幂函数与二次函数

合集下载

二次函数与幂函数的关系

二次函数与幂函数的关系

二次函数与幂函数的关系二次函数和幂函数是数学中常见的两种函数,它们之间存在一定关系。

这篇文章将介绍二次函数和幂函数的定义、图像、特点以及它们之间的关系。

首先,我们来回顾一下二次函数和幂函数的定义。

二次函数是指函数的最高次项为二次的多项式函数。

它的一般形式可以表示为:f(x) = ax^2 + bx + c其中,a、b、c是实数且a不等于0。

在这个函数中,x是自变量,f(x)是因变量。

幂函数是指函数的自变量和因变量之间的关系式为 y = x^a,其中a 是实数。

幂函数的图像通常是一个曲线,并且根据a的不同取值,可以得到不同的曲线形状。

接下来,我们来分析二次函数和幂函数的图像。

对于二次函数,它的图像通常是一个抛物线。

根据二次函数的系数a 的正负和大小,可以得到不同类型的抛物线。

当 a 大于0时,抛物线开口向上;当 a 小于0时,抛物线开口向下。

我们可以根据开口方向和顶点的位置来确定抛物线的图像。

例如,当 a 大于0且顶点位于y轴上方时,抛物线开口向上且顶点为最低点;当 a 小于0且顶点位于y轴下方时,抛物线开口向下且顶点为最高点。

而幂函数的图像则由指数 a 的大小来决定。

当 a 大于1时,函数的图像呈现出上升的斜线;当 a 等于1时,函数的图像是一条直线;当 0 小于 a 小于 1 时,函数的图像呈现出下降的斜线。

与二次函数不同的是,幂函数的图像没有顶点或拐点。

然而,二次函数和幂函数并不是完全独立的。

实际上,我们可以将二次函数视为一种特殊的幂函数。

具体来说,二次函数 f(x) = ax^2 + bx + c 可以写成 f(x) = a(x - h)^2 + k 的形式,其中 h 和 k 是实数,代表了二次函数图像的平移。

这种表达方式可以让我们更好地理解二次函数和幂函数之间的关系。

当平移的值 h 和 k 分别等于0时,即 h = 0 且 k = 0 时,二次函数变为f(x) = ax^2,这就是一个幂函数。

高三数学知识点总结9:二次函数和幂函数

高三数学知识点总结9:二次函数和幂函数

(十一)二次函数一.二次函数解析式(1)一般式:).0()(2≠++=a c bx ax x f(2)顶点式:若二次函数的顶点坐标为),,(k h 则其解析式).0()()(2≠+-=a k h x a x f(3)交点式:若二次函数的图象与x 轴的交点为),0,(),0,(21x x 则),)(()(21x x x x a x f --= .0≠a二.二次函数的对称轴(1)对于二次函数)(x f y =的定义域内有21,x x 满足),()(21x f x f =则二次函数的对称轴为.221x x x += (2)对于一般函数)(x f y =对定义域内所有,x 都有)()(x a f x a f -=+成立,那么函数 )(x f y =图像的对称轴方程为:a x =.三.二次函数)0(2≠++=a c bx ax y 在],[n m 上的最值(1)0>a ① 最小值讨论三种情况 1.)(2min m f y m a b =≤-,;2.)2(2min a b f y n a b m -=<-<,;3.)(2min n f y n ab =≥-,. ② 最大值讨论两种情况 1.)(,22max n f y n m a b =+≤-;2.)(22max m f y n m a b =+>-,. (2)0<a ① 最大值讨论三种情况 1.)(2max m f y m a b =≤-,;2.)2(2max a b f y n a b m -=<-<,;3.)(,2max n f y n ab =≥-. ② 最小值讨论两种情况 1.)(,22min n f y n m a b =+≤-;2.)(22min m f y n m a b =+>-,. 四.三个二次的关系一元二次方程的根=一元二次函数的零点=一元二次不等式解集的端点.五.一元二次方程)0(02≠=++a c bx ax 的实根分布(1)数的角度:① 两实根异号等价于0<a c ;② 有两个正根等价于.0,0,0>>-≥∆a c a b ;③ 有两个负根等价于.0,0,0><-≥∆ac a b (2)形的角度:画出满足要求的图像,用“内有无,内无有”(开口内有端点则不需要考虑对称轴和,∆开口内无端点则需要考虑对称轴和.∆)。

二次函数和幂函数知识点

二次函数和幂函数知识点

二次函数和幂函数知识点二次函数是形如y=ax²+bx+c的函数,其中a、b、c是常数且a≠0。

它的图像是一个抛物线,称为二次曲线。

而幂函数是形如y=axⁿ的函数,其中a是常数,n是实数且n≠0。

它的图像可以是一条直线、开口向上或向下的抛物线、以及其他形状,取决于指数n的值。

首先,我们来看二次函数。

二次函数的图像可以分为三种情况:开口向上的抛物线、开口向下的抛物线和一条直线。

当a>0时,二次函数的图像是开口向上的抛物线,对称轴是x=-b/2a,最低点坐标为:(-b/2a, -△/(4a)),其中△=b²-4ac是二次函数的判别式。

图像在对称轴上方递增,在对称轴下方递减。

当a<0时,二次函数的图像是开口向下的抛物线,对称轴、最高点坐标和递增递减性质与开口向上的情况相反。

当a=0时,二次函数变为一条直线y=bx+c。

这个直线与x轴平行,斜率为b。

接下来,我们来看幂函数。

幂函数的图像可以根据指数n的值分为几种情况。

当n>0时,幂函数的图像在原点右侧递增且没有上下界,图像随着x的增大而增大。

当n<0时,幂函数的图像在原点左侧递增且也没有上下界,图像随着x的增大而减小。

当n=1时,幂函数就变成了y=ax,它的图像是一条过原点的直线。

斜率a的正负决定了直线的倾斜方向。

当n=0时,幂函数就变成了y=a,它的图像是一条水平直线,与x轴平行。

根据常数a的值,直线的位置可以在y轴的任意位置。

当n是偶数且n≠0时,幂函数的图像在最高点或最低点有一个上下界,其余部分无上下界。

当n为偶数时,函数的值随着x的增大和减小而逐渐增大,形状类似于开口向上的抛物线。

当n为负偶数时,函数的值随着x的增大和减小而逐渐减小,形状类似于开口向下的抛物线。

当n是奇数时,幂函数图像没有上下界,且随着x的增大和减小而在原点两侧单调。

根据实数n的正负,函数的图像可能在原点两侧分别开口向上或向下。

总结起来,二次函数和幂函数都是常见的数学函数类型。

2025数学大一轮复习讲义人教版 第二章 二次函数与幂函数

2025数学大一轮复习讲义人教版   第二章  二次函数与幂函数

域为
A.(2,10) C.[2,10]
B.[1,2)
√D.[1,10)
当x∈(-2,2)时,-3<x-1<1, 则f(x)=x2-2x+2=(x-1)2+1∈[1,10).
自主诊断
4.已知函数f(x)=x2+2(a-1)x+2在区间(-∞,-3]上单调递减,则实数 a的取值范围是__(-__∞__,__4_]__.
依题意,设函数f(x)=a(x-2)2+h(a≠0), 由二次函数f(x)的图象过点(0,3),得f(0)=3, 所以4a+h=3,即h=3-4a, 所以f(x)=a(x-2)2+3-4a, 令f(x)=0,即a(x-2)2+3-4a=0, 所以ax2-4ax+3=0, 设方程的两根为x1,x2,
知识梳理
(3)幂函数的性质 ①幂函数在(0,+∞)上都有定义; ②当α>0时,幂函数的图象都过点 (1,1) 和 (0,0) ,且在(0,+∞)上单调 递增; ③当α<0时,幂函数的图象都过点 (1,1) ,且在(0,+∞)上单调递减; ④当α为奇数时,y=xα为 奇函数 ;当α为偶数时,y=xα为 偶函数 .
限内的交点坐标为(1,1),

0<x<1
时,x
m n
>x,则mn <1;
m
又y=x n 的图象关于y轴对称,
m
∴y=x n 为偶函数,
m
m
∴ (x) n =n -xm=x n =n xm,
又m,n互质,∴m为偶数n为奇数.
题型二 二次函数的解析式
例2 已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8, 试确定该二次函数的解析式.
依题意 3b≤12,所以 b≤16,

二次函数与幂函数的比较

二次函数与幂函数的比较

二次函数与幂函数的比较在数学中,二次函数和幂函数都是常见的函数类型。

它们在图像、性质以及在实际问题中的应用上有着显著的区别。

本文将对二次函数和幂函数进行比较,以便更好地理解它们的特点。

一、定义与表达式二次函数的定义为:$y=ax^2+bx+c$,其中$a, b, c$为常数,且$a\neq0$。

幂函数的定义为:$y=kx^n$,其中$k$为常数,$n$为正整数且$n\neq1$。

从表达式上来看,二次函数的最高次项是2次,幂函数的最高次项是$n$次。

这意味着二次函数的图像一般是一个抛物线,而幂函数的图像则以指数方式增长或衰减。

二、图像特点1. 二次函数二次函数的图像是一条平滑的曲线,称为抛物线。

具体的图像形状取决于二次项系数$a$的正负和开口方向。

- 当$a>0$时,抛物线开口向上,称为凹向上的抛物线;- 当$a<0$时,抛物线开口向下,称为凹向下的抛物线。

2. 幂函数幂函数的图像可以分为三类:增长型、减小型和奇偶型。

取决于指数$n$的正负和奇偶性。

- 当指数$n>0$时,幂函数随着$x$的增大而增大,图像呈现递增趋势;- 当指数$n<0$时,幂函数随着$x$的增大而减小,图像呈现递减趋势;- 当指数$n$为偶数时,幂函数图像关于$y$轴对称,称为偶函数;- 当指数$n$为奇数时,幂函数图像关于原点对称,称为奇函数。

三、性质与应用1. 二次函数二次函数常见的性质包括顶点坐标、对称轴和判别式。

- 顶点坐标:若二次函数为$y=ax^2+bx+c$,则顶点的横坐标为$x=-\frac{b}{2a}$,纵坐标为$y=-\frac{\Delta}{4a}$,其中$\Delta=b^2-4ac$为判别式。

- 对称轴:二次函数的对称轴与顶点坐标的横坐标相同,即$x=-\frac{b}{2a}$。

- 判别式:二次函数的判别式$\Delta=b^2-4ac$用于判断二次函数的图像与$x$轴的交点个数和位置。

第4节幂函数与二次函数

第4节幂函数与二次函数

第4节幂函数与二次函数幂函数和二次函数是数学中的两个重要概念,它们在不同的场景中起着不同的作用。

本文将介绍这两个函数的定义、性质以及它们的关系。

一、幂函数的定义与性质幂函数是指由x的正整数幂次构成的函数,其一般形式可以表示为f(x)=ax^n,其中a为非零实数,n为正整数。

幂数n决定了函数图像的性质,下面我们来看几个不同幂次的幂函数。

1. 当n=1时,幂函数就是一次函数,即f(x)=ax。

它的图像是一条斜率为a的直线。

2. 当n=2时,幂函数就是二次函数,即f(x)=ax^2、它的图像是一个开口向上或向下的抛物线。

3. 当n=3时,幂函数就是三次函数,即f(x)=ax^3、它的图像是一个类似于字母"S"形状的曲线。

幂函数的性质如下:1.当n为奇数时,函数图像关于y轴对称;当n为偶数时,函数图像关于原点对称。

2.当a>0时,函数递增;当a<0时,函数递减。

3.当n>1时,函数在原点附近增长或下降得非常快;当n=1时,函数图像为一条直线,增长或下降速度相对较慢。

二、二次函数的定义与性质二次函数是指由x的二次幂和一次幂构成的函数,其一般形式可以表示为f(x)=ax^2+bx+c,其中a、b、c为实数且a不为0。

二次函数的图像是一个开口向上或向下的抛物线。

二次函数的性质如下:1.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 抛物线的顶点坐标为(-b/2a, c-b^2/4a),其中b^2-4ac<0时,抛物线没有实根;b^2-4ac=0时,抛物线与x轴相切;b^2-4ac>0时,抛物线与x轴有两个交点。

