08-09上海高考数学模拟试题分类汇编第11部分概率统计
高考数学专练题 随机事件、古典概型与几何概型(试题部分)
专题十一概率与统计【真题探秘】11.1随机事件、古典概型与几何概型探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.随机事件的概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.(3)理解古典概型及其概率计算公式.2019课标Ⅰ,6,5分古典概型排列与组合★★★2018课标Ⅱ,8,5分古典概型组合2018课标Ⅰ,10,5分与面积有关的几何概型圆的面积和三角形的面积2.古典概型2017课标Ⅰ,2,5分与面积有关的几何概型圆的面积3.几何概型2016课标Ⅰ,4,5分与长度有关的几何概型(4)会计算一些随机事件所含的基本事件数及事件发生的概率.(5)了解随机数的意义,能运用模拟方法估计概率. (6)了解几何概型的意义2016课标Ⅱ,10,5分与面积有关的几何概型随机模拟分析解读本节是高考的热点,常以选择题或填空题的形式出现,主要考查利用频率估计随机事件的概率,常涉及对立事件、互斥事件,古典概型及与长度、面积有关的几何概型,有时也与其他知识进行交汇命题,以解答题的形式出现,如概率与统计和统计案例的综合,主要考查学生的逻辑思维能力和数学运算能力.破考点练考向【考点集训】考点一随机事件的概率1.(2019山东烟台一模,3)已知甲袋中有1个红球1个黄球,乙袋中有2个红球1个黄球,现从两袋中各随机取一个球,则取出的两球中至少有1个红球的概率为()A.13B.12C.23D.56答案D2.(2019山西太原模拟,2)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P(A)=()A.0.5B.0.1C.0.7D.0.8答案A考点二古典概型1.(2020届河南百校联盟9月联合检测,4)2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”“有害垃圾”“湿垃圾”“干垃圾”的分类标准进行分类,没有垃圾分类和未投放到指定垃圾桶内等会被罚款和行政处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投放到楼下的垃圾桶,若楼下分别放有“可回收物”“有害垃圾”“湿垃圾”“干垃圾”四个垃圾桶,则该居民会被罚款和行政处罚的概率为()A.13B.23C.14D.34答案D2.(2019江西南昌一模,6)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年上高一的小明与小芳都准备选历史与政治,假若他们都对后面三科没有偏好,则他们选课相同的概率为()A.12B.13C.16D.19答案B考点三几何概型1.(2020届贵州贵阳8月月考,7)某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率为()A.15B.14C.13D.12答案B2.(2018湖南三湘名校教育联盟第三次联考,3)已知以原点O为圆心,1为半径的圆以及函数y=x3的图象如图所示,则向圆内任意投掷一粒小米(视为质点),则该小米落入阴影部分的概率为()A.12B.14C.16D.18答案B炼技法提能力【方法集训】方法1古典概型概率的求法1.(2019安徽蚌埠二模,4)从1,2,3,4中选取两个不同数字组成两位数,则这个两位数能被4整除的概率为()A.13B.14C.16D.112答案B2.(2019江西九江一模,4)洛书,古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图案,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从四个阴数中随机抽取两个数,则能使这两数与居中阳数之和等于15的概率是()A.12B.23C.14D.13答案D方法2几何概型概率的求法1.(2020届河南安阳第一次调研月考,10)从[-2,3]中任取一个实数a,则a的值能使函数f(x)=x+asin x在R上单调递增的概率为()A.45B.35C.25D.15答案C2.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1-π4B.π12C.π4D.1-π12答案A【五年高考】A组统一命题·课标卷题组考点一古典概型(2018课标Ⅱ,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118答案C考点二几何概型1.(2018课标Ⅰ,10,5分)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3答案A2.(2017课标Ⅰ,2,5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π4答案B3.(2016课标Ⅰ,4,5分)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13B.12C.23D.34答案B4.(2016课标Ⅱ,10,5分)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mnD.2mn答案CB组自主命题·省(区、市)卷题组考点一古典概型1.(2017山东,8,5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是()A.518B.49C.59D.79答案C2.(2019江苏,6,5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.答案7103.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.答案310考点二几何概型1.(2015陕西,11,5分)设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.34+12πB.14-12πC.12-1πD.12+1π答案 B2.(2017江苏,7,5分)记函数f(x)=√6+x -x 2的定义域为D.在区间[-4,5]上随机取一个数x,则x ∈D 的概率是 . 答案593.(2015福建,13,4分)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f(x)=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .答案512C 组 教师专用题组考点一 古典概型1.(2014课标Ⅰ,5,5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18B.38C.58D.78答案 D2.(2016江苏,7,5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 答案563.(2015江苏,5,5分)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 答案564.(2013课标Ⅱ,14,5分)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n= . 答案 85.(2016天津,16,13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望. 解析 (1)由已知,有P(A)=C 31C 41+C 32C 102=13.所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P(X=0)=C 32+C 32+C 42C 102=415,P(X=1)=C 31C 31+C 31C 41C 102=715,P(X=2)=C 31C 41C 102=415.所以,随机变量X 的分布列为X 01 2 P415 715 415随机变量X 的数学期望E(X)=0×415+1×715+2×415=1.6.(2015陕西,19,12分)设某校新、老校区之间开车单程所需时间为T,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T(分钟) 25 30 35 40 频数(次)20304010(1)求T 的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解析 (1)由统计结果可得T 的频率分布为T(分钟)25 3035 40频率0.2 0.3 0.4 0.1以频率估计概率得T 的分布列为T 25 30 35 40 P0.2 0.3 0.4 0.1从而ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T 1+T 2≤70)=P(T 1=25,T 2≤45)+P(T 1=30,T 2≤40)+P(T 1=35,T 2≤35)+P(T 1=40,T 2≤30) =0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(A )=P(T 1+T 2>70)=P(T 1=35,T 2=40)+P(T 1=40,T 2=35)+P(T 1=40,T 2=40) =0.4×0.1+0.1×0.4+0.1×0.1=0.09. 故P(A)=1-P(A )=0.91.考点二 几何概型1.(2015湖北,7,5分)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≥12”的概率,p 2为事件“|x-y|≤12”的概率,p 3为事件“xy ≤12”的概率,则( ) A.p 1<p 2<p 3 B.p 2<p 3<p 1 C.p 3<p 1<p 2 D.p 3<p 2<p 1答案 B2.(2016山东,14,5分)在[-1,1]上随机地取一个数k,则事件“直线y=kx 与圆(x-5)2+y 2=9相交”发生的概率为 . 答案34【三年模拟】一、选择题(每小题5分,共35分)1.(2020届陕西百校联盟九月联考,4)“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”讲的是西施浣纱的故事;“落雁”指的就是昭君出塞的故事;“闭月”是述说貂蝉拜月的故事;“羞花”谈的是杨贵妃醉酒观花的故事.她们分别是中国古代的四大美女,某艺术团要以四大美女为主题排演一部舞蹈剧,甲、乙、丙、丁抽签决定扮演的对象,则甲不扮演貂蝉且乙不扮演杨贵妃的概率为()A.13B.712C.512D.12答案B2.(2020届四川成都青羊石室中学10月月考,9)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率为()A.136B.116C.18D.16答案D3.(2018重庆九校联盟第一次联考,4)已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B发生,则此人猜测正确的概率为()A.1B.12C.14D.0答案C4.(2019河北石家庄3月教学质量检测,9)袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都被摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为()A.16B.29C.518D.19答案B5.(2020届安徽合肥一中、安庆一中第一次素质测试,8)2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行.长三角城市群包括上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.716答案B6.(2020届四川石室中学高三开学考试,7)一个平面封闭图形的周长与面积之比为“周积率”,如图是由三个半圆构成的图形,最大半圆的直径为6,若在最大的半圆内随机取一点,该点取自阴影部分的概率为49,则阴影部分图形的“周积率”为()A.2B.3C.4D.5答案B7.(2019山西阳泉二模,8)赵爽是我国古代数学家、天文学家,大约在公元222年赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图1).类比“赵爽弦图”,可构造如图2所示的图形,它是由3个全等的三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF=2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形内的概率是()图1 图2A.2√1313B.413C.2√77D.47 答案 B二、填空题(每小题5分,共10分)8.(2020届山西静乐第一中学高三月考,15)如图所示,阴影部分是由曲线y=x 2和圆x 2+y 2=2及x 轴围成的封闭图形.在圆内随机取一点,则此点取自阴影部分的概率为 .答案 18-112π9.(2018广东江门一模,16)两位教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且十位数字都是5,则两位教师批改成绩之差的绝对值不超过2的概率为 .答案 0.44。
