中考数学-中档解答题限时训练(七)

合集下载

2023年中考数学基础满分挑战训练四十分钟限时练习卷七含答案解析

2023年中考数学基础满分挑战训练四十分钟限时练习卷七含答案解析

40分钟限时练习(7)一.选择题(共8小题,满分24分,每小题3分)1.(3分)下列变形正确的是( )A.(﹣3a3)2=﹣9a5B.2x2y﹣2xy2=0C.―3ba÷2ab=―32a2D.(2x+y)(x﹣2y)=2x2﹣2y2【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=9a6,错误;B、原式不能合并,错误;C、原式=―32a2,正确;D、原式=2x2﹣4xy+xy﹣2y2=2x2﹣3xy﹣2y2,错误.故选:C.【点评】此题考查了分式的乘除法,合并同类项,幂的乘方与积的乘方,以及平方差公式,熟练掌握公式及运算法则是解本题的关键.2.(3分)如图所示的几何体由一个圆柱体和一个长方体组成,从上面看该几何体得到的平面图形是( )A.B.C.D.【分析】根据圆柱体和长方体的俯视图解答.【解答】解:圆柱体的俯视图是圆,长方体的俯视图是长方形,所以,组合图形为长方形内有一个圆的图形.故选:C.【点评】本题考查了画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.3.(3分)如果点P(﹣2,b)在直线y=2x﹣l上,那么下列正确的是( )A.b的值为5B.点P关于y轴的对称点Q的坐标为(2,﹣5)C.点P到x轴的距离为2D.点P关于原点的对称点M的坐标为(5,2)【分析】根据点P(﹣2,b)在直线y=2x﹣l上,可得点P的坐标为(﹣2,﹣5),再根据关于x、y轴对称的点的坐标、关于原点对称的点的坐标特征即可判断.【解答】解:∵点P(﹣2,b)在直线y=2x﹣l上,∴当x=﹣2时,b=﹣5,所以A选项错误;∵点P坐标为(﹣2,﹣5),∴点P关于y轴的对称点Q的坐标为(2,﹣5),所以B选项正确;点P到x轴的距离为5,所以C选项错误;点P关于原点的对称点M的坐标为(2,5),所以D选项错误.故选:B.【点评】本题考查了一次函数图象上点的坐标特征、关于x、y轴对称的点的坐标、关于原点对称的点的坐标,解决本题的关键是掌握一次函数的性质.4.(3分)如图,直线l1∥l2,直线AD与l1,l2分别相交于点B,C,图中三个角∠α,∠β,∠γ之间的关系,下列式子中表述正确的是( )A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=α+β﹣180°【分析】根据平行线的性质得到∠ACE=α,根据平角的定义得到∠CED=180°﹣β,再根据三角形外角的性质即可求解.【解答】解:∵l1∥l2,∴∠ACE=α,∵∠CED=180°﹣β,∴α=180°﹣β+γ,即γ=α+β﹣180°.故选:D.【点评】本题考查了平行线的性质,三角形外角的性质,关键是得到∠ACE=α,∠CED =180°﹣β.5.(3分)如图所示的图形,长方形纸片沿AE折叠后,点D与D′重合,且已知∠CED′=50°.则∠AED是( )A.60°B.50°C.75°D.65°【分析】利用折叠的性质得到∠DEA与∠D′EA的关系,再利用角的和差关系及平角的定义求出∠DEA.【解答】解:∵△ED′A是△EDA折叠成的,∴∠DEA=∠D′EA.∵∠DEA+∠D′EA+CED′=180°.∴2∠DEA=180°﹣50°=130°.∴∠DEA=65°.故选:D.【点评】本题主要考查了折叠的性质,掌握折叠后的两个图形全等及平角的定义是解决本题的关键.6.(3分)一次函数y=x+1的图象如图所示,下列说法正确的是( )A.y的值随着x的增大而减小B.函数图象经过第二、三、四象限C.函数图象与y轴的交点坐标为(1,0)D.y=x+1的图象可由y=x的图象向上平移1个单位长度得到【分析】根据画出函数的图象性质、一次函数图象上点的坐标特征以及平移的规律进行判断即可.【解答】解:A、一次函数y=x+1中,k=1>0,所以y随x的增大而增大,故错误;B、由图象可知,函数图象经过一、二、三象限,故错误;C、令x=0,则y=1,所以直线与y轴的交点为(0,1),故错误;D、根据平移的规律,把直线y=x向上平移1个单位得到直线y=x+1,故正确.故选:D.【点评】本题主要考查了一次函数的图象和性质,要掌握它的性质和平移的规律才能灵活解题.7.(3分)如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于( )A.75B.125C.135D.145【分析】连接OP,过D作DM⊥AC于M,求出AC长,根据三角形的面积公式求出CM 的值,根据S△AOD=S△APO+S△DPO代入求出PE+PF=DM即可.【解答】解:连接OP,过D作DM⊥AC于M,∵四边形ABCD是矩形,∴AO=OC=12AC,OD=OB=12BD,AC=BD,∠ADC=90°∴OA=OD,由勾股定理得:AC=32+42=5,∵S△ADC=12×3×4=12×5×DM,∴DM=12 5,∵S△AOD=S△APO+S△DPO,∴12(AO×DM)=12(AO×PE)+12(DO×PF),即PE+PF=DM=12 5,故选:B.【点评】本题考查了矩形的性质、三角形的面积公式、勾股定理的应用,关键是求出PE+PF =DM.8.(3分)如图,在⊙O中半径OC与弦AB垂直于点D,且AB=16,OC=10,则CD的长是( )A.2B.3C.4D.5【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=x,∵OA=OC=10,∴OD=10﹣x,∵OC⊥AB,∴由垂径定理可知:AB=16,由勾股定理可知:102=82+(10﹣x)2,∴x=4,∴CD=4,故选:C.【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.二.填空题(共8小题,满分32分,每小题4分)9.(4分)已知23的整数部分为a,小数部分为b,则a﹣b= 8―23 .【分析】由4<23<5,可求出a=4,b=23―4,再将a、b的值代入所求式子即可.【解答】解:∵16<23<25,∴4<23<5,∴a=4,b=23―4,∴a﹣b=4﹣(23―4)=8―23.故答案为:8―23.【点评】本题考查估计无理数的大小;熟练掌握无理数的整数部分与小数部分的求法是解题的关键.10.(4分)当x = ﹣4 时,分式x 2―162x ―8的值为0.【分析】根据分式的值为零的条件:分子等于0,且分母不等于0即可得出答案.【解答】解:根据题意得x 2﹣16=0,2x ﹣8≠0,∴x =±4,x ≠4,∴x =﹣4,故答案为:﹣4.【点评】本题考查了分式的值为零的条件,掌握分式的值为零的条件:分子等于0,且分母不等于0是解题的关键.11.(4分)将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成|a b c d |,这个记号叫做2阶行列式.定义|a b c d |=ad ―bc ,若|x +1x ―11―x x +1|=6,则x = ±2 .【分析】理解题意,按新定义|a b c d |=ad ―bc ,将问题转化为方程.若|x +1x ―11―x x +1|=6,即(x +1)(x +1)﹣(x ﹣1)(1﹣x )=6,再解方程即可.【解答】解:由题意,得:(x +1)(x +1)﹣(x ﹣1)(1﹣x )=6,∴x 2+2x +1+x 2﹣2x +1=6,∴2x 2+2=6,∴x =±2.【点评】本题是考查接受新定义能力的题目,解答的关键是理解题意,将问题转化为解一元二次方程.12.(4分)M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB =10,BC =15,MN =3,则△ABC 的周长等于 41 .【分析】延长线段BN 交AC 于E ,易证△ABN ≌△AEN ,可得N 为BE 的中点;由已知M 是BC 的中点,可得MN 是△BCE 的中位线,由中位线定理可得CE 的长,根据AC =AE +CE 可得AC 的长,进而得出△ABC 的周长.【解答】解:延长线段BN 交AC 于E .∵AN 平分∠BAC ,∴∠BAN =∠EAN ,又∵AN=AN,∠ANB=∠ANE=90°,∴△ABN≌△AEN,∴AE=AB=10,BN=NE,又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴△ABC的周长是AB+BC+AC=10+15+10+6=41.故答案为41.【点评】本题主要考查了中位线定理和全等三角形的判定及性质.解决本题的关键是作出辅助线,利用全等三角形得出线段相等,进而应用中位线定理解决问题.13.(4分)反比例函数y=k1x与正比例函数y=k2x图象的一个交点为第三象限内一点(﹣2,m).则不等式k1x>k2x的解集为 x<﹣2或0<x<2 .【分析】根据函数的对称性可得另一个交点在第一象限,其坐标为(2,﹣m),再根据两个函数的交点坐标以及图象的性质得出答案.【解答】解:由两个函数的对称性可得,反比例函数y=k1x与正比例函数y=k2x图象的另一个交点在第三象限,坐标为(2,﹣m),当反比例函数大于正比例函数值时,自变量x的取值范围为x<﹣2或0<x<2,故答案为:x<﹣2或0<x<2.【点评】本题考查一次函数与反比例函数的交点,理解正比例函数与反比例函数的性质是正确判断的前提.14.(4分)如图所示,正比例函数y=k1x与反比例函数y=k2x的图象有一个交点(2,﹣1),则这两个函数图象的另一个交点坐标是 (﹣2,1) .【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:由图象可知:直线y=k1x经过原点与双曲线y=k2x相交于两点,又由于双曲线y=k2x与直线y=mx均关于原点对称.则两点关于原点对称,一个交点的坐标为(2,﹣1),则另一个交点的坐标为(﹣2,1).故答案为:(﹣2,1).【点评】本题考查反比例函数图象的中心对称性,即两点关于原点对称.15.(4分)如图,点O为正八边形ABCDEFGH的中心,则∠ADB= 22.5 度.【分析】求出∠AOB=45°,根据同弧所对的圆心角和圆周角的关系即可得到结论.【解答】解:如图,连接OA,OB,∵∠AOB=3608=45°,∴∠ADB=12∠AOB=22.5°,故答案为:22.5.【点评】本题考查正多边形与圆,同弧所对的圆心角和圆周角的关系,解题的关键是掌握圆周角定理,学会添加常用辅助线.16.(4分)如图,正方形ABCD的边长为2,点E是AB边上一个动点,点F是CD边上一个动点,且AE=CF,过点B作BG⊥EF于点G,连接AG,则AG长的最小值是 10 2―22 .【分析】设正方形的中心为O ,可证EF 经过O 点.连接OB ,取OB 中点M ,连接MA ,MG ,则MA ,MG 为定长,利用两点之间线段最短解决问题即可.【解答】解:设正方形的中心为O ,可证EF 经过O 点.连接OB ,取OB 中点M ,连接 MA ,MG ,则MA ,MG 为定长,过点M 作MH ⊥AB于H .则MH =BH =12,AH =32,由勾股定理可得MA =102,MG =12OB =22,∵AG ≥AM ﹣MG =102―22,当A ,M ,G 三点共线时,AG 最小=102―22,故答案为:102―22.【点评】本题主要考查了正方形的性质,解直角三角形,直角三角形斜边中线的性质等知识,解题的关键是求出AM ,MG 的值.三.解答题(共4小题,满分44分)17.(10分)(1)―83×254÷765;(2)(3―1×27+24―623)×12―(32―6)2.【分析】(1)先根据二次根式的乘法和除法法则运算,然后化简即可;(2)先根据负整数指数幂的意义计算,再把二次根式化为最简二次根式,然后根据二次根式的乘法法则和完全平方公式计算.【解答】解:(1)原式=―13×2×17×8×54×56=―221×2×3×2×5=―410 7;(2)原式=(13×33+26―26)×23―(18﹣123+6)=3×23―24+123=6﹣24+123=123―18.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则和负整数指数幂是解决问题的关键.18.(10分)解方程:(1)10x=3x+7;(2)1x+3―23―x=12x2―9.【分析】(1)通过去分母、去括号、移项、x的系数化为1解分式方程.(2)先对分式方程的分母进行因式分解,确定最简公分母,再通过去分母、去括号、移项、合并同类项、x的系数化为1解这个分式方程.【解答】解:(1)10x=3x+7,两边同乘x(x+7),得10(x+7)=3x.去括号,得10x+70=3x.移项,得7x=﹣70.x的系数化为1,得x=﹣10.当x=﹣10时,x(x+7)≠0.∴这个分式方程的解为x=﹣10.(2)∵1x+3―23―x=12x2―9,∴1x+3―23―x=12(x+3)(x―3).方程两边同乘(x+3)(x﹣3),得x﹣3+2(x+3)=12.去括号,得x﹣3+2x+6=12.移项,得x+2x=12﹣6+3.合并同类项,得3x=9.x的系数化为1,得x=3.当x=3时,(x+3)(x﹣3)=0.∴x=3是这个分式方程的增根.∴这个分式方程无解.【点评】本题主要考查解分式方程,熟练掌握解分式方程的方法是解决本题的关键.19.(12分)疫情期间,学生居家学习,考虑学生们的健康成长,A市教育局依据国家“五项管理”和“双减政策”,提出了“每天锻炼一小时,健康生活一辈子”活动口号.为了解A市九年级学生参加体育锻炼的情况,随机抽查了A市部分九年级学生半个月参加体育锻炼(每天锻炼时间超过1小时)的天数,并用得到的数据绘制了两幅不完整的统计图(如图),请根据图中提供的信息,回答下列问题:(1)a= 10 .并写出该扇形所对圆心角的度数为 36 °.请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果A市共有九年级学生4000人,请你估计半个月来A市九年级学生“活动时间不少于6天”的学生人数大约有多少人?【分析】(1)根据各部分所占的百分比的和等于1列式计算即可求出a,用360°乘a即可得出其扇形的圆心角度数;然后用被抽查的学生人数乘以8天所占百分比求出8天的人数,补全条形统计图即可;(2)用众数和中位数的定义解答;(3)用总人数乘以“活动时间不少于6天”的百分比,计算即可得解.【解答】解:(1)a%=1﹣(40%+20%+25%+5%)=1﹣90%=10%,故a=10,该扇形所对圆心角的度数为:360°×10%=36°;被抽查的学生人数:240÷40%=600人,8天的人数:600×10%=60人,补全统计图如图所示:故答案为:10;36;(2)参加社会实践活动5天的人数最多,所以,众数是5天,600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,所以,中位数是6天;(3)4000×(20%+25%+10%+5%)=2400(人).故“活动时间不少于6天”的学生人数大约有2400人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(12分)如图所示,已知AC=AE,AB=AD,∠1=∠2,(I)试证明:∠B=∠D;(2)若∠1=90°时,直线BC、DE的位置怎样?【分析】(1)先证∠EAD=∠CAB,再利用SAS证明△EAD≌△CAB,根据全等三角形对应角相等即可;(2)由(1)结论△EAD≌△CAB得∠B=∠D,再由∠B+∠BGA=90°,根据等量代换得∠D+∠DGH=90°,故可判断DE⊥BC.【解答】(1)证明:∵∠1=∠2,∴∠EAD=∠CAB,在△EAD和△CAB中,AC=AE,∠EAD=∠CAB,AB=AD∴△EAD≌△CAB(SAS),∴∠B=∠D.(2)解:直线BC、DE相互垂直.理由如下:由(1)可知△EAD≌△CAB,∴∠B=∠D,∵∠1=∠2=90°,∴∠B+∠BGA=90°,∴∠CGB+∠D=90°,∴∠BHD=90°,∴BC与DE相互垂直.【点评】本题主要考查三角形全等的判定和性质.利用SAS找对应的相等边和角是关键.。

最新中考数学专项复习中档解答组合限时练03

最新中考数学专项复习中档解答组合限时练03

中档解答组合限时练(三)限时:40分钟满分:40分1.(10分)一个三位正整数M,其各数位上的数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a,个位数字为b,且各数位上的数字互不相等(a≠0,b≠0),若N的“团结数”与N之差为24,求N的值.2.(10分)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图J3-1是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.图J3-1根据以上信息,回答下列问题:(1)直接写出图中a,m的值.(2)分别求网购与视频软件的人均利润.(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.3.(10分)如图J3-2,已知A,F,C,D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.图J3-24.(10分)某商店购进一种商品,每件商品的进价为30元.试销中发现这种商品每天的销售量y(件)与每件的销售价x(元)的关系数据如下:(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的函数表达式(不必写出自变量x的取值范围).(2)如果商店销售这种商品,每天要获得150元的利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的函数表达式,并求出每件商品的销售价定为多少元时利润最大?参考答案1.解:(1)证明:设M的百位数字、十位数字、个位数字分别为x,y,z,则M为100x+10y+z,则它的友谊数为100y+10x+z, (100x+10y+z)-(100y+10x+z)=100x+10y+z-100y-10x-z=90(x-y),∵90(x-y)=15×6(x-y),x,y,z为整数,∴M与其“友谊数”的差能被15整除.(2)由题意可得N=2×100+10a+b=200+10a+b,N的团结数是10×2+a+10a+2+10×2+b+10×b+2+10a+b+10b+a=22a+22b+44,∴22a+22b+44-(200+10a+b)=24,解得,或,,即N是284或218.2.解:(1)a=100-(10+40+30)=20,∵软件总利润为1200÷40%=3000,∴m=3000-(1200+560+280)=960.(2)网购软件的人均利润为=160(万元),视频软件的人均利润为=140(万元).(3)设调整后网购软件的研发与维护人数为x,视频软件的研发与维护人数为(10-x),根据题意,得:1200+280+160x+140(10-x)=3000+60,解得:x=9,即安排9人负责网购软件的研发与维护,安排1人负责视频软件的研发与维护可以使总利润增加60万元.3.解:(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,∵AB=DE,∴△ABC≌△DEF.(2)如图,连接EB交AD于O.在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4,∴DF==5,若四边形EFBC是菱形,则BE⊥CF,∴EO==,∴OF=OC=-=,∴CF=,∴AF=CD=DF-FC=5-=.4.解:(1)设y与x之间的函数表达式为y=kx+b,根据题意,得,,解得-,故y与x之间的函数表达式为y=-2x+100.(2)根据题意,得(-2x+100)(x-30)=150,解这个方程,得x1=35,x2=45,故每件商品的销售价应定为35元或45元.(3)根据题意,得w=(-2x+100)(x-30)=-2x2+160x-3000=-2(x-40)2+200,∵a=-2<0,∴抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当每件商品的销售价为40元时利润最大.。

