第三章 门电路
第三章门电路
缺点:因为饱和管的消散时间长,门的传输时延大,可达25ns
第三章门电路
三、电阻-晶体管逻辑门(RTL)
或非门 无源上拉电阻输出:
非门
无源上拉 电阻输出
输出低电平时为低内阻,输出高电平时为高内阻 因此,这类门在输出高电平时负载能力差,能带动同类门的
数目少
第三章门电路
3-3 晶体管-晶体管逻辑门(TTL)
D
K
V
F
IF
V
RL
F
IF
RL
(2)加反向电压VR时,二极管截止,反向电流IS可忽略。
二极管相当于一个断开的开关。
D
K
V
R
IS
RL
V
R
RL
可见,二极管在电路中表现为一个受外加电压vi控制的开关。 当外加电压vi为一脉冲信号时,二极管将随着脉冲电压的 变化在“开”态与“关”态之间转换。
2、肖特基二极管 肖特基二极管是一种专门 设计的、开关时间极短的 二极管,开关时间trr仅为 100ps。 另外,肖特基二极管的正向阈值电压Vth约为0.3V,也比 硅管的低
一、二极管开关特性 1、二极管特点
正向阈值 对硅管约为0.7~0.8V 对锗管约为0.3V
第三章门电路
二极管的近似特性曲线 导通区Ⅰ: 导通内阻,约数十欧 截止区Ⅱ: 反向内阻,约数百欧 反向击穿区Ⅲ: 击穿内阻,约数欧
第三章门电路
(1)加正向电压VF时,二极管导通,管压降VD可忽略。二极
管相当于一个闭合的开关。
(2)、用达林顿对管T3-T4代 替T4-D3管,使输出高 电平时内阻进一步减小, 增加了输出拉电流
第三章门电路
L-TTL (1)省去了保护二极管
第3章逻辑门电路PPT 共126页
电位被钳 在2.1V
全反偏
“1” A B C
R1 3k
b1 c1 T1
+5V
R2
R4
1V
T2 T3
T4
R5
截止
F
全导通
T5
R3
(2-24)
全反偏
“1” A
B C
R1 3k
R2
b1 c1 T1
T2
逻辑关系:全1则0。
R3
+5V
uF =0.3V F
T5
饱和
输入、输出的逻辑关系式: F ABC
(2-25)
RP的临界值可计算如下:
1.4V=
R1RPRP(5 - V be1)
=
4 . 3 RP R1 RP
RP=1.4KΩ(R1=3K Ω)为安全起见,如要求输入等 效为低电平时,对TTL门电路应使RP小于1 K Ω; 如要求输入等效为高电平时,对TTL门电路应使RP 大于2K Ω。
(2-39)
例能3正.5确.3地综在传合图送以3到上.5.门两20G种所2的情示输况的入,电端应路,取中要R,P求为≤0v保.o618证=KV门OHG时1输vI2出≥V的IH高(、min低),电平 vO1=VOL也时就,是v说I2≤GV1I和L(Gm2a之x)间,的试串计联算电RP阻的应最小大于允许值是多少?已知 G1和G26均80为7,4系否列则反当相vO器1=V,OLV时C可C=能5超V,过VVILO(H=m3ax.)4V, VOL=0.2V, VIH(min)=2.0V, VIL(max)=0.8V。 G1和G2的输入特性和输出特性 见图3.5.12和图3.5.14、图3.5.16。
(2-27)
1. 输出高电平UOH、输出低电平UOL UOH2.4V UOL 0.4V 便认为合格。 典型值UOH=3.4V UOL=0.3V 。
数字逻辑第3章 门电路
逻辑式:Y=A + B
逻辑符号: A 1
B
Y
电压关系表
uA uB uY
0V 0V 0V 0V 3V 2.3V 3V 0V 2.3V 3V 3V 2.3V
真值表
ABY
0
0
0
0
1
1
1
0
1
1
1
1
三、三极管非门
5V
利用二极管的压降为0.7V, 保证输入电压在1V以下时,
电路可靠地截止。
A(V) Y(V) <0.8 5 >2 0.2
II H &
II L &
… …
NOH
I OH (max) I IH
N MIN ( NOH , NOL )
NOL
IOL(max) I IL
六、CMOS漏极开路门(OD)门电路(Open Drain)
1 . 问题的提出
普通门电路
在工程实践中,往往需要将两个门的输出端 能否“线与”?