08-09上海高考数学模拟试题分类汇编第5部分不等式
09届上海市期末模拟试题分类汇编第5部分不等式一.选择题1.(08年上海市部分重点中学高三联考13)如果a,b,c 满足c<b<a 且ac<0,那么下列选项中不一定成立的是 ---------- ( )A . ab>acB . c(b-a)>0C . 22cb ab < D . ac(a-c)<0 答案:C2. (上海虹口区08学年高三数学第一学期期末试卷16)在R 上定义运算:(1)x y x y *=-,若不等式()()1x y x y -*+<对一切实数x 恒成立,则实数y 的取值范围是 ( )A. 1322y -<<B. 3122y -<< C. 11y -<< D. 02y << 答案:A 二.填空题1. (上海虹口区08学年高三数学第一学期期末试卷1)若不等式:32x ax >+的解集是非空集合{|4}x x m <<,则a m +=___________. 答案:13682.(上海市2009届高三年级十四校联考数学文科卷2)不等式02<-xx的解是 。
答案:20><x x 或3. (上海市黄浦区2008学年高三年级第一次质量调研12)若,a b R ∈、且2249,a b ≤+≤则22a ab b -+的最大值与最小值之和是_____________. 答案:3124.(上海市八校2008学年第一学期高三数学考试试卷11)若不等式log sin 2ax x >(01)a a >≠且,对于任意0,4x π⎛⎤∈ ⎥⎝⎦都成立,则实数a 的取值范围答案:,14π⎛⎫⎪⎝⎭5.(上海市长宁区2008学年高三年级第一次质量调研5)若指数函数()()xf x a x R =∈的部分对应值如右表: 则不等式1(|1|)0fx --<的解集为x -2 0 2 f(x)0.69411.44_____________. 答案:(0,1)(1,2)1(嘉定区2008~2009第一次质量调研第16题)已知关于x 的不等式21<++ax x 的解集为P ,若P ∉1,则实数a 的取值范围为…( )A .),0[]1,(+∞--∞B .]0,1[-C .),0()1,(+∞--∞D .]0,1(- 答案:B2(2008学年度第一学期上海市普陀区高三年级质量调研第15题) 若不等式102x m x m-+<-成立的一个充分非必要条件是1132x <<,则 实数m 的取值范围是 ( ) A. 14,,43⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭; B. 14,43⎡⎤⎢⎥⎣⎦; C. 13,62⎡⎤⎢⎥⎣⎦; D. 以上结论都不对. 答案:B3 (上海市静安区2008学年高三年级第一次质量调研第16题) 已知关于x 的不等式|2|3x x m -+-<的解集为非空集合,则实数m 的取值范围是( )A. 1m <B.1m ≤C.1m >D.1m ≥答案:C4 (闵行区2008学年第一学期高三质量监控理卷第14题)如图为函数log n y m x =+的图像,其中m 、n 为常数,则下列结论正确的是[答]( )(A) 0m <,1n >. (B) 0m >,1n >. (C) 0m >,01n <<. (D) 0m <,01n <<.5 (南汇区2008学年度第一学期期末考试文科第13题)若0a b <<,则下列结论中不恒..成立..的是( ) A . a b > B .11a b> C . 222a b ab +> D .2a b ab +>- 答案:D二、填空题1 (2008学年度第一学期上海市普陀区高三年级质量调研第10题) 已知函数2()f x x x =-,若Oxy1209年全国名校上学期期末试题分类汇编()()3log 1(2)f m f +<,则实数m 的取值范围是 .答案:8(,8)9-2 (闸北区09届高三数学(理)第5题) 设y x ,是满足42=+y x 的正数,则yx lg lg +的最大值是 .答案: 2lg ;3 (闸北区09届高三数学(理)第10题)设1>a ,若仅有一个常数c 使得对于任意的[]a a x 2,∈,都有[]2,a a y ∈满足方程c y x a a =+lo g lo g ,这时,a 的取值的集合为 . 答案:{2}4(上海市静安区2008学年高三年级第一次质量调研第12题)(文)已知关于x 的不等式(1)(1)0ax x -+<的解集是1(,)(1,)a-∞-+∞,则实数a 的取值范围是___________.答案:10a -<<5 (上海市静安区2008学年高三年级第一次质量调研第12题)(理)已知关于x 的不等式组2122kx x k ≤++≤有唯一实数解,则实数k 的取值集合是_________.答案:15122k k -=+=或 6(闵行区2008学年第一学期高三质量监控理卷第3题)不等式|32|1x -<的解是 . 答案:1(,1)37 (静安区部分中学08-09学年度第一学期期中数学卷第11题)设函数()f x x x a =-,若对于任意21,x x 21),,3[x x ≠+∞∈,不等式0)()(2121>--x x x f x f 恒成立,则实数a 的取值范围是 .答案:3a ≤8 (闵行区2008学年第一学期高三质量监控理卷第11题)已知x 是1、2、x 、4、5这五个数据的中位数,又知1-、5、1x -、y 这四个数据的平均数为3,则x y +最小值为 . 答案:11029 (闵行区2008学年第一学期高三质量监控理卷第12题)若关于x 的不等式(组)2272209(21)9n n x x ≤+-<+对任意n *∈N 恒成立,则所 有这样的解x 的集合是 . 答案:2{1,}9-10 (闵行区2008学年第一学期高三质量监控数学文卷第12题)若关于x 的不等式211()022n x x +-≥对任意n *∈N 在(,]x λ∈-∞恒成立,则实常数λ的取值范围是 . 答案:(]1-∞-,11(南汇区2008学年度第一学期期末理科第6题)若由命题A: “22031xx >-”能推出命题B: “x a >”,则a 的取值范围是________.答案:(],2-?12 (南汇区2008学年度第一学期期末理科第13题)若0a b <<,则下列结论中不恒成...立.的是( ) A . a b > B .11a b> C . 222a b ab +> D .2a b ab +>- 答案:D13. (浦东新区2008学年度第一学期期末质量抽测卷数学理科第8题)无穷等比数列}{n a 各项和S 的值为2,公比0<q ,则首项1a 的取值范围是 .答案:)4,2(14. (浦东新区2008学年度第一学期期末质量抽测卷数学理科第10题)关于x 的方程0)5(6241=-+⋅-⋅+k k k x x 在区间]1,0[上有解,则实数k的取值范围是 .答案:]6,5[15. (浦东新区2008学年度第一学期期末质量抽测卷数学理科第12题)研究问题:“已知关于x的不等式02>+-c bx ax 的解集为)2,1(,解关于x 的不等式02>+-a bx cx ”,有如下解法:解:由02>+-c bx ax ⇒0)1()1(2>+-xc x b a ,令xy 1=,则)1,21(∈y ,所以不等式02>+-a bx cx 的解集为)1,21(.参考上述解法,已知关于x 的不等式0<++++cx bx a x k 的解集为)3,2()1,2( --,则09年全国名校上学期期末试题分类汇编关于x 的不等式0111<--+-cx bx ax kx 的解集为 . 答案:)1,21()31,21( --16. ( (上海市青浦区2008学年高三年级第一次质量调研第11题) 设函数()f x 的定义域为[4,4]-,其图像如下图,那么不等式()0sin f x x≤的解集为____________.答案:[4,)[2,0)[1,)ππ---41-2-4xyO三.解答题1(上海市卢湾区2008学年高三年级第一次质量调研第16题)(本题满分10分)解不等式:221122log (325)log (45)x x x x --≤+-.答案:解:原不等式的解集为5{|3}4x x -≤<-2 (2008学年度第一学期上海市普陀区高三年级质量调研第17题)(本题满分14分,第1小题6分,第2小题8分)已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈.(1) 当k 变化时,试求不等式的解集A ;(2) 对于不等式的解集A ,若满足A Z B =(其中Z 为整数集). 试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由. 答案:解:(1)当0k =时,(,4)A =-∞; 当0k >且2k ≠时,4(,4)(,)A k k=-∞++∞;当2k =时,(,4)(4,)A =-∞+∞;(不单独分析2k =时的情况不扣分)当0k <时,4(,4)A k k=+.(2) 由(1)知:当0k ≥时,集合B 中的元素的个数无限;当0k <时,集合B 中的元素的个数有限,此时集合B 为有限集.因为44k k+≤-,当且仅当2k =-时取等号, 所以当2k =-时,集合B 的元素个数最少.此时()4,4A =-,故集合{}3,2,1,0,1,2,3B =---.3 (静安区部分中学08-09学年度第一学期期中数学卷第19题)(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.某商品每件成本价80元,售价100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加x 58成,要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式)(x f y =,并写出定义域;(2)若再要求该商品一天营业额至少10260元,求x 的取值范围.答案:(1)依题意,)5081(100)101(100x x y +⋅-=;3分 又售价不能低于成本价,所以080)101(100≥--x.2分所以)850)(10(20)(x x x f y +-==,定义域为]2,0[.2分(2)10260)850)(10(20≥+-x x ,化简得:0133082≤+-x x 3分解得4132≤≤x .3分 所以x 的取值范围是221≤≤x .1分4 (静安区部分中学08-09学年度第一学期期中数学卷第20题)(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.