初三数学中档题试卷

初三数学中档题试卷

一、选择题(每题5分,共50分)1. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且顶点坐标为(1,-2),则下列选项中,正确的是:A. a<0,b<0,c<0B. a>0,b>0,c>0C. a<0,b>0,c>0D. a>0,b<0,c>02. 在等腰三角形ABC中,AB=AC,AD为BC边上的高,且AD=6cm,AB=8cm,则BC的长度为:A. 10cmB. 12cmC. 14cmD. 16cm3. 已知一次函数y=kx+b(k≠0)的图象经过点(2,-3)和(-1,5),则下列选项中,正确的是:A. k=2,b=-1B. k=2,b=1C. k=-2,b=-1D. k=-2,b=14. 若a,b,c是等差数列的连续三项,且a+b+c=18,则b的值为:A. 6B. 7C. 8D. 95. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为Q,则Q的坐标为:A. (3,2)B. (2,3)C. (-3,-2)D. (-2,-3)6. 已知等比数列{an}的首项a1=3,公比q=2,则前n项和Sn为:A. 3(2^n - 1)B. 3(2^n + 1)C. 3(2^n - 2)D. 3(2^n + 2)7. 若x^2+px+q=0的判别式Δ=0,则方程的根的情况是:A. 两个实数根B. 两个相等的实数根C. 两个虚数根D. 无解8. 在平面直角坐标系中,点A(-1,2),B(3,-4),则线段AB的中点坐标为:A. (1,-1)B. (1,2)C. (-1,-1)D. (-1,2)9. 若sinα=1/2,且α为锐角,则cosα的值为:A. √3/2B. √3/4C. 1/2D. 1/410. 在等腰三角形ABC中,AB=AC,且∠BAC=40°,则∠B的度数为:A. 40°B. 50°C. 60°D. 70°二、填空题(每题5分,共50分)1. 已知函数y=2x-3,若x=4,则y=______。

浙江省中考数学复习题中档解答组合限时练(打包9套,附参考答案)

浙江省中考数学复习题中档解答组合限时练(打包9套,附参考答案)

中档解答组合限时练(一)[限时:25分钟满分:28分]18.(6分)先化简:(-)÷,再从-2<x<3的范围内选取一个合适的整数代入求值.19.(6分)如图J1-1,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向,AB=2km.有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B处测得小船在北偏西15°的方向.求点C与点B之间的距离.(本题的结果都保留根号)图J1-120.(8分)“切实减轻学生课业负担”是某市作业改革的一项重要举措.某中学为了了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,A:1小时以内;B:1小时~1.5小时;C:1.5小时~2小时;D:2小时以上.根据调查结果绘制了如图J1-2所示的两幅不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了名学生;(2)请将条形统计图补充完整;(3)表示A等级的扇形圆心角α的度数是;(4)在此次调查中,甲、乙两班各有两人平均每天课外作业时间都是2小时以上,从这4人中任选两人去参加座谈,用列表或画树状图的方法求选出的两人来自不同班级的概率.图J1-221.(8分)如图J1-3,△ABC内接于☉O,AB是直径,☉O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连结AF.(1)求证:AF与☉O相切;(2)若AC=24,AF=15,求☉O的半径.图J1-3参考答案18.解:原式=·=,当x=2时,原式=.(x不能取0,1,-1)19.解:(1)如图,过点P作PD⊥AB于点D.设PD=x km,由题意可得BD=PD=x km,AD=PD=x(km).∵BD+AD=AB,∴x+x=2,解得x=-1,∴点P到海岸线l的距离为(-1)km.(2)如图,过点B作BF⊥AC于点F,则BF=AB=1(km).根据题意得∠ABC=105°,∴∠C=180°-∠BAC-∠ABC=45°.∴BC=BF=(km),∴点C与点B之间的距离为km.20.解:(1)调查的学生人数是80÷40%=200(人),故答案为:200.(2)C等级的人数是200-60-80-20=40(人),补图如下:(3)根据题意得α=×360°=108°,故答案为:108°.(4)设甲班学生为A1,A2,乙班学生为B1,B2,一共有12种等可能的结果,其中两人来自不同班级的结果共有8种,∴P(两人来自不同班级)==.21.解:(1)证明:∵AB是☉O的直径,∴∠BCA=90°.∵OF∥BC,∴∠AEO=90°,即OF⊥AC.连结OC,则OC=OA,∴∠COF=∠AOF,又OF=OF,∴△OCF≌△OAF,又∵PC是☉O的切线,∴∠OAF=∠OCF=90°,∴FA⊥OA,即AF是☉O的切线.(2)∵OF⊥AC,AC=24,∴AE=AC=12.∵FA⊥OA,OF⊥AC,∴S△OAF=AF·OA=OF·EA,即15·OA=·12,整理得225OA2=144(152+OA2),解得OA=20.∴☉O的半径为20.中档解答组合限时练(二)[限时:25分钟满分:28分]18.(6分)如图J2-1,在△ABC中,∠ABC=90°.(1)请在边BC上找一点P,作☉P与AC,AB都相切,与AC相切于点Q;(尺规作图,保留作图痕迹)(2)若AB=3,BC=4,求(1)中所作圆的半径;(3)连结BQ,(2)中的条件均不变,求sin∠CBQ.图J2-119.(6分)如图J2-2,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作☉O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与☉O相切.图J2-220.(8分)小沈准备给小陈打电话,由于保管不善,电话本上小陈手机号码中,有两个数字已模糊不清.如果用x,y表示这两个看不清的数字,那么小陈的手机号码为139x370y580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍.求:(1)x+y的值;(2)小沈一次拨对小陈手机号码的概率.21.(8分)已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围; (3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.参考答案18.解:(1)如图,☉P为所作.(2)连结PQ,如图.在Rt△ABC中,AC==5,设半径为r,BP=PQ=r,PC=4-r.∵AC与☉P相切于点Q,∴PQ⊥AC,∵∠PCQ=∠ACP,∴Rt△CPQ∽Rt△CAB,∴=,即=,解得r=.(3)∵AB,AQ为☉P的切线,∴AB=AQ.∵PB=PQ,∴AP为BQ的垂直平分线,∴∠BAP+∠ABQ=90°.∵∠CBQ+∠ABQ=90°,∴∠CBQ=∠BAP.在Rt△ABP中,AP==,∴sin∠BAP===,∴sin∠CBQ=.19.解:(1)∵∠CBA=50°,∴∠DOA=2∠DBA=100°.(2)证明:如图,连结OE.在△EAO和△EDO中,∵AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,∴∠EDO=∠EAO=90°,∴OD⊥DE,∴直线ED与☉O相切.20.解:(1)由题意1+3+9+x+3+7+0+y+5+8+0=x+y+36=20n(n为正整数).因为0≤x≤9,0≤y≤9,所以0≤x+y≤18.所以36≤x+y+36≤54,即36≤20n≤54,所以n=2,x+y=4.(2)因为x+y=4,所以:①x=0,y=4;②x=1,y=3;③x=2,y=2;④x=3,y=1;⑤x=4,y=0.所以一次拨对小陈手机号码的概率为.21.解:(1)证明:①当k=0时,方程为x+2=0,∴x=-2,方程有实数根;②当k≠0时,∵(2k+1)2-4k×2=(2k-1)2≥0,∴方程有实数根.∴无论k取任何实数,方程总有实数根.(2)令y=0,则kx2+(2k+1)x+2=0,解得x1=-2,x2=-.∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴k=1.∴该抛物线的解析式为y=x2+3x+2,当x=1时,y2=6,由x2+3x+2=6,得x1=-4,x2=1.如图,当y1>y2时,a>1或a<-4.(3)依题意得k(x2+2x)+x-y+2=0恒成立,则解得或所以抛物线恒过定点(0,2),(-2,0).中档解答组合限时练(三)[限时:25分钟满分:28分]18.(6分)如图J3-1,在△ABC中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:∠CEF=∠CFE.图J3-119.(6分)电视节目“奔跑吧”播出后深受中学生喜爱,小睿想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),得到如图J3-2的统计图,请结合图中提供的信息解答下列问题:(1)若小睿所在学校有1800名学生,估计全校最喜欢鹿晗的学生人数.(2)小睿和小轩都最喜欢陈赫,小彤最喜欢鹿晗,从他们三人中随机抽选两人参加“撕名牌”游戏,求选中的两人中一人最喜欢陈赫,一人最喜欢鹿晗的概率.(要求列表或画树状图)图J3-220.(8分)在平面直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图J3-3,已知整点A(1,2),B(3,4),请在所给网格上按要求画整点四边形.(1)在图①中画一个四边形OABP,使得点P的横、纵坐标之和等于5(所作四边形为凸四边形).(2)在图②中画一个四边形OABQ,使得点Q的横、纵坐标的平方和等于20.图J3-321.(8分)如图J3-4,在△ABC中,CA=CB,E是边BC上一点,以AE为直径的☉O经过点C,并交AB于点D,连结ED.(1)判断△BDE的形状并证明.(2)连结CO并延长交AB于点F,若BE=CE=3,求AF的长.图J3-4参考答案18.证明:(1)∵∠ACB=90°,CD⊥AB于点D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B.(2)在Rt△AFC中,∠CFA=90°-∠CAF,同理在Rt△AED中,∠AED=90°-∠DAE.∵AE平分∠CAB,∴∠CAF=∠DAE,∴∠CFA=∠AED.又∵∠CEF=∠AED,∴∠CEF=∠CFE.19.解:(1)根据题意得45+40+25+60+30=200(人),1800×=540(人).∴估计全校最喜欢鹿晗的学生有540人.(2)B1表示小睿最喜欢陈赫,B2表示小轩最喜欢陈赫,D表示小彤最喜欢鹿晗,列树状图如图.所有等可能的情况有6种,一人最喜欢陈赫,一人最喜欢鹿晗的有4种,则P(一人最喜欢陈赫,一人最喜欢鹿晗)==.20.解:(1)如下图,画对一个即可.(2)如图.21.解:(1)△BDE是等腰直角三角形.证明:∵AE是☉O的直径,∴∠ACB=∠ADE=90°,∴∠BDE=180°-90°=90°.∵CA=CB,∴∠B=45°,∴△BDE是等腰直角三角形.(2)如图,过点F作FG⊥AC于点G,则△AFG是等腰直角三角形,且AG=FG.∵OA=OC,∴∠EAC=∠FCG.∵BE=CE=3,∴AC=BC=2CE=6,∴tan∠FCG=tan∠EAC==.∴CG=2FG=2AG.∴FG=AG=2,∴AF=2.中档解答组合限时练(四)[限时:25分钟满分:28分]18.(6分)有一艘渔船在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助船“救助一号”和“救助二号”分别位于海上A处和B处,B在A的正东方向,且相距100海里,测得点C在A的南偏东60°方向,在B的南偏东30°方向上,如图J4-1,若“救助一号”和“救助二号”的速度分别为40海里/时和30海里/时,问:搜救中心应派哪艘救助船才能尽早赶到C处救援?(≈1.7)图J4-119.(6分)李老师为了了解学生完成数学课前预习的具体情况,对部分学生进行了抽样调查,并将调查结果分为四类:A:很好;B:较好;C:一般;D:较差.绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:图J4-2(1)李老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将上面条形统计图补充完整.(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表或画树状图的方法求出所选两位同学恰好是一名男同学和一名女同学的概率.20.(8分)如图J4-3,已知四边形ABCD内接于☉O,∠ABC=60°,BD是☉O的直径,AD=1,DC=,点C,D,E在同一直线上.(1)写出∠ADE的度数;(2)求☉O的直径BD的长.图J4-321.(8分)如图J4-4,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=,反比例函数y=(x>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数的解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标.图J4-4参考答案18.解:如图,过点C作CD⊥AB交AB延长线于点D.由已知得∠EAC=60°,∠FBC=30°,∴∠1=90°-60°=30°,∠2=90°-30°=60°.∵∠1+∠3=∠2,∴∠3=30°,∴∠1=∠3,∴BC=AB=100海里.在Rt△BDC中,BD=BC=50(海里),∴DC==50(海里).∵AD=AB+BD=150(海里),∴在Rt△ACD中,AC==100(海里),∴t1==≈4.25(s),t2==≈3.33(s),3.33<4.25,∴搜救中心应派“救助二号”才能尽早赶到C处救援.19.解:(1)=20,所以李老师一共调查了20名学生.(2)C类女生有3名,D类男生有1名;补充条形统计图略.(3)解法一:由题意画树状图如下:从树状图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一名男同学和一名女同学的结果共有3种.所以P(所选两位同学恰好是一名男同学和一名女同学)==.解法二:由题意列表如下:A类男女1女2D类男(男,男) (女1,男) (女2,男)女(男,女) (女1,女) (女2,女)由上表得出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一名男同学和一名女同学的结果共有3种.所以P(所选两位同学恰好是一名男同学和一名女同学)==.20.解:(1)∠ADE=60°.(2)如图,延长BA交CE于点F.∵BD是☉O的直径,∴∠BAD=∠BCD=90°.∵∠ABC=60°,∴∠AFD=30°.∴DF=2AD=2×1=2,∴CF=+2=,BC=.∴BD===7.21.解:(1)如图,过点A作AH⊥OB于点H.∵sin∠AOB=,OA=10,∴AH=8,OH=6,∴A点坐标为(6,8),根据题意得8=,∴k=48,∴反比例函数的解析式为y=(x>0).(2)如图,过点F作FM⊥x轴于点M.∵AH⊥OB,OA∥BC,∴△AOH∽△FBM.∵F为BC的中点,S△AOH=k,∴S△FBM=·k.∵S△AOF=12,∴S△FOB=6.由S△AOH=S△FOM得k=6+·k,∴k=16.设OA=a(a>0),∵sin∠AOB=,∴AH=a,OH=a,∴a·a=16,∴a=,∴OA=,∴AH=,OH=2.∵S▱AOBC=OB·AH=24,∴OB=AC=3,∴C(5,).中档解答组合限时练(五)[限时:25分钟满分:28分]18.(6分)如图J5-1,在△ABE中,C为边AB延长线上一点,BC=AE,点D在∠EBC内部,且∠EBD=∠A=∠DCB.(1)求证:△ABE≌△CDB.(2)连结DE,若∠CDB=60°,∠AEB=50°,求∠BDE的度数.图J5-119.(6分)如图J5-2,5×5的正方形网格中隐去了一些网格线,AB,CD间的距离是2个单位长度,CD,EF间的距离是3个单位长度,格点O在CD上(网格线的交点叫格点).请分别在图①,②中作格点三角形OPQ,使得∠POQ=90°,其中点P在AB上,点Q在EF上,且它们不全等.图J5-220.(8分)随着道路交通的不断完善,某市旅游业快速发展.该市旅游景区有A,B,C,D,E等著名景点,市旅游部门统计绘制出2017年“五·一”长假期间旅游情况统计图(不完整)如图J5-3,根据相关信息解答下列问题:图J5-3(1)2017年“五·一”期间,该市旅游景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.(2)在等可能性的情况下,甲、乙两个旅游团在A,B,D三个景点中选择去同一个景点的概率是多少?请用画树状图或列表法加以说明.21.(8分)如图J5-4,钝角三角形ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作☉O,交边AB于点D,交边BC于点E,过点E作☉O的切线交边AC于点F.(1)求证:EF⊥AC.(2)连结DF,若∠ABC=30°,且DF∥BC,求☉O的半径.图J5-4参考答案18.解:(1)证明:∵∠1+∠2=180°-∠EBD,∠1+∠AEB=180°-∠A,∠A=∠EBD, ∴∠2=∠AEB.∵AE=BC,∠A=∠C,∴△ABE≌△CDB.(2)∵△ABE≌△CDB,∴EB=BD,∠1=∠CDB,∴∠BDE=∠BED.∵∠CDB=60°,∠AEB=50°,∴∠1=60°,∠2=50°,∴∠DBE=70°,∴∠BDE==55°.19.解:如图:20.解:(1)50108°(2)P==.21.解:(1)证明:如图,连结OE,∵OB=OE,∴∠B=∠OEB.∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC.∵EF是☉O的切线,∴OE⊥EF,∴EF⊥AC.(2)如图,连结DE.∵DF∥BC,∴=,又∵AB=AC,∴BD=CF.∵BD为☉O的直径,∴∠BED=90°.设☉O的半径为r,在Rt△BDE中,BE=BD·cos B=2r×cos30°=r, ∴CE=BC-BE=2-r.在Rt△CEF中,CF=CE·cos C=(2-r)×cos30°=3-r,∴2r=3-r,r=,∴☉O的半径为.中档解答组合限时练(六)[限时:25分钟满分:28分]18.(6分)已知多项式A=(x+2)2+(1-x)(2+x)-3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.19.(6分)如图J6-1,巨型广告牌AB背后有一看台CD,台阶每层高0.3米,且AC=17米,现有一只小狗睡在台阶的MG这层上晒太阳,设太阳光线与水平地面的夹角为α,当α=60°时,测得广告牌AB在地面上的影长AE=10米,过了一会,当α=45°时,问小狗在MG这层是否还能晒到太阳?请说明理由(取1.73).图J6-120.(8分)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一个点)的路线是抛物线,已知起跳点A距地面的高度为1米,弹跳的最大高度距地面4.75米,距起跳点A的水平距离为2.5米,建立如图J6-2的平面直角坐标系.(1)求演员身体运行路线的抛物线的解析式.(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演能否成功?说明理由.图J6-221.(8分)如图J6-3,已知☉O为△ABC的外接圆,BC为☉O的直径,作射线BF,使得BA平分∠CBF,过点A作AD⊥BF于点D.(1)求证:DA为☉O的切线;(2)若BD=1,tan∠ABD=2,求☉O的半径.图J6-3参考答案18.解:(1)A=x2+4x+4+2+x-2x-x2-3=3x+3.(2)若(x+1)2=6,则x+1=±,则3x+3=3(x+1)=±3.19.解:当α=45°时,小狗仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.当α=60°时,在Rt△ABE中,∴AB=10·tan60°=10≈17.3(米).∵∠BFA=45°,此时的影长AF=AB=17.3米,∴CF=AF-AC=17.3-17=0.3(米),∴CH=CF=0.3米,∴大楼的影子落在台阶MC这个侧面上.∴小狗能晒到太阳.20.解:(1)设演员身体运行路线的抛物线的解析式为y=a(x-2.5)2+4.75,代入A(0,1),得a=-.故y=-(x-2.5)2+4.75.(2)当x=4时,y=3.4=BC,故这次表演能成功.21.解:(1)证明:如图,连结OA,∵AD⊥BF,∴∠ABD+∠BAD=90°.又∵BA平分∠CBF,∴∠ABD=∠ABO.又∵OA=OB,∴∠ABO=∠OAB,∴∠DAO=∠DAB+∠BAO=∠DAB+∠ABO=∠DAB+∠ABD=90°.∵A为☉O上一点,∴DA为☉O的切线.(2)由题意可知:AD=BD·tan∠ABD=2, ∴AB=,∴cos∠ABD=,∴cos∠ABC=.∴BC==5,∴OB=BC=2.5.中档解答组合限时练(七)[限时:25分钟满分:28分]18.(6分)如图J7-1,四边形ABCD是菱形,对角线AC与BD相交于点O,菱形ABCD的周长是20,BD=6.求:(1)AC的长;(2)菱形ABCD的高DE的长.图J7-119.(6分)如图J7-2,△ABC是正方形网格中的格点三角形(顶点在格点上),请分别在图甲,图乙的正方形网格内按下列要求画一个格点三角形.(1)在图甲中,以AC为边画直角三角形,使它的一个锐角等于∠A或∠B,且与△ABC不全等;(2)在图乙中,以AB为边画直角三角形,使它的一个锐角等于∠A或∠B,且与△ABC不全等.图J7-220.(8分)某市每年都要举办中小学“三独”比赛(包括独唱、独舞、独奏三个类别),图J7-3是该市2017年参加“三独”比赛的不完整的参赛人数统计图.图J7-3(1)该市参加“三独”比赛的总人数是人,图中“独奏”所在扇形的圆心角的度数是度,并把条形统计图补充完整;(2)从这次参赛选手中随机抽取20人调查,其中有9人获奖,请你估算2017年全市参赛选手中约有多少人获奖.21.(8分)如图J7-4,已知反比例函数y=的图象经过点A(2,1).点M(m,n)(0<m<2)是该函数图象上的一个动点,过点M作直线MB∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.(1)求反比例函数的解析式;(2)当四边形OADM的面积为2时,请判断BM与DM是否相等,并说明理由.图J7-4参考答案18.解:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BO=OD,AO=OC.∵菱形的周长是20,∴DC=×20=5.∵BD=6,∴OD=3.在Rt△DOC中,OC===4.∴AC=2OC=8.(2)∵S△ABD=AB·DE=BD·OA,∴5·DE=6×4,∴DE=.19.解:举例如下:图甲图乙20.解:(1)40072(2)×400=180(人).答:2017年全市参赛选手中约有180人获奖.21.解:(1)将A点坐标(2,1)代入y=中,得1=,∴k=2,∴反比例函数的解析式为y=.(2)BM=DM,理由:∵S△OMB=S△OAC=×=1, ∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=2+1+1=4, 即OC·OB=4.∵OC=2,∴OB=2,即n=2,∴m==1,∴MB=1,MD=2-1=1,∴MB=MD.中档解答组合限时练(八)[限时:25分钟满分:28分]18.(6分)已知x=2是关于x的方程x2-mx-4m2=0的一个根,求m(2m+1)的值.19.(6分)某数学兴趣小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图J8-1所示的折线图.(1)该事件最有可能是(填写一个你认为正确的序号).①一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,多次经过该路口时,看见红灯;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.(2)你设计一个游戏,多次掷一枚质地均匀的正六面体骰子(各面分别是数字1~6),当骰子数字正面朝上,该事件发生的概率接近于.图J8-120.(8分)如图J8-2①②为6×6正方形方格纸,每个小的正方形边长为单位1,点A,B,C,D都在格点处.图J8-2(1)如图①,四边形ABCD的周长是.(2)如图②,AC与BD相交于点O,tan∠BOC= .21.(8分)小林在某商店买商品A,B共三次,只有一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A,B的数量及费用如下表:购买商品A 的数量/个购买商品B的数量/个购买总费用/元第一次购买 6 5 1140 第二次购买 3 7 1110 第三次购买9 8 1062(1)小林打折购买商品A,B是第次购买.(2)求商品A,B的标价.(3)若商品A,B的折扣相同,则商店是打几折出售的?参考答案18.解:将x=2代入原方程可得4-2m-4m2=0,∴2m+4m2=4,m+2m2=2,∴m(2m+1)=2m2+m=2.19.解:(1)③(2)出现3的倍数(答案不唯一)20.解:(1)9++(2)321.解:(1)三(2)设商品A,B的标价分别为x元,y元.由题意,得解得答:商品A,B的标价分别为90元、120元.(3)设商店是打x折出售的,则(90×9+8×120)=1062,解得x=6.答:商店是打六折出售的.中档解答组合限时练(九)[限时:25分钟满分:28分]18.(6分)解方程组:并在每一步的后面写出依据.19.(6分)如图J9-1,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,AB∥CD,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少米?图J9-120.(8分)如图J9-2,在△ABC和△DEF中,AB∥DE,AC∥DF,BC∥EF,BC=EF.(1)求证:△ABC≌△DEF;(2)分别连结AD,BE,CF,探索线段AD,CF,BE之间的位置关系和数量关系,并证明结论.图J9-221.(8分)县政府计划建设一项水利工程,工程需要运送的土石方总量为6×105m3,某运输公司承担了运送土石方的任务.(1)运输公司平均运送速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间具有怎样的函数关系?(2)这个运输公司共有80辆卡车,每天可运送土石方104m3,公司完成全部运输任务需要多长时间?(3)当公司以问题(2)中的速度工作了30天后,由于工程进度的需要,剩下的运输任务必须在20天内(包括20天)完成,则运输公司至少要增加多少辆卡车?参考答案18.解:①×2,得4x-2y=10③(等式的性质2),③-②,得x=2(等式的性质1).把x=2代入①,得4-y=5(等量代换),解得y=-1(等式的性质1).∴方程组的解为19.解:如图,过点C作CE⊥AB交AB的延长线于点E.∵AE∥CD,∴∠CAE=∠DCA=30°,∠CBE=∠DCB=60°.在Rt△CEB中,∠CEB=90°,∠CBE=60°,BE=x+0.8,∴CE=BE·tan60°=(x+0.8).在Rt△CEA中,∠CEA=90°,∠CAE=30°,∴tan∠CAE=tan30°==.∴AE=CE=×(x+0.8)=3(x+0.8).∵AE=3+x+0.8,∴3+x+0.8=3(x+0.8).解得x=0.7.答:这时汽车车头与斑马线的距离是0.7米.20.解:(1)证明:∵AB∥DE,AC∥DF,∴∠BAC=∠1=∠EDF.同理∠ABC=∠DEF(或∠ACB=∠DFE).又∵BC=EF,∴△ABC≌△DEF.(2)AD,BE,CF互相平行且相等,证明如下:如图,连结AD,BE,CF.∵△ABC≌△DEF,∴AB=DE,AC=DF.又∵AB∥DE,AC∥DF,∴四边形ABED,ACFD都是平行四边形.∴AD,BE,CF互相平行且相等.21.解:(1)∵vt=6×105,∴v=.(2)当v=104时,t==60.答:公司完成全部运输任务需要60天.(3)设需要增加a辆卡车,每辆卡车每天运输土石方==125(m3).∵前30天运输土石方:30×104=3×105(m3).∴后20天运输土石方:6×105-3×105=3×105(m3).设30天后的每天运输速度为v1,所需要时间为t1,∴v1=.由v1=的性质可知,当t1>0时,v1随着t1的增大而减少,∴当t1≤20时,v1≥1.5×104,∴125(a+80)≥1.5×104,∴a≥40,∴a的最小值是40.答:运输公司至少要增加40辆卡车.。