3.如果a>0,则抛物线的最小值为c-b^2/4a;如果a<0,则抛物线的最大值为c-b^2/4a。

三、幂函数与二次函数的关系从上面的定义与性质可以看出,二次函数是幂函数的一个特例,即二次函数是幂函数在幂次n=2时的情况。

二次函数与幂函数

二次函数与幂函数

二次函数与幂函数1.幂函数 (1)幂函数的定义形如y =x α(α∈R )的函数称为幂函数,其中x 是自变量,α为常数. (2)五种幂函数的图象(3)五种幂函数的性质定义域2.(1)二次函数的图象和性质(2)①一般式:y=ax2+bx+c(a≠0).②顶点式:y=a(x+h)2+k(其中a≠0,顶点坐标为(-h,k)).③两根式:y=a(x-x1)(x-x2)(其中a≠0,x1、x2是二次函数的图象与x轴的两个交点的横坐标).3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)函数f(x)=x2与函数f(x)=2x2都是幂函数.(×)(2)幂函数的图象都经过点(1,1)和点(0,0).(×)(3)幂函数的图象不经过第四象限.(√)(4)当α<0时,幂函数y=xα是定义域上的减函数.(×)(5)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.(×)(6)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.(×)(7)在y=ax2+bx+c(a≠0)中,a决定了图象的开口方向和在同一坐标系中的开口大小.(√)(8)当n>0时,幂函数y=x n是定义域上的增函数.(×)(9)若函数f(x)=(k2-1)x2+2x-3在(-∞,2)上单调递增,则k=±22.(×)(10)已知f(x)=x2-4x+5,x∈[0,3),则f(x)max=f(0)=5,f(x)min=f(3)=2.(×)考点一 二次函数解析式[例1]解析:由于f (x )有两个零点0和-2,所以可设f (x )=ax (x +2)(a ≠0), 这时f (x )=ax (x +2)=a (x +1)2-a , 由于f (x )有最小值-1, 所以必有⎩⎨⎧a >0,-a =-1.解得a =1.因此f (x )的解析式是f (x )=x (x +2)=x 2+2x . 答案:x 2+2x(2)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.解:法一:(利用一般式) 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎨⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二:(利用顶点式)设f (x )=a (x -m )2+n (a ≠0).∵f (2)=f (-1), ∴拋物线的对称轴为x =2+(-1)2=12. ∴m =12.又根据题意函数有最大值8,∴n =8.∴y =f (x )=a 2)21(-x +8.∵f (2)=-1,∴a 2)212(-+8=-1,解得a =-4,∴f (x )=-42)21(-x +8=-4x 2+4x +7.法三:(利用零点式)由已知f (x )+1=0两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1),即f (x )=ax 2-ax -2a -1.又函数有最大值y max =8,即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍).∴所求函数的解析式为f (x )=-4x 2+4x +7.[方法引航] 根据已知条件确定二次函数解析式,一般用待定系数法,规律如下:1.二次函数的图象过点(0,1),对称轴为x =2,最小值为-1,则它的解析式是________. 解析:设y =a (x -2)2-1,当x =0时,4a -1=1,a =12,∴y =12(x -2)2-1. 答案:y =12(x -2)2-12.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.解析:∵f (x )=bx 2+(ab +2a )x +2a 2是偶函数, ∴ab +2a =0(a ≠0),∴b =-2,当x =0时,2a 2=4,∴a 2=2,∴f (x )=-2x 2+4. 答案:-2x 2+4考点二 二次函数图象和性质[例2] 已知函数(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; 解:(1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.[方法引航] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解;(3)对于二次函数的综合应用,要综合应用二次函数与二次方程和二次不等式之间的关系进行转化.1.若本例已知条件不变,求f (x )的最小值. 解:f (x )=(x +a )2+3-a 2,关于x =-a 对称, ∵x ∈[-4,6].①当-a ≤-4,即a ≥4时,f (x )在[-4,6]上为增函数, ∴f (x )min =f (-4)=16-8a +3=19-8a②当-4<-a ≤6,即-6≤a <4时,只有当x =-a 时,f (x )min =3-a 2, ③当-a >6时,即a <-6时,f (x )在[-4,6]上为减函数, ∴f (x )min =f (6)=36+12a +3=39+12a . 综上,当a ≥4时,f (x )min =19-8a . 当-6≤a ≤4时,f (x )min =3-a 2. 当a <-6时,f (x )min =39+12a .2.若本例已知条件不变,f (x )=0在[-4,6]上有两个不相等实根,求a 的取值范围. 解:要使f (x )=0,在[-4,6]上有两个不等实根,需⎩⎨⎧f (-a )<0-4≤-a ≤6f (-4)≥0f (6)≥0即⎩⎨⎧3-a 2<0,-6≤a ≤4,19-8a ≥0,36+12a ≥0.解得,-134≤a <-3或3<a ≤198.3.若本例中f (x )>0在x ∈(0,6]上恒成立,求a 的取值范围. 解:x 2+2ax +3>0,在x ∈(0,6]上恒成立,即2a >-)3(x x +在x ∈(0,6]上恒成立,只需求u =-)3(xx +,x ∈(0,6]的最大值.∵x +3x ≥23,当且仅当x =3时,取等号.∴u max =-23, ∴2a >-23,∴a >- 3.考点三 幂函数图象与性质[例3] (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )解析:∵幂函数y =f (x )的图象过点(4,2),∴f (x )=.答案:C(2)已知函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且x ∈(0,+∞)时,f (x )是增函数,则m 的值为( )A .-1B .2C .-1或2D .3 解析:∵函数f (x )=(m 2-m -1)·xm 2+m -3是幂函数, ∴m 2-m -1=1,解得m =-1或m =2. 又∵函数f (x )在(0,+∞)上为增函数, ∴m 2+m -3>0,∴m =2. 答案:B(3)已知f (x )=21x ,若0<a <b <1,则下列各式正确的是( )A .f (a )<f (b )<f )1(a <f )1(bB .f )1(a <f )1(b<f (b )<f (a )C .f (a )<f (b )<f )1(b <f )1(aD .f )1(a <f (a )<f )1(b<f (b )解析:∵0<a <b <1,∴0<a <b <1b <1a ,又f (x )=21x 为增函数, ∴f (a )<f (b )<f )1(b <f )1(a.答案:C[方法引航] (1)若幂函数y =x α(α∈R )是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断.(2)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.,(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.1.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图 象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c解析:选B.幂函数a =2,b =12,c =-13,d =-1的图象,正好和题目所给的形式相符合,在第一象限内,x =1的右侧部分的图象,图象由下至上,幂指数增大,所以a >b >c >d .故选B. 2.若3131)23()1(---<+a a ,则实数a 的取值范围是________.解析:不等式3131)23()1(---<+a a 等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a . 解得a <-1或23<a <32.答案:(-∞,-1)∪)23,32([规范答题] “三个二次”间的转化二次函数与一元二次方程、一元二次不等式统称为“三个二次”,它们常有机结合在一起,而二次函数是“三个二次”的核心,通过二次函数的图象将其贯穿为一体.因此,有关二次函数的问题,常利用数形结合法、分类讨论法转化为方程与不等式来解决. [典例] (本题满分12分)已知f (x )=ax 2-2x (0≤x ≤1) (1)求f (x )的最小值;(2)若f (x )≥-1恒成立,求a 的范围; (3)若f (x )=0的两根都在[0,1]内,求a 的范围.[规范解答] (1)①当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.②当a >0时,f (x )=ax 2-2x 的图象的开口方向向上,且对称轴为x =1a .2分ⅰ.当0<1a ≤1,即a ≥1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]内,∴f (x )在]1,0[a上递减,在]1,1[a上递增. ∴f (x )min =f )1(a=1a -2a =-1a .4分ⅱ.当1a >1,即0<a <1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2.6分③当a <0时,f (x )=ax 2-2x 的图象的开口方向向下, 且对称轴x =1a <0,在y 轴的左侧, ∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a ,a ≥1.8分(2)只需f (x )min ≥-1,即可.由(1)知,当a <1时,a -2≥-1,∴a ≥1(舍去); 当a ≥1时,-1a ≥-1恒成立,∴a ≥1.10分(3)由题意知f (x )=0时,x =0,x =2a (a ≠0), 0∈[0,1],∴0<2a ≤1,∴a ≥2.12分 [规范建议] (1)分清本题讨论的层次 第一层:函数类型a =0和a ≠0. 第二层:开口方向a >0和a <0.第三层:对称轴x =1a 与区间[0,1]的位置关系,左、内、右. (2)讨论后要有总结答案.[高考真题体验]1.(2016·高考全国丙卷)已知342=a ,323=b ,3125=c 则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b解析:选A.,323442==a ,3231525==c 而函数32x y =在(0,+∞)上单调递增,所以323232543<<,即b <a <c ,故选A.2.(2015·高考山东卷)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <c D .b <c <a解析:选C.由指数函数y =0.6x 在(0,+∞)上单调递减,可知0.61.5<0.60.6,由幂函数y =x 0.6在(0,+∞)上单调递增,可知0.60.6<1.50.6,所以b <a <c ,故选C.3.(2013·高考北京卷)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =e -x C .y =-x 2+1 D .y =lg|x |解析:选C.A 中y =1x 是奇函数,A 不正确;B 中y =e -x =x e )1(是非奇非偶函数,B 不正确;C中y =-x 2+1是偶函数且在(0,+∞)上是单调递减的,C 正确;D 中y =lg|x |在(0,+∞)上是增函数,D 不正确.故选C.4.(2014·高考课标卷Ⅰ )设函数⎪⎩⎪⎨⎧≥<=-1,1,)(311x x x e x f x 则使得f (x )≤2成立的x 的取值范围是________.解析:f (x )≤2⇒⎩⎨⎧ x <1,e x -1≤2或⎪⎩⎪⎨⎧≤≥2131x x ⇒⎩⎨⎧ x <1,x ≤ln 2+1或⎩⎨⎧x ≥1,x ≤8⇒x <1或1≤x ≤8⇒x ≤8,故填(-∞,8].答案:(-∞,8]5.(2015·高考天津卷)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.解析:由已知条件得b =8a ,令f (a )=log 2a ·log 2(2b ),则f (a )=log 2a ·log 216a =log 2a (log 216-log 2a )=log 2a (4-log 2a )=-(log 2a )2+4log 2a =-(log 2a -2)2+4, 当log 2a =2,即a =4时,f (a )取得最大值. 答案:4课时规范训练 A 组 基础演练1.已知二次函数的图象如图所示,那么此函数的解析式可能是( )A .y =-x 2+2x +1B .y =-x 2-2x -1C .y =-x 2-2x +1D .y =x 2+2x +1解析:选C.设二次函数的解析式为f (x )=ax 2+bx +c (a ≠0),由题图象得:a <0,b <0,c >0.选C.2.若函数f (x )是幂函数,且满足f (4)=3f (2),则)21(f 的值为( )A.13B.12C.23D.43 解析:选A.设f (x )=x a, 又f (4)=3f (2),∴4a =3×2a ,解得a =log 23,∴)21(f =3log 2)21(3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )解析:选C.若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b 2a <0,而二次函数的对称轴在y 轴的右侧,故应排除B ,因此选C.4.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么( )A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)解析:选D.由f (1+x )=f (-x )知f (x )的图象关于x =12对称,又抛物线开口向上,结合图象(图略)可知f (0)<f (2)<f (-2).5.若f (x )=x 2-ax +1有负值,则实数a 的取值范围是( )A .a ≤-2B .-2<a <2C .a >2或a <-2D .1<a <3解析:选C.∵f (x )=x 2-ax +1有负值,∴Δ=a 2-4>0,则a >2或a <-2.6.若方程x 2-11x +30+a =0的两根均大于5,则实数a 的取值范围是________. 解析:令f (x )=x 2-11x +30+a .结合图象有⎩⎨⎧ Δ≥0f (5)>0,∴0<a ≤14. 答案:0<a ≤147.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________.解析:由已知得⎩⎪⎨⎪⎧ a >0,4ac -164a=0,⇒⎩⎨⎧a >0,ac -4=0. 答案:a >0,ac =48.已知f (x )=4x 2-mx +5在[2,+∞)上是增函数,则实数m 的取值范围是________.解析:因为函数f (x )=4x 2-mx +5的单调递增区间为),8[+∞m ,所以m 8≤2,即m ≤16. 答案:(-∞,16]9.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值.解:函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,对称轴方程为x =a .(1)当a <0时,f (x )max =f (0)=1-a ,∴1-a =2,∴a =-1.(2)当0≤a ≤1时,f (x )max =a 2-a +1,∴a 2-a +1=2,∴a 2-a -1=0,∴a =1±52(舍).(3)当a >1时,f (x )max =f (1)=a ,∴a =2.综上可知,a =-1或a =2.10.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图象过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[-1,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解:(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a .因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0.所以4a 2-4a =0,所以a =1,所以b =2.所以f (x )=(x +1)2.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1=2)22(--k x +1-(k -2)24. 由g (x )的图象知:要满足题意,则k -22≥2或k -22≤-1,即k ≥6或k ≤0,∴所求实数k 的取值范围为(-∞,0]∪[6,+∞).B 组 能力突破1.若幂函数222)33(--⋅+-=m m x m m y 的图象不过原点,则m 的取值是( ) A .-1≤m ≤2 B .m =1或m =2 C .m =2 D .m =1解析:选B.由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.2.已知函数f (x )=x 2+x +c .若f (0)>0,f (p )<0,则必有( )A .f (p +1)>0B .f (p +1)<0C .f (p +1)=0D .f (p +1)的符号不能确定解析:选A.函数f (x )=x 2+x +c 的图象的对称轴为直线x =-12,又∵f (0)>0,f (p )<0,∴-1<p <0,p +1>0,∴f (p +1)>0.3.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是( )A .②④B .①④C .②③D .①③解析:选B.由函数图象知,a <0,与x 轴有两个交点,∴b 2-4ac >0,即b 2>4ac .对称轴x =-b 2a=-1,∴2a -b =0. 当x =-1时,对应最大值,f (-1)=a -b +c >0.∵b =2a ,a <0,∴5a <2a ,即5a <b .4.已知幂函数f (x )=21-x ,若f (a +1)<f (10-2a ),则a 的取值范围是________.解析:∵f (x )=21-x =1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ), ∴⎩⎨⎧ a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎨⎧ a >-1,a <5,a >3,∴3<a <5.答案:(3,5) 5.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧ f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.解:(1)由已知c =1,a -b +c =0,且-b 2a =-1,解得a =1,b =2.∴f (x )=(x +1)2.∴F (x )=⎩⎨⎧(x +1)2,x >0,-(x +1)2,x <0. ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b≤1x-x且b≥-1x-x在(0,1]上恒成立.又1x-x的最小值为0,-1x-x的最大值为-2.∴-2≤b≤0.故b的取值范围是[-2,0].。