已知函数()122x x f x =-. (1)(理)设集合()154A x f x ⎧⎫=≤⎨⎬⎩⎭,{}260B x x x p =-+<,若A B ≠∅,求实数p 的取值范围;(文)若2)(=x f ,求x 的值;(2)若()()220t f t mf t +≥对于[]1,2t ∈恒成立,求实数m 的取值范围.09年全国名校上学期期末试题分类汇编答案:(1)(理)(],2A =-∞ 3分 设()26g x x x p =-+,因为A B ≠∅,所以()20g < 进而 (),8p ∈-∞ 5分 (文)(1)当0<x 时,0)(=x f ;当0≥x 时,xx x f 212)(-=. …… 2分由条件可知 2212=-xx ,即 012222=-⋅-xx , 解得212±=x . (4)分2>x ,()21log 2+=∴x . …… 2分(2)因为[]1,2t ∈,所以()122t tf t =-, 2分 ()()220t f t mf t +≥恒成立即2211222022t t t ttm ⎛⎫⎛⎫-+-≥ ⎪ ⎪⎝⎭⎝⎭恒成立, 即()()2221210t t m -++≥,因为2213t -≥,所以2210t m ++≥恒成立, 3分()]5,17[21],2,1[2--∈+-∴∈t t ,即5m ≥- 3分5 某医药研究所开发一种新药,据监测:服药后每毫升血液中的含药量()f x 与时间x 之间满足如图所示曲线.当[0,4]x ∈时,所示的曲线是二次函数图像的一部分,满足21()(4)44f x x =--+,当(4,19]x ∈时,所示的曲线是函数12log (3)4y x =-+的图像的一部分.据测定:每毫升血液中含药量不少于1微克时治疗疾病有效.请你算一下,服用这种药一次大概能维持多长的有效时间?(精确到0.1小时)()小时419Oy 4x()微克答案:由2041(4)414x x ≤≤⎧⎪⎨--+≥⎪⎩,解得:4234x -≤≤ ① (4分) 由12419log (3)41x x <≤⎧⎪⎨-+≥⎪⎩,解得:411x <≤ ② (8分)由①、②知:42311x -≤≤, (10分) 11(423)10.5--≈, (12分)∴服用这种药一次大概能维持的有效时间为10.5小时. (14分)6 (上海市青浦区2008学年高三年级第一次质量调研第19题)(本题满分14分)迎世博,要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为260000cm ,四周空白的宽度为10cm ,栏与栏之间的中缝空白的宽度为5cm ,怎样确定广告矩形栏目高与宽的尺寸(单位:cm ),能使整个矩形广告面积最小.答案:解:设矩形栏目的高为acm ,宽为bcm ,则20000ab =,20000b a∴= 广告的高为20a +,宽为330b +(其中0,0a b >>)广告的面积(20)(330S a b =++ 30(2)606004000030()606004000030260600120006060072600a b a aa a=++=++≥⨯⨯+=+=当且仅当40000a a=,即200a =时,取等号,此时100b =. 故当广告的高为200cm ,宽为100cm 时,可使广告的面积最小. 1.(上海市黄浦区2008学年高三年级第一次质量调研19)(本题满分12分)某城市上年度电价为0.80元/千瓦时,年用电量为a 千瓦时.本年度计划将电价降到0.55元/千瓦时~0.75元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时)经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为0.2a .试问当地电价最低为多少时,可保证电力部门的收益比上年度至少增加20%.09年全国名校上学期期末试题分类汇编1. 解:设新电价为x 元/千瓦时(0.550.75)x ≤≤,则新增用电量为0.20.4ax -千瓦时.依题意,有0.2()(0.3)(0.80.3)(120%)0.4aa x a x +-≥-+-,即(0.2)(0.3)0.6(0.4)x x x --≥-, 整理,得21.10.30,x x -+≥ 解此不等式,得0.6x ≥或0.5x ≤, 又0.550.75x ≤≤,所以,0.60.75x ≤≤,因此,min 0.6x =,即电价最低为0.6元/千瓦时,可保证电力部门的收益比上一年度至少增加20%. 2.(上海市八校2008学年第一学期高三数学考试试卷17)(本小题满分12分)关于x 的不等式01x a x ->+的解集为P ,不等式22log (1)1x -≤的解集为Q. 若Q ⊆P, 求正数a 的取值范围 2.解: 当1a >-时,P=(,1)(,)a -∞-+∞ 当1a =-时,P=(,1)(1,)-∞--+∞当1a <-时,P=(,)(1,)a -∞-+∞----------6分Q :221210x x ⎧-≤⎪⎨->⎪⎩ 3311x x x ⎧-≤≤⎪∴⎨<->⎪⎩或 )(3,11,3Q ⎡⎤∴=--⎣⎦ ------9分0,(,1)(,)a P a >∴=-∞-+∞---------10分若Q ⊆P 01a ∴<≤ ---------12分3.(上海市奉贤区2008年高三数学联考19)(本题满分16分.第一小题4分,第2小题6分,第3小题6分.)我们将具有下列性质的所有函数组成集合M :函数()()y f x x D =∈,对任意,,2x y x y D +∈均满足1()[()()]22x y f f x f y +≥+,当且仅当x y =时等号成立. 若定义在(0,+∞)上的函数()f x ∈M ,试比较(3)(5)f f +与2(4)f 大小.给定两个函数:11()(0)f x x x =>,2()log (1,0)a f x x a x =>>. 证明:12(),()f x M f x M ∉∈.试利用(2)的结论解决下列问题:若实数m 、n 满足mn221+=,求m +n 的最大值.3.解:(1)(3)(5)35()22f f f ++≤,即(3)(5)2(4)f f f +≤但35≠,所以(3)(5)2(4)f f f +<(若答案写成(3)(5)2(4)f f f +≤,扣一分) (4分)(2)① 对于11()(0)f x x x =>,取1,2x y ==,则1132()()223x y f f +==221113[()()](1)2224f x f y +=+=所以1()[()()]22x y f f x f y +<+,1()f x M ∉. (6分) ②对于2()log (1,0)a f x x a x =>>任取,x y R +∈,则()log 22a x y x yf ++=∵ 2x yxy+≥,而函数2()log (1,0)a f x x a x =>>是增函数∴l o g l o g 2aa x y xy +≥,即11log log ()(log log )222a a a a x y xy x y +≥=+则2221()[()()]22x y f f x f y +≥+,即2()f x M ∈. (10分) (3)设m nx 2,y 2==,则22m log x,n log y ==,且m +n =1. 由(2)知:函数2()log g x x =满足1()[()()]22x y g g x g y +≥+,得2221log [log log ]22x y x y +≥+,即211log (m n)22≥+,则m n 2+≤- (14分) 当且仅当x y =,即m n 1222==,即m =n =-1时,m +n 有最大值为-2. (16分)09年全国名校上学期期末试题分类汇编4. (上海虹口区08学年高三数学第一学期期末试卷21)(本题满分18分)第1小题4分,第2小题4分,第3小题5分,第4小题5分. (1)已知:,,a b x 均是正数,且a b >,求证:1a x ab x b+<<+; (2)当,,a b x 均是正数,且a b <,对真分数ab,给出类似上小题的结论,并予以证明; (3)证明:△ABC 中,sin sin sin 2sin sin sin sin sin sin A B CB C C A A B++<+++(可直接应用第(1)、(2)小题结论)(4)自己设计一道可直接应用第(1)、(2)小题结论的不等式证明题,并写出证明过程. 4.解:(1)0,1,a xa xb x b x++>+>∴<+ 又()0,1.()a x a x b a a x ab x b b b x b x b+-+-=<∴<<+++ (2),1,b a b a <∴>应用第(1)小题结论,得1,b x b a x a+<<+取倒数,得1.b b x a a x+<<+ (3)由正弦定理,原题⇔△ABC 中,求证:2.a b c b c c a a b ++<+++ 证明:由(2)的结论得,,,0,a b c >且,,a b c b c c a a b+++均小于1, 222,,a a b b c cb c a b c c a a b c a b a b c ∴<<<+++++++++,222 2.a b c a b c b c c a a b a b c a b c a b c++<++=+++++++++ (4)如得出:四边形ABCD 中,求证:2.a b c db c d c d a a b d a b c+++<++++++++且证明正确给3分;如得出:凸n 边形A 1A 2A 3┅A n 中,边长依次为12,,,,n a a a 求证:1223131212.nnnn a a a a a a a a a a a a -+++<+++++++++且证明正确给4分.如能应用到其它内容有创意则给高分.如得出:{}n a 为各项为正数的等差数列,(0)d ≠,求证:21212242323521n nn n a a a a a a a a a a a a -++++<+++。
2009届全国名校高三模拟试题汇编——概率与统计
2009届全国名校高三数学模拟试题分类汇编一、选择题概率与统计1、(四川省成都市2009届高三入学摸底测试)9名志愿都中, A 、A 、A 为教师,B l 、B2、B3、B 4为医生,G 、C 2为学生•为组建一个服务小组,需从这9名志愿者中选出教师 1名、医生2名、学生1名,则A 被选中100)之间的学生人数是()甲袋内有大小相同的 8个红球和4个白球,乙袋内有大小相同的59个红球和3个白球,从两个袋中各摸出一个球,则为()12A .2个球都是白球的概率 B. 2个球中恰好有1个白球的概率 C. 2个球都不是白球的概率D .2个球不都是白球的概率54 9 3 8答案:B 提示:.1212"26、(四川省成都市高中数学 2009级九校联考)从2008个学生中选取100人志愿者,若采用下面的方法选取,先 用简单随机抽样法从 2008人中剔除8人,剩下的2000人按年级分层抽样取出100人,则每人入选的概率为()(C ) — (D ) -5020 1004且B i 、B 2最多有1名被选中的概率为w.w.w.k.s.5.u.c.o.m1 (B)35(A ) 18答案:A2 (湖北省武汉市教科院1 ,2,3,4,若连续投掷三次,2 (D )92009届高三第一次调考)一个质量均匀的正四面体型的骰子,其四个面上分别标有数字 取三次面向下的数字分别作为三角形的边长,则其能构成钝角三角形的概率为()3A .64B .964 D . 32答案:C 星频率3、(广东省广州市 2008-2009学年高三第一学期中段学业质量监测 )为了了解高三学生的数学成绩, 抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图 (如图 3),已知从左到右各长方形高的比为 2: 3: 5: 6: 3: 1,则该班学生数学成绩在(80,60————————80100120 分数A. 32 人 答案:D 4、(辽宁省大连市第二十四中学B. 27 人C. 24 人D. 33 人2009届高三高考模拟)20名学生,任意分成甲、乙两组,每组10人,其中2名学生干部恰好被分在不同组内的概率是C 1C 92 18 A -------------10C 20B.2比;8C202C 2C ;9CC 10 C 20C 1C 82 18D . 