备战北京中考数学2020:中档解答题题组(7套)

备战北京中考数学2020:中档解答题题组(7套)

中档解答题题组(7套)题组周练一(时间:35分钟)1. (5分)如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.第1题图2. (5分)在美国职业篮球联赛(NBA)2018赛季常规赛结束后,某球迷为了比较A、B两名球员的表现.对A、B两名球员整个常规赛季的数据进行了分析,如下图所示.篮板数既可以反映进攻表现,又可以反映防守表现.数据值越高,说明球员在该项上表现越好.第2题图(1)在这两名球员整个常规赛季的比赛中总得分较高的一位是(填A或B);(2)根据统计图判断,这两位球员中,哪一位在常规赛季的防守表现更好,并说明理由;(3)两位球员所在的球队都进入了季后赛,该球迷为了进一步比较两人在季后赛前的状态,对两人常规赛季最后10场比赛的数据进行了分析,所得的数据如下:请根据上述数据,分别从得分和助攻两个角度比较A 、B 两位球员在季后赛前的表现.3. (6分)在平面内,给定△ABC ,如图所示,已知BC =AC ,O 为BC 中点,到点O 的距离等于12BC 的所有点组成图形G ,AB 交图形G 于点D ,过点D 作DE ⊥AC ,垂足为点E .(1)求证:D 是AB 的中点;(2)若BC =10,tan ∠B =3,求DE 的长.第3题图4. (6分)高速公路某收费站出城方向有编号为A ,B ,C ,D ,E 的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:在A ,B ,C ,D ,E 五个收费出口中,判断每20分钟通过小客车数量最多的一个收费出口.5. (6分)如图,P 是矩形ABCD 内部的一定点,M 是AB 边上一动点,连接MP 并延长与矩形ABCD 的一边交于点N,连接AN.第5题图小腾根据学习函数的经验,对线段AM、MN、AN的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点M在AB上的不同位置,画图、测量,得到了线段AM、MN、AN的长度的几组值,如下表:在AM、MN、AN的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中确定的函数的图象;(3)结合函数图象,解决问题:当△AMN为等腰三角形时,AM的长度约为cm.6. (5分)如图,在平面直角坐标系xOy中,函数y=-x+b的图象经过边长为2的正方形OABC的顶点B,直线y=mx+m+1与y=-x+b的图象交于点D(点D在直线BC的上方),与x轴交于点E.(1)求b 的值;(2)横、纵坐标都是整数的点叫做整点,记y =-x +b 的图象在点B 、D 之间的部分与线段AB 、AE 、DE 围成的区域(不含边界)为W .①当m =12时,直接写出区域W 内的整点个数;②若区域W 内恰有3个整点,结合函数图象,求m 的取值范围.第6题图题组周练二(时间:35分钟)1. (5分)如图,矩形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为点F ,交AD 于点E .(1)求证:∠BAM =∠AEF ;(2)若AB =4,AD =6,cos ∠BAM =45,求DE 的长.第1题图2. (5分)某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是 (填字母);A. 抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B. 抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本C. 从年级中按学号随机选取男女生各20名学生的体质健康测试成绩组成样本 整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下: 77 83 80 64 86 90 75 92 83 81 85 86 88 62 65 86 97 96 82 73 86 84 89 86 92 73 57 77 87 82 91 81 86 71 53 72 90 76 68 78 整理数据,如下表所示:2018年九年级部分学生的体质健康测试成绩统计表分析数据、得出结论调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,2017年九年级部分学生体质健康成绩直方图第2题图(1)你能从中得到的结论是,你的理由是;(2)体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有__名同学参加此项目.3. (6分)如图,已知△DEB,∠D=90°,点D到BE的高线交BE于点O,点O到点B的距离为a,到点O的距离等于a的所有点组成图形G,与BE交于点A,∠B的平分线交DE于点C交DO于点M,连接OC,且OC∥B D.(1)判断DE与图形G的交点个数;(2)若EAAO=23,求DMMO的值.第3题图4. (6分)在车站开始检票时,有a (a >0)名旅客在候车室等候检票进站,检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,使后来到站的旅客能随到随检,至少要同时开放多少个检票口.5. (6分)如图,Q 是AB ︵上一定点,P 是弦AB 上一动点,C 为AP 中点,连接CQ ,过点P 作PD ∥CQ 交AB ︵于点D ,连接AD ,C D.已知AB =8 cm ,设A ,P 两点间的距离为x cm ,C ,D 两点间的距离为y cm.(当点P 与点A 重合时,令y 的值为1.30)第5题图小荣根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小荣的探究过程,请补充完整;(1)按照下表中自变量x 的值进行取点、画图、测量,得到了y 与x 的几组对应值:(2)建立平面直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合函数图象,解决问题:当DA ⊥DP 时,AP 的长度约为 cm.6. (5分)在平面直角坐标系xOy 中,反比例函数y =2x 的图象与一次函数y =kx +b 的图象的交点分别为P (m ,2),Q (-2,n ).(1)求一次函数的表达式;(2)过点Q 作平行于y 轴的直线,点M 为此直线上的一点,当MQ =PQ 时,直接写出点M 的坐标.题组周练三(时间:35分钟)1. (5分)如图所示,在平面内,给定不在同一直线的四点A、B、C、D,若四点构成的四边形ABCD中,四条边均相等,连接BD并延长到点E使得DE=BD(点B、E不重合),连接AE,延长CD交AE于点F.(1)求证:AD=2DF;(2)如果DF=2,∠C=60°,求四边形ABCD的面积.第1题图2. (5分)某同学所在年级的500名学生参加志愿者活动,现有以下5个志愿服务项目:A.纪念馆志愿讲解员.B.书香社区图书整理.C.学编中国结及义卖.D.家风讲解员.E.校内志愿服务,要求:每位学生都从中选择一个项目参加,为了了解同学们选择这5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下:收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示)B,E,B,A,E,C,C,C,B,B,A,C,E,D,B,A,B,E,C,A,D,D,B,B,C,C,A,E,B,A,C,B,D,C,A,C,C,A,C,E,(1)整理、描述语句:划记、整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图;第2题图选择各志愿服务项目的人数统计表分析数据、推断结论:(2)抽样的40个样本数据(志愿服务项目的编号)的众数是 (填A -E 的字母代号);(3)请你任选A -E 中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.3. (6分)如图,AB 是⊙O 的直径,D 是⊙O 上一点,点E 是AD ︵的中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C.(1)求证:AB =BC ;(2)如果AB =5,tan ∠F AC =12,求FC 的长.第3题图4. (6分)2018年9月17日世界人工智能大会在上海召开,人工智能的变革力在教育、制造等领域加速落地.在某市举办的一次中学生机器人足球赛中,有四个代表队进入决赛,决赛中,每个队分别与其他三个队进行主客场比赛各一场(即每个队要进行6场比赛),以下是积分表的一部分.(说明:积分=胜场积分+平场积分+负场积分)(1)D代表队的净胜球数m=.(2)本次决赛中胜一场积分,平一场积分,负一场积分;(3)本次决赛的奖金分配方案为进入决赛的每个代表队都可以获得参赛奖金6000元;另外,在决赛期间,每胜一场可以再获得奖金2000元,每平一场再获得奖金1000元.请根据表格提供的信息,求出冠军A代表队一共能获得多少奖金.5. (6分)如图,在△ABC中,AB=AC,D是AB的中点,P是线段BC上一动点,连接AP和DP.第5题图小明根据学习函数经验,分别对线段DP,BP,AP的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整(1)对于点P在BC上的不同位置,画图,测量,得到了线段DP,BP,AP的长度的几组值,如下表在DP,BP,AP的长度这三个量中,确定的长度是自变量,和的长度都是这个自变量的函数,(2)在同一平面直角坐标系xOy中,画出(1)中所确定和函数的图象;(3)结合函数图象,解决问题:当DP = AP 时,BP 的长度约为 cm(结果精确到0.01). 6. (5分)如图,在平面直角坐标系xOy 中,函数y =kx (x >0)的图象与直线y =2x +1交于点A (1,m ).(1)求k 、m 的值;(2)已知点P (n ,0)(n ≥1),过点P 作平行于y 轴的直线,交直线y =2x +1于点B ,交函数y =kx (x >0)的图象于点C.横、纵坐标都是整数的点叫做整点.①当n =3时,求线段AB 上的整点个数;②若y =kx (x >0)的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个整点,直接写出n 的取值范围.第6题图题组周练四(时间:35分钟)1.(5分)如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB的延长线于点G.(1)求证:四边形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.第1题图2. (5分)某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布表如下:b.实心球成绩在7.0≤x<7.4这一组的是:7.07.07.07.17.17.17.27.2 7.37.3c.一分钟仰卧起坐成绩如下图所示:第2题图根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如下:其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.3. (6分)如图,四边形ABCD是平行四边形,点O是AB的中点,到点O的距离等于OA的所有点组成图形G,点D、E在图形G上,且∠AED=45°.(1)判断CD与图形G的位置关系,并说明理由;(2)若⊙O半径为4 cm,AE=6 cm,求∠ADE的正切值.第3题图4. (6分)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,求x的最大值.5. (6分)如图①,长度为6千米的国道AB两侧有M,N两个城镇,从城镇到公路分别有乡镇公路连接,连接点为C和D,其中A、C之间的距离为2千米,C、D之间的距离为1千米,N、C之间的乡镇公路长度为2.3千米,M、D之间的乡镇公路长度为3.2千米.为了发展乡镇经济,方便两个城镇的物资输送,现需要在国道AB上修建一个物流基地T.设A、T之间的距离为x千米,物流基地T沿公路到M、N两个城镇的距离之和为y千米,以下是对函数y随自变量x的变化规律进行的探究,请补充完整.第5题图(1)通过取点、画图、测量,得到x与y的几组值,如下表:请将表格补全;(2)如图②,建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:①若要使物流基地T 沿公路到M 、N 两个城镇的距离之和最小,则物流基地T 应该修建在何处?(写出所有满足条件的位置)答: .第5题图③②如图③,有四个城镇M 、N 、P 、Q 分别位于国道A -C -D -E -B 两侧,从城镇到公路分别有乡镇公路连接,若要在国道上修建一个物流基地S ,使得S 沿公路到M 、N 、P 、Q 的距离之和最小,则物流基地S 应该修建在何处?(写出所有满足条件的位置)答: .6. (5分)已知一次函数y =kx +b (k ≠0)的图象经过A (4,-1)和B (1,2)两点. (1)求一次函数的表达式;(2)在(1)的条件下,将该一次函数图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.求新图象与直线y =12x 的交点坐标;(3)点C (0,t )为y 轴上一动点,过点C 作垂直于y 轴的直线l .直线l 与新图象交于点P (x 1,y 1),Q (x 2,y 2),与直线y =12x 交于点N (x 3,y 3),如果x 1<x 3<x 2,结合函数的图象,直接写出t 的取值范围.题组周练五(时间:35分钟)1. (5分)在平面内,给定Rt△ABC,如图所示.点D,F分别是AC,AB的中点,过点C作CE∥BD,过点B作BE∥CD,BE与CE交于点E.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.第1题图2. (5分)某年级共有400名学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息.a.不同交通方式学生人数分布统计图如图①所示:第2题图①b.采用公共交通方式单程所花费时间(分)的频数分布直方图如图②所示(数据分成6组:10≤x<20,20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x≤70):第2题图②c.采用公共交通方式单程所花费时间在30≤x<40这一组的是:3030313132333334353536 373839根据以上信息,回答下列问题:(1)补全频数分布直方图;(2)在抽查的样本中,采用公共交通方式花费的时间从少到多进行排列,若某同学采用公共交通方式花费的时间为36分钟,那么他排名第.(3)请你估计该年级采用公共交通方式上学的学生共有人,其中单程不少于60分钟的有人.3. (6分)如图,AB是⊙O的直径,C是圆上一点,弦CD⊥AB于点E,且DC=A D.过点A作⊙O的切线,过点C作DA的平行线,两直线交于点F,FC的延长线交AB的延长线于点G.(1)求证:FG与⊙O相切;(2)连接EF,求tan∠EFC的值.第3题图4. (6分)有一批学习机原售价800元/台.甲商场用如下办法促销:乙商场用如下办法促销:每次购买1~8台,每台打九折;每次购买9~16台,每台打八五折;每次购买17~24台,每台打八折;每次购买24台以上,每台打七五折.(1)请仿照甲商场的促销列表,列出到乙商场购买学习机的台数与每台价格的对照表;(2)现在有A 、B 、C 三个单位,A 单位要买10台学习机,B 单位要买16台学习机,C 单位要买20台学习机,问他们到哪家商场购买花费较少?5. (6分)如图,点P 是AB ︵所对弦AB 上一动点,点Q 是AB ︵与弦AB 所围成的图形的内部的一定点,作射线PQ 交AB ︵于点C ,连接B C.已知AB =6 cm ,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为y 1 cm ,B ,C 两点间的距离为y 2 cm.(当点P 与点A 重合时,x 的值为0)第5题图小平根据学习函数的经验,分别对函数y 1,y 2随自变量x 的变化而变化的规律进行了探究. 下面是小平的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点,画图、测量,分别得到了y 与x 的几组对应值;经测量m 的值是 (保留一位小数);(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;(3)结合函数图象,解决问题:当△BCP 为等腰三角形时,AP 的长度约为 cm.6. (5分)在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与双曲线y =mx (m ≠0)相交于A ,B 两点,点A坐标为(-3,2),点B 坐标为(n ,-3).(1)求一次函数和反比例函数的表达式;(2)如果点P 是x 轴上一点,且△ABP 的面积是5,求点P 的坐标.题组周练六(时间:35分钟)1. (5分)如图,在菱形ABCD 中,AC 和BD 相交于点O ,过点O 的线段EF 与一组对边AB ,CD 分别相交于点E ,F .(1)求证:AE =CF ;(2)若AB =2,点E 为AB 中点,求EF 的长.第1题图2. (5分)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭做一次简单随机抽样调查.设计调查方式:(1)有下列选取样本的方法①在市中心某个居民区以家庭为单位随机抽取; ②在全市医务工作者中以家庭为单位随机抽取; ③在全市常住人口中以家庭为单位随机抽取.其中最合理的一种是 .(只需填上正确答案的序号) 收集整理数据:本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如下表:描述数据:(2)此次抽样的样本数为1000户家庭,请你绘制条形统计图描述各种处理过期药品方式的家庭数;第2题图分析数据:(3)根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?说明你的理由;(4)家庭过期药品的正确处理方式是送回收点,若该市有500万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.3.(6分)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,连接OD,过点D作⊙O 的切线,交AB延长线于点E,交AC于点F.(1)求证:OD∥AC;(2)当AB=10,cos∠ABC=55时,求AF及BE的长.第3题图4. (6分)小亮班里的35位同学在李老师的带领下到一个风景点春游,门票价格如下:一人券的票价20元,每张集体券150元(可供10人参观).(1)设计五种不同的购买方案,并算出各方案的费用,填入下表,(2)请写出总费用最少的方案:.5. (6分)如图,点P为⊙O的直径AB上的一动点,点C在弧AB上,连接PC,过点A作PC的垂线交⊙O于点Q,已知AB=5 cm,AC=3 cm.第5题图某同学根据学习函数的经验,对线段AP,AQ的长度的关系进行了探究.下面是该同学的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图,测量,得到了线段AP,AQ的长度的几组值如下表:在AP ,AQ 的长度这两个量中, 的长度是自变量, 的长度是因变量,自变量的取值范围为 ;(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,并画出该函数的图象;(3)结合画出的函数图象,解决问题:当AQ =2AP 时,AP 的长度约为 cm.6. (5分)如图,反比例函数y =k x (x >0)的图象与正比例函数y =32x 的图象交于点A ,且A 点的横坐标为2.(1)求反比例函数的表达式;(2)若射线OA 上有点P ,且P A =2OA ,过点P 作PM 与x 轴垂直,垂足为M ,交反比例函数图象于点B ,连接AB ,OB ,求出△OAB 的面积;(3)定义:横、纵坐标均为整数的点称为“整点”.在(2)的条件下,请探究边P A 、PB 与反比例函数围成的区域内(不包括边界)“整点”的个数.第6题图题组周练七(时间:35分钟)1. (5分)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.第1题图2. (5分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:3846425255435946253835455148574947535849(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为;②该校所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.3. (6分)如图,以△ABC的AB边为直径作⊙O,交BC于点D,过点D作⊙O的切线DE,交AC于点E,且DE⊥AC,连接EO.(1)求证:AB=AC;(2)若AB=5,AE=1,求tan∠AEO的值.第3题图4.(6分)小红家新买了一套住房,打算装修一下,尽快住进去.现有甲、乙两家装修公司可供选择,这两家装修公司提供的信息如下表所示:请解答下列问题:(1)当两家都装修8天时,请求出甲、乙两家公司的装修总费用; (2)当装修天数为多少天时,两家公司的装修总费用一样多? (3)就装修天数,选择哪家装修公司更合算.5. (6分)有这样一个问题:探究函数y =2x 2-12x 的图象与性质.小东根据学习函数的经验,对函数y =2x 2-12x 的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题: (1)函数y =2x 2-12x 的自变量x 的取值范围是 ;(2)下表是y 与x 的几组对应值,则m 的值是 ;(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;第5题图(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(-2,32),结合函数的图象,写出该函数的其他性质(一条即可) .(5)根据函数图象估算方程2x 2-12x =2的根为 (精确到0.1).6. (5分)在平面直角坐标系xOy 中,点A 的坐标为(-1,0),点M 的坐标为(错误!,-3),点C 的坐标为(0,-2),经过点M 的直线l 垂直于x 轴,点B 是点A 关于直线l 的对称点.(1)求点B 的坐标及直线BC 的表达式;(2)过x 轴上一动点Q 作x 轴的垂线,该垂线与直线y =-x +1交于点H ,与直线BC 交于点G ,若线段HG 的长为5,求点Q 的坐标;(3)在(2)结论下,若Q 点在x 轴正半轴,若y =-x +b 与线段QM 有交点,直接写出b 的取值范围.第6题图参考答案题组周练一1. (1)证明:∵四边形ABCD 是平行四边形, ∴OB =OD . ∵OB =OE , ∴OE =OD . ∴∠OED =∠ODE . ∵OB =OE , ∴∠OBE =∠OEB .∵∠OBE +∠OEB +∠ODE +∠OED =180°, ∴∠OEB +∠OED =90°. ∴DE ⊥BE ;(2)解:∵OE =OD ,OF 2+FD 2=OE 2, ∴OF 2+FD 2=OD 2.∴△OFD 为直角三角形,且∠OFD =90°. 在Rt △CED 中,∠CED =90°, CE =3,DE =4, ∴CD 2=CE 2+DE 2. ∴CD =5.又∵S △CED =12 CD ·EF =12 CE ·DE ,∴EF =125.在Rt △CEF 中,∠CFE =90°,CE =3,EF =125 ,根据勾股定理得:CF =CE 2-EF 2 =95 .2. 解:(1)B ;【解法提示】从题图中可得A 球员的总得分是75×28.1=2107.5分,B 球员总得分是82×27.5=2255分,因此两名球员整个常规赛季的比赛中总得分较高的一位是B .(2)根据统计图判断出A 球员在常规赛季防守表现更好,理由如下:防守情况看盖帽,抢断,篮板情况,从题图中看到,A 球员场均盖帽2.6大于B 球员的0.9,A 球员场均抢断1.5大于B 球员场均抢断1.4,A 球员场均篮板11.1大于B 球员场均篮板8.6,综合比较A 球员的防守明显好于B 球员,因此A 球员在常规赛季的防守表现更好;(3)从得分角度看,B 球员的平均得分高于A 球员的平均得分,但是从方差角度看,A 球员的得分比B球员稳定;从助攻角度看,B 球员助攻数远高于A 球员,但从方差角度看,A 球员助攻数比B 球员稳定. 3. (1)证明:根据题意作图如解图所示,连接CD . ∵BC 是⊙O 的直径, ∴∠BDC =90°. ∴CD ⊥AB .∵CB =CA ,∴BD =AD . ∴点D 是AB 的中点;第3题解图(2)解:在Rt △BCD 中,tan B =CDBD =3,设BD =k ,则CD =3k , 则有:10k 2=100, ∴k =10 或-10 (舍)∴CD =310 ,AD =BD =10 , AC =CB =10.∵S △ADC =12 ·AD ·DC =12 ·AC ·DE ,∴DE =AD ·DC AC =10×31010=3.4. 解:∵330-260=70,330-300=30,360-300=60,360-240=120,260-240=20, ∴C >A ,B >D ,E >C ,D >A ,B >E . 由B >D 和D >A 得B >A , 由E >C 和B >E 得B >C ,∴每20分钟通过小客车数量最多的一个收费出口的编号是B . 5. 解:(1)AM ,MN ,AN ; (2)画出函数图象如解图;第5题解图(3)3.55,5.01,6.00.【解法提示】当AM =MN 或AM =AN 时,x =y MN 或y AN ,如解图,作直线y =x ,与y MN ,y AN 交点的横坐标即为△AMN 为等腰三角形时线段AM 的长度,则AM 的长度约为3.55或5.01;当MN =AN 时,y MN =y AN ,如解图,函数图象y MN ,y AN 交点的横坐标即为△AMN 为等腰三角形时线段AM 的长度,则AM 的长度约为6.00.6. 解:(1)∵正方形OABC 的边长为2, ∴B (2,2).把B (2,2)代入y =-x +b 中, 得b =2+2=4;(2)①当m =12 时,区域W 内有2个整点;【解法提示】当m =12 时,则直线为y =12 x +32 ,作出图象如解图①所示,第6题解图①由解图①可知,区域W 内有2个整点(0,1),(1,1);②当直线y =mx +m +1过(0,32 )时,区域W 内恰好有2个整点,如解图①所示,此时m =12,当直线y =mx +m +1过(0,2)时,区域W 内恰好有3个整点,如解图②所示, 则2=m +1,解得m =1,结合函数图象,区域W 内恰有3个整点时,m 的取值范围为12<m ≤1.第6题解图②题组周练二1. (1)证明:∵四边形ABCD 是矩形, ∴∠B =∠BAD =90°. ∵EF ⊥AM ,∴∠AFE =∠B =∠BAD =90°.∴∠BAM +∠EAF =∠AEF +∠EAF =90°. ∴∠BAM =∠AEF ;(2)解:在Rt △ABM 中,∠B =90°,AB =4,cos ∠BAM =45 ,∴AM =5. ∵F 为AM 中点, ∴AF =52.∵∠BAM =∠AEF ,∴cos ∠AEF =cos ∠BAM =45 .∴sin ∠AEF =35.在Rt △AEF 中,∠AFE =90°, ∵AF =52 ,sin ∠AEF =35 ,∴AE =256.∴DE =AD -AE =6-256 =116 .2. 解:收集数据:C【解法提示】取样方法中,合理的是C.A 、B 不具有代表性和随机性. 整理、描述数据:由所给数据补全统计表如下:。

