结升华】判断逆命题是否正确,能举出反例即可.
举一反三:
【变式】试将下列各个命题的题设和结论相互颠倒,得到新的命题,并判断这些命题的真 假. (1)对顶角相等; (2)两直线平行,同位角相等; (3)若 a=0,则 ab=0; (4)两条直线不平行,则一定相交; 【答案】(1)对顶角相等(真);相等的角是对顶角(假);
(2)两直线平行,同位角相等(真);同位角相等,两直线平行(真); (3)若 a=0,则 ab=0(真);若 ab=0,则 a=0(假); (4)两条直线不平行,则一定相交(假);两条直线相交,则一定不平行(真); 类型二、证明举例 (1)平行线的性质与判定进行几何证明:
5.已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB 于 H.问 CD 与 AB 有什么关系?
DG DF
∴△EDG≌△EDF(S.A.S) ∴EG=EF
在△FDC 与△GDB 中
CD BD 1 2 DF DG
∴△FDC≌△GDB(S.A.S) ∴CF=BG ∵BG+BE>EG ∴BE+CF>EF 【总结升华】因为 D 是 BC 的中点,按倍长中线法,倍长过中点的线段 DF,使 DG=DF,证明

命题与证明)

命题与证明)

命题与证明㈠、定义;1、一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。

2、定义必须是严密的,避免使用含糊不清的术语,正确的定义能把被定义的事物或名词与其他的事物或名词区分开来。

㈡、命题;1、一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.2、命题可看做由题设(或条件)和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.一般可以用“如果……,那么……”表示3、注意事项:(1)命题通常是一个陈述句,包括肯定句和否定句,而疑问句和命令性语句都不是命题;(2)必须是对某一事件作出肯定或否定的判断,两者必具其一㈢、真命题和假命题:1. 正确的命题称为真命题,不正确的命题称为假命题。

2. 要判断一个命题是真命题,可以通过实践是方式,也可以通过推理的方式,即根据已知事实来推断未知事实,也有一些命题是人们经过长期实践后公认的真命题,如“两点之间线段最短”,“两点确定一条直线”等,判断一个命题是假命题,只要举出一个反例即可。

(四)、公理,定理:1. 经过长期实践后公认为正确的命题,作为判断其他命题的依据。

这样公认为正确的命题叫做公理。

例如:“两点之间线段最短”,“一条直线截两条平行所得的同位角相等”。

用推理的方法判断为正确的命题叫做定理。

2. 公理是不需要堆理论证的真命题,它可以作为判断其余命题真假的原始依据。

3. 定理都是真命题,但并不是所有的真命题都能作为定理,定理可以作为判断其他命题真假是依据。

4、本章中公理定理总结1) 平行线的判定性质定理平行线的判定公理● 两直线被第三条直线所截,如果同位角相等,那么这两条直线平行. ● 两条平行线被第三条直线所截,同位角相等.注意:证明两直线平行,关键是找到与特征结论相关的角.平行线的性质.● 公理:两直线平行,同位角相等.● 定理:两直线平行,内错角相等.● 定理:两直线平行,同旁内角互补.2)三角形内角和定理三角形内角和定理:三角形的内角和等于180°。

命题与证明知识讲解

命题与证明知识讲解

命题与证明知识讲解【学习目标】1.了解命题、定义、公理、定理的含义,会区分命题的题设(条件)和结论,会在简单情况下判断一个命题的真假;2.理解逆命题、逆定理的概念,会识别互逆命题与互逆定理,并知道原命题成立时其逆命题不一定成立;3.能用基本的逻辑术语、几何证明的步骤、格式和规范进行演绎证明;4.了解证明的含义,理解证明的必要性,体会证明的过程要步步有据.【要点梳理】要点一、演绎证明、演绎推理演绎证明从已知的概念、条件出发,依据已被确认的事实和公认的逻辑规则,推导出某结论为正确的过程.演绎推理演绎推理是数学证明一种常用的、完全可靠的方法.演绎证明是一个严格的数学证明,是我们将要学习的证明方法,演绎证明也称为证明.要点诠释:演绎推理的过程就是演绎证明,并不是所有的真理都可以进行演绎证明.要点二、命题、公理、定理定义能界定某个对象含义的句子叫做定义.命题判断一件事情的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.命题通常由题设、结论两个部分组成,通常可以写成“如果……那么……”的形式.要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.其中命题的题设是已知事项,结论是由已知事项推出的事项.当证明一个命题是假命题时只要举出一个反例就可以.公理人们从长期的实践中总结出来的真命题叫做公理,它们可以作为判断其他命题真假的原始依据.定理从公理或其他真命题出发,用推理方法证明为正确的,并进一步作为判断其他命题真假的原始依据.要点诠释:也就是说同时满足以下两个条件的真命题称为定理:(1)其正确性可通过公理或其它真命题逻辑推理而得到.(2)其又可作为判断其它命题真假的依据.要点三、逆命题和逆定理互逆命题在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.互逆定理如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理.【典型例题】类型一、命题1. 判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?做出判断的哪些是正确的?哪些是错误的?(1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等; (4)a ,b 两条直线平行吗?(5)鸟是动物; (6)若24a =,求a 的值;(7)若22a b =,则a =b .【答案与解析】句子(1)(3)(5)(7) 对事情作了判断,其中 (1)(3)(5)判断是正确的,(7)判断是错误的. 句子(2)(4)(6)没有对事情作出判断.其中(2)属于操作性语句,(4)属于问句,都不是判断性语句.【总结升华】主要考察命题的定义.举一反三:【变式】下列语句中,哪些是命题,哪些不是命题?(1)若a b <,则<-b a -;(2)三角形的三条高交于一点;(3)在ΔABC 中,若AB >AC ,则∠C >∠B 吗?(4)两点之间线段最短;(5)解方程2230x x --=;(6)1+2≠3.【答案】(1)(2)(4)(6)是命题,(3)(5)不是命题.2. 下列命题是真命题的是( )A .如果|a|=1,那么a=1B .有两条边相等的三角形是等腰三角形C .如果a 为实数,那么a 是有理数D .有两边和一角相等的两个三角形全等;【答案】C【解析】如果|a|=1,那么a=±1,故A 错误;如果a 为有理数,那么a 是实数,故C 错误;有两边和夹角相等的两个三角形全等,故D 错误;而B 根据等腰三角形的定义可判断正确;【总结升华】主要考查命题的真假,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义.举一反三:【变式】下列命题中,真命题的个数有()①对顶角相等②同位角相等③4的平方根是2 ④若a>b,则-2a>-2b A.3个B.1个C.4个D.2个【答案】B3.指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;【答案与解析】(1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)“等角对等边含义”是指有两个角相等所对的两条边相等。