并联以实现“与”逻辑功能,称为“ 线与 。
输入 0 10% tr tf
tPHL
输出
tPLH
tr:上升时间
tf:下降时间 tw:脉冲宽度 tPHL:导通传输时间
tPLH:截止传输时间
平均传输延迟时间 (Propagation delay)
tpd= tpHL+ tpLH 2
5、功耗: 静态功耗:电路的输出没有状态转换时的功耗。 动态功耗:电路在输出发生状态转换时的功耗。
PMOS
NMOS
3、增强型MOSFET的开关特性
iD管可变子类型恒
VGS1 击开/关的条(件1)N沟道增强开型/M关O的S等FE效T电:路
第3章门电路
&Y
4
第三章门电路
2.二极管或门
图3.2.6 二极管或门
A/V B/V Y/V
000 0 3 2.3 3 0 2.3 3 3 2.3
AB
Y
0
0
0
0
1
1
1
0
1
1
1
1
Y=A+B A
B
A
≥1
Y
Y
B
北方工业大学信息工程学院
叶青制作
5
3.3 TTL门电路
第三章门电路
集成电路(IC):在一块半导体基片上制作出一个完整的逻辑电路所 需要的全部元件和连线。使用时接:电源、输入和输出。
北方工业大学信息工程学院
叶青制作
3
第三章门电路
1.二极管与门
设:VCC=5V, VIH=3V, VIL=0V
A/V 0 0 3 3
B/V 0 3 0 3
Y/V 0.7 0.7 0.7 3.7
AB
Y
00
0
01
0
10
0
11
1
图3.2.5 二极管与门
Y=AB
A B
北方工业大学信息工程学院
YA B
叶青制作
1.电路
(5v)
EN:使能端,控制端 R1
R4 R2
VB1 0.9V 4.3V 0.9V
T4
A B
T1
T2
D3 Y 2.9V
T5 (Vo)
3.6V EN 0.2V
D
R3
3.6V
北方工业大学信息工程学院
叶青制作
31
(三)三态输出门电路(TS) 1.电路
第三章门电路
数电第三章门电路
§3.4 TTL门电路
数字集成电路:在一块半导体基片上制作出一个 完整的逻辑电路所需要的全部元件和连线。 使用时接:电源、输入和输出。数字集成电 路具有体积小、可靠性高、速度快、而且价 格便宜的特点。
TTL型电路:输入和输出端结构都采用了半导体晶 体管,称之为: Transistor— Transistor Logic。
输出高电平
UOH (3.4V)
u0(V)
UOH
“1”
输出低电平
u0(V)
UOL
UOL (0.3V)
1
(0.3V)
2 3 ui(V)
1 2 3 ui(V)
阈值UT=1.4V
传输特性曲线
理想的传输特性 28
1、输出高电平UOH、输出低电平UOL UOH2.4V UOL 0.4V 便认为合格。 典型值UOH=3.4V UOL 0.3V 。
uA t
uF
截止区: UBE< 死区电压, IB=0 , IC=ICEO 0 ——C、 E间相当于开关断开。
+ucc
t
4
0.3V