中考数学复习中档解答题限时训练(四)含答案

中考数学复习中档解答题限时训练(四)含答案

中档解答题限时训练(四)(限时25分钟满分28分)18.(本题6分)有一艘渔船在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助船“救助一号”和“救助二号”分别位于海上A处和B处,B在A的正东方向,且相距100海里,测得地点C在A的南偏东60°方向,在B的南偏东30°方向上,如图J4-1所示,若“救助一号”和“救助二号”的速度分别为40海里/时和30海里/时,问:搜救中心应派哪艘救助船才能尽早赶到C处救援?(3≈1.7)图J4-119.(本题6分)李老师为了了解学生完成数学课前预习的具体情况,对部分学生进行了抽样调查,并将调查结果分为四类:A:很好;B:较好;C:一般;D:较差.绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:图J4-2(1)李老师一共调查了多少名同学?(2)C类女生有________名,D类男生有________名,将上面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选两位同学恰好是一名男同学和一名女同学的概率.20.(本题8分)如图J 4-3,已知四边形ABCD 内接于⊙O ,∠ABC =60°,BD 是⊙O 的直径,AD =1,DC =112,点C ,D ,E 在同一直线上.(1)写出∠ADE 的度数; (2)求⊙O 的直径BD 的长.图J 4-321.(本题8分)如图J 4-4,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,sin∠AOB =45,反比例函数y =kx(x >0)在第一象限内的图象经过点A ,与BC 交于点F .(1)若OA =10,求反比例函数的解析式;(2)若点F 为BC 的中点,且△AOF 的面积S =12,求OA 的长和点C 的坐标.图J 4-4参考答案18.解:作CD⊥AB交AB延长线于D,由已知得∠EAC=60°,∠FBC=30°, ∴∠1=30°,∠2=90°-30°=60°, ∵∠1+∠3=∠2,∴∠3=30°, ∴∠1=∠3,∴BC=AB=100海里, 在Rt △BDC中,BD=12BC=50海里,∴DC=BC 2-BD 2=503海里. ∵AD=AB+BD=150海里,∴在Rt △ACD中,AC=AD 2+CD 2=1003海里,∴t 1=AC 40=523≈4.25(s ),t 2=BC 30=103≈3.33(s ),3.33<4.25,∴搜救中心应派“救助二号”才能尽早赶到C处救援. 19.解:(1)2+115%=20(人),所以李老师一共调查了20名学生.(2)C类女生有3名,D类男生有1名;补充条形统计图略. (3)解法一:由题意画树状图如下:从树状图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一名男同学和一名女同学的结果共有3种.所以P(所选两位同学恰好是一名男同学和一名女同学)=36=12.解法二:由题意列表如下:由上表得出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一名男同学和一名女同学的结果共有3种.所以P(所选两位同学恰好是一名男同学和一名女同学)=36=12.20.解:(1)∠ADE=60°. (2)延长BA交CE于点F,∵BD是⊙O的直径, ∴∠BAD=∠BCD=90°. ∵∠ABC=60°,∴∠AFD=30°. ∴DF=2AD=2×1=2, ∴CF=112+2=152,BC=52 3.∴BD=BC 2+CD 2=(523)2+(112)2=7. 21.解:(1)过点A作AH⊥OB于H,∵sin∠AOB=45,OA=10,∴AH=8,OH=6,∴A点坐标为(6,8),根据题意得8=k6,∴k=48,∴反比例函数的解析式为y=48x(x>0). (2)过点F作FM⊥x轴于M,∵AH⊥OB,OA∥BC,∴△AOH∽△FBM. ∵F为BC的中点,S △AOH =12k ,∴S △FBM =14·12k.∵S △AOF =12,∴S △FOB =6,由S △AOH =S △FOM 得12k=6+14·12k ,∴k=16.设OA=a(a>0),∵sin∠AOB=45,∴AH=45a ,OH=35a ,∴45a·35a=16,∴a=1033, ∴OA=1033,∴AH=833,OH=23,∵S ▱AOBC =OB·AH=24,∴OB=AC=33,∴C (53,833).。

初三冲刺数学中档试卷

初三冲刺数学中档试卷

一、选择题(每题5分,共50分)1. 若方程2x-3=5的解为x,则方程3x+2=2x+9的解为()A. x+3B. x-3C. x+2D. x-22. 下列选项中,不是二次方程的是()A. x^2-5x+6=0B. x^2+2x-3=0C. x^2=9D. 2x+3=03. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 60°B. 75°C. 45°D. 90°4. 已知一元二次方程x^2-5x+6=0的解为x1和x2,则x1+x2的值为()A. 5B. 6C. 10D. 05. 下列函数中,有最小值的是()A. y=x^2B. y=-x^2C. y=x^2-2x+1D. y=x^2+2x+16. 已知一次函数y=kx+b的图象经过点(1,2)和(-1,-2),则k和b的值分别为()A. k=1,b=1B. k=1,b=-1C. k=-1,b=1D. k=-1,b=-17. 在等腰三角形ABC中,AB=AC,若∠B=30°,则∠C的度数为()A. 30°B. 45°C. 60°D. 90°8. 下列图形中,是轴对称图形的是()A. 等边三角形B. 等腰三角形C. 矩形D. 梯形9. 若a、b、c是等差数列的连续三项,且a+b+c=0,则公差d为()A. 0B. 1C. -1D. 不确定10. 下列命题中,正确的是()A. 若a>b,则a^2>b^2B. 若a>b,则a^2>b^2C. 若a>b,则a^2>b^2D. 若a>b,则a^2>b^2二、填空题(每题5分,共50分)11. 若方程2x+3=7的解为x,则方程5x-1=2x+5的解为______。

12. 已知等差数列的前三项分别为2,5,8,则该数列的公差为______。

浙江省最新中考数学复习题中档解答组合限时练(打包9套,含答案)

浙江省最新中考数学复习题中档解答组合限时练(打包9套,含答案)