命题、证明及平行线的判定定理(基础)知识讲

命题、证明及平行线的判定定理(基础)知识讲

命题、证明及平行线的判定定理(基础)知识讲解责编:赵炜【学习目标】1.了解定义、命题的含义,会区分命题的条件(题设)和结论;2. 体会检验数学结论的常用方法:实验验证、举出反例、推理;4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式;5.掌握平行线的判定方法,并能简单应用这些结论.【要点梳理】要点一、定义与命题1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.要点诠释:(1)定义实际上就是一种规定.(2)定义的条件和结论互换后的命题仍是真命题.2.命题:判断一件事情的句子叫做命题.真命题:正确的命题叫做真命题.假命题:不正确的命题叫做假命题.要点诠释:(1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果……那么……”的形式,其中“如果”开始的部分是条件,“那么”后面是结论.(2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立.要点二、证明的必要性要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理. 推理的过程叫做证明.要点三、公理与定理1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理.要点诠释:欧几里得将“两点确定一条直线”等基本事实作为公理.2.定理:通过推理得到证实的真命题叫做定理.要点诠释:证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程.要点四、平行公理及平行线的判定定理1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.2.平行线的判定定理判定方法1:同位角相等,两直线平行.如上图,几何语言:∵ ∠3=∠2∴ AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵ ∠1=∠2∴ AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵ ∠4+∠2=180°∴ AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、定义与命题1.请说出下列名词的定义:(1)无理数 (2)直角三角形【答案与解析】解:(1)无理数:无限不循环小数叫做无理数.(2)直角三角形:有一个角是直角的三角形叫做直角三角形.【总结升华】对学过的定义要准确地牢记.举一反三:【变式】指出下列句子哪些是定义.(1)两直线平行,内错角相等;(2)两腰相等的梯形叫等腰梯形;(3)有一个角是钝角的三角形是钝角三角形;(4)等腰三角形的两底角相等;(5)平行四边形的对角线互相平分;(6)连结三角形两边中点的线段叫做三角形的中位线.【答案】(2),(3),(6)是定义.2.说出下列命题的条件和结论,并判断它是真命题还是假命题:(!)如果,那么;,>>a b b c >a c (2)如果两个角相等, 那么它们是对顶角.【答案与解析】解:(1)条件:;结论:.它是真命题.,>>a b b c >a c(2)条件:两个角相等;结论:这两个角是对顶角.它是假命题.反例,你书的左下角和右下角两个角都是直角,相等,但不是对顶角.【总结升华】要判断一个命题是假命题,只要能够举出一个例子,使之具备命题的条件,而不具备命题的结论,就可以说明这一命题是假命题,这种例子通常称为反例.举一反三:【变式】(2013•贵港)下列四个命题中,属于真命题的是( ).A ,则B .若a >b ,则am >bm m =a m =C .两个等腰三角形必定相似D .位似图形一定是相似图形【答案】D类型二、公理、定理及证明3.证明:等角的余角相等.【思路点拨】如果题目中没有明确指出“条件”和“结论”,应先写出已知、求证、证明,如果需要的话并画出图形,再证明.【答案与解析】已知:∠1=∠2,∠1+∠3=90°,∠2+∠4=90°.求证:∠3=∠4.证明:∵∠1+∠3=90°,∠2+∠4=90°,(已知)∴∠3=90°-∠1,∠4=90°-∠2.(等式的性质)∵∠1=∠2(已知),∴∠3=∠4(等量代换).【总结升华】“等角的余角相等”与“等角的补角相等”可以作为今后证明的依据.此外,在等式或不等式中,一个量可以用它的等量来代替,简称为“等量代换”.举一反三:【变式】“垂线段最短”是( ).A .定义B .定理C .公理D .不是命题【答案】B类型三、平行线的判定定理4.如图所示,由(1)∠1=∠3,(2)∠BAD =∠DCB ,可以判定哪两条直线平行.【思路点拨】试着将复杂的图形分解成“基本图形”.【答案与解析】解:(1)由∠1=∠3,可判定AD ∥BC (内错角相等,两直线平行);(2)由∠BAD =∠DCB ,∠1=∠3得:∠2=∠BAD -∠1=∠DCB -∠3=∠4(等式性质),即∠2=∠4∴AB ∥CD (内错角相等,两直线平行).综上,由(1)(2)可判定:AD ∥BC ,AB ∥CD .【总结升华】本题探索结论的过程采用了“由因索果”的方法.即在条件下探索由这些条件可推导出哪些结论,再由这些结论推导出新的结论,直到得出结果.举一反三:【变式1】如图,下列条件中,不能判断直线∥的是( ).1l 2l A .∠1=∠3 B .∠2=∠3 C .∠4=∠5 D .∠2+∠4=1800【答案】B【高清课堂:平行线及判定 例1】【变式2】已知,如图,BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,求证:AB//CD .【答案】∵ ∠1=∠2∴ 2∠1=2∠2 ,即∠ABC=∠BCD∴ AB//CD (内错角相等,两直线平行)5.(2015•日照期末)如图,AB ∥CD ,AE 平分∠BAD ,CD 与AE 相交于F ,∠CFE=∠E .求证:AD ∥BC .【答案与解析】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.【总结升华】主要考查角平分线的性质以及平行线的判定定理.【高清课堂:平行线及判定例5】举一反三:【变式1】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由.【答案】解:AB∥CD.理由如下:如图:∵EF⊥EG,GM⊥EG (已知),∴∠FEQ=∠MGE=90°(垂直的定义).又∵∠1=∠2(已知),∴∠FEQ-∠1=∠MGE-∠2 (等式性质),即∠3=∠4.∴ AB∥CD (同位角相等,两直线平行).【变式2】(2015•宁城)如图,下列能判定AB∥CD的条件有( )个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.4【答案】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.。

命题与证明知识点总结

命题与证明知识点总结

命题与证明知识点总结命题与证明是数学中基础且重要的一部分,它涉及到逻辑推理、推断和论证等一系列思维活动。

在整个数学学科中,命题与证明贯穿始终,无处不在。

本文将系统总结命题与证明的相关知识点,包括命题逻辑、证明方法、常见证明技巧等内容。

一、命题逻辑命题逻辑是研究命题之间的逻辑关系的一门学科,其中命题是陈述句,它要么为真,要么为假。

在命题逻辑中,我们通常使用符号来表示命题,并通过符号之间的逻辑连接来表达命题之间的关系。

常见的逻辑连接包括合取(∧)、析取(∨)、蕴含(→)、双条件(↔)等。

1.合取合取是指命题p和q同时为真时,合取命题p∧q为真,否则为假。

合取命题p∧q的真值表如下:p q p∧qT T TT F FF T FF F F2.析取析取是指命题p和q中至少有一个为真时,析取命题p∨q为真,否则为假。

析取命题p∨q的真值表如下:p q p∨qT T TT F TF T TF F F3.蕴含蕴含是指当p为真而q为假时,蕴含命题p→q为假,否则为真。

蕴含命题p→q的真值表如下:p q p→qT T TT F FF T TF F T4.双条件双条件是指命题p和q同时为真或同时为假时,双条件命题p↔q为真,否则为假。