「10C 20答案:A5、(重庆市大足中2009年高考数学模拟试题 (A )不全相等(B )均不相等二、填空题0 CX £ 兀 |N =<(x, y 幷0 £y £2〉内的概率是 j <sin x1答案:1n2、(四川省成都市高 2009届高中毕业班第一次诊断性检测 )定义集合A 与B 的差集A — B = {x| x € A 且x"B},记“从集合A 中任取一个元素x ,x € A — B ”为事件E ,“从集合A 中任取一个元素x ,x € APB ”为事件F ; P(E)为 事件E 发生的概率,P(F)为事件F 发生的概率,当 a 、b € Z ,且a v — 1,b 昌时,设集合 A = {x € Z|a v x v 0}, 集合B ={x € Z| — b v x v b}•给出以下判断:2 1① 当 a =— 4,b = 2 时 P(E) = 3,P(F) = 3; ② 总有P(E)+ P(F)= 1成立; ③ 若 P(E)= 1,贝U a = — 2,b = 1; ④ P(F)不可能等于1.其中所有正确判断的序号为 __________________________________ . 答案:①②3、(江苏省盐城市田家炳中学 09届高三数学综合练习)右图为80辆汽车通过某一段公路时的时速的频率分布直方图 ,则时速在[50,60)的汽车大约有 ▲ 辆•答案:24答案:D7、(四川省成都市高中数学 表示图中阴影部分面积的有1①(-a)2 , 1 ③(a)--2(B)22009级九校联考)下图是正态分布 N s (0,1)的正态分布曲线图,下面 4个式子中,能 )个 ② X-a)(A)1答案:C 8、(四川省成都市高中数学 (1④?[ (a) 一(—a)](D)42009级九校联考)5颗骰子同时掷出,共掷100次则至少一次出现全为 6点的概率为(A) [1)/ 5、5]100(6)]C(B)[1-( 5)00]5(C)1-[1-( 1 )]1006 61、100r5(D)1-[1-( 6)]答案: 9、(广东省北江中学2009届高三上学期12月月考)甲校有3600名学生,乙校有5400名学生,丙校有1800名学 生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为 90人的样本,应在这三校分别抽取学生( A. 30 人, C.20 人, 答案:B)30人, 3030人 10人B.30人,45 人,15人 D.30人,50人,10人10、(广西桂林十八中 06级高三第二次月考)4张卡片上分别写有数字1,2,3, 4,从这4张卡片中随机抽取 2张,则取出的 2张卡片上的数字之和为奇数的概率为1 A.-3答案:C1 B.-21、(广东省广州市 2008-2009学年高三第一学期中段学业质量监测)在区域M =」(x, y 卜k gyd内随机撒一把黄豆,落在区域4、(江苏省盐城市田家炳中学09届高三数学综合练习)把一枚骰子投掷两次,第一次出现的点数为a,第二次出严x + by= 5现的点数为b•记A为“方程组]只有一组解”,则事件A的概率等于______________ .i答案:—185、(上海市张堰中学高2009届第一学期期中考试)5名运动员比赛前将外衣放在休息室,比赛完后回休息室取衣服,则有2人拿到自己的外衣,另外3人都拿到别人外衣的概率是____________ .1答案:I66、(四川省成都市高中数学2009级九校联考)已知随机变量•满足L B(20, p),则D •的最大值为________________________ ;答案:57、(四川省成都市高中数学2009级九校联考)从0, 1,2,3, 5, 7, 11中任取3个元素分别作为Ax By 0中的A,B,C,所得恰好经过原点的直线的概率为____________________ ;1答案:-78、(江苏省常州市2008-2009高三第一学期期中统一测试数学试题)一个靶子上有10个同心圆,半径依次为1、2、••…、• 10,击中由内至外的区域的成绩依次为10、9、••…、1环,则不考虑技术因素,射击一次,在有成绩的情况下成绩为10环的概率为 _________ .答案:0.019、(广东省佛山市三水中学2009届高三上学期期中考试)某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样的方法抽出一个容量为n的样本,样本中A型号的产品有16件,那么此样本容量n .答案:7210、(广东省高明一中2009届高三上学期第四次月考)一个骰子连续投2次,点数和为4的概率_________________ .1答案:112w.w.w.k.s.5.u.c.o.m。
2024年高考数学大题--概率统计题型分类汇编(学生版)
概率统计概率统计是是高考数学的热点之一,概率统计大题是新高考卷及多省市高考数学的必考内容。
回顾近几年的高考试题,主要考查古典概型、相互独立事件、条件概率、超几何分布、二项分布、正态分布、统计图表与数字特征、回归分析、离散型随机变量的分布列、期望与方差等内容,多与社会实际紧密结合,以现实生活为背景设置试题,注重知识的综合应用与实际应用。
重点考察考生读取数据、分析数据和处理数据的能力。
题型一:离散型随机变量及其分布列题型二:超几何分布与二项分布题型三:均值与方差的实际应用题型四:正态分布与标准正态分布题型五:线性回归与非线性回归题型六:独立性检验及应用题型七:条件概率/全概率公式/贝叶斯公式题型八:概率与统计图表的综合应用题型九:概率与其他知识的交汇应用题型十:利用概率解决决策类问题题型一:离散型随机变量及其分布列1(2023·广东肇庆·高三广东肇庆中学校考阶段练习)为弘扬中华优秀传统文化,荣造良好的文化氛围,某高中校团委组织非毕业年级开展了“我们的元宵节”主题知识竞答活动,该活动有个人赛和团体赛,每人只能参加其中的一项,根据各位学生答题情况,获奖学生人数统计如下:奖项组别个人赛团体赛获奖一等奖二等奖三等奖高一20206050高二162910550(1)从获奖学生中随机抽取1人,若已知抽到的学生获得一等奖,求抽到的学生来自高一的概率;(2)从高一和高二获奖者中各随机抽取1人,以X表示这2人中团体赛获奖的人数,求X的分布列和数学期望;求离散型随机变量的分布列及期望的一般步骤:(1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布,可结合其对应的概率计算公式及期望计算公式,简化计算。
)1(2024·四川成都·成都七中模拟预测)甲、乙两人进行羽毛球比赛,比赛采取七局四胜制.已知甲每局比赛获胜的概率为23,输掉的概率为13,每局的比赛结果互不影响.(1)求甲最终获胜的概率;(2)记总共的比赛局数为X,求X的分布列与数学期望.2(2024·云南德宏·高三统考期末)设有甲、乙、丙三个不透明的箱子,每个箱中装有除颜色外都相同的4个球,其中甲箱有2个蓝球和2个黑球,乙箱有3个红球和1个白球,丙箱有2个红球和2个白球.摸球规则如下:先从甲箱中一次摸出2个球,若从甲箱中摸出的2个球颜色相同,则从乙箱中摸出1个球放入丙箱,再从丙箱中一次摸出2个球;若从甲箱中摸出的2个球颜色不同,则从丙箱中摸出1个球放入乙箱,再从乙箱中一次摸出2个球.(1)若最后摸出的2个球颜色不同,求这2个球是从丙箱中摸出的概率;(2)若摸出每个红球记2分,每个白球记1分,用随机变量X表示最后摸出的2个球的分数之和,求X的分布列及数学期望.题型二:超几何分布与二项分布2(2024·广东广州·广州市培正中学校考二模)某校高二(1)班的元旦联欢会设计了一项抽奖游戏:准备了10张相同的卡片,其中只在6张卡片上印有“奖”字.(1)采取放回抽样方式,从中依次抽取3张卡片,求抽到印有“奖”字卡片张数X的分布列、数学期望及方差;(2)采取不放回抽样方式,从中依次抽取3张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.1、独立重复试验与二项分布(1)定型:“独立”“重复”是二项分布的基本特征,“每次试验事件发生的概率都相等”是二项分布的本质特征.判断随机变量是否服从二项分布,要看在一次试验中是否只有两种试验结果,且两种试验结果发生的概率分别为p,1-p,还要看是否为n次独立重复试验,随机变量是否为某事件在这n次独立重复试验中发生的次数.(2)定参,确定二项分布中的两个参数n和p,即试验发生的次数和试验中事件发生的概率.(3)列表,根据离散型随机变量的取值及其对应的概率,列出分布列.(4)求值,根据离散型随机变量的期望和方差公式,代入相应数据求值.相关公式:已知X~B(n,p),则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,⋯,n),E(X)=np,D(X)=np(1-p).2、超几何分布的适用范围及本质(1)适用范围:考察对象分两类;已知各类对象的个数;从中抽取若干个个题,考察某一类个题个数的概率分布;(2)本质:超几何分布是不放回抽样问题,在每次试验中某一事件发生的概率是不相同的。
上海市2024年高考二模分类汇编:概率统计与统计初步
概率统计汇编一、题型一:统计1.(2024·上海黄浦·二模)某学校为了解学生参加体育运动的情况,用分层抽样的方法作抽样调查,拟从初中部和高中部两层共抽取40名学生,已知该校初中部和高中部分别有500和300名学生,则不同的抽样结果的种数为()A .2515500300C C +B .2515500300C C ⋅C .2020500300C C +D .2020500300C C ⋅2.(2024·上海虹口·二模)给出下列4个命题:①若事件A 和事件B 互斥,则()()()P A B P A P B ⋂=;②数据2,3,6,7,8,10,11,13的第70百分位数为10;③已知y 关于x 的回归方程为0.50.7y x =-+,则样本点()2,1-的离差为0.7-;④随机变量X 的分布为01230.20.20.30.3⎛⎫ ⎪⎝⎭,则其数学期望[] 1.6E X =.其中正确命题的序号为()A .①②B .①③C .②③D .②④3.(2024·上海金山·二模)下列说法不正确的是().A .一组数据10,11,11,12,13,14,16,18,20,22的第60百分位数为14B .若随机变量X 服从正态分布2(3,)N σ,且(4)0.7P X ≤=,则(34)0.2P X <<=C .若线性相关系数r 越接近1,则两个变量的线性相关程度越高D .对具有线性相关关系的变量x 、y ,且回归方程为0.3y x m =-,若样本点的中心为(,2.8)m ,则实数m 的值是4-4.(2024·上海普陀·二模)为了提高学生参加体育锻炼的积极性,某校本学期依据学生特点针对性的组建了五个特色运动社团,学校为了了解学生参与运动的情况,对每个特色运动社团的参与人数进行了统计,其中一个特色运动社团开学第1周至第5周参与运动的人数统计数据如表所示.周次x 12345参与运动的人数y3536403945若表中数据可用回归方程 2.3(118,N)y x b x x =+≤≤∈来预测,则本学期第11周参与该特色运动社团的人数约为.(精确到整数)5.(2024·上海嘉定·二模)数据1、2、3、4、5的方差为21s ,数据3、6、9、12、15的方差为22s ,则2221s s =.6.(2024·上海奉贤·二模)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[]0,200(]200,400(]400,6001(优)318252(良)6x143(轻度污染)5564(中度污染)63(1)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(2)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的22⨯列联表,请根据表中的数据判断:一天中到该公园锻炼的人次是否与该市当天的空气质量有关?(规定显著性水平0.05α=)人次≤400人次>400总计空气质量好空气质量不好总计附:()()()()()22n ad bc a b c d a c b d χ-=++++,()2 3.8410.05P χ≥≈.7.(2024·上海虹口·二模)某企业监控汽车零件的生产过程,现从汽车零件中随机抽取100件作为样本,测得质量差(零件质量与标准质量之差的绝对值)的样本数据如下表:质量差(单位:mg )5457606366件数(单位:件)52146253(1)求样本质量差的平均数x ;假设零件的质量差()2,X N μσ ,其中216σ=,用x 作为μ的近似值,求()5668P X <<的值;(2)已知该企业共有两条生产汽车零件的生产线,其中全部零件的34来自第1条生产线.