3.2.3MOS管的开关特 恒流区:UGS>>Uth , UDS
性: +VDD
0V ——D、S间相当于 开关闭合。
R
uI
Uo
Ui
NMO S
uO
夹断区: UGS< Uth, ID=0 ——D、S间相当于开关断开。
3.3.4 其它门电路
一、 其它门电路
其它门电路有与非门、或非门、同或门、异或门等等,比如:
二、 门电路的“封锁”和“打开”问题
A B
&
Y
C
当C=1时,Y=AB.1=AB
第三章逻辑门电路课件
3. 1. 2 晶体二极管的开关特性
一、静态特性
A 阳极
P区 ----
----
++ ++ ++ ++
N区
PN结
K 阴极
+ UD -
A
K
ID/mA
反向
U(BR) 截止区
0
反向
正向 导通区
0.5 0.7 UD/V
击穿区
ID
1. 外加正向电压(正偏)
硅二极管伏安特性
二极管导通(相当于开关闭合) UD 0.7 V
… …
…
外接电阻 RC 的估算:
n — OC 与非门的个数 m — 负载与非门的个数 k — 每个与非门输入端的个数
1. RC 最大值的估算 uO UOH
uO VCC iRRC ≥ UOH min
+V CC
1
RC
1
&
1Y
1&
IOH iO iI k
2 &
IIH
2 &
iR iO iI nIOH mkIIH
3.6VD1
0.7V
D2 R3 1k
T2 、 T4 导通
输入级 中间级
D RL Y
T40.3V
输出级
T3 、 D 截止 uO = UCES4 ≤ 0.3V
TTL 与非门
第三章 逻辑门电路
整理结果:
AB Y 00 1 01 1 10 1
11 0
A&
B
Y
Y AB
R1
R2
4k 1.6k
A
T1
T2
B
D1 D2
第3章门电路
3.3 CMOS门电路
6. CMOS电路的优点
(1)微功耗。 CMOS电路静态电流很小,约为纳安数量级。
(2)抗干扰能力很强。 输入噪声容限可达到VDD/2。
(3)电源电压范围宽。 多数CMOS电路可在3~18V的电源电压范围内正常
Digital Electronics Technolo20g2y0/12/29
3.2 半导体二极管门电路
2. 二极管与门
3. 二极管或门
A Y
B
Digital Electronics Technolo20g2y0/12/29
3.3 CMOS门电路
MOS门电路:以MOS管作为开关元件构成的门电路。 MOS门电路,尤其是CMOS门电路具有制造工艺简单、 集成度高、抗干扰能力强、功耗低、价格便宜等优点,得 到了十分迅速的发展。
3.3 CMOS门电路
➢ 功耗 ❖ 静态功耗: 逻辑电路输出状态不发生变化时的功耗。
大多数CMOS电路具有很低的静态功耗,所以在很 多低功耗的场合采用CMOS集成电路。
❖ 动态功耗: 逻辑电路输出状态发生变化时的功耗, 其值比静态功耗大得多。
PCCLVD 2D f
PTCPD VD 2 D f PDPCPT
buses.