双条件命题p↔q的真值表如下:p q p↔qT T TT F FF T FF F T二、证明方法在数学中,我们常常需要证明一个命题的真假,为此我们需要采用合适的证明方法来论证。

常见的证明方法包括直接证明法、间接证明法、数学归纳法等。

1.直接证明法直接证明法是指通过一系列逻辑推理来证明一个命题的方法。

通常情况下,我们能够找到一条直接的逻辑推理路径,从已知的事实得出结论。

举例:证明“所有的偶数都是2的倍数”。

我们可以直接证明该命题,因为偶数的定义就是2的倍数。

2.间接证明法间接证明法是指通过反证法来证明一个命题的方法。

我们假设该命题的反命题为真,然后通过一系列逻辑推理得出矛盾,从而证明原命题为真。

命题与证明

命题与证明

命题与证明考点:命题与证明►知识点拨:1.命题及其分类(1)命题定义:对某一事件作出正确或不正确判断的语句(或式子)叫做命题.举例:一年有365天;对顶角相等;欢迎光临,其中前两个是命题.识别:没有对一件事的正确与否作出任何判断的语句,不是命题.(2)分类:①真命题:正确的命题;②假命题:错误的命题;③识别:一个命题要么是真命题,要么是假命题,不能模棱两可.注意:①命题必须是一个完整的句子,是对事情作出肯定或否定的判断;②命题一般为陈述句.2.命题的结构①题设(或条件),是已知事项;②一般形式:如果p,那么q(其中p是题设,q是结论);③结论(或题断),由已知事项推出的事项.3.互逆命题原命题与逆命题:将命题“如果p,那么q”中的条件与结论互换,便得到一个新命题“如果q,那么p”,我们把这样的两个命题称为互逆命题,其中一个叫做原命题,另一个就叫做原命题的逆命题.4.反例:符合命题条件,但不满足命题结论的例子,称为反例.注意:对于一个命题,只要能举出反例,就说明它是假命题.5.定理、证明①定理:从基本事实或其他真命题出发,用推理方法判断为正确的,并被选作判断命题真假的依据,这样的真命题叫做定理.②证明:从已知条件出发,依据定义、基本事实、已证定理,并按照逻辑规则,推倒出结论,这一方法称为演绎推理.演绎推理的过程就是演绎证明,简称证明.6.三角形的外角及三角形内角和定理的推论①三角形外角:由三角形的一边与另一边的延长线组成的角.②三角形内角和定理的推论:例1:下列语句不是命题的是 ( ) A.直角都等于90 B.对顶角相等 C.互补的两个角不相等 D.作线段AB例2:把下例命题改写成“如果......那么.....”的形式,并分别指出它们的题设和结论.(1)整数一定是有理数; (2)同角的补角相等;(3)两个锐角互余.例3:写出下列命题的逆命题,并判断真假(1)两直线平行,同位角相等;(2)若a =0,则a b=0;(3)对顶角相等.例4:请举反例说明命题“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是_____(写出一个的值即可).例5:在下列证明中,填上推理依据:如图,CD ∥EF ,∠1=∠2,求证:∠3=∠ACB.例6:如图,在△ABC中,∠ABC=66 ,∠ACB=54 ,BE、CF是两边AC、AB上的高,它们交于点H.求∠ABE和∠BHC的度数.基础训练1、下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角的两个角不相等D.过直线AB外一点P作直线AB的垂线2、下列命题中,是真命题的是()A.三角形的一个外角大于任何一个内角B.三角形的一个外角等于两个内角之和C.三角形的两边之和一定不小于第三边D.三角形的三条中线交于一点,这个交点就是三角形的重心3、“两条直线相交只有一个交点”的题设是()A.两条直线B.相交C.只有一个交点D.两条直线相交4、已知命题A:“任何偶数都是8的整数倍”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2kB.15C.24D.425、如图,下列说法中错误的是()A.∠1不是△ABC的外角B.∠B<∠1+∠2C.∠ACD是△ABC的外角D.∠ACD>∠A+∠B第5题图第6题图第7题图6、一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165B.120C.150D.1357、如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°8、命题“有两边相等的三角形是等腰三角形”的题设是,结论是,它的逆命题是.9、完成以下证明,并在括号内填写理由:已知:如图所示∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2,所以AB∥.()所以∠A=∠4.()又因为∠A=∠3,所以∠3=.()所以AC∥DE. ()10、将下列命题改写成“如果......那么......”的形式,并分别指出命题的题设与结论:(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)同角的余角相等.11、分析下列所举反例的正确性,若不正确,请写出正确的反例.(1)若|x|=|y|,则x=y;反例:取x=3,y=-3,则|x|=|y|,所以此命题是假命题;(2)两个锐角的和一定是钝角;反例:取∠1=30°,∠2=100°,则∠1+∠2=130°,不符合命题的结论,所以此命题是假命题;(3)若|a|=a,则a>0.12、如图,已知AC∥DE,∠1=∠2.求证:AB∥CD.13、如图,在△ABC中,∠A=62°,∠ABD=∠DCE=36°,求∠BEC的度数.14、如图,点E是△ABC中AC边上的一点,过E作ED⊥AB,垂足为D,若∠1=∠2,,则△ABC 是直角三角形吗?为什么?强化训练1.如图,在锐角三角形ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 相交于点P.若∠A =50°,则∠BPC 的度数是 ( )A.150B.130C.120D.1002.如图,从①∠1=∠2;②∠C=∠D ;③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为 ( )A.0B.1C.2D.3第2题图 第6题图3.一个三角形的三个外角之比为3:4:5,则这个三角形三个内角之比是 ( )A.5:4:3B.4:3:2C.3:2:1D.5:3:14.能说明命题“对于任何实数a ,a a ->”是假命题的一个反例可以是 ( )A.a =-2B.31=a C. a =1 D.2=a 5.下列命题:①对顶角相等;②同位角相等,两直线平行;③若b a =,则b a =;④若0=x ,则022=-x x .它们的逆命题一定成立的有 ( )A.①②③④B.①④C.②④D.②6.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35 ,∠ACE=60 ,则∠A= ( )A.35B.95C.85D.757.如图,在△ABC 中,∠B=40 ,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=.8.直角三角形中两个锐角的平分线相交所成的锐角的度数是.9.写出命题“如果b a =,那么b a 33=”的逆命题:.10.如图,AD 是△ABC 的高,BE 平分∠ABC 交AD 于E.若∠C =60°,∠BED =54°,求∠BAC 的度数.11.如图,AD 是△ABC 的外角平分线,交BC 的延长线于D 点,若∠B=30°,∠ACD=100°, 求∠DAE 的度数.12.如图,D是△ABC内的任意一点.求证:∠BDC=∠1+∠A+∠2.13.用两种方法证明“三角形的外角和等于360 ”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360 .证法1: ,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180⨯ 3=540 .∴∠BAE+∠CBF+∠ACD=540 -(∠1+∠2+∠3).,∴∠BAE+∠CBF+∠ACD=540 -180 =360 .请把证法1补充完整,并用不同的方法完成证法2.能力提升1.如图,∠A+∠B+∠C+∠D=.2.观察下列各式:想一想:什么样的两个数之积等于这两个数的和?设n 表示正整数,用关于n 的代数式表示这个规律:_______×_______=_______+________.3.如图,在△ABC 中,AD 是BC 边上的中线,且AD=12BC . (1)求证:∠BAC=90°;(2)直接运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为4.如图在△ABC 中AB=AC,∠BAC=900,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于E 、F.2224,24;1139393,3;22224164164,4;33335255255,5.4444⨯=+=⨯=+=⨯=+=⨯=+=(1)求证:AE=CF(2)是否还有其他结论,不要求证明(至少2个)。