若两条生产线的废品率分别为0.016和0.012,且这两条生产线是否产出废品是相互独立的.现从该企业生产的汽车零件中随机抽取一件.(i )求抽取的零件为废品的概率;(ii )若抽取出的零件为废品,求该废品来自第1条生产线的概率.参考数据:若随机变量()2,X N μσ ,则()()()0.6827,220.9545,330.9973P X P X P X μσμσμσμσμσμσ-<≤+≈-<≤+≈-<≤+≈.8.(23-24高三下·上海浦东新·期中)某商店随机抽取了当天100名客户的消费金额,并分组如下:[)0,200,[)200,400,[)400,600,…,[]1000,1200(单位:元),得到如图所示的频率分布直方图.(1)若该店当天总共有1350名客户进店消费,试估计其中有多少客户的消费额不少于800元;(2)若利用分层随机抽样的方法从消费不少于800元的客户中共抽取6人,再从这6人中随机抽取2人做进一步调查,则抽到的2人中至少有1人的消费金额不少于1000元的概率是多少;(3)为吸引顾客消费,该商店考虑两种促销方案.方案一:消费金额每满300元可立减50元,并可叠加使用;方案二:消费金额每满1000元即可抽奖三次,每次中奖的概率均为13,且每次抽奖互不影响.中奖1次当天消费金额可打9折,中奖2次当天消费金额可打6折,中奖3次当天消费金额可打3折.若两种方案只能选择其中一种,小王准备购买的商品又恰好标价1000元,请帮助他选择合适的促销方案并说明理由.二、题型二:统计案例9.(2024·上海徐汇·二模)为了研究y 关于x 的线性相关关系,收集了5组样本数据(见下表):x 12345y0.50.911.11.5若已求得一元线性回归方程为 0.34y ax=+,则下列选项中正确的是()A . 0.21a=B .当8x =时,y 的预测值为2.2C .样本数据y 的第40百分位数为1D .去掉样本点(3,1)后,x 与y 的样本相关系数r 不会改变10.(2024·上海闵行·二模)某疾病预防中心随机调查了339名50岁以上的公民,研究吸烟习惯与慢性气管炎患病的关系,调查数据如下表:不吸烟者吸烟者总计不患慢性气管炎者121162283患慢性气管炎者134356总计134205339假设0H :患慢性气管炎与吸烟没有关系,即它们相互独立.通过计算统计量2χ,得27.468χ≈,根据2χ分布概率表:2( 6.635)0.01P χ≥≈,2( 5.024)0.025P χ≥≈,2( 3.841)0.05P χ≥≈,2( 2.706)0.1P χ≥≈.给出下列3个命题,其中正确的个数是()①“患慢性气管炎与吸烟没有关系”成立的可能性小于5%;②有99%的把握认为患慢性气管炎与吸烟有关;③2χ分布概率表中的0.05、0.01等小概率值在统计上称为显著性水平,小概率事件一般认为不太可能发生.A .0个B .1个C .2个D .3个11.(23-24高三下·上海浦东新·期中)通过随机抽样,我们绘制了如图所示的某种商品每千克价格(单位:百元)与该商品消费者年需求量(单位:千克)的散点图.若去掉图中右下方的点A 后,下列说法正确的是()A .“每千克价格”与“年需求量”这两个变量由负相关变为正相关B .“每千克价格”与“年需求量”这两个变量的线性相关程度不变C .“每千克价格”与“年需求量”这两个变量的线性相关系数变大D .“每千克价格”与“年需求量”这两个变量的线性相关系数变小12.(2024·上海金山·二模)为了考察某种药物预防疾病的效果,进行动物试验,得到如下图所示列联表:药物疾病合计未患病患病服用m 50m-50未服用80m-30m -50合计8020100取显著性水平0.05α=,若本次考察结果支持“药物对疾病预防有显著效果”,则m (40,m m ≥∈N )的最小值为.(参考公式:22()()()()()n ad bc a b c d a c b d χ-=++++;参考值:2( 3.841)0.05P χ≥≈)13.(2024·上海长宁·二模)收集数据,利用22⨯列联表,分析学习成绩好与上课注意力集中是否有关时,提出的零假设为:学习成绩好与上课注意力集中(填:有关或无关)14.(2024·上海徐汇·二模)为了解中草药甲对某疾病的预防效果,研究人员随机调查了100名人员,调查数据如表.(单位:个)未患病者患病者合计未服用中草药甲291645服用中草药甲46955合计7525100(1)若规定显著性水平0.05α=,试分析中草药甲对预防此疾病是否有效;(2)已知中草药乙对该疾病的治疗有效率数据如下:对未服用过中草药甲的患者治疗有效率为12,对服用过中草药甲的患者治疗有效率为34.若用频率估计概率,现从患此疾病的人员中随机选取2人(分两次选取,每次1人,两次选取的结果独立)使用中草药乙进行治疗,记治疗有效的人数为X ,求X 的分布和数学期望.附:()()()()()22n ad bca b c d a c b dχ-=++++,n a b c d=+++.α0.1000.0500.0100.001xα 2.706 3.841 6.63510.82815.(2024·上海青浦·二模)垃圾分类能减少有害垃圾对环境的破坏,同时能提高资源循环利用的效率.目前上海社区的垃圾分类基本采用四类分类法,即干垃圾,湿垃圾,可回收垃圾与有害垃圾.某校为调查学生对垃圾分类的了解程度,随机抽取100名学生作为样本,按照了解程度分为A等级和B等级,得到如下列联表:男生女生总计A等级402060B等级202040总计6040100(1)根据表中的数据回答:学生对垃圾分类的了解程度是否与性别有关(规定:显著性水平0.05α=)?附:()()()()()22n ad bca b c d a c b dχ-=++++,其中n a b c d=+++,()2 3.8410.05Pχ≥≈.(2)为进一步加强垃圾分类的宣传力度,学校特举办垃圾分类知识问答比赛.每局比赛由二人参加,主持人A和B轮流提问,先赢3局者获得奖项并结束比赛.甲,乙两人参加比赛,已知主持人A提问甲赢的概率为23,主持人B提问甲赢的概率为12,每局比赛互相独立,且每局都分输赢.现抽签决定第一局由主持人A提问.(i)求比赛只进行3局就结束的概率;(ii)设X为结束比赛时甲赢的局数,求X的分布和数学期望()E X.16.(2024·上海崇明·二模)某疾病预防中心随机调查了340名50岁以上的公民,研究吸烟习惯与慢性气管炎患病的关系,调查数据如表所示.不吸烟者吸烟者总计不患慢性气管炎者120160280患慢性气管炎者154560总计135205340(1)是否有95%的把握认为患慢性气管炎与吸烟有关?(2)常用()(|)|(|)P B A L B A P B A =表示在事件A 发生的条件下事件B 发生的优势,在统计中称为似然比.现从340人中任选一人,A 表示“选到的人是吸烟者”,B 表示“选到的人患慢性气管炎者”请利用样本数据,估计()|L B A 的值;(3)现从不患慢性气管炎者的样本中,按分层抽样的方法选出7人,从这7人里再随机选取3人,求这3人中,不吸烟者的人数X 的数学期望.附:22()()()()()n ad bc a b c d a c b d χ-=++++,2( 3.841)0.05P χ≥≈.17.(2024·上海嘉定·二模)据文化和旅游部发布的数据显示,2023年国内出游人次达48.91亿次,总花费4.91万亿元.人们选择的出游方式不尽相同,有自由行,也有跟团游.为了了解年龄因素是否影响出游方式的选择,我们按年龄将成年人群分为青壮年组(大于等于14岁,小于40岁)和中老年组(大于等于40岁).现在S 市随机抽取170名成年市民进行调查,得到如下表的数据:青壮年中老年合计自由行6040跟团游2050合计(1)请补充22⨯列联表,并判断能否有95%的把握认为年龄与出游方式的选择有关;(2)用分层抽样的方式从跟团游中抽取14个人,再从14个人中随机抽取7个人,用随机变量X 表示这7个人中中老年与青壮年人数之差的绝对值,求X 的分布和数学期望.α0.100.050.025P2.7063.8415.024三、题型三:概率18.(2024·上海普陀·二模)从放有两个红球、一个白球的袋子中一次任意取出两个球,两个红球分别标记为A 、B ,白球标记为C ,则它的一个样本空间可以是()A .{},AB BC B .{},,AB AC BC C .{},,,AB BA BC CB D .{},,,,AB BA AC CA CB 19.(2024·上海长宁·二模)某运动员8次射击比赛的成绩为:9.6、9.7、9.5、9.9、9.4、9.8、9.3、10.0;已知这组数据的第x 百分位为m ,若从这组数据中任取一个数,这个数比m 大的概率为0.25,则x 的取值不可能是()A .65B .70C .75D .8020.(2024·上海黄浦·二模)某校高三年级举行演讲比赛,共有5名选手参加.若这5名选手甲、乙、丙、丁、戊通过抽签来决定上场顺序,则甲、乙两位选手上场顺序不相邻的概率为.21.(2024·上海嘉定·二模)小张、小王两家计划假期来嘉定游玩,他们分别从“古猗园,秋霞圃,州桥老街”这三个景点中随机选择一个游玩,记事件A 表示“两家至少有一家选择古猗园”,事件B 表示“两家选择景点不同”,则概率()P B A =.22.(2024·上海崇明·二模)某学习小组共有10名学生,其中至少有2名学生在同一月份的出生的概率是.(默认每月天数相同,结果精确到0.001)23.(2024·上海闵行·二模)ChatGPT 是OpenAI 研发的一款聊天机器人程序,是人工智能技术驱动的自然语言处理工具,它能够基于在预训练阶段所见的模式和统计规律来生成回答,但它的回答可能会受到训练数据信息的影响,不一定完全正确.某科技公司在使用ChatGPT 对某一类问题进行测试时发现,如果输入的问题没有语法错误,它回答正确的概率为0.98;如果出现语法错误,它回答正确的概率为0.18.假设每次输入的问题出现语法错误的概率为0.1,且每次输入问题,ChatGPT 的回答是否正确相互独立.该公司科技人员小张想挑战一下ChatGPT ,小张和ChatGPT 各自从给定的10个问题中随机抽取9个作答,已知在这10个问题中,小张能正确作答其中的9个.(1)求小张能全部回答正确的概率;(2)求一个问题能被ChatGPT 回答正确的概率;(3)在这轮挑战中,分别求出小张和ChatGPT 答对题数的期望与方差.24.(2024·上海静安·二模)某高中随机抽取100名学生,测得他们的身高(单位:cm ),按照区间[)160,165,[)165,170,[)170,175,[)175,180,[]180,185分组,得到样本身高的频率分布直方图(如下图所示).(1)求身高不低于170cm 的学生人数;(2)将身高在[)170,175,[)175,180,[]180,185区间内的学生依次记为A ,B ,C 三个组,用分层抽样的方法从三个组中抽取6人.①求从这三个组分别抽取的学生人数;②若要从6名学生中抽取2人,求B 组中至少有1人被抽中的概率.25.(2024·上海杨浦·二模)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.完成生产任务的工作时间不超过70分钟的工人为“优秀”,否则为“合格”.根据工人完成生产任务的工作时间(单位:分钟)绘制了如下茎叶图:(1)求40名工人完成生产任务所需时间的第75百分数;(2)独立地从两种生产方式中各选出一个人,求选出的两个人均为优秀的概率;(3)根据工人完成生产任务的工作时间,两种生产方式优秀与合格的人数填入下面的2×2列联表:第一种生产方式第二种生产方式总计优秀合格总计根据上面的2×2列联表,判断能否有95%的把握认为两种生产方式的工作效率有显著差异?(22()()()()()n ad bc a b c d a c b d χ-=++++.其中n a b c d =+++,()2 3.8410.05P χ≥≈).四、题型四:随机变量及其分布26.(2024·上海奉贤·二模)有6个相同的球,分别标有数字1,2,3,4,5,6从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是5”,丁表示事件“两次取出的球的数字之和是6”,则().A .甲与乙相互独立B .乙与丙相互独立C .甲与丙相互独立D .乙与丁相互独立27.