二次函数与幂函数

二次函数与幂函数

二次函数与幂函数介绍:二次函数与幂函数是数学中重要的函数类型,它们在各个领域具有广泛的应用。

本文将从定义、图像、性质等方面介绍二次函数与幂函数,帮助读者全面了解这两种函数。

一、二次函数二次函数是指函数表达式中含有$x^2$项的函数,其一般形式为$f(x)=ax^2+bx+c$,其中$a \neq 0$,$a$、$b$、$c$为常数。

1. 定义二次函数可以通过改变系数$a$、$b$、$c$的值来改变函数的形状和特点。

其中,系数$a$决定二次函数的开口方向,若$a>0$,二次函数开口向上;若$a<0$,二次函数开口向下。

2. 图像二次函数的图像呈现抛物线的形状,称为二次曲线。

图像在平面$x$轴上对称,其中顶点为$(h, k)$,其中$h=-\frac{b}{2a}$,$k=c-\frac{b^2}{4a}$。

根据顶点的坐标,可以确定二次函数的平移和缩放变换。

3. 性质二次函数的性质包括:定义域、值域、奇偶性、单调性等。

其定义域为实数集,值域的范围取决于二次函数开口的方向。

奇偶性与二次函数的对称性相关,若$f(x)=-f(-x)$,则为奇函数;若$f(x)=f(-x)$,则为偶函数。

二次函数在开区间上可以是增函数或减函数。

二、幂函数幂函数是指函数表达式形式为$f(x)=ax^k$的函数,其中$a$和$k$为常数,$a \neq 0$,$k$为实数。

1. 定义幂函数以$x$的幂次为变量,其图像形状随参数$a$和$k$的取值而变化。

常见的幂函数有正幂函数($a>0$)、负幂函数($a<0$)和倒数函数($k=-1$)。

2. 图像幂函数的图像可以是直线、曲线或者曲线段。

具体的形状取决于参数$a$和$k$的取值。

幂函数的图像可在平面上进行平移、压缩和扭曲操作。

3. 性质幂函数的性质包括:定义域、值域、奇偶性、单调性等。

其定义域为正实数集或者整个实数集,取决于指数$k$的值。

值域的范围取决于参数$a$和$k$的正负。

二次函数与幂函数

二次函数与幂函数
所以 m
1 3 1 1 3 | x x x | ( ,0) 。 m 时, ,所以 1 2 3 max 4 16 16
(3) P23已知函数f(x)=x2-2(a+2)x+a2,g(x)= -x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)}, H2(x)=min{f(x),g(x)}。max{p,q}表示中的较大值, min{p,q}表示p,q中的较小值,记H1(x)得最小值 为A,H2(x)得最小值为B,则A-B=(B ) A.a2-2a-16 B.a2-2a-16 C.-16 D.16
x(2 x 1), x 0 f ( x) 解答:由题可得, x( x 1), x 0
1 1 ( , ) 2 4
x x1
(0,0)
ym
(1,0)
x x 2 x x3
1 1 1 m , x2 x3 , | x1 | 可得 m (0, 4 ), x 2 x3 2 , x1 0 , 且 4
例1(3) 已知幂函数f(x)=(m2-m-1)x-5m-3 在(0,+∞)上是增函数,则m=________. [解答] ∵函数f(x)=(m2-m-1)x-5m-3是幂 函数, ∴m2-m-1=1,解得m=2或m=-1. 当m=2时,-5m-3=-13,函数y=x-13在 (0,+∞)上是减函数; 当m=-1时,-5m-3=2,函数y=x2在(0, +∞)上是增函数. ∴m=-1. [答案] -1
[反思感悟]二次函数、二次方程与二次不等式统称 “三个二次”,它们常结合在一起,有关二次函数的 问题,数形结合,密切联系图象是探求解题思路的有 效方法.一般从:①开口方向;②对称轴位置;③判 别式;④端点函数值符号四个方面分析.

二次函数与幂函数的关系与性质

二次函数与幂函数的关系与性质

二次函数与幂函数的关系与性质二次函数和幂函数是高中数学中重要的概念,它们在数学中有着广泛的应用。

本文将重点讨论二次函数与幂函数之间的关系与性质。

一、二次函数的定义和性质二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a ≠ 0。

二次函数的图像通常是一条U形曲线,被称为抛物线。

1. 零点和解析式二次函数的零点是指使函数值等于零的x值,即f(x) = 0的解。

二次函数的求解可以使用配方法、因式分解或求根公式来进行。

2. 对称轴和顶点二次函数的对称轴是指抛物线的对称轴线,它与抛物线的顶点重合。

二次函数的对称轴的方程为x = -b/2a,顶点的坐标为(-b/2a, f(-b/2a))。

3. 函数的增减性当a > 0时,二次函数是开口向上的,即函数的图像在对称轴的两侧递增;当a < 0时,二次函数是开口向下的,即函数的图像在对称轴的两侧递减。

4. 函数的最值当a > 0时,二次函数的最小值为f(-b/2a);当a < 0时,二次函数的最大值为f(-b/2a)。

二、幂函数的定义和性质幂函数是指形如f(x) = ax^b的函数,其中a为非零实数,b为实数。

幂函数的特点是具有不同的增长速度和变化趋势。

1. 底数和指数幂函数中的x称为底数,b称为指数。

不同的底数和指数会导致幂函数的图像形状和性质的差异。

2. 增减性与奇偶性当b > 0时,幂函数是递增的;当b < 0时,幂函数是递减的。

当b为偶数时,幂函数的图像关于y轴对称;当b为奇数时,幂函数的图像不对称。

3. 渐近线和极限当b > 1时,幂函数的图像会趋近于x轴正半轴;当b < 1时,幂函数的图像会趋近于x轴负半轴。

幂函数在x = 0处的极限取决于指数b的正负性。

三、二次函数与幂函数的关系二次函数其实可以看作是幂函数的一种特殊情况,即当指数b为2时。

因此,二次函数可以被视为幂函数的一种扩展形式,二次函数的性质也可以通过幂函数的性质进行类比和推导。

二次函数与幂函数

二次函数与幂函数

二次函数与幂函数一、二次函数1. 定义二次函数是指形如f(x)=ax2+bx+c的函数,其中a eq0,a、b和c为常数,x为自变量。

2. 基本性质•二次函数的图像是一个抛物线,开口方向由二次项的系数a决定:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

•二次函数的对称轴是一个直线,其方程为 $x = -\\frac{b}{2a}$。

•二次函数的顶点是对称轴上的点,坐标为 $\\left(-\\frac{b}{2a}, f\\left(-\\frac{b}{2a}\\right)\\right)$。

•当a>0时,二次函数的最小值为 $f\\left(-\\frac{b}{2a}\\right)$;当a<0时,二次函数的最大值为 $f\\left(-\\frac{b}{2a}\\right)$。

3. 图像变换对二次函数进行平移、伸缩和翻转等操作,可以得到不同形状的图像。

•平移:设二次函数为f(x)=x2,当向右平移ℎ个单位,得到f(x−ℎ)=(x−ℎ)2;当向上平移k个单位,得到f(x)+k=x2+k。

•伸缩:设二次函数为f(x)=x2,当横坐标伸缩为原来的m倍,纵坐标伸缩为原来的n倍,得到 $f\\left(\\frac{x}{m}\\right) \\cdot n =\\left(\\frac{x}{m}\\right)^2 \\cdot n = \\frac{n}{m^2}x^2$。