八年级命题与证明知识点

八年级命题与证明知识点

八年级命题与证明知识点
为了更好地帮助八年级的学生复习和掌握数学知识,本文将总结八年级命题与证明的重要知识点。

这些知识点是建立在初中数学基础上的,包括代数公式、等式的性质、角的定义、垂直角、平行线与夹角、三角形与四边形的基本概念和性质、勾股定理、相似三角形等内容。

以下是详细介绍:
一、代数公式
1.展开式和因式分解
2.二次根式简化
3.分式的基本操作和简化
二、等式的性质
1.等式两边加减相等数仍相等
2.等式两边乘除相等数仍相等
3.移项变形原则
三、角的定义
1.角的度量单位
2.角的分类
3.角平分线
四、垂直角
1.垂直角的定义和判定
2.垂直角的性质
3.全等图形中垂直角相等
五、平行线与夹角
1.平行线的定义和判定
2.平行线的性质
3.同位角、内错角、同旁内角
六、三角形的基本概念和性质
1.三角形的边和角
2.三角形的分类
3.三角形的周长和面积公式
七、四边形的基本概念和性质
1.四边形的性质
2.平行四边形的性质
3.矩形、菱形和正方形的性质
八、勾股定理
1.勾股定理的证明
2.勾股三元数的判别式
3.利用勾股定理解决问题
九、相似三角形
1.相似三角形的定义和判定
2.相似三角形的性质
3.相似三角形的应用
以上就是八年级命题与证明的重要知识点。

这些知识点不仅是掌握初中数学的基础,而且在高中和大学的数学学习中也是必要的。

希望学生们能够重视这些知识点的学习,认真思考、理解和应用,取得更好的成绩。

命题与证明的知识点

命题与证明的知识点
命题与证明的知识点
一、选择题
1.下列说法正确的是()
A.若a>b,则a2>b2
B.若三条线段的长a、b、c满足a+b>c,则以a、b、c为边一定能组成三角形
C.两直线平行,同旁内角相等
D.三角形的外角和为360°
【答案】D
【解析】
【分析】
利用特例对A进行分析,利用三角形三边关系、平行线的性质、三角形外角的性质分别对B、C、D进行分析判断.
本题考查了命题与定理的知识,解题的关键是了解轴对称的性质、等腰三角形的性质、等边三角形的判定等知识,属于基础知识,难度不大.
10.下列命题是真命题的是()
A.若x>y,则x2>y2B.若|a|=|b|,则a=bC.若a>|b|,则a2>b2D.若a<1,则a>
【答案】C
【解析】
【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.
【答案】A
【解析】
【分析】
根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.
【详解】
A、正确.
B、错误,对应边不一定成比例.
C、错误,不一定中奖.
D、错误,对角线相等的四边形不一定是矩形.
故选:A.
【点睛】
此题考查命题与定理,熟练掌握基础知识是解题关键.
【详解】A. x>y,如x=0,y=-1,02<(-1)2,此时x2<y2,故A选项错误;
B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误;
C.若a>|b|,则a2>b2,正确;
D. a<1,如a=-1,此时a= ,故D选项错误,
故选C.
【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.

中考数学知识点总结命题定理与证明

中考数学知识点总结命题定理与证明

中考数学知识点总结:命题、定理与证明1、命题与定理定义1:判断一件事情的语句,叫做命题。

命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项。

数学中的命题常可以写成“如果……,那么……”的形式。

“如果”后接的部分是题设,“那么”后接的部分是结论。

定义2:如果题设成立,那么结论一定成立,这样的命题叫做真命题。

定义3:题设成立时,不能保证结论一定成立,这样的命题叫做假命题。

定义4:如果一个命题的正确性是经过推理证实的,这样得到的真命题叫做定理。

定义5:两个命题的题设和结论正好相反,我们把这样的两个命题叫做互为逆命题。

其中一个叫做原命题,另外一个叫做逆命题。

如果定理的逆命题是正确的,那么它也是一个定理,我们把这个定理叫做原定理的逆定理。

2、证明一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明。

1、通过具体实例,了解定义、命题、定理、推论的意义。

2、结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念。

会识别两个互逆的命题,知道原命题成立其逆命题不一定成立。

3、知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达形式,会综合法证明的格式。

4、了解反例的作用,知道利用反例可以判断一个命题是错误的。

1、命题及命题真伪的判断。

2、命题的条件和结论的区分。

3、写出命题的逆命题。

1、下列语句中,属于命题的是( )A、直线AB和CD垂直吗B、过线段AB的中点C画AB的垂线C、同旁内角不互补,两直线不平行D、连结A、B两点2、下列语句不是命题的是( )A、两点之间线段最短B、不平行的两条直线有一个交点C、x与y的和等于0吗?D、对顶角不相等3、命题“垂直于同一条直线的两条直线互相平行”的题设是( ) A 、垂直 B 、两条直线C 、同一条直线D 、两条直线垂直于同一条直线4、命题“直角都相等”的题设是 ,结论是 。