RP IOLmax
VP
ILL Z=VOLmax RL
Digital Electronics Technolo20g2y0/12/29
3.3 CMOS门电路
❖ 施密特触发器
VOUT
5.0
VT-
VT+
2.1 2.9 5.0 VIN
Voltage of hysteresis =VT+-VT-
数电-第三章逻辑门电路
了解和掌握常见时序逻辑电路的原理和应用,如寄存器、 计数器、顺序脉冲发生器等。
可编程逻辑器件应用
1 2
可编程逻辑器件简介
了解可编程逻辑器件的基本概念和分类,如PAL、 GAL、CPLD、FPGA等。
可编程逻辑器件编程
学习使用相应的开发工具和编程语言,对可编程 逻辑器件进行编程和配置,实现特定的逻辑功能。
典型组合逻辑电路
了解和掌握常见组合逻辑电路的 原理和应用,如编码器、译码器、
数据选择器、比较器等。
时序逻辑电路分析与设计
时序逻辑电路分析
分析时序逻辑电路的工作原理,包括触发器的状态转换、 时钟信号的作用等,进而理解电路的功能。
时序逻辑电路设计
根据实际需求,设计实现特定功能的时序逻辑电路。包括 确定输入、输出变量,选择适当的触发器类型,画出状态 转换图或时序图等步骤。
数电-第三章逻辑门 电路
• 逻辑门电路基本概念 • 基本逻辑门电路 • 复合逻辑门电路 • 逻辑门电路应用 • 逻辑门电路实验与仿真 • 逻辑门电路总结与展望
目录
Part
01
逻辑门电路基本概念
逻辑门定义与分类
逻辑门定义
逻辑门是数字电路中的基本单元 ,用于实现基本的逻辑运算功能 ,如与、或、非等。
逻辑符号为带有小圆圈的与门符号。
或非门电路
01
02
03
或非门逻辑功能
实现输入信号的逻辑或操 作,并取反输出结果。
或非门符号
逻辑符号为带有小圆圈的 或门符号。
或非门真值表
输入全为0时,输出为1; 输入有1时,输出为0。
异或门电路
异或门逻辑功能
实现输入信号的异或操作, 即输入信号相同时输出为0, 不同时输出为1。
《数字电子技术基础》第六版--门电路-1117省名师优质课赛课获奖课件市赛课一等奖课件
S
D
B
不论D、S间有无电压, 均无法导通,不能导电
第 章 门电路
3.3.1 MOS管旳开关特征 以N沟道增强型为例研究通电情况:
数字电子技术基础 第六版
2、添加垂直电压VGS
形成电场G—B,把衬底中旳电子吸引 到上表面,除复合外,剩余旳电子在 上表面形成了N型层(反型层)为D、 S间旳导通提供了通道。
VGS(th)称为阈值电压(开启电压)
第 章 门电路
数字电子技术基础 第六版
3.3.1 MOS管旳开关特征
MOS管输入特征和输出特征
① 输入特征:直流电流为0,看进去有一种输入电 容CI,对动态有影响。
② 输出特征: iD = f (VDS) 相应不同旳VGS下得一族曲线 。
第 章 门电路
3.3.1 MOS管旳开关特征 输出特征曲线(分三个区域)
第 章 门电路
3.2.2 二极管或门 二极管构成旳门电路旳缺陷
• 电平有偏移 • 带负载能力差
数字电子技术基础 第六版
• 只用于IC内部电路
第 章 门电路
集成门电路
数字电子技术基础 第六版
集成门电路
双极型 TTL (Transistor-Transistor Logic Integrated Circuit)
第 章 门电路
数字电子技术基础 第六版
3.3.2 CMOS反相器旳电路构造和工作原理 三、输入噪声容限
噪声容限--衡量门电路旳抗干扰能力。 噪声容限越大,表白电路抗干扰能力越强。
测试表白:CMOS电路噪声容限VNH=VNL=30%VDD,且 随VDD旳增长而加大。所以能够经过提升VDD来提升噪声容限
第 章 门电路
半导体基础知识(2)
第三章(1)门电路---CMOS
输入低电平的上限值 VIL(max)
输入高电平的下限值 VIH(min)
输出高电平的下限值 VOH(min)
输出低电平的上限值 VOL(max)
3.1.2 逻辑门电路的一般特性
2.噪声容限:在保证输出电平不 变的条件下,输入电平允许波动 的范围。它表示门电路的抗干扰
驱动门
01 1
数据输入端
EN A B
其他三态与非门: A
&
逻辑符号 B
低电平有效
2.产生的高、低电平半导体器件
iC
VCC Rc
Rb vI
VCC Rc
vo
vCE VCC
工作在饱和区:输出低电平 工作在截止区:输出高电平
3.1.3 MOS开关及其等效电路
场效应三极管
利用电场效应来控制电流的三极管,称为场效应管,也 称单极型三极管。
由金属、氧化物和半导体制成。称为金属 -氧化物-半导体场 效应管,或简称 MOS 场效应管。
2、 逻辑门电路的分类 分立门电路
逻辑门电路 集成门电路
二极管门电路 三极管门电路
MOS门电路
TTL门电路
NMOS 门 PMOS门 CMOS门
TTL系列门
开关速度较快 平均延迟时间:3~10ns 结构复杂、集成度低 功耗高(2~20mw )
MOS门
开关速度稍低
平均延迟时间:75ns 结构和制造工艺简单 容易实现高密度制作 功耗低(0.01mw)
IOL= nIIL
IIL
…
灌电流
1
IIL n个
NOL
?