•翻转:设二次函数为f(x)=x2,当横坐标翻转,得到f(−x)= (−x)2=x2;当纵坐标翻转,得到−f(x)=−x2。

二、幂函数1. 定义幂函数是指形如f(x)=ax b的函数,其中a eq0,a和b为常数,x为自变量。

2. 基本性质•幂函数的图像形状取决于指数b的正负和大小。

当b>0且a>0时,幂函数图像在第一象限上递增;当b>0且a<0时,幂函数图像在第一象限上递减;当b<0时,幂函数图像在第一象限上有一个水平渐近线y=0。

高中 幂函数与二次函数知识点+例题+练习 含答案

高中 幂函数与二次函数知识点+例题+练习 含答案

教学内容幂函数与二次函数教学目标了解幂函数与二次函数的形式重点幂函数与二次函数难点幂函数与二次函数教学准备教学过程幂函数与二次函数知识梳理1.幂函数(1)幂函数的定义形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象2.二次函数(1)二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.(2)二次函数的三种常见解析式①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-m)2+n(a≠0),(m,n)为顶点坐标;③两根式:f(x)=a(x-x1)(x-x2)(a≠0)其中x1,x2分别是f(x)=0的两实根.教学效果分析教学过程(3)二次函数的图象和性质函数二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象a>0a<0定义域R R值域y∈⎣⎢⎡⎭⎪⎫4ac-b24a,+∞y∈⎝⎛⎦⎥⎤-∞,4ac-b24a对称轴x=-b2a顶点坐标⎝⎛⎭⎪⎫-b2a,4ac-b24a奇偶性b=0⇔y=ax2+bx+c(a≠0)是偶函数递增区间⎝⎛⎭⎪⎫-b2a,+∞⎝⎛⎭⎪⎫-∞,-b2a递减区间⎝⎛⎭⎪⎫-∞,-b2a⎝⎛⎭⎪⎫-b2a,+∞最值当x=-b2a时,y有最小值y min=4ac-b24a当x=-b2a时,y有最大值y max=4ac-b24a辨析感悟1.对幂函数的认识(1)函数f(x)=x2与函数f(x)=2x2都是幂函数.( )(2)幂函数的图象都经过点(1,1)和(0,0).( )(3)幂函数的图象不经过第四象限.( )2.对二次函数的理解(4)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.( )(5)(教材习题改编)函数f(x)=12x2+4x+6,x∈[0,2]的最大值为16,最小值为-2.( )教学效果分析教学过程[感悟·提升]三个防范一是幂函数的图象最多出现在两个象限内,一定会经过第一象限,一定不经过第四象限,若与坐标轴相交,则交点一定是原点,但并不是都经过(0,0)点,如(2)、(3).二是二次函数的最值一定要注意区间的限制,不要盲目配方求得结论,如(5)中的最小值就忽略了函数的定义域.考点一幂函数的图象与性质的应用【例1】(1)(2014·济南模拟)已知幂函数y=f(x)的图象过点⎝⎛⎭⎪⎫12,22,则log4f(2)的值为________.(2)函数y=13x的图象是________.规律方法(1)幂函数解析式一定要设为y=xα(α为常数)的形式;(2)可以借助幂函数的图象理解函数的对称性、单调性;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.【训练1】比较下列各组数的大小:⑴121.1,120.9,1;⑵2322⎛⎫- ⎪⎝⎭,23107-⎛⎫- ⎪⎝⎭,()431.1-.教学效果分析教学过程考点二二次函数的图象与性质【例2】(2013·浙江七校模拟)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是________.规律方法解决二次函数的图象问题有以下两种方法:(1)排除法,抓住函数的特殊性质或特殊点;(2)讨论函数图象,依据图象特征,得到参数间的关系.【训练2】(2012·山东卷改编)设函数f(x)=1x,g(x)=-x2+bx,若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则x1+x2________0,y1+y2________0(比较大小).教学效果分析教学过程1.对于幂函数的图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.二次函数的综合应用多涉及单调性与最值或二次方程根的分布问题,解决的主要思路是等价转化,多用到数形结合思想与分类讨论思想.3.对于与二次函数有关的不等式恒成立或存在问题注意等价转化思想的运用.答题模板2——二次函数在闭区间上的最值问题【典例】(12分)(经典题)求函数f(x)=-x(x-a)在x∈[-1,1]上的最大值.[反思感悟] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.(2)部分学生易出现两点错误:①找不到分类的标准,无从入手;②书写格式不规范,漏掉结论答题模板第一步:配方,求对称轴.第二步:分类,将对称轴是否在给定区间上分类讨论.第三步:求最值.第四步:下结论.【自主体验】已知函数f(x)=-4x2+4ax-4a-a2在区间[0,1]内有一个最大值-5,求a的值.教学效果分析。

幂函数与二次函数

幂函数与二次函数
解析:若 m=0;显然-1<0 恒成立, m<0, 若 m≠0,则 ∴-4<m<0. Δ<0. 故所求范围为:-4<m≤0.
[例 1]
(2011· 陕西高考)
1
函数 y= x 3 的图象 是(
B)
[例2]
(2010· 安徽高考)
设abc>0,二次函数 f(x)=ax2+bx+c的 图象可能是( D )
(3)由函数f(x)在[-3,3]上的单调性可知,f(x)在x=-3或x=1处 取得最小值f(-3)=-k2或f(1)=-1,而在x=-1或x=3处取得 1 最大值f(-1)=-k或f(3)=-k. (9分)
故有①k<-1时,f(x)在x=-3处取得最小值f(-3)=-k2,在x =-1处取得最大值f(-1)=-k. (10分)
B
)
1 a a B.(0.2) > >2a 2 1 a a D.2a>(0.2) > 2
二、二次函数y=ax2+bx+c
a>0
(a≠0)的图象及其性质
a<0
图象
b x=- 2a
b x=- 2a
定义域 值域
R
4ac-b2 [ ,+∞) 4a
R
4ac-b2 (-∞, ) 4a
2 2 b b b f(x1+x2)=f-a=a· 2- a +c=c a
[考题范例] (12分)(2010· 广东高考)已知函数f(x)对任意实数x均有f(x) =kf(x+2),其中常数k为负数,且f(x)在区间[0,2]上有表
达式f(x)=x(x-2).
(1) 求f(-1),f(2.5)的值; (2)写出f(x)在[-3,3]上的表达式,并讨论函数f(x)在[- 3,3]上的单调性; (3)求出f(x)在[-3,3]上的最小值与最大值,并求出相应 的自变量的取值.

幂函数与二次函数

幂函数与二次函数

幂函数与二次函数知识梳理1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)常见的5种幂函数的性质(1)二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.(2)二次函数的图象和性质例1、已知幂函数y=f(x)的图象经过点,则的值是()A.﹣B.1C.D.﹣1例2、若函数f(x)=(m2﹣2m﹣2)x m﹣1是幂函数,且y=f(x)在(0,+∞)上单调递增,则f(2)=()A.B.C.2D.4例3、已知幂函数g(x)=(2a﹣1)x a+1的图象过函数f(x)=m x﹣b﹣(m>0,且m≠1)的图象所经过的定点,则b的值等于()A.±B.±C.2D.±2答案:A D B练习1、已知幂函数y=f(x)的图象过点(2,8),则的值为()A.﹣2B.C.D.﹣22、若函数f(x)=(m2﹣2m﹣2)x m﹣1是幂函数,则m=()A.3B.﹣1C.3或﹣1D.3、函数y=x a,y=x b,y=x c的大致图象如图所示,则实数a,b,c的大小关系是()A.c<b<a B.a<b<c C.b<c<a D.c<a<b4、已知幂函数f(x)=(m2﹣3)x m在(0,+∞)上为减函数,则f(3)=()A.B.9C.D.35、已知幂函数y=f(x)的图象过点,则下列结论正确的是()A.y=f(x)的定义域为[0,+∞)B.y=f(x)在其定义域上为减函数C.y=f(x)是偶函数D.y=f(x)是奇函数6、已知幂函数f(x)=(m2﹣5m+5)•x m+1为奇函数,则m=()A.1B.4C.1或4D.27、已知幂函数f(x)=(a2﹣2a﹣2)•x a在区间(0,+∞)上是单调递增函数,则a的值为()A.3B.﹣1C.﹣3D.18、已知函数f(x)=(m2﹣m﹣1)x是幂函数,且其图象与两坐标轴都没有交点,则实数m=()A.﹣1B.2C.3D.2或﹣1要点二、幂函数的综合应用例4、已知函数f(x)=(m2+m﹣1)x m是幂函数,且在(0,+∞)上是减函数.(1)求实数m的值;(2)请画出f(x)的草图.(3)若f(2a﹣1)>f(a),a∈R成立,求a的取值范围.【解答】解:(1)由函数f(x)是幂函数,则m2+m﹣1=1,解得m=﹣2或m=1,又因为f(x)在(0,+∞)上是减函数,所以m=﹣2;(2)由(1)知,f(x)=x﹣2,则f(x)的大致图象如图所示:(3)由(2)知,f(x)的图象关于y轴对称,且在(0,+∞)上递减,则由f(2a﹣1)>f(a),得|2a﹣1|<|a|,即(2a﹣1)2<a2,可得(a﹣1)(3a﹣1)<0,解得<a<1,又a≠,∴a的取值范围为(,)∪(,1).练习9、已知幂函数(m∈N*)的图象经过点.(1)试求m的值并写出该函数的解析式;(2)试求满足f(1+a)>f(4﹣2a)的实数a的取值范围.10、已知幂函数f(x)=(m2﹣m﹣1)•x﹣2m﹣1在(0,+∞)上单调递增,又函数g(x)=2x.(1)求实数m的值,并说明函数g(x)的单调性;(2)若不等式g(1﹣3t)+g(1+t)≥0恒成立,求实数t的取值范围.要点三、二次函数的综合应用例5、函数f(x)=x2﹣(4a﹣1)x+5,在[﹣1,2]上不单调,则实数a的取值范围是(B)A.B.C.D.例6、对a,b∈R,记,则函数f(x)=max{x+1,x2+2x+1}的最小值是(D)A.4B.2C.1D.0例7、已知函数(m∈Z)为偶函数.(1)若f(3)<f(5),求f(x);(2)在(1)的条件下,求g(x)=f(x)﹣ax在[2,3]上的最小值h(a)【解答】解:(1)因为f(x)为偶函数,所以﹣2m2+m+3为偶数,又f(3)<f(5),所以<,即,所以﹣2m2+m+3>0,解得,又m∈Z,所以m=0或m=1;当m=0时,﹣2m2+m+3=3,舍去;当m=1时,﹣2m2+m+3=2,成立;所以f(x)=x2;(2)由(1)知,g(x)=x2﹣ax,当a≤4时,g(x)在[2,3]上单调递增,函数g (x )的最小值为h (a )=g (2)=4﹣2a ;当4<a <6时,g (x )在[2,]上单调递减,(,3]上单调递增, 所以函数g (x )的最小值为h (a )=g ()=﹣;当a ≥6时,g (x )在[2,3]上单调递减, 函数g (x )的最小值为h (a )=g (3)=9﹣3a ;综上,ha )=.练习11、已知函数f (x )=2x 2+kx ﹣1在区间[1,2]上是单调函数,则实数k 的取值范围( ) A .(﹣∞,﹣8]∪[﹣4,+∞) B .[﹣8,﹣4] C .(﹣∞,﹣4]∪[﹣2,+∞)D .[﹣4,﹣2]12、函数f (x )=﹣x 2+2(a ﹣1)x +2在(﹣∞,﹣4)上是增函数,则a 的范围是( ) A .[5,+∞)B .[﹣3,+∞)C .(﹣∞,﹣3]D .(﹣∞,﹣5]13、给定函数f (x )=x 2,g (x )=x +2,对于∀x ∈R ,用M (x )表示f (x ),g (x )中较大者,记为M (x )=max {f (x ),g (x )},则M (x )的最小值为( ) A .﹣1B .1C .2D .414、已知函数2()21f x x ax =++, (1)求()f x 在区间[]1,2-的最小值()g a15、已知函数()y f x =是二次函数,且满足(0)3f =,(1)(3)0f f -== (1)求()y f x =的解析式;(2)若[,2]x t t ∈+,试将()y f x =的最大值表示成关于t 的函数()g t .答案:1、B 2、C 3、A 4、A 5、B 6、B 7、A 8、A 9、f (x )==a 的取值范围为(1,2].10、(1)m =﹣1 单调递减 (2)t ≤111、A 12、B 13、A14()222,11,1252,2a a g a a a a a -<-⎧⎪∴=-+-≤≤⎨⎪+>⎩15、(1)2()23f x x x =-++;(2)2223(1)()4(11)23(1)t t t g t t t t t ⎧--+≤-⎪=-<<⎨⎪-++≥⎩。