5、把命题“有三个角是直角的四边形是矩形”改写成“如果……那么……”的形式: 。

命题与证明的知识点总复习附答案解析

命题与证明的知识点总复习附答案解析

命题与证明的知识点总复习附答案解析一、选择题1.下列命题属于真命题的是()A.同旁内角相等,两直线平行B.相等的角是对顶角C.平行于同一条直线的两条直线平行D.同位角相等【答案】C【解析】【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【详解】A、同旁内角互补,两直线平行,是假命题;B、相等的角不一定是对顶角,是假命题;C、平行于同一条直线的两条直线平行,是真命题;D、两直线平行,同位角相等,是假命题;故选C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.2.下列命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.如果两个实数相等,那么它们的平方相等C.平行四边形的对角线互相平分D.全等三角形的对应边相等【答案】B【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;故选B.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.3.下列说法中,正确..的是( )A.图形的平移是指把图形沿水平方向移动.B.平移前后图形的形状和大小都没有发生改变.C.“相等的角是对顶角”是一个真命题D.“直角都相等”是一个假命题【答案】B【解析】图形的平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移,平移前后图形的形状和大小都没有发生改变.而相等的角不一定是对顶角,C是一个假命题,直角都相等是真命题.故选B4.下列命题正确的是( )A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的. B.两个全等的图形之间必有平移关系.C.三角形经过旋转,对应线段平行且相等.D.将一个封闭图形旋转,旋转中心只能在图形内部.【答案】A【解析】【分析】根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.故选:A.【点睛】本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.下列命题的逆命题成立的是()A.对顶角相等B.全等三角形的对应角相等C.如果两个数相等,那么它们的绝对值相等D .两直线平行,同位角相等【答案】D【解析】【分析】写出各个命题的逆命题,然后判断是否成立即可.【详解】解:A 、逆命题为相等的角为对顶角,不成立;B 、逆命题为对应角相等的三角形全等,不成立;C 、逆命题为绝对值相等的两个数相等,不成立;D 、逆命题为同位角相等,两直线平行,成立,故选:D .【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出各个命题的逆命题,难度不大.6.下列命题是真命题的是( )A .方程23240x x --=的二次项系数为3,一次项系数为-2B .四个角都是直角的两个四边形一定相似C .某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D .对角线相等的四边形是矩形【答案】A【解析】【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.【详解】A 、正确.B 、错误,对应边不一定成比例.C 、错误,不一定中奖.D 、错误,对角线相等的四边形不一定是矩形.故选:A .【点睛】此题考查命题与定理,熟练掌握基础知识是解题关键.7.下列命题中是真命题的是( )A .两个锐角的和是锐角B .两条直线被第三条直线所截,同位角相等C .点(3,2)-到x 轴的距离是2D .若a b >,则a b ->-【答案】C【解析】根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.【详解】A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.故选:C .【点睛】本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.8.下列命题的逆命题正确的是( )A .如果两个角是直角,那么它们相等B .全等三角形的面积相等C .同位角相等,两直线平行D .若a b =,则22a b =【答案】C【解析】【分析】交换原命题的题设与结论得到四个命题的逆命题,然后分别根据直角的定义、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.【详解】解:A 、逆命题为:如果两个角相等,那么它们都是直角,此逆命题为假命题; B 、逆命题为:面积相等的两三角形全等,此逆命题为假命题;C 、逆命题为:两直线平行,同位角相等,此逆命题为真命题;D 、逆命题为,若a 2=b 2,则a =b ,此逆命题为假命题.故选:C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.9.“两条直线相交只有一个交点”的题设是( )A .两条直线B .相交C .只有一个交点D .两条直线相交【答案】D【分析】任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.【详解】“两条直线相交只有一个交点”的题设是两条直线相交.故选D.【点睛】本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.10.下列命题正确的是()A.矩形对角线互相垂直x=B.方程214x x=的解为14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【答案】D【解析】【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6-2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【详解】A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选D.【点睛】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.11.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,内错角相等; B.相等的角是对顶角;C.所有的直角都是相等的;D.若a=b,则a-1=b-1.【答案】C【解析】【分析】【详解】分析:写出原命题的逆命题,根据相关的性质、定义判断即可.详解:交换命题A 的题设和结论,得到的新命题是内错角相等,两直线平行,是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等,是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角,是假命题; 交换命题D 的题设和结论,得到的新命题是若a ﹣1=b ﹣1,则a =b ,是真命题. 故选C .点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.下列命题中,是真命题的是( )A .同位角相等B .若两直线被第三条直线所截,同旁内角互补C .同旁内角相等,两直线平行D .平行于同一直线的两直线互相平行 【答案】D【解析】【分析】根据平行线的判定、平行线的性质判断即可.【详解】A 、两直线平行,同位角相等,是假命题;B 、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C 、同旁内角互补,两直线平行,是假命题;D 、平行于同一直线的两条直线互相平行,是真命题;故选:D .【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.13.下列命题中,假命题是( )A .同旁内角互补,两直线平行B .如果a b =,则22a b =C .对应角相等的两个三角形全等D .两边及夹角对应相等的两个三角形全等【答案】C【解析】【分析】根据平行线的判定、等式的性质、三角形的全等的判定判断即可.【详解】A 、同旁内角互补,两直线平行,是真命题;B 、如果a b =,则22a b =,是真命题;C 、对应角相等的两个三角形不一定全等,原命题是假命题;D、两边及夹角对应相等的两个三角形全等,是真命题;故选:C.【点睛】此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.14.下列命题中,假命题是()A.平行四边形的对角线互相垂直平分B.矩形的对角线相等C.菱形的面积等于两条对角线乘积的一半D.对角线相等的菱形是正方形【答案】A【解析】【分析】不正确的命题是假命题,根据定义依次判断即可.【详解】A. 平行四边形的对角线互相平分,故是假命题;B. 矩形的对角线相等,故是真命题;C. 菱形的面积等于两条对角线乘积的一半,故是真命题;D. 对角线相等的菱形是正方形,故是真命题,故选:A.【点睛】此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.15.下列命题是假命题的是()A.有一个角是60°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.线段垂直平分线上的点到线段两端的距离相等【答案】C【解析】【分析】根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.【详解】A.正确;有一个角是60°的等腰三角形是等边三角形;B.正确.等边三角形有3条对称轴;C.错误,SSA无法判断两个三角形全等;D.正确.线段垂直平分线上的点到线段两端的距离相等.故选:C.【点睛】本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.16.下列命题的逆命题不正确...的是()A.相等的角是对顶角B.两直线平行,同旁内角互补C.矩形的对角线相等D.平行四边形的对角线互相平分【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A、逆命题是:对顶角相等.正确;B、逆命题是:同旁内角互补,两直线平行,正确;C、逆命题是:对角线相等的四边形是矩形,错误;D、逆命题是:对角线互相平分的四边形是平行四边形,正确.故选:C.【点睛】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.17.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.18.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.19.下列命题是假命题的是( )A .三角形的外心到三角形的三个顶点的距离相等B .如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C .将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限D .若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m £ 【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.20.用三个不等式a>b,ab>0,1a>1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0 B.1 C.2 D.3【答案】A【解析】【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【详解】解:①若a>b,ab>0,则1a>1b;假命题:理由:∵a>b,ab>0,∴a>b>0,∴1a<1b;②若ab>0,1a>1b,则a>b,假命题;理由:∵ab>0,∴a、b同号,∵1a>1b,∴a<b;③若a>b,1a>1b,则ab>0,假命题;理由:∵a>b,1a>1b,∴a、b异号,∴ab<0.∴组成真命题的个数为0个;故选:A.【点睛】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.。