(2024·上海杨浦·二模)某区高三年级3200名学生参加了区统一考试.已知考试成绩X 服从正态分布()2100,N σ(试卷满分为150分).统计结果显示,考试成绩在80分到120分之间的人数约为总人数的34,则此次考试中成绩不低于120分的学生人数约为()A .350B .400C .450D .50028.(2024·上海松江·二模)已知随机变量X 服从正态分布()23,N σ,且(35)0.3P X ≤≤=,则(5)P X >=.29.(2024·上海普陀·二模)已知()2~4,2X N ,若(0)0.02P X <=,则(48)P X <<=.30.(2024·上海徐汇·二模)同时抛掷三枚相同的均匀硬币,设随机变量1X =表示结果中有正面朝上,X 0=表示结果中没有正面朝上,则[]D X =.31.(23-24高三下·上海浦东新·期中)某校面向高一全体学生共开设3门体育类选修课,每人限选一门.已知这三门体育类选修课的选修人数之比为6:3:1,考核优秀率分别为20%、16%和12%,现从该年级所有选择体育类选修课的同学中任取一名,其成绩是优秀的概率为.32.(2024·上海静安·二模)某工厂生产的产品以100个为一批.在进行抽样检查时,只从每批中抽取10个来检查,如果发现其中有次品,则认为这批产品是不合格的.假定每一批产品中的次品最多不超过2个,并且其中恰有i (i =0,1,2)个次品的概率如下:一批产品中有次品的个数i012概率0.30.50.2则各批产品通过检查的概率为.(精确到0.01)33.(2024·上海静安·二模)某地区高三年级2000名学生参加了地区教学质量调研测试,已知数学测试成绩X 服从正态分布2(100,)N σ(试卷满分150分),统计结果显示,有320名学生的数学成绩低于80分,则数学分数属于闭区间[80,120]的学生人数约为.34.(2024·上海虹口·二模)已知随机变量()50,X B p ~,且[]20E X =,则[]D X =.35.(2024·上海黄浦·二模)随机变量X 服从正态分布2(2,)N σ,若()2 2.50.36P X <≤=,则()|2|0.5P X ->=.36.(2024·上海青浦·二模)从1,2,3,4,5中任取2个不同的数字,设“取到的2个数字之和为偶数”为事件A ,“取到的2个数字均为奇数”为事件B ,则(|)P B A =.37.(2024·上海青浦·二模)设随机变量ξ服从正态分布(21)N ,,若(3)(12)P a P a ξξ<-=>-,则实数=a .38.(23-24高三下·上海浦东新·期中)已知随机变量X 服从正态分布()295,N σ,若(75115)0.4P X ≤≤=,则()115P X >=.39.(2024·上海松江·二模)某素质训练营设计了一项闯关比赛.规定:三人组队参赛,每次只派一个人,且每人只派一次:如果一个人闯关失败,再派下一个人重新闯关;三人中只要有人闯关成功即视作比赛胜利,无需继续闯关.现有甲、乙、丙三人组队参赛,他们各自闯关成功的概率分别为1p 、2p 、3p ,假定1p 、2p 、3p 互不相等,且每人能否闯关成功的事件相互独立.(1)计划依次派甲乙丙进行闯关,若13p 4=,223p =,312p =,求该小组比赛胜利的概率;(2)若依次派甲乙丙进行闯关,则写出所需派出的人员数目X 的分布,并求X 的期望()E X ;(3)已知1231p p p >>>,若乙只能安排在第二个派出,要使派出人员数目的期望较小,试确定甲、丙谁先派出.40.(2024·上海普陀·二模)张先生每周有5个工作日,工作日出行采用自驾方式,必经之路上有一个十字路口,直行车道有三条,直行车辆可以随机选择一条车道通行,记事件A 为“张先生驾车从左侧直行车道通行”.(1)某日张先生驾车上班接近路口时,看到自己车前是一辆大货车,遂选择不与大货车从同一车道通行.记事件B 为“大货车从中间直行车道通行”,求()P A B ⋂;(2)用X 表示张先生每周工作日出行事件A 发生的次数,求X 的分布及期望[]E X .41.(2024·上海黄浦·二模)某社区随机抽取200个成年市民进行安全知识测试,将这200人的得分数据进行汇总,得到如下表所示的统计结果,并规定得分60分及以上为合格.组别[0,20)[20,40)[40,60)[60,80)[80,100]频数926655347(1)该社区为参加此次测试的成年市民制定了如下奖励方案:①合格的发放2个随机红包,不合格的发放1个随机红包;②每个随机红包金额(单位:元)的分布为20500.80.2⎛⎫⎪⎝⎭.若从这200个成年市民中随机选取1人,记X (单位:元)为此人获得的随机红包总金额,求X 的分布及数学期望;(2)已知上述抽测中60岁以下人员的合格率约为56%,该社区所有成年市民中60岁以下人员占比为70%.假如对该社区全体成年市民进行上述测试,请估计其中60岁及以上人员的合格率以及成绩合格的成年市民中60岁以下人数与60岁及以上人数之比.42.(2024·上海金山·二模)有标号依次为1,2,…,n (2n ≥,n ∈N )的n 个盒子,标号为1号的盒子里有3个红球和3个白球,其余盒子里都是1个红球和1个白球.现从1号盒子里取出2个球放入2号盒子,再从2号盒子里取出2个球放入3号盒子,…,依次进行到从n 1-号盒子里取出2个球放入n 号盒子为止.(1)当2n =时,求2号盒子里有2个红球的概率;(2)设n 号盒子中红球个数为随机变量n X ,求3X 的分布及()3E X ,并猜想()n E X 的值(无需证明此猜想).43.(2024·上海长宁·二模)盒子中装有大小和质地相同的6个红球和3个白球;(1)从盒子中随机抽取出1个球,观察其颜色后放回,并同时放入与其颜色相同的球3个,然后再从盒子随机取出1个球,求第二次取出的球是红球的概率;(2)从盒子中不放回地依次随机取出2个球,设2个球中红球的个数为X ,求X 的分布、期望与方差;参考答案一、题型一:统计1.(2024·上海黄浦·二模)某学校为了解学生参加体育运动的情况,用分层抽样的方法作抽样调查,拟从初中部和高中部两层共抽取40名学生,已知该校初中部和高中部分别有500和300名学生,则不同的抽样结果的种数为()A .2515500300C C +B .2515500300C C ⋅C .2020500300C C +D .2020500300C C ⋅【答案】B【分析】由分层抽样先求出初中部和高中部应抽取的学生,再由组合数公式和分步计数原理即可得出答案.【详解】该校初中部和高中部分别有500和300名学生,所以初中部应抽取50054040258008⨯=⨯=名学生,高中部应抽取30034040158008⨯=⨯=名学生,所以不同的抽样结果的种数为2515500300C C ⋅.故选:B.2.(2024·上海虹口·二模)给出下列4个命题:①若事件A 和事件B 互斥,则()()()P A B P A P B ⋂=;②数据2,3,6,7,8,10,11,13的第70百分位数为10;③已知y 关于x 的回归方程为0.50.7y x =-+,则样本点()2,1-的离差为0.7-;④随机变量X 的分布为01230.20.20.30.3⎛⎫ ⎪⎝⎭,则其数学期望[] 1.6E X =.其中正确命题的序号为()A .①②B .①③C .②③D .②④【答案】C【分析】根据互斥事件的定义判断A ;根据百分位数的定义判断B ;根据离差的定义判断C ;根据期望公式判断D.【详解】对于①:因为事件A 和事件B 互斥,所以()0P A B = ,故①错误;对于②:因为870% 5.6⨯=,所以第70百分位数为从小到大排列的第6个数,即可为10,故②正确;对于③:因为0.50.7y x =-+,当2x =时0.520.70.3y =-⨯+=-,所以样本点()2,1-的离差为()10.30.7---=-,故③正确;对于④:[]00.210.220.330.3 1.7E X =⨯+⨯+⨯+⨯=,故④错误.故选:C3.(2024·上海金山·二模)下列说法不正确的是().A .一组数据10,11,11,12,13,14,16,18,20,22的第60百分位数为14B .若随机变量X 服从正态分布2(3,)N σ,且(4)0.7P X ≤=,则(34)0.2P X <<=C .若线性相关系数r 越接近1,则两个变量的线性相关程度越高D .对具有线性相关关系的变量x 、y ,且回归方程为0.3y x m =-,若样本点的中心为(,2.8)m ,则实数m 的值是4-4.(2024·上海普陀·二模)为了提高学生参加体育锻炼的积极性,某校本学期依据学生特点针对性的组建了五个特色运动社团,学校为了了解学生参与运动的情况,对每个特色运动社团的参与人数进行了统计,其中一个特色运动社团开学第1周至第5周参与运动的人数统计数据如表所示.周次x 12345参与运动的人数y3536403945若表中数据可用回归方程 2.3(118,N)y x b x x =+≤≤∈来预测,则本学期第11周参与该特色运动社团的人数约为.(精确到整数)【答案】57【分析】由已知求出样本点的中心的坐标,代入线性回归方程,再取11x =求解.【详解】1234535x ++++==,3536403945395y ++++==,把(3,39)代入 2.3y x b =+,得39 2.3332.1b =-⨯=.可得线性回归方程为 2.332.1y x =+.把11x =代入 2.332.1y x =+,可得 2.31132.157.457y =⨯+=≈.故答案为:57.5.(2024·上海嘉定·二模)数据1、2、3、4、5的方差为21s ,数据3、6、9、12、15的方差为22s ,则2221s s =.【答案】9【分析】由两组数据满足的一次函数关系,得方差间的关系,即可得结果.【详解】数据1、2、3、4、5依次记为()1,2,3,4,5i x i =,数据3、6、9、12、15依次记为()1,2,3,4,5i y i =,则有3i i y x =,所以22219s s =,即22219s s =.故答案为:96.(2024·上海奉贤·二模)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[]0,200(]200,400(]400,6001(优)318252(良)6x143(轻度污染)5564(中度污染)63(1)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(2)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的22⨯列联表,请根据表中的数据判断:一天中到该公园锻炼的人次是否与该市当天的空气质量有关?(规定显著性水平0.05α=)人次≤400人次>400总计空气质量好空气质量不好总计附:()()()()()22n ad bca b c d a c b dχ-=++++,()2 3.8410.05Pχ≥≈.7.(2024·上海虹口·二模)某企业监控汽车零件的生产过程,现从汽车零件中随机抽取100件作为样本,测得质量差(零件质量与标准质量之差的绝对值)的样本数据如下表:质量差(单位:mg )5457606366件数(单位:件)52146253(1)求样本质量差的平均数x ;假设零件的质量差()2,X N μσ ,其中216σ=,用x 作为μ的近似值,求()5668P X <<的值;(2)已知该企业共有两条生产汽车零件的生产线,其中全部零件的34来自第1条生产线.若两条生产线的废品率分别为0.016和0.012,且这两条生产线是否产出废品是相互独立的.现从该企业生产的汽车零件中随机抽取一件.(i )求抽取的零件为废品的概率;(ii )若抽取出的零件为废品,求该废品来自第1条生产线的概率.参考数据:若随机变量()2,X N μσ ,则()()()0.6827,220.9545,330.9973P X P X P X μσμσμσμσμσμσ-<≤+≈-<≤+≈-<≤+≈.【答案】(1)60x =,()56680.8186P X <<≈(2)(i )0.015;(ii )0.8【分析】(1)先求出x ,再利用正态曲线的对称性求解;(2)(i )利用全概率公式求解;(ii )利用条件概率公式求解.【详解】(1)由题意可知54557216046632566360100x ⨯+⨯+⨯+⨯+⨯==,则~(60,16)X N ,所以()()56686046042P X P X <<=-<<+⨯()()112222P X P X μσμσμσμσ=-<≤++-<≤+110.68270.95450.818622≈⨯+⨯=;(2)(i )设事件A 表示“随机抽取一件该企业生产的该零件为废品”,事件1B 表示“随机抽取一件零件为第1条生产线生产”,事件2B 表示“随机抽取一件零件为第2条生产线生产”,则13()4P B =,21()4P B =,1(|)0.016P A B =,2(|)0.012P A B =,8.(23-24高三下·上海浦东新·期中)某商店随机抽取了当天100名客户的消费金额,并分组如下:[)0,200,[)200,400,[)400,600,…,[]1000,1200(单位:元),得到如图所示的频率分布直方图.(1)若该店当天总共有1350名客户进店消费,试估计其中有多少客户的消费额不少于800元;(2)若利用分层随机抽样的方法从消费不少于800元的客户中共抽取6人,再从这6人中随机抽取2人做进一步调查,则抽到的2人中至少有1人的消费金额不少于1000元的概率是多少;(3)为吸引顾客消费,该商店考虑两种促销方案.方案一:消费金额每满300元可立减50元,并可叠加使用;方案二:消费金额每满1000元即可抽奖三次,每次中奖的概率均为13,且每次抽奖互不影响.中奖1次当天消费金额可打9折,中奖2次当天消费金额可打6折,中奖3次当天消费金额可打3折.若两种方案只能选择其中一种,小王准备购买的商品又恰好标价1000元,请帮助他选择合适的促销方案并说明理由.。