I OL (驱动门) I IL (负载门)
3.1.2 逻辑门电路的一般特性
第三章 门电路
-
-
当VI为高电平VIH=Vcc时,D截止,Vo=Vcc ,输出高 电平。
当VI为低电平VIL=0时,导通,Vo=0 ,输出低电平.。
实际的二极管特性 曲线如下图:
并非我们假设的理想特性,其特性
i
O
v
即其反向电阻不是无穷大(有反向饱和电流IS),正向 电阻不为0,且其导通有一定的起始电压。
常等效成下列几种情况: 1) 当外电路电源VSS和等效电阻RS都很小时: VON S VSS VSS RS RS D
rD
2) 当二极管的导通压降与外电路电源VSS不能 忽略,二极管的正向电阻与外电路电阻相比可以 忽略时:
VSS RS VSS S VON
D
RS
在数字电路中,高电平一般仅为3V或5V,故VON的影响 不可忽略。所以常等效为这种方式。(硅二极管的导通 压降VON=0.7V,锗二极管的导通压降VON=0.3V。)
为满足输出电平变换、吸收大负载电流、 以及实现线与等需要,有时将输出级电路结构 改为一个漏级开路的MOS管,构成漏级开路输 出的门电路——OD门。
VDD
例:漏级开路 的与非门
VDD
'
Y A B
两个OD门的线与
Y=?
4)CMOS传输门和双向模拟开关
传输 门电 路结 构
T2 vI/ vO
VDD
VGS(th) ----Mos的开启电压。
MOS管的基本开GS< VGS(th) 时,
Mos管截止, iD ≈0 。输出VO为高
电平,Mos管的D—S之间就象一个断
开的开关。 当VI= VGS> VGS(th)时,
Mos管导通, iD =VDD/(RD+rDS). 输出VO= iD* rDS ≈0,
第三章_门电路
空穴
+3
硼原子
+4
10
归纳
1、杂质半导体中两种载流子浓度不同,分为多 ◆数载流子和少数载流子(简称多子、少子)。 2、杂质半导体中多数载流子的数量取决于掺杂 ◆ 浓度,少数载流子的数量取决于温度。
◆ 3、杂质半导体中起导电作用的主要是多子。 ◆ 4、N型半导体中电子是多子,空穴是少子;
P型半导体中空穴是多子,电子是少子。
多数载流子(多子):电子。取决于掺杂浓度; 少数载流子(少子):空穴。取决于温度。
8
N型半导体
磷原子
+4
+4
多余电子
+5
+4
9
2)P型半导体
在硅或锗晶体(四价)中掺入少量的三价元素硼, 使空穴浓度大大增加。 多数载流子(多子):空穴。取决于掺杂浓度; 少数载流子(少子):电子。取决于温度。
+4
+4
D
+ vI -
当vI=VIH时,D截止,vO=VCC=VOH
用vI的高低电平控制二极管的开关状态, 在输出端得到高、低电平输出信号
33
二极管的开关特性
i
E
D
正向导通时
20℃
UD(ON)≈0.7V(硅) 0.3V(锗)
U(BR) IS 0 Uon u
RD≈几Ω ~几十Ω
相当于开关闭合
34
二极管的等效模型
求: uO的波形 解: 此类电路的分析方法: 将二极管看成理想二极管
当D的阳极电位高于阴极电位时, D导通,将D作为一短路线; 当D的阳极电位低于阴极电位时, D截止,将D作为一断开的开关; 10V 5V
uO
ui
t
数电-第三章 门电路
三、门电路概述 • 工艺分类 –双极型门电路 双极型门电路 – MOS门电路 门电路 – Bi-CMOS电路 电路 • 基本逻辑门电路 –与门、或门、非门 与门、或门、 与门 • 常用门电路 –与门、或门、非门 与门、 与门 或门、 –与非门、或非门、与或非门、同或、异或 与非门、 与非门 或非门、与或非门、同或、
A B ≥1 L=A+B