《命题与证明》知识讲解

《命题与证明》知识讲解

命题与证明知识讲解宋老师学习目标1.了解定义、命题、真命题、假命题的含义,会区分命题的题设条件和结论,会判断一个命题的真假;2.了解综合法的证明步骤和书写格式.3.运用平行线的判定与性质、三角形的内角和定理及其推论去解决一些简单的问题,用几何语言进行简单的推理论证.4.了解逆命题的概念,会识别两个互逆命题,并知道原命题成立,逆命题不一定成立.会判断一个命题的逆命题的真假.要点梳理要点一、定义、命题、真命题、假命题定义:对名称或术语的含义进行描述或做出规定,就是给它们的定义.命题:判断一件事情的句子叫命题.真命题:如果条件成立,那么结论成立,这样的命题叫做真命题.假命题:如果条件成立时,不能保证结论总是正确的,也就是说结论不成立,这样的命题叫做假命题.要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.其中命题的题设是已知事项,结论是由已知事项推出的事项.当证明一个命题是假命题时只要举出一个反例就可以,即只需列出一个具备条件而不具备结论的例子即可.要说明一个真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理,证明它的正确性.要点二、证明根据已知真命题,确定某个命题的真实性的过程,叫做证明.经过证明的真命题称为定理.证明过程必须做到言必有据.证明过程通常包含几个推理,每个推理都应包括因、果和有因得果的依据.其中,“因”是已知事项,“果”是推出的结论;“有因得果的依据”是基本事实、定义、已学过的定理以及等式性质、不等式性质.证明的步骤:1.根据题意,画出图形;2.根据命题的条件、结论,结合图形,写出已知、求证;3.写出证明过程.要点诠释:推理和证明是有区别的,推理是证明的组成部分,一个证明过程往往包含多个推理.要点三、三角形的内角和定理及其推论三角形的内角和定理:三角形的三个内角的和等于180°.推论:三角形的外角等于与它不相邻的两个内角和.要点诠释:1三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.2三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.3三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.4三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.5若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.要点四、互逆命题在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题是另一个命题的逆命题.把一个命题的条件与结论互换,就得到它的逆命题,我们能够判断一个命题及其它的逆命题的真假.证明一个命题是假命题,只需举出一个反例就可以了.要点诠释:每一个命题都有对应的逆命题,一个真命题的逆命题不一定是真命题,同样一个假命题的逆命题也不一定仍为假命题.反例就是复合命题的条件,但不符合命题的结论的例子,它可以是数值、图形,也可以是文字说明.一个命题的反例可以有很多个,解题时只需要举出其中最易懂的一个即可.典型例题类型一、逆命题与逆定理1. 下列命题是真命题的是A.如果|a|=1,那么a=1B.有两条边相等的三角形是等腰三角形C.如果a为实数,那么a是有理数D.相等的角是对顶角.;答案B.解析如果|a|=1,那么a=±1,故A错误;如果a为有理数,那么a是实数,故C错误;两个直角三角形中的两个直角相等,但不是对顶角,故D错误;而B根据等腰三角形的定义可判断正确;总结升华主要考查命题的真假,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义.举一反三:变式2016春•东平县期中下列句子中,不是命题的是A.三角形的内角和等于180°B.对顶角相等C.过一点作已知直线的平行线 D.两点确定一条直线答案C.C不是可以判断真假的陈述句,不是命题;A、B、D均是用语言表达的、可以判断真假的陈述句,都是命题.故选C.2.下列命题中,逆命题正确的是A.对顶角相等B.直角三角形两锐角互余C.全等三角形面积相等D.全等三角形对应角相等答案B.解析A选项逆命题是相等的角是对顶角,不对;B选项逆命题是两个锐角互余的三角形是直角三角形,对的;C选项逆命题是面积相等的三角形是全等三角形显然不对;D选项的逆命题是对应角相等的三角形是全等三角形,不一定,也可能是相似三角形.总结升华判断逆命题是否正确,能举出反例即可.举一反三:变式试将下列各个命题的题设和结论相互颠倒,得到新的命题,并判断这些命题的真假.1对顶角相等;2两直线平行,同位角相等;3若a=0,则ab=0;4两条直线不平行,则一定相交;答案1对顶角相等真;相等的角是对顶角假;2两直线平行,同位角相等真;同位角相等,两直线平行真;3若a=0,则ab=0真;若ab=0,则a=0假;4两条直线不平行,则一定相交假;两条直线相交,则一定不平行真;3. 对于同一平面内的三条直线a、b、c,给出下列五个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c,请你以其中两个作为题设,另一个作为结论,用“如果…,那么…”的形式,写出两个正确的命题.思路点拨同一平面内,根据垂直于同一直线的两直线平行;平行于同一直线的两直线平行,则可由③⑤得到②;由①②得到④.答案与解析解:如果③a⊥b,⑤a⊥c,那么②b∥c;如果①a∥b,②b∥c,那么④a∥c.总结升华本题考查了命题:判断事物的语句叫命题,正确的命题叫真命题,错误的命题为假命题;命题分为题设与结论两部分.也考查了平行线的性质.类型二、证明举例1平行线的性质与判定进行几何证明:4. 2015春•姜堰市期末如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.已知AB⊥ BC、CD⊥ BC,BE∥ CF,,求证:∠ 1=∠ 2.思路点拨由于AB⊥ BC、CD⊥ BC得到AB∥ CD,利用平行线的性质得到∠ ABC=∠ DCB,又BE∥CF,则∠ EBC=∠ FCB,可得到∠ ABC﹣∠ EBC=∠ DCB﹣∠ FCB,即有∠ 1=∠ 2.答案与解析证明:∵ AB⊥ BC、CD⊥ BC,∴AB∥ CD,∴∠ ABC=∠ CB,又∵ BE∥ CF,∴∠ EBC=∠ FCB,∴∠ ABC﹣∠ EBC=∠ DCB﹣∠ FCB,∴∠ 1=∠ 2.总结升华本题考查的是平行线的判定和性质的综合应用.举一反三:变式如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.答案∠A=∠F.证明:∵∠AGB=∠DGF,∠AGB=∠EHF,∴∠DGF=∠EHF,∴BD∥CE;∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴DF∥AC;∴∠A=∠F.2与三角形有关的几何证明:5.如图,已知三角形ABC的三个内角平分线交于点I,IH⊥BC于H,试比较∠CIH和∠BID 的大小.思路点拨根据角平分线的定义、三角形内角和定理可知∠BAD+∠ABI+∠HCI=90°.又因为∠BAD+∠ABI=∠BID,90°-∠HCI=∠CIH,所以∠BID=∠CIH.答案与解析证明:∵AI、BI、CI为三角形ABC的角平分线,∴∠BAD=12∠BAC,∠ABI=12∠ABC,∠HCI=12∠ACB.∴∠BAD+∠ABI+∠HCI=12∠BAC+12∠ABC+12∠ACB=12∠BAC+∠ABC+∠ACB=12×180°=90°.∴∠BAD+∠ABI=90°-∠HCI.∵IH⊥BC,∴∠IHC=90°∴90°-∠HCI=∠CIH,∴∠CIH=∠BAD+∠ABI∵∠BID=∠BAD+∠ABI三角形的一个外角等于与其不相邻的两个内角的和∴∠BID=∠CIH.总结升华考查了角平分线的定义及三角形内角和定理:三角形三个内角的和为180°,在推导角的关系时,一定不要忘记与三角形有关的角中还有一个特别重要的性质:三角形的一个外角等于与其不相邻的两个内角的和.3文字命题的证明:6、求证:等边三角形内部任一点到三边的距离之和为定值.思路点拨先画图,设等边三角形的边长为a,高为h,再利用三角形的面积公式来求,原三角形分成三个大小不等的三个三角形,三个三角形的面积和与原三角形的面积相等,即S△A B C=S△P A B+S△P B C+S△P A C;可得h=PE+PF+PD.答案与解析已知:如图,△ABC是等边三角形,P是三角形内任一点,PE⊥AB,PG⊥AC,PF⊥BC.垂足分别为E、G、F,求证:PE+PG+PF为定值.证明:设等边三角形△ABC的边长为a,面积为S.连结PA、PB、PC,则S△APB=12a•PE,S△CPB=12a•PF,S△APC=12a•PG,于是S△APB+S△CPB+S△APC=12a•PE+12a•PF+12a•PG,即12a•PE+12a•PF+12a•PG=S,PE+PF+PG=2Sa,为定值.总结升华对于文字命题的证明,要根据文字所描述的内容写出已知和求证,然后证明.。