幂函数与二次函数

幂函数与二次函数

因为 f(x)=k· x 是幂函数,所以 k=1.又
2 1 1 3 2 ,所以 α=2,所以 k+α=1+2=2.
答案 C
10
基础诊断
考点突破
3.(2016· 全国Ⅲ卷)已知 a=23,b=33,c=253,则( A.b<a<c C.b<c<a
解析
4 2
4
2
1
)
B.a<b<c D.c<a<b
2 2 2
B.与a有关,但与b无关
D.与a无关,但与b有关
解析 设x1,x2分别是函数f(x)在[0,1]上的最小值点与最大值点,
2 ∴M-m=x2 2-x1+a(x2-x1),显然此值与 a 有关,与 b 无关.
答案 B
12
基础诊断
考点突破
5.若函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数,则实数a的取值范围是 ________. 解析 二次函数f(x)图象的对称轴是x=1-a,由题意知1-a≥3,∴a≤-2.
图象 (抛物线) 定义域 值域
4ac-b2 ,+∞ 4a
R
2 4 ac - b -∞, 4a
5
基础诊断
考点突破
对称轴
b x=-2a
2 4 ac - b b - , 2a 4a
顶点坐标 奇偶性
当 b=0 时是偶函数,当 b≠0 时是非奇非偶函数
b 在-∞,-2a上是减函数; b 在-2a,+∞上是增函数 b 在-∞,-2a上是增函数; b 在-2a,+∞上是减函数
单调性
6
基础诊断
考点突破

幂函数与二次函数

幂函数与二次函数

A.-3
B.1
C.2
D.1 或 2
解析:由于 f(x)为幂函数,所以 n2+2n-2=1,解得 n=1 或 n=-3,经检验只有 n=1 符合题意,故选 B.
答案:B
4.(2020·潍坊模拟)若
,则实数 a 的取值范围是________.
解析:不等式
等价于 a+1>3-2a>0 或 3-2a<a+1<0 或 a
命题点 3 二次函数的最值 例 4 已知函数 f(x)=ax2-2x(a>0),求函数 f(x)在 x∈[0,1]上的最小值. 解:函数 f(x)=ax2-2x(a>0)的图象开口方向向上,且对称轴为 x=1a. (1)当1a≤1,即 a≥1 时,f(x)=ax2-2x 的图象对称轴在[0,1]内, ∴f(x)在0,1a上单调递减,在1a,1上单调递增. ∴f(x)min=f1a=1a-2a=-1a.
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)二次函数 y=ax2+bx+c(a≠0),x∈[a,b]的最值一定是4ac4-a b2.( × ) (2)在 y=ax2+bx+c(a≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的 开口大小.( √ )
(3)函数 y= 是幂函数.( × ) (4)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (5)当 n<0 时,幂函数 y=xn 是定义域上的减函数.( × )
(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2 为 f(x)的零点.
2.形如 f(x)= (其中 m∈N*,n∈Z,m 与 n 互质)的幂函数的性质 (1)当 n 为偶数时,f(x)为偶函数,图象关于 y 轴对称; (2)当 m,n 都为奇数时,f(x)为奇函数,图象关于原点对称; (3)当 m 为偶数时,x>0(或 x≥0),f(x)是非奇非偶函数,图象只在第一象限(或第 一象限及原点处).