中档解答组合限时练(一)[限时:25分钟满分:28分]18.(6分)先化简:(-)÷,再从-2<x<3的范围内选取一个合适的整数代入求值.19.(6分)如图J1-1,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向,AB=2 km.有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B处测得小船在北偏西15°的方向.求点C与点B之间的距离.(本题的结果都保留根号)图J1-120.(8分)“切实减轻学生课业负担”是某市作业改革的一项重要举措.某中学为了了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,A:1小时以内;B:1小时~1.5小时;C:1.5小时~2小时;D:2小时以上.根据调查结果绘制了如图J1-2所示的两幅不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了名学生;(2)请将条形统计图补充完整;(3)表示A等级的扇形圆心角α的度数是;(4)在此次调查中,甲、乙两班各有两人平均每天课外作业时间都是2小时以上,从这4人中任选两人去参加座谈,用列表或画树状图的方法求选出的两人来自不同班级的概率.图J1-221.(8分)如图J1-3,△ABC内接于☉O,AB是直径,☉O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连结AF.(1)求证:AF与☉O相切;(2)若AC=24,AF=15,求☉O的半径.图J1-3参考答案18.解:原式=·=,当x=2时,原式=.(x不能取0,1,-1)19.解:(1)如图,过点P作PD⊥AB于点D.设PD=x km,由题意可得BD=PD=x km,AD=PD=x(km).∵BD+AD=AB,∴x+x=2,解得x=-1,∴点P到海岸线l的距离为(-1) km.(2)如图,过点B作BF⊥AC于点F,则BF=AB=1(km).根据题意得∠ABC=105°,∴∠C=180°-∠BAC-∠ABC=45°.∴BC=BF=(km),∴点C与点B之间的距离为 km.20.解:(1)调查的学生人数是80÷40%=200(人),故答案为:200.(2)C等级的人数是200-60-80-20=40(人),补图如下:(3)根据题意得α=×360°=108°,故答案为:108°.(4)设甲班学生为A1,A2,乙班学生为B1,B2,一共有12种等可能的结果,其中两人来自不同班级的结果共有8种,∴P(两人来自不同班级)==.21.解:(1)证明:∵AB是☉O的直径,∴∠BCA=90°.∵OF∥BC,∴∠AEO=90°,即OF⊥AC.连结OC,则OC=OA,∴∠COF=∠AOF,又OF=OF,∴△OCF≌△OAF,又∵PC是☉O的切线,∴∠OAF=∠OCF=90°,∴FA⊥OA,即AF是☉O的切线.(2)∵OF⊥AC,AC=24,∴AE=AC=12.∵FA⊥OA,OF⊥AC,∴S△OAF=AF·OA=OF·EA,即15·OA=·12,整理得225OA2=144(152+OA2),解得OA=20.∴☉O的半径为20.中档解答组合限时练(二)[限时:25分钟满分:28分]18.(6分)如图J2-1,在△ABC中,∠ABC=90°.(1)请在边BC上找一点P,作☉P与AC,AB都相切,与AC相切于点Q;(尺规作图,保留作图痕迹)(2)若AB=3,BC=4,求(1)中所作圆的半径;(3)连结BQ,(2)中的条件均不变,求sin∠CBQ.图J2-119.(6分)如图J2-2,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作☉O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与☉O相切.图J2-220.(8分)小沈准备给小陈打电话,由于保管不善,电话本上小陈手机号码中,有两个数字已模糊不清.如果用x,y表示这两个看不清的数字,那么小陈的手机号码为139x370y580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍.求:(1)x+y的值;(2)小沈一次拨对小陈手机号码的概率.21.(8分)已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围; (3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.参考答案18.解:(1)如图,☉P为所作.(2)连结PQ,如图.在Rt△ABC中,AC==5,设半径为r,BP=PQ=r,PC=4-r.∵AC与☉P相切于点Q,∴PQ⊥AC,∵∠PCQ=∠ACP,∴Rt△CPQ∽Rt△CAB,∴=,即=,解得r=.(3)∵AB,AQ为☉P的切线,∴AB=AQ.∵PB=PQ,∴AP为BQ的垂直平分线,∴∠BAP+∠ABQ=90°.∵∠CBQ+∠ABQ=90°,∴∠CBQ=∠BAP.在Rt△ABP中,AP==,∴sin∠BAP===,∴sin∠CBQ=.19.解:(1)∵∠CBA=50°,∴∠DOA=2∠DBA=100°.(2)证明:如图,连结OE.在△EAO和△EDO中,∵AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,∴∠EDO=∠EAO=90°,∴OD⊥DE,∴直线ED与☉O相切.20.解:(1)由题意1+3+9+x+3+7+0+y+5+8+0=x+y+36=20n(n为正整数).因为0≤x≤9,0≤y≤9,所以0≤x+y≤18.所以36≤x+y+36≤54,即36≤20n≤54,所以n=2,x+y=4.(2)因为x+y=4,所以:①x=0,y=4;②x=1,y=3;③x=2,y=2;④x=3,y=1;⑤x=4,y=0.所以一次拨对小陈手机号码的概率为.21.解:(1)证明:①当k=0时,方程为x+2=0,∴x=-2,方程有实数根;②当k≠0时,∵(2k+1)2-4k×2=(2k-1)2≥0,∴方程有实数根.∴无论k取任何实数,方程总有实数根.(2)令y=0,则kx2+(2k+1)x+2=0,解得x1=-2,x2=-.∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴k=1.∴该抛物线的解析式为y=x2+3x+2,当x=1时,y2=6,由x2+3x+2=6,得x1=-4,x2=1.如图,当y1>y2时,a>1或a<-4.(3)依题意得k(x2+2x)+x-y+2=0恒成立,则解得或所以抛物线恒过定点(0,2),(-2,0).中档解答组合限时练(三)[限时:25分钟满分:28分]18.(6分)如图J3-1,在△ABC中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:∠CEF=∠CFE.图J3-119.(6分)电视节目“奔跑吧”播出后深受中学生喜爱,小睿想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),得到如图J3-2的统计图,请结合图中提供的信息解答下列问题:(1)若小睿所在学校有1800名学生,估计全校最喜欢鹿晗的学生人数.(2)小睿和小轩都最喜欢陈赫,小彤最喜欢鹿晗,从他们三人中随机抽选两人参加“撕名牌”游戏,求选中的两人中一人最喜欢陈赫,一人最喜欢鹿晗的概率.(要求列表或画树状图)图J3-220.(8分)在平面直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图J3-3,已知整点A(1,2),B(3,4),请在所给网格上按要求画整点四边形.(1)在图①中画一个四边形OABP,使得点P的横、纵坐标之和等于5(所作四边形为凸四边形).(2)在图②中画一个四边形OABQ,使得点Q的横、纵坐标的平方和等于20.图J3-321.(8分)如图J3-4,在△ABC中,CA=CB,E是边BC上一点,以AE为直径的☉O经过点C,并交AB于点D,连结ED.(1)判断△BDE的形状并证明.(2)连结CO并延长交AB于点F,若BE=CE=3,求AF的长.图J3-4参考答案18.证明:(1)∵∠ACB=90°,CD⊥AB于点D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B.(2)在Rt△AFC中,∠CFA=90°-∠CAF,同理在Rt△AED中,∠AED=90°-∠DAE.∵AE平分∠CAB,∴∠CAF=∠DAE,∴∠CFA=∠AED.又∵∠CEF=∠AED,∴∠CEF=∠CFE.19.解:(1)根据题意得45+40+25+60+30=200(人),1800×=540(人).∴估计全校最喜欢鹿晗的学生有540人.(2)B1表示小睿最喜欢陈赫,B2表示小轩最喜欢陈赫,D表示小彤最喜欢鹿晗,列树状图如图.所有等可能的情况有6种,一人最喜欢陈赫,一人最喜欢鹿晗的有4种,则P(一人最喜欢陈赫,一人最喜欢鹿晗)==.20.解:(1)如下图,画对一个即可.(2)如图.21.解:(1)△BDE是等腰直角三角形.证明:∵AE是☉O的直径,∴∠ACB=∠ADE=90°,∴∠BDE=180°-90°=90°.∵CA=CB,∴∠B=45°,∴△BDE是等腰直角三角形.(2)如图,过点F作FG⊥AC于点G,则△AFG是等腰直角三角形,且AG=FG.∵OA=OC,∴∠EAC=∠FCG.∵BE=CE=3,∴AC=BC=2CE=6,∴tan∠FCG=tan∠EAC==.∴CG=2FG=2AG.∴FG=AG=2,∴AF=2.中档解答组合限时练(四)[限时:25分钟满分:28分]18.(6分)有一艘渔船在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助船“救助一号”和“救助二号”分别位于海上A处和B处,B在A的正东方向,且相距100海里,测得点C在A的南偏东60°方向,在B的南偏东30°方向上,如图J4-1,若“救助一号”和“救助二号”的速度分别为40海里/时和30海里/时,问:搜救中心应派哪艘救助船才能尽早赶到C处救援?(≈1.7)图J4-119.(6分)李老师为了了解学生完成数学课前预习的具体情况,对部分学生进行了抽样调查,并将调查结果分为四类:A:很好;B:较好;C:一般;D:较差.绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:图J4-2(1)李老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将上面条形统计图补充完整.(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表或画树状图的方法求出所选两位同学恰好是一名男同学和一名女同学的概率.20.(8分)如图J4-3,已知四边形ABCD内接于☉O,∠ABC=60°,BD是☉O的直径,AD=1,DC=,点C,D,E在同一直线上.(1)写出∠ADE的度数;(2)求☉O的直径BD的长.图J4-321.(8分)如图J4-4,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=,反比例函数y=(x>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数的解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标.图J4-4参考答案18.解:如图,过点C作CD⊥AB交AB延长线于点D.由已知得∠EAC=60°,∠FBC=30°,∴∠1=90°-60°=30°,∠2=90°-30°=60°.∵∠1+∠3=∠2,∴∠3=30°,∴∠1=∠3,∴BC=AB=100海里.在Rt△BDC中,BD=BC=50(海里),∴DC==50(海里).∵AD=AB+BD=150(海里),∴在Rt△ACD中,AC==100(海里),∴t1==≈4.25(s),t2==≈3.33(s),3.33<4.25,∴搜救中心应派“救助二号”才能尽早赶到C处救援.19.解:(1)=20,所以李老师一共调查了20名学生.(2)C类女生有3名,D类男生有1名;补充条形统计图略.(3)解法一:由题意画树状图如下:从树状图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一名男同学和一名女同学的结果共有3种.所以P(所选两位同学恰好是一名男同学和一名女同学)==.解法二:由题意列表如下:由上表得出,,所选两位同学恰好是一名男同学和一名女同学的结果共有3种.所以P(所选两位同学恰好是一名男同学和一名女同学)==.20.解:(1)∠ADE=60°.(2)如图,延长BA交CE于点F.∵BD是☉O的直径,∴∠BAD=∠BCD=90°.∵∠ABC=60°,∴∠AFD=30°.∴DF=2AD=2×1=2,∴CF=+2=,BC=.∴BD===7.21.解:(1)如图,过点A作AH⊥OB于点H.∵sin∠AOB=,OA=10,∴AH=8,OH=6,∴A点坐标为(6,8),根据题意得8=,∴k=48,∴反比例函数的解析式为y=(x>0).(2)如图,过点F作FM⊥x轴于点M.∵AH⊥OB,OA∥BC,∴△AOH∽△FBM.∵F为BC的中点,S△AOH=k,∴S△FBM=·k.∵S△AOF=12,∴S△FOB=6.由S△AOH=S△FOM得k=6+·k,∴k=16.设OA=a(a>0),∵sin∠AOB=,∴AH=a,OH=a,∴a·a=16,∴a=,∴OA=,∴AH=,OH=2.∵S▱AOBC=OB·AH=24,∴OB=AC=3,∴C(5,).中档解答组合限时练(五)[限时:25分钟满分:28分]18.(6分)如图J5-1,在△ABE中,C为边AB延长线上一点,BC=AE,点D在∠EBC内部,且∠EBD=∠A=∠DCB.(1)求证:△ABE≌△CDB.(2)连结DE,若∠CDB=60°,∠AEB=50°,求∠BDE的度数.图J5 -119.(6分)如图J5-2,5×5的正方形网格中隐去了一些网格线,AB,CD间的距离是2个单位长度,CD,EF间的距离是3个单位长度,格点O在CD上(网格线的交点叫格点).请分别在图①,②中作格点三角形OPQ,使得∠POQ=90°,其中点P在AB上,点Q在EF上,且它们不全等.图J5-220.(8分)随着道路交通的不断完善,某市旅游业快速发展.该市旅游景区有A,B,C,D,E等著名景点,市旅游部门统计绘制出2017年“五·一”长假期间旅游情况统计图(不完整)如图J5-3,根据相关信息解答下列问题:图J5-3(1)2017年“五·一”期间,该市旅游景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.(2)在等可能性的情况下,甲、乙两个旅游团在A,B,D三个景点中选择去同一个景点的概率是多少?请用画树状图或列表法加以说明.21.(8分)如图J5-4,钝角三角形ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作☉O,交边AB于点D,交边BC于点E,过点E作☉O的切线交边AC于点F.(1)求证:EF⊥AC.(2)连结DF,若∠ABC=30°,且DF∥BC,求☉O的半径.图J5-4参考答案18.解:(1)证明:∵∠1+∠2=180°-∠EBD,∠1+∠AEB=180°-∠A,∠A=∠EBD, ∴∠2=∠AEB.∵AE=BC,∠A=∠C,∴△ABE≌△CDB.(2)∵△ABE≌△CDB,∴EB=BD,∠1=∠CDB,∴∠BDE=∠BED.∵∠CDB=60°,∠AEB=50°,∴∠1=60°,∠2=50°,∴∠DBE=70°,∴∠BDE==55°.19.解:如图:20.解:(1)50108°(2)P==.21.解:(1)证明:如图,连结OE,∵OB=OE,∴∠B=∠OEB.∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC.∵EF是☉O的切线,∴OE⊥EF,∴EF⊥AC.(2)如图,连结DE.∵DF∥BC,∴=,又∵AB=AC,∴BD=CF.∵BD为☉O的直径,∴∠BED=90°.设☉O的半径为r,在Rt△BDE中,BE=BD·cos B=2r×cos30°=r, ∴CE=BC-BE=2-r.在Rt△CEF中,CF=CE·cos C=(2-r)×cos30°=3-r,∴2r=3-r,r=,∴☉O的半径为.中档解答组合限时练(六)[限时:25分钟满分:28分]18.(6分)已知多项式A=(x+2)2+(1-x)(2+x)-3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.19.(6分)如图J6-1,巨型广告牌AB背后有一看台CD,台阶每层高0.3米,且AC=17米,现有一只小狗睡在台阶的MG这层上晒太阳,设太阳光线与水平地面的夹角为α,当α=60°时,测得广告牌AB在地面上的影长AE=10米,过了一会,当α=45°时,问小狗在MG这层是否还能晒到太阳?请说明理由(取1.73).图J6-120.(8分)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一个点)的路线是抛物线,已知起跳点A距地面的高度为1米,弹跳的最大高度距地面4.75米,距起跳点A的水平距离为2.5米,建立如图J6-2的平面直角坐标系.(1)求演员身体运行路线的抛物线的解析式.(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演能否成功?说明理由.图J6-221.(8分)如图J6-3,已知☉O为△ABC的外接圆,BC为☉O的直径,作射线BF,使得BA平分∠CBF,过点A作AD⊥BF于点D.(1)求证:DA为☉O的切线;(2)若BD=1,tan∠ABD=2,求☉O的半径.图J6-3参考答案18.解:(1)A=x2+4x+4+2+x-2x-x2-3=3x+3.(2)若(x+1)2=6,则x+1=±,则3x+3=3(x+1)=±3.19.解:当α=45°时,小狗仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.当α=60°时,在Rt△ABE中,∴AB=10·tan 60°=10≈17.3(米).∵∠BFA=45°,此时的影长AF=AB=17.3米,∴CF=AF-AC=17.3-17=0.3(米),∴CH=CF=0.3米,∴大楼的影子落在台阶MC这个侧面上.∴小狗能晒到太阳.20.解:(1)设演员身体运行路线的抛物线的解析式为y=a(x-2.5)2+4.75,代入A(0,1),得a=-.故y=-(x-2.5)2+4.75.(2)当x=4时,y=3.4=BC,故这次表演能成功.21.解:(1)证明:如图,连结OA,∵AD⊥BF,∴∠ABD+∠BAD=90°.又∵BA平分∠CBF,∴∠ABD=∠ABO.又∵OA=OB,∴∠ABO=∠OAB,∴∠DAO=∠DAB+∠BAO=∠DAB+∠ABO=∠DAB+∠ABD=90°.∵A为☉O上一点,∴DA为☉O的切线.(2)由题意可知:AD=BD·tan∠ABD=2, ∴AB=,∴cos∠ABD=,∴cos∠ABC=.∴BC==5,∴OB=BC=2.5.中档解答组合限时练(七)[限时:25分钟满分:28分]18.(6分)如图J7-1,四边形ABCD是菱形,对角线AC与BD相交于点O,菱形ABCD的周长是20,BD=6.求:(1)AC的长;(2)菱形ABCD的高DE的长.图J7-119.(6分)如图J7-2,△ABC是正方形网格中的格点三角形(顶点在格点上),请分别在图甲,图乙的正方形网格内按下列要求画一个格点三角形.(1)在图甲中,以AC为边画直角三角形,使它的一个锐角等于∠A或∠B,且与△ABC不全等;(2)在图乙中,以AB为边画直角三角形,使它的一个锐角等于∠A或∠B,且与△ABC不全等.图J7-220.(8分)某市每年都要举办中小学“三独”比赛(包括独唱、独舞、独奏三个类别),图J7-3是该市2017年参加“三独”比赛的不完整的参赛人数统计图.图J7-3(1)该市参加“三独”比赛的总人数是人,图中“独奏”所在扇形的圆心角的度数是度,并把条形统计图补充完整;(2)从这次参赛选手中随机抽取20人调查,其中有9人获奖,请你估算2017年全市参赛选手中约有多少人获奖.21.(8分)如图J7-4,已知反比例函数y=的图象经过点A(2,1).点M(m,n)(0<m<2)是该函数图象上的一个动点,过点M作直线MB∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.(1)求反比例函数的解析式;(2)当四边形OADM的面积为2时,请判断BM与DM是否相等,并说明理由.图J7-4参考答案18.解:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BO=OD,AO=OC.∵菱形的周长是20,∴DC=×20=5.∵BD=6,∴OD=3.在Rt△DOC中,OC===4.∴AC=2OC=8.(2)∵S△ABD=AB·DE=BD·OA,∴5·DE=6×4,∴DE=.19.解:举例如下:图甲图乙20.解:(1)40072(2)×400=180(人).答:2017年全市参赛选手中约有180人获奖.21.解:(1)将A点坐标(2,1)代入y=中,得1=,∴k=2,∴反比例函数的解析式为y=.(2)BM=DM,理由:∵S△OMB=S△OAC=×=1, ∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=2+1+1=4, 即OC·OB=4.∵OC=2,∴OB=2,即n=2,∴m==1,∴MB=1,MD=2-1=1,∴MB=MD.中档解答组合限时练(八)[限时:25分钟满分:28分]18.(6分)已知x=2是关于x的方程x2-mx-4m2=0的一个根,求m(2m+1)的值.19.(6分)某数学兴趣小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图J8-1所示的折线图.(1)该事件最有可能是(填写一个你认为正确的序号).①一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,多次经过该路口时,看见红灯;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.(2)你设计一个游戏,多次掷一枚质地均匀的正六面体骰子(各面分别是数字1~6),当骰子数字正面朝上,该事件发生的概率接近于.图J8-120.(8分)如图J8-2①②为6×6正方形方格纸,每个小的正方形边长为单位1,点A,B,C,D 都在格点处.图J8-2(1)如图①,四边形ABCD 的周长是 . (2)如图②,AC 与BD 相交于点O,tan ∠BOC= .21.(8分)小林在某商店买商品A,B 共三次,只有一次购买时,商品A,B 同时打折,其余两次均按标价购买,三次购买商品A,B 的数量及费用如下表:是第 次购买(2)求商品A,B 的标价.(3)若商品A,B 的折扣相同,则商店是打几折出售的?参考答案18.解:将x=2代入原方程可得4-2m-4m2=0,∴2m+4m2=4,m+2m2=2,∴m(2m+1)=2m2+m=2.19.解:(1)③(2)出现3的倍数(答案不唯一)20.解:(1)9++(2)321.解:(1)三(2)设商品A,B的标价分别为x元,y元.由题意,得解得答:商品A,B的标价分别为90元、120元.(3)设商店是打x折出售的,则(90×9+8×120)=1062,解得x=6.答:商店是打六折出售的.中档解答组合限时练(九)[限时:25分钟满分:28分]18.(6分)解方程组:并在每一步的后面写出依据.19.(6分)如图J9-1,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,AB∥CD,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少米?图J9-120.(8分)如图J9-2,在△ABC和△DEF中,AB∥DE,AC∥DF,BC∥EF,BC=EF.(1)求证:△ABC≌△DEF;(2)分别连结AD,BE,CF,探索线段AD,CF,BE之间的位置关系和数量关系,并证明结论.图J9-221.(8分)县政府计划建设一项水利工程,工程需要运送的土石方总量为6×105 m3,某运输公司承担了运送土石方的任务.(1)运输公司平均运送速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间具有怎样的函数关系?(2)这个运输公司共有80辆卡车,每天可运送土石方104m3,公司完成全部运输任务需要多长时间?(3)当公司以问题(2)中的速度工作了30天后,由于工程进度的需要,剩下的运输任务必须在20天内(包括20天)完成,则运输公司至少要增加多少辆卡车?参考答案18.解:①×2,得4x-2y=10③(等式的性质2),③-②,得x=2(等式的性质1).把x=2代入①,得4-y=5(等量代换),解得y=-1(等式的性质1).∴方程组的解为19.解:如图,过点C作CE⊥AB交AB的延长线于点E.∵AE∥CD,∴∠CAE=∠DCA=30°,∠CBE=∠DCB=60°.在Rt△CEB中,∠CEB=90°,∠CBE=60°,BE=x+0.8,∴CE=BE·tan 60°=(x+0.8).在Rt△CEA中,∠CEA=90°,∠CAE=30°,∴tan∠CAE=tan 30°==.∴AE=CE=×(x+0.8)=3(x+0.8).∵AE=3+x+0.8,∴3+x+0.8=3(x+0.8).解得x=0.7.答:这时汽车车头与斑马线的距离是0.7米.20.解:(1)证明:∵AB∥DE,AC∥DF,∴∠BAC=∠1=∠EDF.同理∠ABC=∠DEF(或∠ACB=∠DFE).又∵BC=EF,∴△ABC≌△DEF.(2)AD,BE,CF互相平行且相等,证明如下:如图,连结AD,BE,CF.∵△ABC≌△DEF,∴AB=DE,AC=DF.又∵AB∥DE,AC∥DF,∴四边形ABED,ACFD都是平行四边形.∴AD,BE,CF互相平行且相等.21.解:(1)∵vt=6×105,∴v=.(2)当v=104时,t==60.答:公司完成全部运输任务需要60天.(3)设需要增加a辆卡车,每辆卡车每天运输土石方==125(m3).∵前30天运输土石方:30×104=3×105(m3).∴后20天运输土石方:6×105-3×105=3×105(m3).设30天后的每天运输速度为v1,所需要时间为t1,∴v1=.由v1=的性质可知,当t1>0时,v1随着t1的增大而减少,∴当t1≤20时,v1≥1.5×104,∴125(a+80)≥1.5×104,∴a≥40,∴a的最小值是40.答:运输公司至少要增加40辆卡车.。