命题与证明复习资料

命题与证明复习资料

命题与证明复习资料知识讲解一:定义与命题概念:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。

命题结构:命题可看做由题设(条件)和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项。

命题的分类:正确的命题叫做真命题,不正确的命题叫做假命题判定一个命题是真命题的方法:(1)通过推理的方式,即根据已知的事实来推断未知事实;用推理的方法判断为正确的命题叫做定理.(2)人们经过长期实践后而公认为正确的:数学中通常挑选一部分人类经过长期实践后公认为正确的命题叫做公理.定理和公理都可以作为判断其他命题真假的依据。

命题⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧假命题(举反例)理)其它的真命题(需要推定理(需要推理)公理(公认为正确)真命题 ◆针对练习1.下列语句中,为定义的是( )A .两点确定一条直线吗;B .三角形的角平分线是一条线段C .在同一平面内,不相交的两条直线叫做平行线;D .同角的余角相等2.已知下列句子:①延长线段AB 到C;②垂线段最短;③过点A 画直线EF ;④将4•开平方.其中是命题的有( )A .1个B .2个C .3个D .4个3.把命题“同角的补角相等”改写成“如果……那么……”的形式,正确的是( )A .如果同角,那么相等;B .如果同角,那么补角相等;C .如果同角的补角,那么相等;D .如果两个角是同一个角的补角,那么这两个角相等.4.指出下列命题的条件和结论,并改写成“如果……那么……”的形式.(1)两直线平行,内错角相等;(2)全等三角形的面积相等.5.正确的命题称为______命题,不正确的命题称为_______命题.命题“如果ab=0,那么a=0”是________命题;命题“如果a=0,那么ab=0”是________命题.6.下列说法正确的是( )A .定理不一定是真命题;B .真命题不一定正确C .假命题不一定错误;D .公理一定是真命题7.(1)命题“若a 〉3,则2(3)a =a —3”是真命题还是假命题?请说明理由.(2)命题“如果ab 〉0,则a>0且b 〉0”是真命题还是假命题?请说明理由.8.•命题“在一个三角形中,•等边对等角”的条件是:____________,结论是:_______________,它是______命题.9.如图,△ABC 中,∠B=∠C ,AD ∥BC,则AD 平分△ABC 的外角∠EAC.用推理的方法说明它是一个真命题.◆综合提高10.指出下列命题的题设和结论,并把它改写成“如果……那么……”的形式.(1)三角形两边之和大于第三边;(2)三角形的内角和等于180°.11.观察下列给出的方程,找出它们的共同特征,试给出名称,并作出定义.x 3+x 2-3x+4=0,x 3+x-1=0,x 3—2x 2+3=x ,y 3+2y 2-5y-1=0.12.已知下列命题:①有一个内角是60°的三角形是等边三角形;•②有一个内有是60°的等腰三角形是等边三角形;③有两个内角是60°的三角形是等边三角形;④三个内角相等的三角形是等边三角形.其中真命题有( )A.1个 B.2个 C.3个 D.4个13.下列命题中,哪些是真命题?哪些是假命题?请说明理由.(1)如果两个角相等,那么它们是对顶角.(2)关于x的方程ax2-x=0(a≠0)必有两个不相同的实数解.14.下列关于代数式x2-4x+8的三个命题:①该代数式的值必定大于8;②该代数式的值必定大于4;③该代数式的值必定大于2.其中是真命题的有_______.(填序号)知识点二:证明概念:要判断一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、公理、定理,一步一步推得结论成立,这样的推理过程就叫做证明注:证明过程中的每一步推理都要有依据,依据作为推理的理由可以写在每一步后的括号内证明命题的一般步骤:(1)根据题意,画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证"中写出结论;(3)在“证明"中写出推理过程.依据思路,运用数学符号和数学语言条理清晰地写出证明过程;检查表达过程是否正确、完善.证明几何命题时,表述要按照一定的格式,一般为:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论(3)在“证明"中写出推理过程。

论证逻辑知识点总结

论证逻辑知识点总结

论证逻辑知识点总结一、命题逻辑1. 命题命题是陈述句,它要么为真,要么为假。

命题逻辑是研究命题之间逻辑关系的学科。

命题逻辑的核心概念有:合取、析取、蕴含、等价、否定等。

合取是指“且”的关系,例如命题p且q,表示p为真且q为真;析取是指“或”的关系,例如命题p或q,表示p为真或q为真;蕴含是指“如果…那么…”的关系,例如命题如果p,那么q,表示当p为真时,q为真;等价是指两个命题具有相同的真值,例如p等价于q,表示p和q同时为真或者同时为假;否定是指与原命题相反的命题,例如非p,表示p的否定。

2. 逻辑联结词逻辑联结词是连接命题的词语,包括合取联结词、析取联结词、蕴含联结词、等价联结词和否定联结词。

合取联结词有∧、或、与等符号;析取联结词有∨、或、或者等符号;蕴含联结词有→、如果…那么…等符号;等价联结词有↔、当且仅当等符号;否定联结词有¬、非等符号。

命题逻辑重要的理论有第三排中论、蕴含与推理规则、等值演算、真值表等。

其中,第三排中论指的是对任意命题p,它要么为真,要么为假;蕴含与推理规则指的是根据蕴含的真值表和推理规则对命题进行推理;等值演算指的是根据命题的等价关系进行演算;真值表指的是列举命题各种可能真值的表格。