逻辑电平关系 正逻辑
真值表
VD1 A VD2 B R Y
A/V B/V Y/V
0 0 3 3 0 3 0 3 0 2.3 2.3 2.3
A B
0 0 1 1 0 1 0 1
Y
0 1 1 1
只有A、B同时为低电平(0V),Y才为低电平 (0V)。即:只有A+B=0,才有Y=0。 只要A、B中有一个为高电平(3V),Y就为高电 平(2.3V),即:只要A+B=1,则Y=1。 这种或门电路同样存在“电平偏离” 这种或门电路同样存在“电平偏离”和带载能力差的问 题
四、二极管或门 或门
VD1 A
Y 2.7V 0V
3V 0V A、B——输入,Y——输出 VD2 B 以A=1为例 设:UIH=3V, UIL=0V 0V 二极管正向导通压降 UDF=0.7V。
R
只要A、B中有一个为高电平(3V), 则相应的二极管导通, Y就为低电平(2.3V),即:只要A+B=1,则Y=1。 只有A、B同时为低电平(0V),两个二极管均截止。 Y才为低电平(0V),即:只有A+B=0,才有Y=0 所以:管的截止条件和等效电路 当输入信号uI=UIL=0.3V时(UBE=0.3V<0.5V) i 三极管截止,B=0, iC ≈ 0, uO=UOH=UCC 可靠截止条件为:UBE<0V 截止时,iB、iC都很小,三个极均可看作开路
第三章_CMOS门电路
MOS管作负载时,对信号源的要求很低,不需要 信号源提供电流。
第一页 上一页 下一页
最后 一页
结束 放映
19
二、输出特性(反映CMOS带负载能力) 1、低电平输出特性 即T2管的输出 特性曲线
第一页 上一页 下一页
最后 一页
结束 放映
VIH=VDD越大,VGS越大, 则导通内阻越小, IOL相 同,因此VOL越小。
二氧化硅 二氧化硅
++ NN
++ NN
PP 衬底 衬底
B B
5
第一页 上一页 下一页
最后 一页
结束 放映
定义: 开启电压( UT)——
-
S
VGS
VDS
G - i D
-D
二氧化硅
沟道刚开始形成时的栅源
电压UGS。(一般2 ~ 3V)
N沟道增强型MOS管的基本特性: uGS < UT,管子截止,iD= 0; uGS >UT,管子导通,有iD。 电流iD 越大。 可通过改变 uGS 改变 iD 的大小,因此是电压控制元件。
24
第一页 上一页 下一页
最后 一页
结束 放映
漏极开路的门电路(OD门)(Open-Drain)
VDD2
VDD1
使用时必须外接上拉电阻
D vO
内部逻辑 A B
RL
Y=(AB)'
A B Y
G
TN•
S
OD与非门逻辑符号
74HC03电路结构
与OC门类似,能实现线与连接、电平转换,提高驱动能力。 电平转换:vI:0~VDD1 vO:0~VDD2
C 电路结构 VTN=︱VTP︱
如何判断MOS管的源极和漏极? 根据MOS管工作时的电流方向: PMOS管从S端流向D端; NMOS管由D端流向S端。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章门电路内容提要:
本章主要内容
3.1 概述
1. 门电路:
2. 正负逻辑系统(1) 正逻辑:
3.1 概述
(2) 负逻辑:
所示。
同一逻辑电路采用不同的逻辑关系,其逻辑功能是完全不同的,如表3.1.1正负逻辑对应的逻辑电路
正负逻辑式互为对偶式,
本书采用
正逻辑表3.1.1 正负逻辑对应的门电路正逻辑负逻辑
与门或门
或门与门
与非门或非门
或非门与非门
异或门同或门
同或门异或门
3. 高低电平的实现
的获得是通过开关电路来实现,
3.1 概述
V cc