2023届高考数学一轮复习讲义:第10讲 幂函数与二次函数

2023届高考数学一轮复习讲义:第10讲 幂函数与二次函数

第10讲 幂函数与二次函数1.幂函数 (1)定义形如 的函数称为幂函数,其中底数x 是自变量,α为常数.常见的五类幂函数为y =x ,y =x 2,y =x 3,y =x 12,y =x -1.(2)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )= ; ②顶点式:f (x )= ; ③零点式:f (x )= . (2)二次函数的图象和性质 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在上单调递减;在上单调递增在上单调递增;在上单调递减奇偶性当时为偶函数,当b≠0时为非奇非偶函数顶点对称性图象关于直线x=-b2a成轴对称图形➢考点1 ******[名师点睛]1.对于幂函数图像的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x =1,y=1,y=x所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,可结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图像越靠近x轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x轴(简记为“指大图高”).[典例]1.(2022·全国·高三专题练习)若幂函数()m nf x x(m,n∈N*,m,n互质)的图像如图所示,则()A.m,n是奇数,且mn<1B.m是偶数,n是奇数,且mn>1C.m是偶数,n是奇数,且mn<1D .m 是奇数,n 是偶数,且m n>1 2.(2022·全国·高三专题练习)幂函数223()(55)()m mf x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,则m 的值为( ) A .﹣6B .1C .6D .1或﹣63.(2022·全国·高三专题练习)已知幂函数()(1)n f x m x =-的图象过点(,8)m .设()0.32a f =,()20.3b f =,()2log 0.3c f =,则a ,b ,c 的大小关系是( )A .b c a <<B .a c b <<C .a b c <<D .c b a <<[举一反三]1.(2022·北京·二模)下列函数中,与函数3y x =的奇偶性相同,且在()0,+∞上有相同单调性的是( )A .12xy ⎛⎫= ⎪⎝⎭B .ln y x =C .sin y x =D .y x x =2.(2022·全国·高三专题练习)已知幂函数y =f (x )经过点(3,则f (x )( ) A .是偶函数,且在(0,+∞)上是增函数 B .是偶函数,且在(0,+∞)上是减函数 C .是奇函数,且在(0,+∞)上是减函数 D .是非奇非偶函数,且在(0,+∞)上是增函数 3.(2022·全国·高三专题练习)函数2()-=a f x x 与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减的一个充分不必要条件是( ) A .(0,2)B .[0,1)C .[1,2)D .(1,2]4.(多选)(2022·广东潮州·二模)已知幂函数()f x 的图象经过点4,2,则下列命题正确的有( ).A .函数()f x 的定义域为RB .函数()f x 为非奇非偶函数C .过点10,2P ⎛⎫⎪⎝⎭且与()f x 图象相切的直线方程为1122y x =+D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭5.(2022·海南·文昌中学高三阶段练习)已知幂函数()()a f x x a R =∈过点A (4,2),则f (14)=___________.6.(2022·北京通州·一模)幂函数()mf x x =在()0,∞+上单调递增,()ng x x =在()0,∞+上单调递减,能够使()()y f x g x =-是奇函数的一组整数m ,n 的值依次是__________. 7.(2022·重庆·二模)关于x 的不等式()999999999999121x x x --⋅≤+,解集为___________.8.(2022·全国·高三专题练习)如图是幂函数i y x α=(αi >0,i =1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,412α=,513α=,已知它们具有性质: ①都经过点(0,0)和(1,1); ②在第一象限都是增函数.请你根据图象写出它们在(1,+∞)上的另外一个共同性质:___________.9.(2022·广东深圳·高三期末)已知函数()f x 的图像关于原点对称,且在定义域内单调递增,则满足上述条件的幂函数可以为()f x =______.10.(2022·北京·高三专题练习)已知幂函数()()2151m h x m m x +=-+为奇函数.(1)求实数m 的值;(2)求函数()()()11202g x h x h x x ⎫⎡⎫=-∈⎪⎪⎢⎣⎭⎭,的值域.➢考点2 二次函数的解析式[名师点睛]求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:[典例]1.(2022·全国·高三专题练习)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,二次函数的解析式是_______2.(2022·全国·高三专题练习)已知()f x 为二次函数,()00f =,()()22132f x f x x x +-=++,求()f x 的解析式.[举一反三]1.(2022·全国·高三专题练习)若函数12x y a -=+过定点P ,以P 为顶点且过原点的二次函数()f x 的解析式为( )A .()236f x x x =-+B .()224f x x x =-+C .()236f x x x =- D .()224f x x x =-2.(2022·全国·高三专题练习)已知()f x 为二次函数,且()()21f x x f x '=+-,则()f x =( ) A .221x x -+ B .221x x ++ C .2221x x -+D .2221x x +-3.(2022·全国·高三专题练习)已知()f x 是二次函数且满足(0)1,(1)()2f f x f x x =+-=,则函数()f x 的解析式为________.➢考点3 二次函数的图象与性质[典例]1.(2022·全国·高三专题练习)函数()()20f x ax bx c a =++≠和函数()()g x c f x '=⋅(其中()f x '为()f x 的导函数)的图象在同一坐标系中的情况可以为( )A .①④B .②③C .③④D .①②③2.(2022·全国·高三专题练习)二次函数()221f x x ax =+-在区间(),1-∞上单调递减的一个充分不必要条件为( ) A .0a ≤B .12a ≤-C .1a ≤-D .2a ≤-3.(2022·全国·高三专题练习)函数21y x ax a =--在12,2⎡⎤--⎢⎥⎣⎦上单调递增,则实数a 的取值范围是_________.4.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________.[举一反三]1.(2022·全国·高三阶段练习)已知函数()2f x ax bx c =++,其中0a >,()00f <,0a b c ++=,则( )A .()0,1x ∀∈,都有()0f x >B .()0,1x ∀∈,都有()0f x <C .()00,1x ∃∈,使得()00f x =D .()00,1x ∃∈,使得()00f x >2.(2022·全国·高三专题练习)已知函数2y ax bx c =++,如果a b c >>且0a b c ++=,则它的图象可能是( )A .B .C .D .3.(2022·全国·高三专题练习)已知函数2()28f x x kx =--在[-2,1]上具有单调性,则实数k 的取值范围是() A .k ≤-8B .k ≥4C .k ≤-8或k ≥4D .-8≤k ≤44.(2022·山东济南·二模)若二次函数2()(0)f x ax bx c a =++<,满足(1)(3)f f =,则下列不等式成立的是( ) A .(1)(4)(2)f f f << B .(4)(1)(2)f f f << C .(4)(2)(1)f f f <<D .(2)(4)(1)f f f <<5.(多选)(2022·全国·高三专题练习)已知函数f (x )=ax 2+2ax +4(a >0),若x 1<x 2,则( ) A .当x 1+x 2>-2时,f (x 1)<f (x 2) B .当x 1+x 2=-2时,f (x 1)=f (x 2) C .当x 1+x 2>-2时,f (x 1)>f (x 2) D .f (x 1)与f (x 2)的大小与a 有关6.(多选)(2022·全国·高三专题练习)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是( )A .2B .3C .4D .57.(2022·全国·高三专题练习)如果函数2()(6)1f x ax a x =++-在区间(,1)-∞上为增函数,则实数a 的取值范围是______.8.(2022·天津·高三专题练习)已知函数2()2f x x x =-在定义域[]1,n -上的值域为[]1,3-,则实数n 的取值范围为____.9.(2022·全国·高三专题练习)已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式;(2)若函数()()g x f x mx =-在区间[]12-,上是单调函数,求实数m 的取值范围.10.(2022·全国·高三专题练习)已知函数2()24f x kx x k =-+. (Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围; (Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围.11.(2022·全国·高三专题练习)设函数2()1f x ax bx =++(,a b ∈R ),满足(1)0f -=,且对任意实数x 均有()0f x ≥. (1)求()f x 的解析式;(2)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,若()()g x f x kx =-是单调函数,求实数k 的取值范围第10讲 幂函数与二次函数1.幂函数 (1)定义形如y =x α(α∈R )的函数称为幂函数,其中底数x 是自变量,α为常数.常见的五类幂函数为y =x ,y =x 2,y =x 3,y =x 12,y =x -1.(2)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -m )2+n (a ≠0); ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在⎝⎛⎭⎫-∞,-b2a 上单调递减; 在⎣⎡⎭⎫-b2a ,+∞上单调递增 在⎝⎛⎭⎫-∞,-b2a 上单调递增; 在⎣⎡⎭⎫-b2a ,+∞上单调递减 奇偶性 当b =0时为偶函数,当b ≠0时为非奇非偶函数顶点 ⎝⎛⎭⎫-b 2a,4ac -b 24a对称性图象关于直线x =-b2a成轴对称图形➢考点1 ******[名师点睛]1.对于幂函数图像的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x=1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,可结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图像越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x 轴(简记为“指大图高”). [典例]1.(2022·全国·高三专题练习)若幂函数()mn f x x = (m ,n ∈N *,m ,n 互质)的图像如图所示,则( )A .m ,n 是奇数,且mn<1 B .m 是偶数,n 是奇数,且m n >1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>1 【答案】C 【解析】由图知幂函数f (x )为偶函数,且1mn<,排除B ,D ; 当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ; 故选:C.2.(2022·全国·高三专题练习)幂函数223()(55)()m mf x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,则m 的值为( ) A .﹣6 B .1 C .6 D .1或﹣6【答案】B 【解析】∵幂函数223()(55)()mmf x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,∴2255130m m m m ⎧+-=⎨-<⎩,且23m m -为偶数 1m ∴=或6m =-当1m =时,232m m -=-满足条件;当6m =-时,2354m m -=,舍去 因此:m =1 故选:B3.(2022·全国·高三专题练习)已知幂函数()(1)n f x m x =-的图象过点(,8)m .设()0.32a f =,()20.3b f =,()2log 0.3c f =,则a ,b ,c 的大小关系是( )A .b c a <<B .a c b <<C .a b c <<D .c b a <<【答案】D 【解析】因幂函数()()1nf x m x =-的图象过点(),8m ,则11m -=,且8n m =,于是得2m =,3n =,函数3()f x x =,函数()f x 是R 上的增函数,而20.32log 0.300.312<<<<,则有20.32(log 0.3)(0.3)(2)f f f <<,所以c b a <<. 故选:D [举一反三]1.(2022·北京·二模)下列函数中,与函数3y x =的奇偶性相同,且在()0,+∞上有相同单调性的是( )A .12xy ⎛⎫= ⎪⎝⎭B .ln y x =C .sin y x =D .y x x =【答案】D 【解析】由3y x =为奇函数且在()0,+∞上递增,A 、B :12xy ⎛⎫= ⎪⎝⎭、ln y x =非奇非偶函数,排除;C :sin y x =为奇函数,但在()0,+∞上不单调,排除;D :22,0(),0x x y f x x x ⎧-≤⎪==⎨>⎪⎩,显然()()f x f x -=-且定义域关于原点对称,在()0,+∞上递增,满足. 故选:D2.(2022·全国·高三专题练习)已知幂函数y =f (x )经过点(3,则f (x )( ) A .是偶函数,且在(0,+∞)上是增函数 B .是偶函数,且在(0,+∞)上是减函数 C .是奇函数,且在(0,+∞)上是减函数 D .是非奇非偶函数,且在(0,+∞)上是增函数 【答案】D 【解析】设幂函数的解析式为y x α=,将点(的坐标代入解析式得3α=12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数, 故选:D.3.(2022·全国·高三专题练习)函数2()-=a f x x 与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减的一个充分不必要条件是( ) A .(0,2) B .[0,1) C .[1,2) D .(1,2]【答案】C 【解析】函数2()-=a f x x 单调递减可得20a -<及2a <;函数4()-⎛⎫= ⎪⎝⎭xg x a 单调递减可得014a <<,解得04a <<,若函数2()-=a f x x与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减,可得02a <<,由题可得所求区间真包含于()0,2,结合选项,函数2()-=a f x x 与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减的一个充分不必要条件是C.故选:C.4.(多选)(2022·广东潮州·二模)已知幂函数()f x 的图象经过点4,2,则下列命题正确的有( ).A .函数()f x 的定义域为RB .函数()f x 为非奇非偶函数C .过点10,2P ⎛⎫⎪⎝⎭且与()f x 图象相切的直线方程为1122y x =+D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭【答案】BC 【解析】设()f x x α=,将点4,2代入()f x x α=,得24α=,则12α=,即12()f x x =, 对于A :()f x 的定义域为[)0,+∞,即选项A 错误; 对于B :因为()f x 的定义域为[)0,+∞, 所以()f x 不具有奇偶性,即选项B 正确; 对于C :因为12()f x x =,所以()f x '=设切点坐标为(0x ,则切线斜率为()0k f x ='切线方程为0)y x x =-,又因为切线过点1(0,)2P ,所以01)2x =-,解得01x =,即切线方程为11(x 1)2y -=-,即1122y x =+,即选项C 正确;对于D :当120x x <<时,()()212221212[]222f x f x x x x x f +++⎛⎫-=- ⎪⎝⎭⎝⎭212024x x +===-<,即()()1212()22f x f x x xf ++<成立,即选项D 错误.故选:BC .5.(2022·海南·文昌中学高三阶段练习)已知幂函数()()a f x x a R =∈过点A (4,2),则f (14)=___________. 【答案】12 【解析】点A (4,2)代入幂函数()af x x =解得12a =,()12f x x =,1142f ⎛⎫= ⎪⎝⎭ 故答案为:12.6.(2022·北京通州·一模)幂函数()mf x x =在()0,∞+上单调递增,()ng x x =在()0,∞+上单调递减,能够使()()y f x g x =-是奇函数的一组整数m ,n 的值依次是__________. 【答案】1,1-(答案不唯一) 【解析】因为幂函数()mf x x =在()0,∞+上单调递增,所以0m >,因为幂函数()ng x x =在()0,∞+上单调递减,所以0n <,又因为()()y f x g x =-是奇函数,所以幂函数()f x 和幂函数()g x 都是奇函数,所以m 可以是1,n 可以是1-.故答案为:1,1-(答案不唯一).7.(2022·重庆·二模)关于x 的不等式()999999999999121x x x --⋅≤+,解集为___________.【答案】[)1,-+∞ 【解析】由题设,99999999(1)(2)1x x x --≤+,而9999y x =在R 上递增,当12x x ->即1x <-时,99999999(1)(2)01x x x -->>+,原不等式不成立; 当12x x -≤即1x ≥-时,99999999(1)(2)01x x x --≤≤+,原不等式恒成立. 综上,解集为[)1,-+∞. 故答案为:[)1,-+∞8.