浙江省中考数学复习题中档解答组合限时练(七)(新版)浙教版

浙江省中考数学复习题中档解答组合限时练(七)(新版)浙教版

中档解答组合限时练(七)[限时:25分钟满分:28分]18.(6 分)如图J7-1,四边形ABCD是菱形,对角线AC与BD 订交于点O,菱形ABCD的周长是 20,BD=6.求:(1)AC的长;(2)菱形ABCD的高DE的长.图J7-119.(6 分)如图J7-2,△ABC是正方形网格中的格点三角形(极点在格点上),请分别在图甲,图乙的正方形网格内按以下要求画一个格点三角形.在图甲中,以AC为边画直角三角形,使它的一个锐角等于∠A或∠B,且与△ABC不全等;在图乙中,以AB为边画直角三角形,使它的一个锐角等于∠A或∠B,且与△ABC不全等.图J7-2120.(8分)某市每年都要举办中小学“三独”竞赛(包含独唱、独舞、独奏三个类型),图J7-3是该市2017年参加“三独”竞赛的不完好的参赛人数统计图.图J7-3(1)该市参加“三独”竞赛的总人数是人,图中“独奏”所在扇形的圆心角的度数是度,并把条形统计图增补完好;(2)从此次参赛选手中随机抽取20人检查,此中有9人获奖,请你估量2017年全市参赛选手中约有多少人获奖.221.(8分)如图J7-4,已知反比率函数y=的图象经过点A(2,1).点M(m,n)(0<m<2)是该函数图象上的一个动点,过点M作直线MB∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.求反比率函数的分析式;当四边形OADM的面积为2时,请判断BM与DM能否相等,并说明原因.图J7-43参照答案18.解:(1)∵四边形ABCD是菱形,AB=BC=CD=AD,AC⊥BD,BO=OD,AO=OC.∵菱形的周长是20,∴DC=×20=5.BD=6,∴OD=3.在Rt△中,OC==4DOC=.AC=2OC=8.∵S△ABD=AB·DE=BD·OA,5·DE=6×4,∴DE=.19.解:举比以下:图甲图乙20.解:(1)400724×400=180(人).答:2017年全市参赛选手中约有180人获奖.21.解:(1)将A点坐标(2,1)代入y=中,得1=,∴k=2,∴反比率函数的分析式为y=.BM=DM,原因:∵S△OMB=S△OAC=×=1,S矩形OBDC=S四边形OADM+S△OMB+S△OAC=2+1+1=4,即OC·OB=4.OC=2,∴OB=2,即n=2,∴m==1,MB=1,MD=2-1=1,∴MB=MD.5。

(中考冲刺)中考数学考点解答题限时训练

(中考冲刺)中考数学考点解答题限时训练

中考数学考点解答题限时训练1【有理数】1.有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.2.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?3.观察下列等式,,,将以上三个等式两边分别相加得:.(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.4.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期一二三四五每股涨跌(元)+2﹣0.5+1.5﹣1.8+0.8根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?5.先阅读下面的材料,再解答后面的各题:现代社会对保密要求越来越高,密码正在成:为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q、W、E、…、N、M这26个字母依次对应1,2,3…25,26这26个自然数(见下表):Q W E R T Y U I O P A S D12345678910111213F G H J K L Z X C V B N M14151617181920212223242526给出一个变换公式:将明文转换成密文,如:4⇒,即R变为L.11⇒,即A变为S.将密文转换成明文,如:21⇒3×(21﹣17)﹣2=10,即X变为P13⇒3×(13﹣8)﹣1=14,即D变为F.(1)按上述方法将明文NET译为密文;(2)若按上述方法将明文译成的密文为DWN,请找出它的明文.【无理数与实数】6.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣17.计算:2﹣1+tan45°﹣|2﹣|+÷.8.如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.(1)求m的值;(2)求|m﹣1|+(m+6)0的值.9.设a,b是任意两个实数,规定a与b之间的一种运算“⊕”为:a⊕b=,例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2=﹣5,(x2+1)⊕(x﹣1)=(因为x2+1>0)参照上面材料,解答下列问题:(1)2⊕4=,(﹣2)⊕4=;(2)若x>,且满足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.10.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【代数式】11.观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.12.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.13.先观察下列等式,然后用你发现的规律解答下列问题.……(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.14.观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.15.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.【整式】16.先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.17.某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出此题正确的解答过程.18.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:19.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=,d(10﹣2)=;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=(a为正数),若d(2)=0.3010,则d(4)=,d(5)=,d(0.08)=;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5356891227 d(x)3a﹣b+c2a﹣b a+c1+a﹣b﹣c3﹣3a﹣3c4a﹣2b3﹣b﹣2c6a﹣3b20.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【因式分解】21.因式分解:mx2﹣my2.22.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.23.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.24.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.25.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.【分式】26.先化简,再求值:(1﹣)÷,其中m=2+.27.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.28.化简•﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.29.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.30.在解题目:“当x=1949时,求代数式的值”时,聪聪认为x只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗?请说明理由.【二次根式】31.先化简,再求值:,其中.32.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.33.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a =,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?34.先化简,后求值:,其中,.35.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.【一元一次方程】36.解方程:﹣=1.37.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?38.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.39.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?40.如图,在矩形ABCD中,AB=12cm,BC=6cm.点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?中考数学考点解答题限时训练2【二元一次方程组】1.解方程组.2.根据图中的信息,求梅花鹿和长颈鹿现在的高度.3.若关于x、y的二元一次方程组的解满足x+y>﹣,求出满足条件的m的所有正整数值.4.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.5.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:地点票价历史博物馆10元/人民俗展览馆20元/人(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?【一元二次方程】6.已知关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2﹣17=0,求m的值.7.若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.8.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?9.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.10.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.【分式方程】11.解方程:=.12.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?13.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?14.某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?15.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?【不等式(组)】16.解不等式+1>x﹣3.17.如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值范围;(2)数轴上表示数﹣x+2的点应落在.A.点A的左边B.线段AB上C.点B的右边18.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.19.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)A B第一次2155第二次1365根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.20.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?【平面直角坐标系】21.某市有A,B,C,D四个大型超市,分别位于一条东西走向的平安大路两侧,如图所示,请建立适当的直角坐标系,并写出四个超市相应的坐标.22.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.23.已知:如图,矩形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A坐标为(0,3),∠OAB=60°,以AB为轴对折后,使C点落在D点处,求D点坐标.24.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.25.如图,在直角坐标系中,点A的坐标为(﹣4,0),点C为y轴上一动点,连接AC,过点C作CB⊥AC,交x轴于B.(1)当点B坐标为(1,0)时,求点C的坐标;(2)如果sin A和cos A是关于x的一元二次方程x2+ax+b=0的两个实数根,过原点O作OD⊥AC,垂足为D,且点D的纵坐标为a2,求b的值.【函数基本知识】26.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?27.某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.28.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x…123579…y… 1.98 3.95 2.63 1.58 1.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.29.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示.根据图象回答下列问题:(1)小明家离图书馆的距离是千米;(2)小明在图书馆看书的时间为小时;(3)小明去图书馆时的速度是千米/小时.30.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E 以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y 与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是;(2)d=,m=,n=;(3)F出发多少秒时,正方形EFGH的面积为16cm2?【一次函数】31.“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?32.如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.33.如图,直线y=2x+3与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.34.某企业开展献爱心扶贫活动,将购买的60吨大米运往贫困地区帮扶贫困居民,现有甲、乙两种货车可以租用.已知一辆甲种货车和3辆乙种货车一次可运送29吨大米,2辆甲种货车和3辆乙种货车一次可运送37吨大米.(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨大米?(2)已知甲种货车每辆租金为500元,乙种货车每辆租金为450元,该企业共租用8辆货车.请求出租用货车的总费用w(元)与租用甲种货车的数量x(辆)之间的函数关系式.(3)在(2)的条件下,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?35.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C 港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,a=;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.【反比例函数】36.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.37.已知一次函数y1=kx+b的图象与反比例函数的图象交于A、B两点,且点A的横坐标和点B 的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积.38.如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.39.如图,已知直线AB与x轴交于点C,与双曲线交于A(3,)、B(﹣5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.40.(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.中考数学考点解答题限时训练3【二次函数】1.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值.2.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?3.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.4.抛物线y=x2﹣x+2与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,+的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.。

中考数学复习中档解答题限时训练(十)含答案

中考数学复习中档解答题限时训练(十)含答案

中档解答题限时训练(十)(限时20分钟 满分28分)18.(本题6分)先化简,再求值:2b 2+(a +b )(a -b )-(a -b )2,其中a =-3,b =12.19.(本题6分)已知:如图J 10-1,斜坡BQ 的坡度i =5∶12(即QC 与BC 的长度之比),在斜坡BQ 上有一棵香樟树PQ ,柳明在A 处测得树顶点P 的仰角为α,并且测得水平距离AB =8米,BQ =13米,tan α=0.75.点A ,B ,P ,Q 在同一平面内,PQ ⊥AB 于点C.求香樟树PQ 的高度.图J 10-120.(本题8分)“五一”假期,某公司组织部分员工到A ,B ,C 三地旅游,公司购买前往各地的车票种类及数量绘制成条形统计图,如图J 10-2,根据统计图回答下列问题:(1)前往A 地的车票有________张,前往C 地的车票占全部车票的________; (2)若公司决定采用随机抽取的方式把车票分配给100名员工,在看不到车票的条件下,每人随机抽取一张(所有车票的形状、大小、质地完全相同),那么员工小王抽到去B 地车票的概率为________;(3)若有一张车票,员工小张、小李都想要,两人决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用列表法或画树状图的方法分析,这个规则对双方是否公平?图J10-221.(本题8分)如图J10-3,已知AB是⊙O的直径,EA是⊙O的切线,A为切点,D是EA上一点,且∠ABD=30°,DB交⊙O于点C,连结OC并延长交EA于点P.(2)如果⊙O的半径为 3 cm,求DP的长;(3)在(2)的条件下求图中阴影部分的面积S.图J10-3参考答案18.解:原式=2b 2+a 2-b 2-(a 2-2ab+b 2)=a 2+b 2-a 2+2ab-b 2=2ab. ∵a=-3,b=12,∴原式=2×(-3)×12=-3.6分19.解:在Rt △BCQ中,BQ=13米,i=CQ BC =512,可得BC=12米,CQ=5米. ∴AC=AB+BC=8+12=20(米).在Rt △PAC中,∠PAC=α,且tan α=0.75, ∴PCAC=0.75, 即PC=0.75AC=0.75×20=15(米). ∴PQ=PC-CQ=15-5=10(米).6分 20.解:(1)30 20%2分 (2)123分 (3)画树状图如下:P (小张胜)=38<P(小李胜)=58,∴不公平.8分21.解:(1)证明:∵OB=OC,∠ABD=30°, ∴∠OCB=30°, ∵∠POA为△BOC的外角, ∴∠POA=∠OCB+∠ABD=60°.∵EA与⊙O相切于A点,∴∠OAP=90°, ∴∠OPA=180°-90°-60°=30°, ∴在Rt △OAP中,OA=12OP.2分(2)在Rt △OAP中,OA= 3 cm,∠OPA=30°, ∴AP=3OA=3 cm,在Rt △ABD中,AB=2 3 cm,∠ABD=30°,∴AD=33AB=2 cm, ∴DP=AP-AD=1 cm.6分(3)S=S 扇形OAC -S △AOC =60π·3360-12×(3)2×32=π2-(cm 2).8分。

中考数学训练(中档题)

中考数学训练(中档题)

中考数学训练(中档题)一、选择题 1.|65-|=( )A .65+B .65-C .-65-D .56-2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( ) A .35-B .sin88°C .tan46°D .215-4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A .4 B .5 C .6 D .105.二次函数y=(2x-1)2+2的顶点的坐标是( )A .(1,2)B .(1,-2)C .(21,2)D .(-21,-2)6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( ) A .3场 B .4场 C .5场 D .6场 7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( ) A .7 B .8 C .9 D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5 二、填空题(每小题3分,共24分)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 . 10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 .12.一个四边形中,它的最大的内角不能小于 . 13.二次函数x x y 2212+-=,当x 时,0<y ;且y 随x 的增大而减小.14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BCDE= .15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A +∠B +∠C =__________度.C A16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D 两点,则图中阴影部分 的面积是 cm 2.三、17.计算:01)32009(221245cos 4)21(8--⨯÷-︒-+-18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭19.已知:如图,梯形ABCD 中,A B ∥CD ,E 是BC 的中点,直线AE 交DC 的延长线于点F . (1)求证:△ABE ≌△FCE ;(2)若BC ⊥AB ,且BC =16,AB =17,求AF 的长.20.观察下面方程的解法x4-13x2+36=0解:原方程可化为(x2-4)(x2-9)=0 ∴(x+2)(x-2)(x+3)(x-3)=0∴x+2=0或x-2=0或x+3=0或x-3=0 ∴x1=2,x2=-2,x3=3,x4=-3你能否求出方程x2-3|x|+2=0的解?四、(每小题10分,共20分)21.(1)顺次连接菱形的四条边的中点,得到的四边形是.(2)顺次连接矩形的四条边的中点,得到的四边形是.(3)顺次连接正方形的四条边的中点,得到的四边形是.(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由.22.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用右图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)23.(本题12分)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?24.(本题12分)甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离(2)甲轮船后来的速度.数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C . 二、填空题(每小题3分,共24分)9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227; 14.2115.90;16.π49三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分)17.解:原式=222224222⨯⨯-⨯-+ -1 =822222--+ -1 =-718.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭ 解:原式=)1(])1()1)(1(1[2-⨯--++x x x x ). xx x x x x 211)1(]111[=++-=-⨯-++19.(1)证明:∵E 为BC 的中点∴BE =CE ∵AB ∥CD ∴∠BAE =∠F ∠B =∠FCE ∴△ABE ≌△FCE (2)解:由(1)可得:△ABE ≌△FCE∴CE =AB =15,CE =BE =8,AE =EF ∵∠B =∠BCF =90° 根据勾股定理得AE =17 ∴AF =34 20.解:原方程可化为|x|2-3|x|+2=0.............................3分 ∴(|x|-1)(|x|-2)=0 ∴|x|=1或|x|=2∴x=1,x=-1,x=2,x=-2 .............................10分四.(每小题10分,共20分)21. 解:(1)矩形;(2)菱形,(3)正方形.............................6分 (4)小青说的不正确如图,四边形ABCD 中AC ⊥BD ,AC =BD ,BO ≠DO ,E 、F 、G 、H 分别为AD 、AB 、BC 、CD 的中点 显然四边形ABCD 不是正方形但我们可以证明四边形ABCD 是正方形(证明略)所以,小青的说法是错误的..............................10分 22.解:(1)10分.............................2分 (2)90分.............................4分 (3)89分.............................6分 (4)89×10%+90×30%+96×60%=93.5李刚的总评分应该是93.5分..............................10分23. 小强和小亮的说法是错误的,小明的说法是正确的....................2分 不妨设小明首先抽签, 画树状图由树状图可知,共出现6种等可能的结果,其中小明、小亮、小强抽到A 签的情况都有两种,概率为31,同样,无论谁先抽签,他们三人抽到A 签的概率都是31.所以,小明的说法是正确的..............................12分24.解:(1)作BD⊥AC于点D由题意可知:AB=30×1=30,∠BAC=30°,∠BCA=45°在Rt△ABD中∵AB=30,∠BAC=30°∴BD=15,AD=ABcos30°=153在Rt△BCD中,∵BD=15,∠BCD=45°∴CD=15,BC=152∴AC=AD+CD=153+15即A、C间的距离为(153+15)海里.............................6分(2)∵AC=153+15轮船乙从A到C的时间为1515315=3+1 由B到C的时间为3+1-1=3∵BC=152∴轮船甲从B到C的速度为3215=56(海里/小时)答:轮船甲从B到C的速度为56海里/小时..............................12分。

中考数学中档题经典练习卷

中考数学中档题经典练习卷

中档题练习卷(一)一.选择题(9分)7.以方程组 x +y =10,2x +y =6 的解为坐标的点(x ,y )在( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 8.反比例函数y =-x2的图象上有三点(x 1,-1),B (x 2,a ),C (x 3,3).当x 3 < x 2< x 1时。

a 的取值范围为( ) A. a > 3 B . a < -1 C . -1< a <3 D . a > 3或a < -19.对于数133,规定第一次操作为13+33+33=55,第二次操作为53+53=250,如此反复操作,则第2019此操作后得到的数是( )A . 25B . 250C . 55D . 133 二.填空题(9分) 13.化简21+a +442-a 的结果是 。