I v o v S 1
S 2
输入信号
输出
信号
图3.1.3 互补开关电路
V cc
I v o v S 1
S 2
输入信号
输出信号
图3.1.3 互补开关电路
互补开关电路由于两个开关总有一个是断开的,流过的电流为零,故电路的功耗非常低,因此在数字电路中得到广泛的应用
4. 数字电路的概述(1)优点:
(2) 分类:
可分为分立元件逻辑门电路和集成逻辑门电路:分立元件逻辑门电路是由半导体器件、电阻和电容连接而成。
集成逻辑门电路是将大量的分立元件通过特殊工艺集成在很小的半导体芯片上。
数字集成电路根据规模可分为
⎪⎪⎪⎩
⎪
⎪⎪
⎨⎧)-超大规模(-大规模(中规模()-小规模(所含元器件数)按规模分(每片n Integratio Scale Large Very VLSI n)Integratio
Scale Large LSI n)Integratio
Scale Medium -MSI n Integratio
Scale mall SSI IC S ≤100/片(100~1000)/片
103~ 105/片105以上/片
⎪⎩
⎪
⎨⎧)+兼容型()
双极型()单极型(按导电类型BJT FET BJT FET 3.1 概述
3.2 半导体二极管门电路
3.2.1半导体二极管的开关特性
1. 稳态开关特性
所示的半导体二极管开关电路
电路,由于二极管具有单向导电性,故它可相当受外加电压控制的开关。
设v i 的高电平为V IH =V CC ,v i 的低电平为V IL =0,且D 为理想元件,即正向导通电阻为0,反向电阻无穷大,则稳态时当v I =V IH =V CC 时,D 截止,输出电压v D =V OH =V CC
稳态开关特性
导通,2.二极管动态特性:
正向恢复时间(开通时间)t
on
反向恢复时间(关断时间)t
re
t
on << t re
3.2.3 二极管动态电流波形
t
re
t
on
3.2.2 二极管与门
当A、B中有一个是低电平0V时,至少有一个二极管导通,使得输出Y的电压为0.7V,为低电平;只有A、B 中都加高电平3V时,两个二极管同时导通,使得输出Y 为3.7V,为高电平。
3.2.2 二极管与门
规定3V以上为“1”
3.7V
3V
3V
0.7V
0V
3V
0.7V
3V
0V
0.7V
0V
0V
Y
B
A
1
1
1
1
1
Y
B
A
B
A
Y⋅
=
3.2.3 二极管或门
当A、B中有一个是低电平0V时,至少有一个二极管导通,使得输出Y的电压为0.7V,为低电平;只有A、B 中都加高电平3V时,两个二极管同时导通,使得输出Y 为3.7V,为高电平。
3.2.2 二极管或门
B
A
Y+
=
规定2.3V以上为1
0V以下为0
2.3V
3V
3V
2.3V
0V
3V
2.3V
3V
0V
0V
0V
0V
Y
B
A
1
1
1
1
1
1
1
Y
B
A
3.2.2 二极管或门
3.3 CMOS门电路
G D
S
B
(a)标准符号G
D
S (b)简化符号
图3.3.1 增强型NMOS管的符号3.3.1 MOS管(绝缘栅)的开关特性
3.3.1 MOS
管(绝缘栅)的开关特性
(b) 3.3.1 MOS 管(绝缘栅)的开关特性
开启电压
当v GS <V GS (th),管子截止,i D = 0, R OFF > 109Ω
V GS
>V GS (th)时,管子导通,i D ∝V 2GS ,R ON <1kΩ
3.3.1 MOS 管(绝缘栅)的开关特性
G D
S
B
(a)标准符号G
D
S (b)简化符号
图3.3.4增强型P MOS管的符号
(a)共源极接法