(2022·全国·高三专题练习)如图是幂函数i y x α=(αi >0,i =1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,412α=,513α=,已知它们具有性质: ①都经过点(0,0)和(1,1); ②在第一象限都是增函数.请你根据图象写出它们在(1,+∞)上的另外一个共同性质:___________.【答案】α越大函数增长越快解:从幂函数的图象与性质可知:①α越大函数增长越快;②图象从下往上α越来越大;③函数值都大于1;④α越大越远离x 轴;⑤α>1,图象下凸;⑥图象无上界;⑦当指数互为倒数时,图象关于直线y =x 对称;⑧当α>1时,图象在直线y =x 的上方;当0<α<1时,图象在直线y =x 的下方. 从上面任取一个即可得出答案. 故答案为:α越大函数增长越快.9.(2022·广东深圳·高三期末)已知函数()f x 的图像关于原点对称,且在定义域内单调递增,则满足上述条件的幂函数可以为()f x =______. 【答案】3x (答案不唯一) 【解析】设幂函数()f x x α=,由题意,得()f x x α=为奇函数,且在定义域内单调递增,所以21n α=+(N n ∈)或m nα=(,m n 是奇数,且互质), 所以满足上述条件的幂函数可以为()3f x x =.故答案为:3x (答案不唯一).10.(2022·北京·高三专题练习)已知幂函数()()2151m h x m m x +=-+为奇函数.(1)求实数m 的值;(2)求函数()()102g x h x x ⎫⎡⎫=∈⎪⎪⎢⎣⎭⎭,的值域.【解】(1)∵函数()()2151m h x m m x +=-+为幂函数,2511m m ∴-+=,解得0m =或5,当0m =时,()h x x =,()h x 为奇函数, 当5m =时,()6h x x =,()h x 为偶函数,函数()h x 为奇函数,0m ∴=;(2)由(1)可知,()h x x =,则()g x x =102x ⎡⎫∈⎪⎢⎣⎭,,t ,则21122x t =-+,(]01t ∈,, 则()22111(1)1222f t t t t =-++=--+,(]01t ∈,, 函数()f t 为开口向下,对称轴为1t =的抛物线,∴当0=t 时,函数()102f =, 当1t =,函数()f t 取得最大值为1,∴()f t 的值域为112⎛⎤ ⎥⎝⎦,,故函数()g x 的值域为112⎛⎤ ⎥⎝⎦,. ➢考点2 二次函数的解析式求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:[典例]1.(2022·全国·高三专题练习)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,二次函数的解析式是_______ 【答案】f (x )=-4x 2+4x +7. 【解析】法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得2421,1,48,4a b c a b c ac b a ⎧⎪++=-⎪⎪-+=-⎨⎪-⎪=⎪⎩解得4,4,7.a b c =-⎧⎪=⎨⎪=⎩∴所求二次函数为f (x )=-4x 2+4x +7. 法二 (利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为2(1)122x +-==,所以m =12.又根据题意,函数有最大值8,所以n =8, 所以y =f (x )=21()82a x -+.因为f (2)=-1,所以21(2)812a -+=-,解得a =-4,所以f (x )=214()82x --+=-4x 2+4x +7.法三 (利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即24(21)()84a a a a----=.解得a =-4或a =0(舍).故所求函数的解析式为f (x )=-4x 2+4x +7. 故答案为:f (x )=-4x 2+4x +7.2.(2022·全国·高三专题练习)已知()f x 为二次函数,()00f =,()()22132f x f x x x +-=++,求()f x 的解析式.【解】解:因为()f x 为二次函数,所以设()2f x ax bx c =++,因为()00f =,所以0c ,所以()2f x ax bx =+,所以()()()()()22212121442f x a x b x ax a b x a b +=+++=++++,因为()()22132f x f x x x +-=++,所以()()223432ax a b x a b x x ++++=++,所以31a =,43a b +=,2a b +=,所以13a =,53b =,所以()21533f x x x =+.[举一反三]1.(2022·全国·高三专题练习)若函数12x y a -=+过定点P ,以P 为顶点且过原点的二次函数()f x 的解析式为( )A .()236f x x x =-+B .()224f x x x =-+C .()236f x x x =- D .()224f x x x =-【答案】A 【解析】 对于函数12x y a -=+,当1x =时,023y a =+=, 所以函数12x y a-=+过定点P ()1,3,设以P ()1,3为顶点且过原点的二次函数()()213f x a x =-+,因为()f x 过原点()0,0,所以()20013a =-+,解得:3a =-,所以()f x 的解析式为:()()2231336f x x x x =--+=-+,故选:A.2.(2022·全国·高三专题练习)已知()f x 为二次函数,且()()21f x x f x '=+-,则()f x =( ) A .221x x -+ B .221x x ++ C .2221x x -+ D .2221x x +-【答案】B 【解析】设()()20f x ax bx c a =++≠,则()2f x ax b '=+, 由()()21f x x f x '=+-可得()2221ax bx c x ax b ++=++-,所以,121a b a c b =⎧⎪=⎨⎪=-⎩,解得121a b c =⎧⎪=⎨⎪=⎩,因此,()221f x x x =++.故选:B.3.(2022·全国·高三专题练习)已知()f x 是二次函数且满足(0)1,(1)()2f f x f x x =+-=,则函数()f x 的解析式为________. 【答案】2()1f x x x =-+【解析】解:由题意,设2()(0)f x ax bx c a =++≠, 因为(0)1f =,即1c =,所以2()1f x ax bx =++,所以()22(1)()(1)(1)1122f x f x a x b x ax bx ax a b x ⎡⎤+-=++++-++=++=⎣⎦, 从而有220a a b =⎧⎨+=⎩,解得1,1a b ==-,所以2()1f x x x =-+, 故答案为:2()1f x x x =-+.➢考点3 二次函数的图象与性质[名师点睛]二次函数最值问题的类型及求解策略(1)类型:①对称轴、区间都是给定的;②对称轴动、区间固定;③对称轴定、区间变动.(2)求解策略:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成. [典例]1.(2022·全国·高三专题练习)函数()()20f x ax bx c a =++≠和函数()()g x c f x '=⋅(其中()f x '为()f x 的导函数)的图象在同一坐标系中的情况可以为( )A .①④B .②③C .③④D .①②③【答案】B【解析】易知()2f x ax b '=+,则()2g x acx bc =+.由①②中函数()g x 的图象得00ac bc >⎧⎨<⎩,若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->, 又0a <,所以()f x 的图象开口向下,此时①②均不符合要求;若0c >,则00a b >⎧⎨<⎩,此时()00f c =>,02ba ->, 又0a >,所以()f x 的图象开口向上,此时②符合要求,①不符合要求;由③④中函数()g x 的图象得00ac bc <⎧⎨>⎩,若0c >,则00a b <⎧⎨>⎩,此时()00f c =>,02ba ->, 又0a <,所以()f x 的图象开口向下,此时③符合要求,④不符合要求;若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->, 又0a >,所以()f x 的图象开口向上,此时③④均不符合要求. 综上,②③符合题意, 故选:B .2.(2022·全国·高三专题练习)二次函数()221f x x ax =+-在区间(),1-∞上单调递减的一个充分不必要条件为( ) A .0a ≤ B .12a ≤-C .1a ≤-D .2a ≤-【答案】D【解析】解:因为()221f x x ax =+-的对称轴为x a =-,开口向上,所以1a -≥,解得1a ≤-,所以二次函数()221f x x ax =+-在区间(),1-∞上单调递减的充要条件为1a ≤-,所以二次函数()221f x x ax =+-在区间(),1-∞上单调递减的一个充分不必要条件为2a ≤-;故选:D3.(2022·全国·高三专题练习)函数21y x ax a =--在12,2⎡⎤--⎢⎥⎣⎦上单调递增,则实数a 的取值范围是_________.【答案】11,2⎡⎫-⎪⎢⎣⎭【解析】21y x ax a =--在12,2⎡⎤--⎢⎥⎣⎦上单调递增,∴2()f x x ax a =--在12,2⎡⎤--⎢⎥⎣⎦单调递减,则122a-≤,即1a ≥-,同时 需满足1(2)()02f f -->,即1(4)(21)04a a +-<,解得142a -<<, 综上可知11,2a ⎡⎫∈-⎪⎢⎣⎭故答案为:11,2⎡⎫-⎪⎢⎣⎭4.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________. 【答案】[0,1]【解析】对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,即1122()()()()f x g x f x g x --<,令2()()()21F x f x g x x a x =-=--,即12()()F x F x <只需在[0,2]上单调递增即可,当1x =时,()1F x =,函数图象恒过()1,1;当1x >时,2()22F x x ax a =-+; 当1x <时,2()22F x x ax a =+-; 要使()F x 在区间[0,2]上单调递增,则当2x ≤1<时,2()22F x x ax a =-+的对称轴1x a =≤,即1a ≤;当1x ≤0<时,2()22F x x ax a =+-的对称轴0x a =-≤,即0a ≥; 且12121212a a a a +⨯-≤-⨯+, 综上01a ≤≤ 故答案为:[0,1].[举一反三]1.(2022·全国·高三阶段练习)已知函数()2f x ax bx c =++,其中0a >,()00f <,0a b c ++=,则( )A .()0,1x ∀∈,都有()0f x >B .()0,1x ∀∈,都有()0f x <C .()00,1x ∃∈,使得()00f x =D .()00,1x ∃∈,使得()00f x >【答案】B 【解析】由0a >,()00f <,0a b c ++=可知0a >,0c <,抛物线开口向上.因为 ()00f c =<,()10f a b c =++=,即1是方程20ax bx c ++=的一个根,所以()0,1x ∀∈,都有()0f x <,B 正确,A 、C 、D 错误. 故选:B .2.(2022·全国·高三专题练习)已知函数2y ax bx c =++,如果a b c >>且0a b c ++=,则它的图象可能是( )A .B .C .D .【答案】A【解析】由题意,函数2y ax bx c =++,因为0a b c ++=,令1x =,可得0y a b c =++=,即函数图象过点(1,0), 又由a b c >>,可得0,0a c ><,所以抛物线的开口向上,可排除D 项, 令0x =,可得0y c =<,可排除B 、C 项; 故选:A.3.(2022·全国·高三专题练习)已知函数2()28f x x kx =--在[-2,1]上具有单调性,则实数k 的取值范围是() A .k ≤-8 B .k ≥4 C .k ≤-8或k ≥4 D .-8≤k ≤4【答案】C【解析】函数2()28f x x kx =--对称轴为4kx =, 要使()f x 在区间[-2,1]上具有单调性,则 24k≤-或14k ≥,∴8k ≤-或4k ≥ 综上所述k 的范围是:k ≤-8或k ≥4. 故选:C.4.(2022·山东济南·二模)若二次函数2()(0)f x ax bx c a =++<,满足(1)(3)f f =,则下列不等式成立的是( ) A .(1)(4)(2)f f f << B .(4)(1)(2)f f f << C .(4)(2)(1)f f f << D .(2)(4)(1)f f f <<【答案】B【解析】因为(1)(3)f f =,所以二次函数2()f x ax bx c =++的对称轴为2x =, 又因为0a <,所以(4)(3)(2)f f f <<, 又(1)(3)f f =,所以(4)(1)(2)f f f <<.故选:B.5.(多选)(2022·全国·高三专题练习)已知函数f (x )=ax 2+2ax +4(a >0),若x 1<x 2,则( ) A .当x 1+x 2>-2时,f (x 1)<f (x 2) B .当x 1+x 2=-2时,f (x 1)=f (x 2) C .当x 1+x 2>-2时,f (x 1)>f (x 2) D .f (x 1)与f (x 2)的大小与a 有关 【答案】AB【解析】二次函数f (x )=ax 2+2ax +4(a >0)的图象开口向上,对称轴为x =-1, 当x 1+x 2=-2时,x 1,x 2关于x =-1对称,则有f (x 1)=f (x 2),B 正确;当x 1+x 2>-2时,而x 1<x 2,则x 2必大于-1,于是得x 2-(-1)>-1-x 1,有| x 2-(-1)|>|-1-x 1|, 因此,点x 2到对称轴的距离大于点x 1到对称轴的距离,即f (x 1)<f (x 2),A 正确,C 错误; 显然当a >0时,f (x 1)与f (x 2)的大小只与x 1,x 2离-1的远近有关,与a 无关,D 错误. 故选:AB6.(多选)(2022·全国·高三专题练习)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是( )A .2B .3C .4D .5【答案】BC 【解析】函数244y x x =--的图象如图所示:因为函数在[)0,a 上的值域为[]8,4--,结合图象可得24a <≤, 结合a 是正整数,所以BC 正确. 故选: BC.7.(2022·全国·高三专题练习)如果函数2()(6)1f x ax a x =++-在区间(,1)-∞上为增函数,则实数a 的取值范围是______. 【答案】[2,0]-【解析】当0a =时,()61f x x =-,在(,1)-∞上为增函数,符合题意,当0a ≠时,要使函数2()(6)1f x ax a x =++-在区间(,1)-∞上为增函数,则需满足0a <且对称轴为612a x a+=-≥,解得:2a ≥-,即20a -≤<, 综上所述:实数的取值范围是:[2,0]-. 故答案为:[2,0]-8.(2022·天津·高三专题练习)已知函数2()2f x x x =-在定义域[]1,n -上的值域为[]1,3-,则实数n 的取值范围为____. 【答案】[]1,3【解析】函数f (x )=x 2﹣2x 的对称轴方程为x =1,在[﹣1,1]上为减函数,且值域为[﹣1,3],当x ≥1时,函数为增函数,且(3)3f =∴要使函数f (x )=x 2﹣2x 在定义域[﹣1,n ]上的值域为[﹣1,3],实数n 的取值范围是[1,3].故答案为:[1,3]9.(2022·全国·高三专题练习)已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式;(2)若函数()()g x f x mx =-在区间[]12-,上是单调函数,求实数m 的取值范围. 【解】(1)由题意得:()02f c ==,()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++---=++=-所以22a =,1a b +=-,解得:1a =,2b =-,所以函数()f x 的解析式为()222f x x x =-+.(2)()()()222g x f x mx x m x =-=-++,对称轴为22m x +=,要想函数()()g x f x mx =-在区间[]12-,上是单调函数,则要满足212m +≤-或222m +≥,解得:4m ≤-或2m ≥,故实数m 的取值范围是(][),42,-∞-+∞.10.(2022·全国·高三专题练习)已知函数2()24f x kx x k =-+. (Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围; (Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围.【解】(Ⅰ)当0k =时,()2f x x =-,在区间[2,4]上单调递减,符合题意;当0k >时,对称轴为1xk ,因为()f x 在区间[2,4]上单调递减,所以14k ≥,得14k ≤,所以104k <≤;当0k <时,函数()f x 在区间[2,4]上单调递减,符合题意,综上,k 的取值范围为1(,]4-∞.(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,即[2,4]x ∀∈,22244x k x x x≥=++恒成立,令4()f x x x =+,可知函数()f x 在[2,4]上单调递增,所以()4f x ≥,所以max 2142x x ⎛⎫ ⎪= ⎪⎪+⎝⎭,所以12k ≥,故k 的取值范围为1[,)2+∞11.(2022·全国·高三专题练习)设函数2()1f x ax bx =++(,a b ∈R ),满足(1)0f -=,且对任意实数x 均有()0f x ≥. (1)求()f x 的解析式;(2)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,若()()g x f x kx =-是单调函数,求实数k 的取值范围.【解】(1)∵(1)0f -=,∴1b a =+.即2()(1)1f x ax a x =+++, 因为任意实数x ,()0f x ≥恒成立,则0a >且2224(1)4(1)0b a a a a ∆=-=+-=-≤,∴1a =,2b =,所以2(1)2f x x x =++.(2)因为2()()(2)1g x f x kx x k x =-=+-+,设2()(2)1h x x k x =+-+,要使()g x 在11,22⎡⎤-⎢⎥⎣⎦上单调,只需要21221()02k h -⎧≥⎪⎪⎨⎪≥⎪⎩或21221()02k h -⎧≥⎪⎪⎨⎪-≤⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪-≥⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪≤⎪⎩, 解得932k ≤≤或112k -≤≤,所以实数k 的取值范围913,,122⎡⎤⎡⎤⋃-⎢⎥⎢⎥⎣⎦⎣⎦。