二、谬误谬误是指推理过程中出现的错误。

谬误分为形式谬误和实质谬误。

形式谬误是推理规则上的错误,例如偷梁换柱、以小概大、以偏概全等;实质谬误是推理前提或结论本身的错误,例如论证不充分、论证不正确、概念混淆等。

3.1 归纳谬误归纳谬误是指从特殊到一般的推理过程中发生的错误。

例如,通过大量个别案例得出错误的一般性结论,或者从部分找零发现一般结论等。

3.2 漏斗谬误漏斗谬误是指在论证中忽略了一方面的因素,而给另一方面的因素不当的强调,导致结论出现偏差的错误。

3.3 带有外界因素的谬误带有外界因素的谬误是指在论证过程中带有其他因素的不合理介入所导致的错误。

三、推理推理是以某些命题为前提来得出结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

命题与证明的知识点总结(湘教版)
一、知识结构梳理
1.定义:
(1)概念
①;
(2)分类
2.命题②假命题(可通过来说明)
(3)形式:命题都可写成的形式。

命题与证明(4)互逆命题
1)公理:
3. 公理与定理
(2)定理:
(1)概念:
4. 证明①理解题意,画出
(2)证明命题的一般步骤②写出已知,
③写出
(3)反证法
二、知识点归类
知识点定义的概念对于一个概念特征性质的描述叫做这个概念的定义。

如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。

注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”
等不能在定义中出现。

例1 在下列横线上,填写适当的概念:
(1)连结三角形两边中点的线段叫作三角形的;
(2)能够完全重合的两个图形叫做;
(3)两组对边分别平行的四边形叫做;
例2叙述概念的定义
(1)数轴;(2)等腰三角形
知识点命题
知识点一命题的概念
叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命如“你是一个学生”、“我们所使用的教科书是沪科版的”等。

注意:(1)命题必须是一个完整的句子。

(2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。

例下列句子中不是命题的是( )
A 明天可能下雨
B 台湾是中国不可分割的部分
C 直角都相等
D 中国是2008年奥运会的举办国
知识点二真命题与假命题
如果一个命题叙述的事情是正确的,那么称它是真命题;如果一个命题叙述的事情是错误的,那么称它是假命题
注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。

例下列命题中的真命题是()
A 锐角大于它的余角
B 锐角大于它的补角
C 钝角大于它的补角
D 锐角与钝角等于平角
知识点三命题的结构
每个命题都有条件(题设)和结论两部分组成。

条件是已知的事项,结论是由已知事项推断出的事项。

一般地,命题都可以写出“如果------,那么-------”的形式。

有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。

如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。

例把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。

1、同角的余角相等
2、两点确定一条直线
知识点四证明及互逆命题的定义
1、从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,这个过程叫作证明。

注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件,但它不满足命题的结论,从而判断这个命题是假命题。

2、一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆的命题,
其中的一个命题叫作另一个命题的逆命题。

注意:一个命题为真不能保证它的逆命题为真,逆命题是否为真,需要具体问题具体分析。

例说出下列命题的逆命题,并指出它们的真假。

(1)直角三角形的两锐角互余;(2)全等三角形的对应角相等。

公理与定理
知识点一公理与定理
数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其它命题真假的原始依据,这样的真命题叫做公理。

以基本定义和公理作为推理的出发点,去判断其他命题的真假,已经判断为真的命题称为定理。

注意:(1)公理是不需要证明的,它是判断其他命题真假的依据,定理是需要证明;
(2 ) 定理都是真命题,但真命题不一定都是定理。

例填空:(1)同位角相等,则两直线;(2)平面内两条不重合的直线的位置关系是;(3)四边形是平行四边形。

知识点二互逆定理
如果一个定理的逆命题也是定理,那么称它是原来定理的逆定理,这两个定理称为互逆定理。

注意:每个命题都有逆命题,但并非所有的定理都有逆定理。

如:“对顶角相等”就没逆定理。

证明
知识点一 证明的含义
从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,从而判定该命题为真,这个过程叫做证明。

注意:(1)证明一个命题时,首先要分清命题条件和结论,其次要从已知条件出发,运用定义、公理、定理进行推理,得出结论。

(2)证明的过程必须做到步步有据。

例. 已知:如图正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF
(1)求证:ΔBCE ≌ΔDCF
(2)若∠FDC =30°,求∠BEF 的度数。

A D
E
B C F
知识点二 反证法
从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法。

反证法的关键在于反设所证命题的结论。

适用范围:证明一些命题,且正面证明有困难,情况多或复杂,而否定则比较简单。

反证法证题步骤:(1)假设命题的结论不成立,即假设命题结论的反面成立;(2)从假设出发,经过推理,得出矛盾;(3)由矛盾判断假设不正确,从而肯定命题的结论成立。

例 在 △ABC 中,∠A 、∠B 、∠C 是它的三个内角。

求证:在∠A 、∠B 、 ∠C 中不可能有两个直角。

三、巩固训练
一、填空
1.把命题“三边对应相等的两个三角形全等”写成“如果……,那么……”的形式是________________________________________________________________________.
2.命题“如果22
a b = ,那么a b =”的逆命题是________________________________.
3.命题“三个角对应相等的两个三角形全等”是一个______命题(填“真”或“假”).
4.如图,已知梯形ABCD 中, AD ∥BC, AD =3,
AB =CD =4, BC =7,则∠B =_______.
5.用反证法证明“b 1∥b 2”时,应先假设_________.
二、选择题
1.下列语句中,不是命题的是( )
A.直角都等于90°
B.面积相等的两个三角形全等
C.互补的两个角不相等
D.作线段AB
2.下列命题是真命题的是( )
A.两个等腰三角形全等
B.等腰三角形底边中点到两腰距离相等
C.同位角相等
D.两边和一角对应相等的两个三角形全等
3.下列条件中能得到平行线的是( )
①邻补角的角平分线;②平行线内错角的角平分线;③平行线同位角的平分线; ④平行线同旁内角的角平分线.
A. ①②
B. ②④
C. ②③
D. ④
4.下列命题的逆命题是真命题的是( )
A.两直线平行同位角相等
B.对顶角相等
C.若a b =,则22a b =
D.若(1)1a x a +>+,则1x >
5.三角形中,到三边距离相等的点是( )
A.三条高的交点
B.三边的中垂线的交点
C.三条角平分线的交点
D.三条中线的交点
6.下列条件中,不能判定两个直角三角形全等的是( )
A.两条直角边对应相等
B.斜边和一锐角对应相等
C.斜边和一条直角边对应相等
D.面积相等
7.△ABC 的三边长,,a b c 满足关系式()()()0a b b c c a ---=,则这个三角形一定是(
) A.等腰三角形 B.等边三角形
C.等腰直角三角形
D.无法确定
8.如图,点E 在正方形ABCD 的边AB 上,若EB 的长为1,
EC 的长为2,那么正方形ABCD 的面积是( )
C.3
D.5
三、判断下列命题是真命题还是假命题,若是假命题,请举一个反例说明.
(1)有一个角是60°的等腰三角形是等边三角形.
(2)有两个角是锐角的三角形是锐角三角形.。

相关文档
最新文档