(b)转移特性图3.3.5 增强型P MOS 管共源极接法和转移特性
+-
v
GS +
-
v DS
v GS
i D
v GS(th)
当v GS >V GS (th),管子截止,i D = 0
v GS
<
V GS
(th)时,管子导通,i D ∝V 2GS
(a)共源极接法
(b)转移特性图3.3.5 增强型P MOS 管共源极接法和转移特性
+-
v
GS +
-
v DS
v GS
i D
v GS(th)
G D
S
B
(a)标准符号G
D
S (b)简化符号
图3.3.6耗尽型NMOS管的符号
(a)共源极接法(b)转移特性图 3.3.7 耗尽型NMOS 管共源极接法和转移特性
+
-v GS +-v DS v GS
i D
0v GS(off)当v GS < V GS(off)(负值),管子截止,i D = 0;v GS
< V GS(off)时,管子导通
G D
S
B
(a)标准符号G
D
S (b)简化符号
图3.3.8耗尽型P MOS管的符号
(a)共源极接法
(b)转移特性图3.3.9 耗尽型P MOS 管共源极接法和转移特性
+
-v GS +-v DS v GS
i D
v GS(off)当v GS > V GS(off)(正值),管子截止,i D = 0;v GS < V GS(off) 时,管子导通
一、CMOS反相器的电路结构及工作原理
1.结构:
2.工作原理
当v I =V IL =0为低电平时,
T 2截止,T 1管导通,输出电压
为高电平,即)(OH off on DD
DD on off off
R R V V R R R v <<≈⋅+=
当v
I =V
IH
=V
DD
为高电平时,
T2导通,T1管截止,输出电压为低电平,即
) (0
OL
off on
DD on
off
on
R R
V R
R R
v
<<
≈
⋅
+
=
特点
二、电压传输特性和电流传输特性N )th (GS P )th (GS DD N
)th (GS P )th (GS V V V V V +>=之间的关系曲线,
1. 电压传输特性
AB 段:输入低电平0==OL O V V N
G S I V V )th (<D D
O H O V V V ==3.3.2 CMOS 反相器的电路结构和工作原理CD 段:输入高电平
P
TH GS DD I V V V )(->
BC 段:
P
TH GS DD I N TH GS V V V V )()(-<<3.3.2 CMOS 反相器的电路结构和工作原理DD O DD I V V V V 2
121==时,当
2.电流传输特性
3.3.2 CMOS 反相器的电路结构和工作原理
AB 段:输入低电平
N
G S I V V )th (
CD 段:输入高电平
P
TH GS DD I V V V )(->
BC 段:
P
TH GS DD I N TH GS V V V V )()(-<<
三、输入端噪声容限
1.定义:
输入端噪声容限:是指在
2.计算方法
由图中可知,如果是多个门电路相连时,前一级门电路的输出即为后一级门电路的输入
其中:
(max)(max)(min)
(min)OL IL NL IH OH NH V V V V V V -=-=
输入噪声容限和电源电压V DD 有关,当V DD 增加时,电压传输特性右移,如图3.3.14所示↑
↑⇒)(N L N H D D V V V 结论:可以通过提高
V DD 来提高噪声容限
3.3.3 CMOS 反相器的静态输入和输出特性
一、输入特性
3.3.3 CMOS 反相器的静态输入和输出特性。