14.如图,平行四边形ABCD 中,AD =2AB ,AH ⊥CD 于点H ,N 为BC 中点,若∠D =68°,则∠NAH = 。

15.如图,双曲线xky =上三点的横坐标依次为3,5,12,阴影部分的面积为2,则k 的值为___________.三.解答题20.(本题8分)如图,点A (0,6),B (2,0),C (4,8),D (2,4),将线段CD 绕点C 逆时针旋转90°,得到线段CE .(1)画出线段CE ,并计算线段CD 所扫过的图形面积;(2)将线段AB 平移得到线段CF ,使点A 与点C 重合,写出点F 的坐标,并证明CF 平分∠DCE.22.(本题10分)某游乐园有一个直轻为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线形。

在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合,如图所示,以水平方向为x 轴,喷水池中心为原点建立直角坐标系。

(1)求水柱所在抛物线(第一象限部分)的函数表达式(不要求写自变量的取值范围) (2)王师傅喷水池内维修设备期间,喷水池意外喷水,为了不被淋湿,身高1.8米的王师傅 站立时必须在离水池中心多少米以外?(3)经检修评信,游乐园决定对喷水池设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩第15 题图24.(本小题满分7分)如图,在平面直坐角标系中,直线221+=x y 与 x 轴交于点A ,与 y 轴交于点C ,抛物线c bx x y ++-=221经过 A ,C 两点,与 x 轴的另一交点为点B .(1)求抛物线的函数表达式; (2)点 D 为直线 AC 上方抛物线上一动点.① 连接 BC ,CD ,设直线 BD 交线段 AC 于点 E ,△CDE 的面积为1S ,△BCE 的面积为 2S ,求21S S 的最大值;中档题练习卷(二)一.选择题(9分)7.关于x 、y 的方程组321x y mx y m -=⎧⎨+=+⎩的解满足x>y ,则m 的取值范围是( )A .m <2B .m >2C .m <1D .m >18.如图,已知抛物线y 1=−x 2+4x 和直线y 2=2x .我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M =y 1=y 2.下列判断:①当x >2时,M =y 1;②若M =2,则x =1.其中正确的有( )A .①②B .①C .②D .无法判断9.如图,在3×3的网格中,与△ABC 成轴对称,顶点在格点上,且位置不同的三角形有( )A.5个B.6个C.7个D.8个二.填空题(9分)三.解答题(25分)20.(本题8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt △ABC 的顶点均在格点上,在建立平面直角坐标系后,点A 的坐标为(−7,1),点B 的坐标为(−3,1),点C 的坐标为(−3,3) .(1)若P (m ,n )为Rt △ABC 内一点,平移Rt △ABC 得到Rt △A 1B 1C 1,使点P (m ,n )移到点P 1(m +6,n )处,试在图上画出Rt △A 1B 1C 1,并直接写出点A 1的坐标为___;CBA(1)求y与x的函数关系式;(2)售价为多少时利润最大?最大利润为多少?(3)由于原材料价格上涨,导致每件成本增加a元,结果发现当售价为60元和售价为80元时,利润相同,求a 的值.24.(本题7分)如图,抛物线y=ax2+c(a,c为常数,且a≠0)经过点C(0,235)和点P(1,32)(1) 求抛物线的解析式(2) 在抛物线上是否存在点D(不与点P重合),使得以CD为直径的圆恰好经过点P?若存在,试求出点D的坐标,若不存在,请说明理由中档题练习卷(三)一.选择题(9分)7.若二元一次方程组{3153=+=-y x y x 的解为{ax b y ==,则a -b 的值为( )A. 1B. 3C.41- D. 47 8.观察“田”字中各数之间的关系:...则a+d -b -c 的值为( )A. 52B. -52C. 51D. -519.将函数)0(22≥==x x x y 的图象沿y 轴翻折得到一个新的图象,前后两个图象其实就是函数x x y 22-=的图象,关于x 的方程a x x =-22在-2<x <2的范围内恰有两个实数根时,a 的值为( ) A. 1 B. 0 C. 21- D. -1 二.填空题(9分)13. 化简:aaa a ----12112的结果为_______. 14.如图, □ABCD 与 □DCFE 的周长相等,且∠BAD=60°,∠F=110°。

浙江省中考数学复习题中档解答组合限时练(打包9套,含答案)(已纠错)

浙江省中考数学复习题中档解答组合限时练(打包9套,含答案)(已纠错)

中档解答组合限时练(一)[限时:25分钟满分:28分]18.(6分)先化简:(-)÷,再从-2<x<3的范围内选取一个合适的整数代入求值.19.(6分)如图J1-1,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向,AB=2 km.有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B处测得小船在北偏西15°的方向.求点C与点B之间的距离.(本题的结果都保留根号)图J1-120.(8分)“切实减轻学生课业负担”是某市作业改革的一项重要举措.某中学为了了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,A:1小时以内;B:1小时~1.5小时;C:1.5小时~2小时;D:2小时以上.根据调查结果绘制了如图J1-2所示的两幅不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了名学生;(2)请将条形统计图补充完整;(3)表示A等级的扇形圆心角α的度数是;(4)在此次调查中,甲、乙两班各有两人平均每天课外作业时间都是2小时以上,从这4人中任选两人去参加座谈,用列表或画树状图的方法求选出的两人来自不同班级的概率.图J1-221.(8分)如图J1-3,△ABC内接于☉O,AB是直径,☉O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连结AF.(1)求证:AF与☉O相切;(2)若AC=24,AF=15,求☉O的半径.图J1-3参考答案18.解:原式=·=,当x=2时,原式=.(x不能取0,1,-1)19.解:(1)如图,过点P作PD⊥AB于点D.设PD=x km,由题意可得BD=PD=x km,AD=PD=x(km).∵BD+AD=AB,∴x+x=2,解得x=-1,∴点P到海岸线l的距离为(-1) km.(2)如图,过点B作BF⊥AC于点F,则BF=AB=1(km).根据题意得∠ABC=105°,∴∠C=180°-∠BAC-∠ABC=45°.∴BC=BF=(km),∴点C与点B之间的距离为 km.20.解:(1)调查的学生人数是80÷40%=200(人),故答案为:200.(2)C等级的人数是200-60-80-20=40(人),补图如下:(3)根据题意得α=×360°=108°,故答案为:108°.(4)设甲班学生为A1,A2,乙班学生为B1,B2,一共有12种等可能的结果,其中两人来自不同班级的结果共有8种,∴P(两人来自不同班级)==.21.解:(1)证明:∵AB是☉O的直径,∴∠BCA=90°.∵OF∥BC,∴∠AEO=90°,即OF⊥AC.连结OC,则OC=OA,∴∠COF=∠AOF,又OF=OF,∴△OCF≌△OAF,又∵PC是☉O的切线,∴∠OAF=∠OCF=90°,∴FA⊥OA,即AF是☉O的切线.(2)∵OF⊥AC,AC=24,∴AE=AC=12.∵FA⊥OA,OF⊥AC,∴S△OAF=AF·OA=OF·EA,即15·OA=·12,整理得225OA2=144(152+OA2),解得OA=20.∴☉O的半径为20.中档解答组合限时练(二)[限时:25分钟满分:28分]18.(6分)如图J2-1,在△ABC中,∠ABC=90°.(1)请在边BC上找一点P,作☉P与AC,AB都相切,与AC相切于点Q;(尺规作图,保留作图痕迹)(2)若AB=3,BC=4,求(1)中所作圆的半径;(3)连结BQ,(2)中的条件均不变,求sin∠CBQ.图J2-119.(6分)如图J2-2,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作☉O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与☉O相切.图J2-220.(8分)小沈准备给小陈打电话,由于保管不善,电话本上小陈手机号码中,有两个数字已模糊不清.如果用x,y表示这两个看不清的数字,那么小陈的手机号码为139x370y580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍.求:(1)x+y的值;(2)小沈一次拨对小陈手机号码的概率.21.(8分)已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围; (3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.参考答案18.解:(1)如图,☉P为所作.(2)连结PQ,如图.在Rt△ABC中,AC==5,设半径为r,BP=PQ=r,PC=4-r.∵AC与☉P相切于点Q,∴PQ⊥AC,∵∠PCQ=∠ACP,∴Rt△CPQ∽Rt△CAB,∴=,即=,解得r=.(3)∵AB,AQ为☉P的切线,∴AB=AQ.∵PB=PQ,∴AP为BQ的垂直平分线,∴∠BAP+∠ABQ=90°.∵∠CBQ+∠ABQ=90°,∴∠CBQ=∠BAP.在Rt△ABP中,AP==,∴sin∠BAP===,∴sin∠CBQ=.19.解:(1)∵∠CBA=50°,∴∠DOA=2∠DBA=100°.(2)证明:如图,连结OE.在△EAO和△EDO中,∵AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,∴∠EDO=∠EAO=90°,∴OD⊥DE,∴直线ED与☉O相切.20.解:(1)由题意1+3+9+x+3+7+0+y+5+8+0=x+y+36=20n(n为正整数).因为0≤x≤9,0≤y≤9,所以0≤x+y≤18.所以36≤x+y+36≤54,即36≤20n≤54,所以n=2,x+y=4.(2)因为x+y=4,所以:①x=0,y=4;②x=1,y=3;③x=2,y=2;④x=3,y=1;⑤x=4,y=0.所以一次拨对小陈手机号码的概率为.21.解:(1)证明:①当k=0时,方程为x+2=0,∴x=-2,方程有实数根;②当k≠0时,∵(2k+1)2-4k×2=(2k-1)2≥0,∴方程有实数根.∴无论k取任何实数,方程总有实数根.(2)令y=0,则kx2+(2k+1)x+2=0,解得x1=-2,x2=-.∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴k=1.∴该抛物线的解析式为y=x2+3x+2,当x=1时,y2=6,由x2+3x+2=6,得x1=-4,x2=1.如图,当y1>y2时,a>1或a<-4.(3)依题意得k(x2+2x)+x-y+2=0恒成立,则解得或所以抛物线恒过定点(0,2),(-2,0).中档解答组合限时练(三)[限时:25分钟满分:28分]18.(6分)如图J3-1,在△ABC中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:∠CEF=∠CFE.图J3-119.(6分)电视节目“奔跑吧”播出后深受中学生喜爱,小睿想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),得到如图J3-2的统计图,请结合图中提供的信息解答下列问题:(1)若小睿所在学校有1800名学生,估计全校最喜欢鹿晗的学生人数.(2)小睿和小轩都最喜欢陈赫,小彤最喜欢鹿晗,从他们三人中随机抽选两人参加“撕名牌”游戏,求选中的两人中一人最喜欢陈赫,一人最喜欢鹿晗的概率.(要求列表或画树状图)图J3-220.(8分)在平面直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图J3-3,已知整点A(1,2),B(3,4),请在所给网格上按要求画整点四边形.(1)在图①中画一个四边形OABP,使得点P的横、纵坐标之和等于5(所作四边形为凸四边形).(2)在图②中画一个四边形OABQ,使得点Q的横、纵坐标的平方和等于20.图J3-321.(8分)如图J3-4,在△ABC中,CA=CB,E是边BC上一点,以AE为直径的☉O经过点C,并交AB于点D,连结ED.(1)判断△BDE的形状并证明.(2)连结CO并延长交AB于点F,若BE=CE=3,求AF的长.图J3-4参考答案18.证明:(1)∵∠ACB=90°,CD⊥AB于点D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B.(2)在Rt△AFC中,∠CFA=90°-∠CAF,同理在Rt△AED中,∠AED=90°-∠DAE.∵AE平分∠CAB,∴∠CAF=∠DAE,∴∠CFA=∠AED.又∵∠CEF=∠AED,∴∠CEF=∠CFE.19.解:(1)根据题意得45+40+25+60+30=200(人),1800×=540(人).∴估计全校最喜欢鹿晗的学生有540人.(2)B1表示小睿最喜欢陈赫,B2表示小轩最喜欢陈赫,D表示小彤最喜欢鹿晗,列树状图如图.所有等可能的情况有6种,一人最喜欢陈赫,一人最喜欢鹿晗的有4种,则P(一人最喜欢陈赫,一人最喜欢鹿晗)==.20.解:(1)如下图,画对一个即可.(2)如图.21.解:(1)△BDE是等腰直角三角形.证明:∵AE是☉O的直径,∴∠ACB=∠ADE=90°,∴∠BDE=180°-90°=90°.∵CA=CB,∴∠B=45°,∴△BDE是等腰直角三角形.(2)如图,过点F作FG⊥AC于点G,则△AFG是等腰直角三角形,且AG=FG.∵OA=OC,∴∠EAC=∠FCG.∵BE=CE=3,∴AC=BC=2CE=6,∴tan∠FCG=tan∠EAC==.∴CG=2FG=2AG.∴FG=AG=2,∴AF=2.中档解答组合限时练(四)[限时:25分钟满分:28分]18.(6分)有一艘渔船在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助船“救助一号”和“救助二号”分别位于海上A处和B处,B在A的正东方向,且相距100海里,测得点C在A的南偏东60°方向,在B的南偏东30°方向上,如图J4-1,若“救助一号”和“救助二号”的速度分别为40海里/时和30海里/时,问:搜救中心应派哪艘救助船才能尽早赶到C处救援?(≈1.7)图J4-119.(6分)李老师为了了解学生完成数学课前预习的具体情况,对部分学生进行了抽样调查,并将调查结果分为四类:A:很好;B:较好;C:一般;D:较差.绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:图J4-2(1)李老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将上面条形统计图补充完整.(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表或画树状图的方法求出所选两位同学恰好是一名男同学和一名女同学的概率.20.(8分)如图J4-3,已知四边形ABCD内接于☉O,∠ABC=60°,BD是☉O的直径,AD=1,DC=,点C,D,E在同一直线上.(1)写出∠ADE的度数;(2)求☉O的直径BD的长.图J4-321.(8分)如图J4-4,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=,反比例函数y=(x>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数的解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标.图J4-4参考答案18.解:如图,过点C作CD⊥AB交AB延长线于点D.由已知得∠EAC=60°,∠FBC=30°,∴∠1=90°-60°=30°,∠2=90°-30°=60°.∵∠1+∠3=∠2,∴∠3=30°,∴∠1=∠3,∴BC=AB=100海里.在Rt△BDC中,BD=BC=50(海里),∴DC==50(海里).∵AD=AB+BD=150(海里),∴在Rt△ACD中,AC==100(海里),∴t1==≈4.25(s),t2==≈3.33(s),3.33<4.25,∴搜救中心应派“救助二号”才能尽早赶到C处救援.19.解:(1)=20,所以李老师一共调查了20名学生.(2)C类女生有3名,D类男生有1名;补充条形统计图略.(3)解法一:由题意画树状图如下:从树状图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一名男同学和一名女同学的结果共有3种.所以P(所选两位同学恰好是一名男同学和一名女同学)==.解法二:由题意列表如下:由上表得出,,所选两位同学恰好是一名男同学和一名女同学的结果共有3种.所以P(所选两位同学恰好是一名男同学和一名女同学)==.20.解:(1)∠ADE=60°.(2)如图,延长BA交CE于点F.∵BD是☉O的直径,∴∠BAD=∠BCD=90°.∵∠ABC=60°,∴∠AFD=30°.∴DF=2AD=2×1=2,∴CF=+2=,BC=.∴BD===7.21.解:(1)如图,过点A作AH⊥OB于点H.∵sin∠AOB=,OA=10,∴AH=8,OH=6,∴A点坐标为(6,8),根据题意得8=,∴k=48,∴反比例函数的解析式为y=(x>0).(2)如图,过点F作FM⊥x轴于点M.∵AH⊥OB,OA∥BC,∴△AOH∽△FBM.∵F为BC的中点,S△AOH=k,∴S△FBM=·k.∵S△AOF=12,∴S△FOB=6.由S△AOH=S△FOM得k=6+·k,∴k=16.设OA=a(a>0),∵sin∠AOB=,∴AH=a,OH=a,∴a·a=16,∴a=,∴OA=,∴AH=,OH=2.∵S▱AOBC=OB·AH=24,∴OB=AC=3,∴C(5,).中档解答组合限时练(五)[限时:25分钟满分:28分]18.(6分)如图J5-1,在△ABE中,C为边AB延长线上一点,BC=AE,点D在∠EBC内部,且∠EBD=∠A=∠DCB.(1)求证:△ABE≌△CDB.(2)连结DE,若∠CDB=60°,∠AEB=50°,求∠BDE的度数.图J5 -119.(6分)如图J5-2,5×5的正方形网格中隐去了一些网格线,AB,CD间的距离是2个单位长度,CD,EF间的距离是3个单位长度,格点O在CD上(网格线的交点叫格点).请分别在图①,②中作格点三角形OPQ,使得∠POQ=90°,其中点P在AB上,点Q在EF上,且它们不全等.图J5-220.(8分)随着道路交通的不断完善,某市旅游业快速发展.该市旅游景区有A,B,C,D,E等著名景点,市旅游部门统计绘制出2017年“五·一”长假期间旅游情况统计图(不完整)如图J5-3,根据相关信息解答下列问题:图J5-3(1)2017年“五·一”期间,该市旅游景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.(2)在等可能性的情况下,甲、乙两个旅游团在A,B,D三个景点中选择去同一个景点的概率是多少?请用画树状图或列表法加以说明.21.(8分)如图J5-4,钝角三角形ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作☉O,交边AB于点D,交边BC于点E,过点E作☉O的切线交边AC于点F.(1)求证:EF⊥AC.(2)连结DF,若∠ABC=30°,且DF∥BC,求☉O的半径.图J5-4参考答案18.解:(1)证明:∵∠1+∠2=180°-∠EBD,∠1+∠AEB=180°-∠A,∠A=∠EBD, ∴∠2=∠AEB.∵AE=BC,∠A=∠C,∴△ABE≌△CDB.(2)∵△ABE≌△CDB,∴EB=BD,∠1=∠CDB,∴∠BDE=∠BED.∵∠CDB=60°,∠AEB=50°,∴∠1=60°,∠2=50°,∴∠DBE=70°,∴∠BDE==55°.19.解:如图:20.解:(1)50108°(2)P==.21.解:(1)证明:如图,连结OE,∵OB=OE,∴∠B=∠OEB.∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC.∵EF是☉O的切线,∴OE⊥EF,∴EF⊥AC.(2)如图,连结DE.∵DF∥BC,∴=,又∵AB=AC,∴BD=CF.∵BD为☉O的直径,∴∠BED=90°.设☉O的半径为r,在Rt△BDE中,BE=BD·cos B=2r×cos30°=r, ∴CE=BC-BE=2-r.在Rt△CEF中,CF=CE·cos C=(2-r)×cos30°=3-r,∴2r=3-r,r=,∴☉O的半径为.中档解答组合限时练(六)[限时:25分钟满分:28分]18.(6分)已知多项式A=(x+2)2+(1-x)(2+x)-3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.19.(6分)如图J6-1,巨型广告牌AB背后有一看台CD,台阶每层高0.3米,且AC=17米,现有一只小狗睡在台阶的MG这层上晒太阳,设太阳光线与水平地面的夹角为α,当α=60°时,测得广告牌AB在地面上的影长AE=10米,过了一会,当α=45°时,问小狗在MG这层是否还能晒到太阳?请说明理由(取1.73).图J6-120.(8分)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一个点)的路线是抛物线,已知起跳点A距地面的高度为1米,弹跳的最大高度距地面4.75米,距起跳点A的水平距离为2.5米,建立如图J6-2的平面直角坐标系.(1)求演员身体运行路线的抛物线的解析式.(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演能否成功?说明理由.图J6-221.(8分)如图J6-3,已知☉O为△ABC的外接圆,BC为☉O的直径,作射线BF,使得BA平分∠CBF,过点A作AD⊥BF于点D.(1)求证:DA为☉O的切线;(2)若BD=1,tan∠ABD=2,求☉O的半径.图J6-3参考答案18.解:(1)A=x2+4x+4+2+x-2x-x2-3=3x+3.(2)若(x+1)2=6,则x+1=±,则3x+3=3(x+1)=±3.19.解:当α=45°时,小狗仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.当α=60°时,在Rt△ABE中,∴AB=10·tan 60°=10≈17.3(米).∵∠BFA=45°,此时的影长AF=AB=17.3米,∴CF=AF-AC=17.3-17=0.3(米),∴CH=CF=0.3米,∴大楼的影子落在台阶MC这个侧面上.∴小狗能晒到太阳.20.解:(1)设演员身体运行路线的抛物线的解析式为y=a(x-2.5)2+4.75,代入A(0,1),得a=-.故y=-(x-2.5)2+4.75.(2)当x=4时,y=3.4=BC,故这次表演能成功.21.解:(1)证明:如图,连结OA,∵AD⊥BF,∴∠ABD+∠BAD=90°.又∵BA平分∠CBF,∴∠ABD=∠ABO.又∵OA=OB,∴∠ABO=∠OAB,∴∠DAO=∠DAB+∠BAO=∠DAB+∠ABO=∠DAB+∠ABD=90°.∵A为☉O上一点,∴DA为☉O的切线.(2)由题意可知:AD=BD·tan∠ABD=2, ∴AB=,∴cos∠ABD=,∴cos∠ABC=.∴BC==5,∴OB=BC=2.5.中档解答组合限时练(七)[限时:25分钟满分:28分]18.(6分)如图J7-1,四边形ABCD是菱形,对角线AC与BD相交于点O,菱形ABCD的周长是20,BD=6.求:(1)AC的长;(2)菱形ABCD的高DE的长.图J7-119.(6分)如图J7-2,△ABC是正方形网格中的格点三角形(顶点在格点上),请分别在图甲,图乙的正方形网格内按下列要求画一个格点三角形.(1)在图甲中,以AC为边画直角三角形,使它的一个锐角等于∠A或∠B,且与△ABC不全等;(2)在图乙中,以AB为边画直角三角形,使它的一个锐角等于∠A或∠B,且与△ABC不全等.图J7-220.(8分)某市每年都要举办中小学“三独”比赛(包括独唱、独舞、独奏三个类别),图J7-3是该市2017年参加“三独”比赛的不完整的参赛人数统计图.图J7-3(1)该市参加“三独”比赛的总人数是人,图中“独奏”所在扇形的圆心角的度数是度,并把条形统计图补充完整;(2)从这次参赛选手中随机抽取20人调查,其中有9人获奖,请你估算2017年全市参赛选手中约有多少人获奖.21.(8分)如图J7-4,已知反比例函数y=的图象经过点A(2,1).点M(m,n)(0<m<2)是该函数图象上的一个动点,过点M作直线MB∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.(1)求反比例函数的解析式;(2)当四边形OADM的面积为2时,请判断BM与DM是否相等,并说明理由.图J7-4参考答案18.解:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BO=OD,AO=OC.∵菱形的周长是20,∴DC=×20=5.∵BD=6,∴OD=3.在Rt△DOC中,OC===4.∴AC=2OC=8.(2)∵S△ABD=AB·DE=BD·OA,∴5·DE=6×4,∴DE=.19.解:举例如下:图甲图乙20.解:(1)40072(2)×400=180(人).答:2017年全市参赛选手中约有180人获奖.21.解:(1)将A点坐标(2,1)代入y=中,得1=,∴k=2,∴反比例函数的解析式为y=.(2)BM=DM,理由:∵S△OMB=S△OAC=×=1, ∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=2+1+1=4, 即OC·OB=4.∵OC=2,∴OB=2,即n=2,∴m==1,∴MB=1,MD=2-1=1,∴MB=MD.中档解答组合限时练(八)[限时:25分钟满分:28分]18.(6分)已知x=2是关于x的方程x2-mx-4m2=0的一个根,求m(2m+1)的值.19.(6分)某数学兴趣小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图J8-1所示的折线图.(1)该事件最有可能是(填写一个你认为正确的序号).①一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,多次经过该路口时,看见红灯;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.(2)你设计一个游戏,多次掷一枚质地均匀的正六面体骰子(各面分别是数字1~6),当骰子数字正面朝上,该事件发生的概率接近于.图J8-120.(8分)如图J8-2①②为6×6正方形方格纸,每个小的正方形边长为单位1,点A,B,C,D 都在格点处.图J8-2(1)如图①,四边形ABCD 的周长是 . (2)如图②,AC 与BD 相交于点O,tan ∠BOC= .21.(8分)小林在某商店买商品A,B 共三次,只有一次购买时,商品A,B 同时打折,其余两次均按标价购买,三次购买商品A,B 的数量及费用如下表:是第 次购买(2)求商品A,B 的标价.(3)若商品A,B 的折扣相同,则商店是打几折出售的?参考答案18.解:将x=2代入原方程可得4-2m-4m2=0,∴2m+4m2=4,m+2m2=2,∴m(2m+1)=2m2+m=2.19.解:(1)③(2)出现3的倍数(答案不唯一)20.解:(1)9++(2)321.解:(1)三(2)设商品A,B的标价分别为x元,y元.由题意,得解得答:商品A,B的标价分别为90元、120元.(3)设商店是打x折出售的,则(90×9+8×120)=1062,解得x=6.答:商店是打六折出售的.中档解答组合限时练(九)[限时:25分钟满分:28分]18.(6分)解方程组:并在每一步的后面写出依据.19.(6分)如图J9-1,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,AB∥CD,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少米?图J9-120.(8分)如图J9-2,在△ABC和△DEF中,AB∥DE,AC∥DF,BC∥EF,BC=EF.(1)求证:△ABC≌△DEF;(2)分别连结AD,BE,CF,探索线段AD,CF,BE之间的位置关系和数量关系,并证明结论.图J9-221.(8分)县政府计划建设一项水利工程,工程需要运送的土石方总量为6×105 m3,某运输公司承担了运送土石方的任务.(1)运输公司平均运送速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间具有怎样的函数关系?(2)这个运输公司共有80辆卡车,每天可运送土石方104m3,公司完成全部运输任务需要多长时间?(3)当公司以问题(2)中的速度工作了30天后,由于工程进度的需要,剩下的运输任务必须在20天内(包括20天)完成,则运输公司至少要增加多少辆卡车?参考答案18.解:①×2,得4x-2y=10③(等式的性质2),③-②,得x=2(等式的性质1).把x=2代入①,得4-y=5(等量代换),解得y=-1(等式的性质1).∴方程组的解为19.解:如图,过点C作CE⊥AB交AB的延长线于点E.∵AE∥CD,∴∠CAE=∠DCA=30°,∠CBE=∠DCB=60°.在Rt△CEB中,∠CEB=90°,∠CBE=60°,BE=x+0.8,∴CE=BE·tan 60°=(x+0.8).在Rt△CEA中,∠CEA=90°,∠CAE=30°,∴tan∠CAE=tan 30°==.∴AE=CE=×(x+0.8)=3(x+0.8).∵AE=3+x+0.8,∴3+x+0.8=3(x+0.8).解得x=0.7.答:这时汽车车头与斑马线的距离是0.7米.20.解:(1)证明:∵AB∥DE,AC∥DF,∴∠BAC=∠1=∠EDF.同理∠ABC=∠DEF(或∠ACB=∠DFE).又∵BC=EF,∴△ABC≌△DEF.(2)AD,BE,CF互相平行且相等,证明如下:如图,连结AD,BE,CF.∵△ABC≌△DEF,∴AB=DE,AC=DF.又∵AB∥DE,AC∥DF,∴四边形ABED,ACFD都是平行四边形.∴AD,BE,CF互相平行且相等.21.解:(1)∵vt=6×105,∴v=.(2)当v=104时,t==60.答:公司完成全部运输任务需要60天.(3)设需要增加a辆卡车,每辆卡车每天运输土石方==125(m3).∵前30天运输土石方:30×104=3×105(m3).∴后20天运输土石方:6×105-3×105=3×105(m3).设30天后的每天运输速度为v1,所需要时间为t1,∴v1=.由v1=的性质可知,当t1>0时,v1随着t1的增大而减少,∴当t1≤20时,v1≥1.5×104,∴125(a+80)≥1.5×104,∴a≥40,∴a的最小值是40.答:运输公司至少要增加40辆卡车.。