2008年高考试题分类(11)(数学-概率与统计)
11 概率与统计一、选择题1.(福建5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( C )A.12125B.16125C.48125D.961252.(江西11)电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为( C )A.1180B.1288C.1360D.14803.9辽宁7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C )A.13B.12C.23D.344.(山东9) 从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( B )分数 5 4 3 2 1人数20 10 30 30 10A.3B.2105C.3 D.855.(重庆5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( D )(A)简单随机抽样法(B)抽签法(C)随机数表法(D)分层抽样法6.(重庆9)从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为( B )(A)184(B)121(C)25(D)357.(陕西3 ) 某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C )A.30 B.25 C.20 D.15二、填空题1.(广东11)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)[)55,65,65,75,75,85,85,95,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)55,752.(宁夏16)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论: ① ; ② . 参考答案:(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大). (3)甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm . (4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.注:上面给出了四个结论.如果考生写出其他正确答案,同样给分. 3.(湖南12)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示: 则该地区生活不能自理的老人中男性比女性约多_____________人。
2008届全国百套高考数学模拟试题分类汇编10概率与统计一,选择题
2008届全国百套高考数学模拟试题分类汇编10概率与统计一、选择题1、(江苏省启东中学2008年高三综合测试一)一射手对同一目标独立地射击四次,已知至少命中一次的概率为8081,则此射手每次射击命中的概率为( ) A. 13 B. 23 C. 14 D. 25 答案:B2、(江苏省启东中学高三综合测试三)从2004名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率A .不全相等B .均不相等C .都相等且为100225D .都相等且为140答案:C3、(江苏省启东中学高三综合测试四)口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,数列{}n a 满足:⎩⎨⎧-=次摸到白球,,第次摸到红球,第n n a n 1,1如果n S 为数列{}n a 的前n 项和,那么37=S 的概率为( )A .52573231⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛C B .52273132⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛CC .52573131⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛C D .52573232⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛C 答案:B4、(安徽省蚌埠二中2008届高三8月月考)从1008名学生中抽取20人参加义务劳动。
规定采用下列方法选取:先用简单随机抽样的抽取方法从1008人剔除8人,剩下1000人再按系统抽样的方法抽取,那么在1008人中每个人入选的概率是 (A) 都相等且等于501(B) 都相等且等于2525(C) 不全相等 (D) 均不相等答案:B5、(安徽省蚌埠二中2008届高三8月月考)设ξ是离散型随机变量,32)(1==x p ξ,31)(2==x p ξ,且21x x <,现已知:34=ξE ,92=ξD ,则21x x +的值为 (A)35 (B)37 (C) 3 (D) 311答案:C5、(安徽省蚌埠二中2008届高三8月月考)设随机变量ξ~B(2,p),η ~B(4,p),若95)1(=≥ξp ,则)2(≥ηp的值为 (A)8132 (B) 2711 (C) 8165 (D) 8116答案:B6、(安徽省蚌埠二中2008届高三8月月考)设ξ的概率密度函数为2)1(221)(-=x ex f π,则下列结论错误的是(A) )1()1(>=<ξξp p (B) )11()11(<<-=≤≤-ξξp p (C) )(x f 的渐近线是0=x (D) 1-=ξη~)1,0(N 答案:C7、(安徽省蚌埠二中2008届高三8月月考)随机变量ξ~21,3(N ),则)11(≤<-ξp 等于 (A) 21)2(-Φ (B) )2()4(Φ-Φ (C) )2()4(2-Φ-Φ (D) )4()2(Φ-Φ答案:B8、(四川省巴蜀联盟2008届高三年级第二次联考)200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过60km/h 的汽车数量为A .65辆B .76辆C .88辆D .95辆 答案:B9、(四川省巴蜀联盟2008届高三年级第二次联考)在长为10㎝的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25cm2与49 cm2之间的概率为A .51B .52 C .54 D .103 答案:A10、(四川省成都市一诊)福娃是北京2008年第29届奥运会吉祥物,每组福娃都由“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮”这五个福娃组成.甲、乙两位好友分别从同一组福娃中各随机选择一个福娃留作纪念,按先甲选再乙选的顺序不放回地选择,则在这两位好友所选择的福娃中,“贝贝”和“晶晶”恰好只有一个被选中的概率为 A .110B .15C .35D .45答案:C 111223115435C C C C C =.选C 11、(四川省乐山市2008届第一次调研考试)某一随机变量ξ的概率分布如下表,且 1.5E ξ=,则2n m -的值为( )A.-0.2;B.0.2;C.0.1;D.-0.1答案:B12、(四川省乐山市2008届第一次调研考试)已知函数1,4,3,2,1,0,1,2,3,4y x x =-=----令,可得函数图象上的九个点,在这九个点中随机取出两个点1122(,),(,)P x y P x y ,则12,P P 两点在同一反比例函数图象上的概率是( )A.19;B.118;C.536;D.112;答案:D13、(四川省成都市新都一中高2008级12月月考)已知非空集合A 、B 满足A ≠⊂B ,给出以下四个命题: ①若任取x ∈A ,则x ∈B 是必然事件 ②若x ∉A ,则x ∈B 是不可能事件 ③若任取x ∈B ,则x ∈A 是随机事件 ④若x ∉B ,则x ∉A 是必然事件 其中正确的个数是( ) A 、1 B 、2 C 、3 D 、4 本题主要考查命题、随机事件等基本概念及其灵活运用. 解析:①③④正确,②错误. 答案:C14、(安徽省淮南市2008届高三第一次模拟考试)在圆周上有10个等分,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择了3个点,刚好构成直角三角形的概率是( ▲ )A.51B.41C.31D.21 答案:C15、(北京市朝阳区2008年高三数学一模)某校高中研究性学习小组对本地区2006年至2008年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭( )A. 82万盒B. 83万盒C. 84万盒D. 85万盒答案:D16、(四川省成都市高2008届毕业班摸底测试)已知某人每天早晨乘坐的某一班次公共汽车的准时到站率为60%,则他在3天乘车中,此班次公共汽车至少有2天准时到站的概率为 ( )A .12536B .12554 C .12581 D .12527 答案:C17、(东北区三省四市2008年第一次联合考试)在抽查产品的尺寸过程中,将尺寸分成若干组,[)b a ,是其中的一组,抽查出的个体在该组上的频率为m ,该组上的直方图的高为h ,则=-b aA .hmB .mhC .hmD .m h +答案:C18、(东北区三省四市2008年第一次联合考试)某市统考成绩大体上反映了全市学生的成绩状况,因此可以把统考成绩作为总体,设平均成绩480=μ,标准差100=σ,总体服从正态分布,若全市重点校录取率为40%,那么重点录取分数线可能划在(已知φ(0.25)=0.6)A .525分B .515分C .505分D .495分答案:C19、(东北师大附中高2008届第四次摸底考试)某校有学生4500人,其中高三学生1500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个300人的样本.则样本中高三学生的人数为( ) A .50 B .100 C .150 D .20 答案:B20、(福建省南靖一中2008年第四次月考)在正方体上任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( ) A .17 B .27 C .37 D .47答案:C21、(福建省泉州一中高2008届第一次模拟检测)甲、乙、丙三位同学上课后独立完成5道自我检测题,甲及格概率为54,乙及格概率为52,丙及格概率为32,则三人中至少有一人及格的概率为( ) A .251 B .2524 C . 