第4讲-幂函数、二次函数及基本不等式

第4讲-幂函数、二次函数及基本不等式

幂函数与二次函数学习目标1、了解幂函数的概念及其性质,尤其是几个特殊幂函数的图像、单调性等基本性质2、进一步了解一元二次函数的相关性质3、掌握几个基本不等式及其应用1.幂函数的定义一般地,形如y x α=(R α∈)的函数称为幂函数,其中底数x 是自变量,α为常数. 2.幂函数的图象在同一平面直角坐标系下,幂函数12312,,,,y x y x y x y x y x -=====的图象分别如右图.上面五个函数是学习和研究幂函数性质(图像、单调性、 对称性、奇偶性等)的代表,需熟练掌握。

3.幂函数的性质(1)所有幂函数y x α=的图像均过定点(1,1)(2)如0α>,所有幂函数的图像均过原点,且在[0,)+∞上单调递增 (3)如0α<,所有幂函数在(0,)+∞上都单调递减。

4.一元二次函数及其性质定义:形如2()(0)f x ax bx c a =++≠的函数,叫一元二次函数。

其图像如下xyO xyO2b x a=-2b x a=-一元二次函数的性质(续) 对称轴顶点开口方向及最值2b x a=-24(,)24b ac ba a --0a >时开口向上 2min 44ac by a-=0a <时开口向下2max 44ac b y a-=如0a >,则2b x a >-(对称轴右边)时单调递增,2bx a <-(对称轴左边)时单调递减。

如0a <,则2b x a <-(对称轴左边)时单调递增,2bx a>-(对称轴右边)时单调递减。

【注意】求解二次函数2()(0)f x ax bx c a =++≠在闭区间[,]m n 上的最值,要分析对称轴2bx a=-是否经过此区间,然后用函数的单调性解决。

5.一元二次不等式的解集 不妨设0a >,则20ax bx c ++>的解集如下(1)如0∆<,其解集为(,)-∞+∞;(2)如0∆≥,其解集为12(,)(,)x x -∞⋃+∞,其中12,x x 为20ax bx c ++=之二根,且12x x ≤20ax bx c ++<的解集如下(1)如0∆<,则其解集为∅;(2)如0∆≥,则其解集为12(,)x x ,其中12,x x 为20ax bx c ++=之二根,且12x x ≤开口向下的情况可参照上面的解法求解,也可转化为开口向上的情况求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂函数与二次函数基础梳理
1.幂函数的定义
一般地,形如y =x α(α∈R )的函数称为幂函数,其中底数x 是自变量,α为常数. 2.幂函数的图象
在同一平面直角坐标系下,幂函数y =x ,y =x 2,y =x 3,y =x 1
2, y =x -1的图象分别如右图. 3.二次函数的图象和性质
解析式
f (x )=ax 2+bx +c (a >0)
f (x )=ax 2+bx +c (a <0)
图象
定义域 (-∞,+∞) (-∞,+∞) 值域
⎣⎢⎡⎭
⎪⎫4ac -b 2
4a ,+∞ ⎝

⎦⎥⎤-∞,4ac -b 2
4a
单调性
在x ∈⎣⎢⎡⎭⎪⎫
-b 2a ,+∞上单调递增
在x ∈⎝ ⎛

⎥⎤-∞,-b 2a 上单调递减
在x ∈⎝ ⎛
⎦⎥⎤-∞,-b 2a 上单调递增 在x ∈⎣⎢⎡⎭
⎪⎫
-b 2a ,+∞上单调递减
奇偶性 当b =0时为偶函数,b ≠0时为非奇非偶函数
顶点 ⎝ ⎛⎭⎪⎫
-b 2a
,4ac -b 2
4a
对称性
图象关于直线x =-b
2a 成轴对称图形
5.二次函数解析式的三种形式 (1)一般式:f (x )=ax 2+bx +c (a ≠0) (2)顶点式:f (x )=a (x -h )2+k (a ≠0) (3)两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0) 函数y =f (x )对称轴的判断方法
(1)对于二次函数y =f (x )对定义域内所有x ,都有f (x 1)=f (x 2),那么函数y =f (x )的图象关于x =
x 1+x 2
2对称.
(2)一般地,函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立,则函数y =f (x )的图象关于直线x =a 对称(a 为常数).
练习检测
1.(2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ). A .-3 B .-1 C .1 D .3 解析 ∵f (x )为奇函数,∴f (1)=-f (-1)=-3. 答案 A
2.如图中曲线是幂函数y =x n 在第一象限的图象.已知n 取±2,±
12四个值,则相应于曲线C 1,C 2,C 3,C 4的n 值依次为( ).
A .-2,-12,12,2
B .2,12,-12,-2
C .-12,-2,2,12
D .2,12,-2,-1
2 答案 B
3.(2011·浙江)设函数f (x )=⎩⎨⎧
-x ,x ≤0,
x 2,x >0.若f (α)=4,则实数α等于( ).
A .-4或-2
B .-4或2
C .-2或4
D .-2或2 解析 由⎩⎪⎨⎪⎧ α≤0,-α=4或⎩⎪⎨⎪⎧
α>0,
α2
=4,得α=-4或α=2,故选B.
答案 B
4.已知函数f (x )=x 2-2x +2的定义域和值域均为[1,b ],则b 等于( ). A .3 B .2或3 C .2 D .1或2 解析 函数f (x )=x 2-2x +2在[1,b ]上递增, 由已知条件⎩⎪⎨⎪

f (1)=1,f (b )=b ,
b >1,即⎩⎨⎧
b 2-3b +2=0,
b >1.
解得b =2. 答案 C
5.(2012·武汉模拟)若函数f (x )=(x
+a )(bx +2a )(常数a 、b ∈R )是偶函数,且它的值域为(-∞,
4],则该函数的解析式f (x )=________. 解析 f (x )=bx 2+(ab +2a )x +2a 2
由已知条件ab +2a =0,又f (x )的值域为(-∞,4], 则⎩⎪⎨⎪

a ≠0,
b =-2,2a 2=4.
因此f (x )=-2x 2+4.
答案 -2x 2+4
6.函数f (x )=x 2-2x +2在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ). (1)试写出g (t )的函数表达式; (2)作g (t )的图象并写出g (t )的最小值.
[审题视点] 分类讨论t 的范围分别确定g (t )解析式. 解 (1)f (x )=(x -1)2+1.
当t +1≤1,即t ≤0时,g (t )=t 2+1. 当t <1<t +1,即0<t <1时,g (t )=f (1)=1 当t ≥1时,g (t )=f (t )=(t -1)2+1
综上可知g (t )=⎩⎨⎧
t 2+1≤0,t ≤0,
1,0<t <1,
t 2-2 t +2,t ≥1.
(2)g (t )的图象如图所示,可知g (t )在(-∞,0]上递减,在[1,+∞)上递增,因此g (t )在[0,1]上
取到最小值
1.
(1)二次函数y =ax 2+bx +c ,在(-∞,+∞)上的最值可由二次函数图象的顶点坐标
公式求出;(2)二次函数y =ax 2+bx +c ,在[m ,n ]上的最值需要根据二次函数y =ax 2+bx +c 图象对称轴的位置,通过讨论进行求解. 7. 已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值.
(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.
解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5], ∴x =1时,f (x )取得最小值1; x =-5时,f (x )取得最大值37.
(2)函数f (x )=(x +a )2+2-a 2的图象的对称轴为直线x =-a , ∵y =f (x )在区间[-5,5]上是单调函数, ∴-a ≤-5或-a ≥5,
故a 的取值范围是a ≤-5或a ≥5. 8.已知幂函数)()(*3
22
N m x x f m m ∈=--的图象关于y 轴对称,且在(0,+∞)上是减函数,求满
足3
3
)
23()
1(m m a a -
--<+的a 的取值范围.
[审题视点] 由幂函数的性质可得到幂指数m 2-2m -3<0,再结合m 是整数,及幂函数是偶数可得m 的值.
解 ∵函数在(0,+∞)上递减, ∴m 2-2m -3<0,解得-1<m <3. ∵m ∈N *,∴m =1,2. 又函数的图象关于y 轴对称, ∴m 2-2m -3是偶数, 而22-2×2-3=-3为奇数, 12-2×1-3=-4为偶数, ∴m =1.
而f (x )=x -1
3在(-∞,0),(0,+∞)上均为减函数, ∴(a +1)-13<(3-2a )-1
3等价于a +1>3-2a >0 或0>a +1>3-2a 或a +1<0<3-2a . 解得a <-1或23<a <3
2. 故a
的取值范围为⎩⎨⎧⎭
⎬⎫a |a <-1或23<a <32.
本题集幂函数的概念、图象及单调性、奇偶性于一体,综合性较强,解此题的关键
是弄清幂函数的概念及性质.解答此类问题可分为两大步:第一步,利用单调性和奇偶性(图象对称性)求出m 的值或范围;第二步,利用分类讨论的思想,结合函数的图象求出参数a 的
取值范围.
9.(2011·济南模拟)已知f (x )=-4x 2+4ax -4a -a 2在区间[0,1]内有最大值-5,求a 的值及函数表达式f (x ).
求二次函数f (x )的对称轴,分对称轴在区间的左侧、中间、右侧讨论.
[解答示范] ∵f (x )=-4⎝ ⎛⎭⎪⎫
x -a 22-4a ,
∴抛物线顶点坐标为⎝ ⎛⎭⎪⎫
a 2,-4a .(1分)
①当a
2≥1,即a ≥2时,f (x )取最大值-4-a 2. 令-4-a 2=-5,得a 2=1,a =±1<2(舍去);(4分) ②当0<a 2<1,即0<a <2时,x =a
2时, f (x )取最大值为-4a .
令-4a =-5,得a =5
4∈(0,2);(7分) ③当a
2≤0,即a ≤0时,f (x )在[0,1]内递减, ∴x =0时,f (x )取最大值为-4a -a 2, 令-4a -a 2=-5,得a 2+4a -5=0,
解得a =-5或a =1,其中-5∈(-∞,0].(10分) 综上所述,a =5
4或a =-5时,f (x )在[0,1]内有最大值-5. ∴f (x )=-4x 2+5x -105
16或f (x )=-4x 2-20x -5.(12分)
求解本题易出现的问题是直接利用二次函数的性质——最值在对称轴处取得,忽视
对称轴与闭区间的位置关系,不进行分类讨论.
10. 设函数y =x 2-2x ,x ∈[-2,a ],求函数的最小值g (a ).
[尝试解答] ∵函数y =x 2-2x =(x -1)2-1,∴对称轴为直线x =1,而x =1不一定在区间[-2,a ]内,应进行讨论.
当-2<a <1时,函数在[-2,a ]上单调递减,则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y min =-1.
综上,g (a )=⎩⎨⎧
a 2
-2a ,-2<a <1,
-1,a ≥1.。

相关文档
最新文档