2022年中考数学三轮冲刺中档解答(七)含答案

2022年中考数学三轮冲刺中档解答(七)含答案

2022年中考数学三轮冲刺中档解答(七)含答案1、[中考数学中档解答〔七〕]19.计算:(-2)3+-2-·sin45°.20.解不等式组并在数轴上表示解集.21.如图,在△ABC 中,∠ACB∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保存作图痕迹);(2)若(1)中的射线CM 交AB于点D,AB=9,AC=6,求AD的长.22.为响应国家全民阅读的号召,某社区鼓舞居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2021年图书借阅总量是7500本,2021年图书借阅总量是10800本.(1)求该社区的图书2、借阅总量从2021年至2021年的年平均增长率;(2)已知2021年该社区居民借阅图书人数有1350人,估计2021年到达1440人.假如2021年至2021年图书借阅总量的增长率不低于2021年至2021年的年平均增长率,那么2021年的人均借阅量比2021年增长a%,求a 的值至少是多少?n23.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B 离开甲地的路程s(km)与时间t(h)的函数关系的图象,依据图象解答以下问题.(1)A比B晚出发几小时?B的速度是多少?(2)在B3、出发后几小时,两人相遇?24.如图,在平面直角坐标系中,有一个Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC 绕原点O旋转变换得到的.(1)请写出旋转角是度; (2)以原点O为旋转中心,分别画出△A1AC1顺时针旋转90°,180°的图形;(3)设Rt△ABC两直角边BC=a,AC=b,斜边AB=c,利用变换前后所形成的图案证明勾股定理.n参考答案19.解:(-2)3+-2-·sin45°=-8+9-2×=-1.20.解:解不等式①得x2,解不等式②得x≥-1,∴不等式组的解集为-4、1≤x2.在数轴上表示不等式组的解集如图:21.解:(1)作图如下:(2)如图,∵∠ACM=∠ABC,∠A=∠A,∴△ADC∽△ACB,∴=.又AB=9,AC=6,∴=,解得AD=4.22.解:(1)设该社区的图书借阅总量从2021年至2021年的年平均增长率为x,依据题意得,7500(1+x)2=10800,即(1+x)2=1.44,解得x1=0.2,x2=-2.2(舍去).答:该社区的图书借阅总量从2021年至2021年的年平均增长率为20%.(2)10800×(1+0.2)=12960(本),10800÷1350=8(本),1295、60÷1440=9(本),n(9-8)÷8×100%=12.5%.故a的值至少是12.5.23.解:(1)由图可知,A比B晚出发1小时,B的速度为60÷3=20(km/h).(2)由图可知点D(1,0),C(3,60),E(3,90),设直线OC的解析式为s=kt,则3k=60,解得k=20,∴直线OC的解析式为s=20t.设直线DE的解析式为s=mt+n.则解得∴直线DE的解析式为s=45t-45.由解得∴B出发h后两人相遇.24.解:(1)旋转角是90°.(2)画出图形如下图.(3)由旋转的过程可知,四边形CC1C2C3和四边形AA1A6、2B是正方形.∵=+4S△ABC,∴=c2+4×ab,a2+2ab+b2=c2+2ab,∴a2+b2=c2.。

中考数学 第二编 中档题突破专项训练篇 中档题型训练七简单的函数应用问题攻略试题

中考数学 第二编 中档题突破专项训练篇 中档题型训练七简单的函数应用问题攻略试题

判断.
【学生解答】解:(1)y=700-20(x-45)=-20x+1 600;
(2)P=(x-40)(-20x+1
600)=-20x2+2
400x-64
000=-20(x-60)2+8
000.∵x≥45,a=-20<0,∴当x=60时,P最大=8 000(元).即每盒售价定为60元时,每天销售的利润最大,最大为8 000元;
(2)如果制作甲、乙两种包装盒3
000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度l(m)与甲盒数量n(个)之间的函数关系式
,并求出最少需要多少米材料.
【思路分析】(1)根据“用6
m的材料制成乙盒的个数-用6 m的材料
制成甲盒的个数=2”作为等量关系列方程解答;(2)建立函数关系式,然后用一次函数的性质解答问题.
到624人时,馆外等待的游客可全部进入.馆外游客最多等待多少分钟?
1
1
解:(1)300=a×302,a=3,n=700,b×(30-90)2+700=300,b=-9, 1
{ ) 3x2,(0 ≤ x ≤ 30) 1 ∴y= -9(x-90)2+700;(30 ≤ x ≤ 90)
1
684-624
(2)-9(x-90)2+700=684,x=7 8, 4 =15,15+30+(90-78)=57 (min).∴馆外游客最多等待57
min. 5.(2016保定八中二模)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)
与每件销售价x(元) 的关系数据如下:
x 30 32 34 36
y 40 36
32 28
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式;(不写出自变量x的取值范围)

中考数学 题中档解答题限时训练

中考数学 题中档解答题限时训练

解:(1)设甲种型号蓝牙音箱的销售单价为x元,乙种型 号蓝牙音箱的销售单价为y元, 依题意,得3x+7y=2 160, 5x+14y=4 020. 解得x=300, y=180. 答:甲种型号蓝牙音箱的销售单价为300元,乙种型号 蓝牙音箱的销售单价为180元. (2)设甲种型号的蓝牙音箱采购了a台, 依题意,得240a+140(30-a)≤6 000. 解得a≤18. 答:甲种型号的蓝牙音箱最多能采购18台.
解:(1)调查的总人数是420÷30%=1 400(万人), 关注教育的人数是1 400×25%=350(万人). 补全条形图统计图如答图X2-6-1所示.
(2)估计最关注环保问题的人数为880×10%=88(万人). (3)画出树状图如答图X2-6-2所示.
则P(抽取的两人恰好是甲和乙)=
2018年广东中考3题中档解答题 限时训练(6)
20. (7分) (2017锦州) 某电子超市销售甲、乙两种型号 的蓝牙音箱,每台进价分别为240元,140元,下表是 近两周的销售情况:
(1)求甲、乙两种型号蓝牙音箱的销售单价; (2)若超市准备用不多于6 000元的资金再采购这两种型 号的蓝牙音箱共30台,求甲种型号的蓝牙音箱最多能 采购多少台
22. (7分) 根据某网站的调查,2016年网民们最关注的 热点话题分别有消费、教育、环保、反腐及其他共五类. 根据调查的部分相关数据,绘制的统计图如图X2-6-2所 示:
根据所给信息解答下列问题: (1)请补全条形统计图,并在图中标明相应数据; (2)若本市约有880万人口,请你估计最关注环保问题的 人数约为多少万人; (3)在这次调查中,某单位共有甲、乙、丙、丁四人最 关注教育问题,现准备从这四是甲和 乙的概率.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中档解答题限时训练(七)
(限时20分钟 满分28分)
18.(本题6分)在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数y =m x
的图象交于A (2,3)、B (-3,n )两点.
(1)求一次函数和反比例函数的解析式;
(2)若P 是x 轴上一点,且满足△PAB 的面积是10,请直接写出点P 的坐标.
图J 7-1
19.(本题6分)如图J 7-2,二次函数的图象与x 轴交于A (-3,0)和B (1,0)两点,交y 轴于点C (0,3),点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D.
(1)请直接写出D 点的坐标;
(2)求二次函数的表达式;
(3)根据图象直接写出使一次函数的函数值大于二次函数的函数值的x 的取值范围.
图J 7-2
20.(本题8分)某校为了了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间
x(单位:小时)进行分组整理,并绘制了如图J7-3所示的不完整的频数分布直方图和扇形统计图.
某校学生课外阅读时间频数分布直方图某校学生课外阅读时间扇形统计图
图J7-3
根据图中提供的信息,解答下列问题:
(1)补全频数分布直方图;
(2)求扇形统计图中m的值和“E”组对应的圆心角的度数;
(3)请估计该校3000名学生中每周的课外阅读时间不少于6小时的人数.
21.(本题8分)如图J7-4,四边形ABCD是平行四边形,以AB为直径的圆O经过点D,E是⊙O上一点,且∠AED=45°.
(1)判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为4 cm,求图中阴影部分的面积.
图J7-4
参考答案
18.解:(1)反比例函数y =m x
的图象经过点A(2,3),∴m =6, ∴反比例函数的解析式为y =6x
. ∵点B(-3,n)在反比例函数y =6x
的图象上, ∴n =-2,∴B(-3,-2),
∵一次函数y =kx +b 的图象经过A(2,3)、B(-3,-2)两点,
∴⎩⎪⎨⎪⎧2k +b =3,-3k +b =-2,解得⎩
⎪⎨⎪⎧k =1,b =1, ∴一次函数的解析式为y =x +1.3分
(2)P(3,0)或P(-5,0).6分
19.解:(1)D(-2,3).1分
(2)设二次函数的解析式为y =ax 2+bx +c(a ≠0,a 、b 、c 为常数),
根据题意得⎩⎪⎨⎪⎧9a -3b +c =0,a +b +c =0,c =3,解得⎩⎪⎨⎪⎧a =-1,b =-2,c =3.
所以二次函数的解析式为y =-x 2-2x +3.4分
(3)x <-2或x >1.6分
20.解:(1)补全频数分布直方图,如图所示.
2分
(2)∵10÷10%=100(人),
∴40÷100×100%=40%,∴m =40.
∵4÷100=0.04,
∴“E”组对应的圆心角度数=0.04×360°=14.4°.6分
(3)3000×(25%+4%)=870(人).
答:估计该校3000名学生中每周的课外阅读时间不少于6小时的人数是870人.8分21.解:(1)CD与⊙O相切.理由:如图,连结OD,
∵∠AED=45°,∴∠DOA=2∠AED=90°,
∴DO⊥AB,2分
∵四边形ABCD是平行四边形,
∴AB∥CD,∴DC⊥OD,
∴CD与⊙O相切.4分
(2)S阴影=S扇形AOD-S△AOD=90π·42
360

1
2
×4×46分
=4π-8(cm2).8分。

相关文档
最新文档