7516 D .7559答案:B22、(福建省漳州一中2008年上期期末考试)从集合{1, 2, 3, , 10} 中随机取出6个不同的数,在这些选法中,第二小的数为3的概率是 A.12B.13C.16D.160答案:B23、(甘肃省河西五市2008年高三第一次联考)某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为 ( ) A 10 B 9C 8D 7答案:A24、(广东省佛山市2008年高三教学质量检测一)如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96颗,以此实验数据为依据可以估计出椭圆的面积约为( ).A .7.68B .16.32C .17.32D .8.68答案:B25、(湖北省黄冈市2007年秋季高三年级期末考试)从集合{1,2,3,4,0,1,2,3,4,5}----中,选出5个数组成子集,使得这5个数中的任何两个数之和不等于1,则取出这样的子集的概率为A5126 B 55126 C 5563 D 863答案:D26、(广东省揭阳市2008年高中毕业班高考调研测试)一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、(0,1)c ∈),已知他投篮一次得分的数学期望为2(不计其它得分情况),则ab 的最大值为 A .148B .124C .112D .16答案:由已知得3202,a b c ++⨯=即322,a b +=211321326626a b ab a b +⎛⎫∴=⋅⋅≤= ⎪⎝⎭,故选D.27、(广东省韶关市2008届高三第一次调研考试)一台机床有13的时间加工零件A, 其余时间加工零件B, 加工A 时,停机的概率是310,加工B 时,停机的概率是25, 则这台机床停机的概率为( ) A. 1130 B. 307 C. 107 D. 101答案:A28、(广东省四校联合体第一次联考)甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:( )则哪位同学的试验结果体现A 、B 两变量有更强的线性相关性?A .甲B .乙C .丙D .丁 答案:D29、(安徽省合肥市2008年高三年级第一次质检)集合{(,)||1|}A x y y x =≥-,集合{(,)|5}B x y y x =≤-+。
08-09上海高考数学模拟试题分类汇编第6部分平面向量.doc
(73,1)09届上海市期末模拟试题分类汇编第6部分5一.选择题1. (上海市长宁区2008学年高三年级第一次质量调研16)己知且关于x 的方程x 2+lalx + a ^ = 0冇实数根,则a^b 的夹用的取值范围是 ( )7TB. [O ,^] 6 答案:A 2. (上海市奉贤区2008年高三数学联考14)设向量—2, 1),=(X, —1)(XER),若6的夹灼为钝灼,则?i 的取值范围是()111 1(A)(-oo, -2)(B)(-2, +co )(0(2, +oo )(D)(—2,2)U(2, + 叫答案:D1(2008学年度第一学期上海市普陀区高三年级质量调研第13题)若平血昀景5 = (l ,x)和石= (2x + 3,-x)互相平行,其中;ce/?.则石|=() A. —2或 0;B. 2A /5 ;C. 2 或 2A /^;D. 2 或 10.答案:C 2 (闸北区09届高三数学(理)第12题)己知0,A ,S 足平面上的三点,直线Afi 上有一点 ,满足元 二则M 等于( ) r r r r 1 1 1 —1 — A. 0A- -OB B. OA + OBC. -OA ——OBD. -OA + -OB 2 2 2 2答案:D3 (静安区部分中学08—09学年度第一学期期中数学卷第13题)若;+g+f = 6,贝G 、5、二 ().(A) —定可以构成一个三角形; (B) —定不可能构成一个三角形;(C)都是非零向量时能构成一个三角形;(D)都是非零向量时也可能无法构成 一个三角形答案:D4 (闵行区2008学年第一学期高三质量监控理卷第16题)如—质点X 从原 出发A.沿向量到达点,再沿y轴正方向从点 '前进11 0A}\到达点2—— 1 --------------------------------A2,再沿04,的方向从点A/前进一到达点4,2再沿y轴正方向从点' 前进丄I g I到达点人,…,这样无限前进下去,则质点A蛣终到达的点的坐标是[答1 ( )(A) (2A/3—~~~,4 -^-) - (B) (2>/3,4).4^3 4>/3 8 8、473 8,(C) (—-------- —, -------------- ). (D)(」一,一).3 3.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
09届上海市期末模拟试题分类汇编第11部分概率统计
一.选择题
1. (上海虹口区08学年高三数学第一学期期末试卷15)小球A 在右图所示的通道由上到下随机地滑动,最后在下底面的
某个出口落出,则一次投放小球,从“出口3”落出的概率为( )
A. 15
B. 14
C. 316
D. 38
答案:D
2.(上海市奉贤区2008年高三数学联考15)将1,2,…,9这9个数随机分给甲、乙、丙三人,每人三个数,则每人手中的三个数都能构成等差数列的概率为( )
(A) 561 (B) 701 (C) 3361 (D) 4201 答案:A
1(南汇区2008学年度第一学期期末理科第12题)在一次歌手大奖赛上,七位评委为歌手
打出的分数如下:
9.4 8.4 9.4 9.9 9.6 9.4 9.7
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A .9.4 ;0.484 B .9.4 ;0.016 C .9.5 ;0.04 D .9.5 ;0.016 答案:D
二.填空题
1.(上海市黄浦区2008学年高三年级第一次质量调研9)若用样本数据10-1213、、
、、、来估计总体的标准差,则总体的标准差点估计值是____________. 答案:2
2. (上海市黄浦区2008学年高三年级第一次质量调研8)掷两颗骰子得两数,则事件“两数之和大于4”的概率为____________. 答案:
56
3.( 2009年上海市普通高等学校春季招生考试10)一只猴子随机敲击只有26个小写英文字母的练习键盘. 若每敲1次在屏幕上出现一个
字母,它连续敲击10次,屏幕上的10个字母依次排成一行,则出现单词“monkey ” 的概率为 (结果用数值表示).
答案:6265
.
1(嘉定区2008~2009第一次质量调研第8题)为了了解某校高中学生的近视眼发病率,在该校
学生中进行分层抽样调查,已知该校高一、高二、高三分别有学生800名、600名、500名,
A
1
234
5
∙
∙ ∙ 21
0 1
若高三学生共抽取25名,则高一年级每一位学生被抽到的概率是___________.
.答案:
20
1
2(上海市卢湾区2008学年高三年级第一次质量调研第10题)若集合
*
{|100,3,}
A a a a k k N
=≤=∈,集合*
{|100,2,}
B b b b k k N
=≤=∈,在A B
中随机地选取一个元素,则所选取的元素恰好在A B
中的概率为____________.答
案:16 67
3(上海市静安区2008学年高三年级第一次质量调研第7题)(理)8名同学排成前后两排,
每排4人.如果甲、乙两同学必须排在前排,丙同学必须排在后排那么不同的排法共有_____________种(用数字作答).答案:5760
4 (上海市静安区2008学年高三年级第一次质量调研第7题)(文)某班上午要排语文、数学、体育、英语四门课,如果体育课不排在第一节也不排在第四节,则不同的排法共有_____________种(用数字作答).答案:12
5 (上海市静安区2008学年高三年级第一次质量调研第9题)(理)某工厂的一位产品检验员在检验产品时,可能把正品错误地检验为次品,
同样也会把次品错误地检验为正品.已知他把正品检验为次品的概率是0.02,
把次品检验为正品的概率为0.01.现有3件正品和1件次品,则该检验员将这4
件产品全部检验正确的概率是____________(结果保留三位小数).
答案:0.932
6 (上海市静安区2008学年高三年级第一次质量调研第9题)(文)抛掷一枚均匀的骰子,则
事件“出现的点数大于4”的概率是_____________.答案:1 3
7 (静安区部分中学08-09学年度第一学期期中数学卷第6题)(理)从书架上顺序
排列的7本书中取出3本书,那么这3本书恰好是从互不相邻的位置上取出的概率为.(结果用分数表示)答案:
7
2
8 (静安区部分中学08-09学年度第一学期期中数学卷第6题)(文)在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么
选到的两名都是女同学的概率是(结果用分数表示).答案:
33
14
9静安区部分中学08-09学年度第一学期期中数学卷第10题)(理)从某批灯泡中随机抽取10只做寿命试验,其寿命(以小时计)如下:
1050,1100,1120,1280,1250,1040,1030,1110,1240,1300.
则该批灯泡寿命标准差的点估计值等于.(结果保留一位小数)
答案:104.9(或者104.8也算对)
10(静安区部分中学08-09学年度第一学期期中数学卷第10题)(文)某班级在一次身高测量中,第一小组10名学生的身高与全班学生平均身高170 cm的差分别是4
-,7
-,8-,2-,1,10
-,15,10,7,2-。
则这个小组10名学生的平均身高是________ cm.
答案:170
11 (闵行区2008学年第一学期高三质量监控数学文卷第10题)四位同学各自制作了一张贺卡,分别装入4个空白信封
内,这四位同学每人随机地抽取一封,则恰好有一人
抽取到的贺卡是其本人制作的概率是.答案:1 3
12 (南汇区2008学年度第一学期期末理科第7题)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数
之和为4的概率是.答案:
1 12
13 (浦东新区2008学年度第一学期期末质量抽测卷数学文科第7题)在二项式10)1
(+
x的展开
式中任取一项,则该项的系数为奇数的概率是.答案:
11
4
14.(上海市青浦区2008学年高三年级第一次质量调研第8题)六位身高全不相同的同学拍照留念,摄影师要求前后两排各三人,则后排每人均比前排同学高的概率是____________.
答案:1 20
三.解答题
1(上海市卢湾区2008学年高三年级第一次质量调研第19题)(本题满分16分)第1小题满分10分,第2小题满分6分.
(理)袋中有同样的球5个,其中3个红色,2个黄色,现从中随机且不返回地摸球,
每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量ξ为此时已摸球的
次数,求:.
(1)随机变量ξ的概率分布律;(2)随机变量ξ的数学期望与方差.
(文)袋中有同样的球9个,其中6个红色,3个黄色,现从中随机地摸6球,求:
(1)红色球与黄色球恰好相等的概率(用分数表示结果)
(2)红色球多于黄色球的不同摸法的和数.
答案:(理)解:(1)随机变量ξ可取的值为2,3,4,11123211
543
(2);5C C C P C C ξ=== 21212332
1115433(3);10P C P C P C C C ξ+===31
321111
54321(4);10
P C P C C C C ξ=== 得随机变量ξ的概率分布律为:
x
2
3
4
()P x ξ=
35
310
110
(2)随机变量ξ的数学期望为:3315234510102
E ξ=++= ; 随机变量ξ的方差为:
2223
319(2 2.5)(3
2.5)(4 2.5)5
101020
D ξ=-+
-+
-=
(文)解:(1)33636
95
;21
C C p C == (2)605142
63636364C C C C C C ++=.。