高一数学必修一函数图像知识点总结

合集下载

高一数学必修一函数图像知识点总结

高一数学必修一函数图像知识点总结

高一数学必修一函数图像知识点总结高一数学必修一函数图像知识点总结高中数学因为知识点多,好多同学听课能听懂,但是做题却不会。

因此,经常性的复习是巩固数学知识点的很好的途径。

以下是小编为您整理的关于高一数学必修一函数图像知识点的相关资料,供您阅读。

高一数学必修一函数图像知识点总结 1知识点总结:本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。

函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。

所以理解了前面的几个知识点,函数的图象就迎刃而解了。

一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。

选择题、填空题和解答题都有,并且题目难度较大。

在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。

多考查函数的单调性、最值和图象等。

误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

高一数学必修一函数图像知识点总结 2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

高一数学必修一中的函数图像与性质总结

高一数学必修一中的函数图像与性质总结

高一数学必修一中的函数图像与性质总结在高一数学必修一中,函数是一个非常重要的概念,而函数的图像与性质则是理解和掌握函数的关键。

通过对函数图像的观察和分析,我们能够更直观地了解函数的特点和变化规律,从而更好地解决与函数相关的问题。

接下来,让我们一起对高一数学必修一中常见的函数图像与性质进行总结。

一、一次函数一次函数的表达式为 y = kx + b(k、b 为常数,k ≠ 0)。

其图像是一条直线。

当 k > 0 时,函数图像从左到右上升,y 随 x 的增大而增大;当 k < 0 时,函数图像从左到右下降,y 随 x 的增大而减小。

b 的值决定了直线与 y 轴的交点坐标。

当 b > 0 时,直线与 y 轴交于正半轴;当 b < 0 时,直线与 y 轴交于负半轴;当 b = 0 时,直线经过原点。

例如,函数 y = 2x + 1,k = 2 > 0,图像从左到右上升,b = 1 > 0,与 y 轴交于点(0,1)。

二、二次函数二次函数的一般式为 y = ax²+ bx + c(a ≠ 0)。

其图像是一条抛物线。

当 a > 0 时,抛物线开口向上,函数有最小值;当 a < 0 时,抛物线开口向下,函数有最大值。

抛物线的对称轴为 x = b /(2a)。

顶点坐标为(b /(2a),(4ac b²)/(4a))。

例如,函数 y = x² 2x 3,其中 a = 1 > 0,抛物线开口向上。

对称轴为 x =(-2) /(2×1)= 1,顶点坐标为(1,-4)。

三、幂函数幂函数的一般形式为 y =x^α(α 为常数)。

常见的幂函数有 y = x,y = x²,y = x³,y = x^(1/2) 等等。

当α > 0 时,函数在第一象限内单调递增;当α < 0 时,函数在第一象限内单调递减。

例如,y = x²在(0,+∞)上单调递增,y = x^(-1) 在(0,+∞)上单调递减。

高一数学必修一函数必背知识点整理

高一数学必修一函数必背知识点整理

高一数学必修一函数必背知识点整理高一数学必修一函数必背知识点1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+ba>0,a、b属于Qa^a^b=a^aba>0,a、b属于Qab^a=a^a*b^aa>0,a、b属于Q指数函数对称规律:1、函数y=a^x与y=a^-x关于y轴对称2、函数y=a^x与y=-a^x关于x轴对称3、函数y=a^x与y=-a^-x关于坐标原点对称幂函数y=x^aa属于R1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.2、幂函数性质归纳.1所有的幂函数在0,+∞都有定义并且图象都过点1,1;2时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;3时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:1 代数法求方程的实数根;2 几何法对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.感谢您的阅读,祝您生活愉快。

高一数学必修一函数图像知识点总结

高一数学必修一函数图像知识点总结

03
通过大量的练习和实践,提高对复杂函数图像的识别能力和分
析水平。
观看
REPORTING
复合函数性质
复合函数具有“同增异减”的性质,即内外函数的单调性相同时,复合函数为增函数;内外函数的单 调性不同时,复合函数为减函数。
分段函数表达式及性质
分段函数定义
在自变量的不同取值范围内,用不同的解析式来表示一个函 数,这样的函数叫做分段函数。
分段函数性质
分段函数的定义域是各段定义域的并集;分段函数的值域是 各段值域的并集;分段函数在定义域的不同子集上,具有不 同的对应关系。
坐标平面
由x轴和y轴组成的平面称为坐标 平面,其中x轴和y轴的交点称为 原点,坐标为(0,0)。
函数图像绘制方法
01
02
03
列表法
列出函数自变量与函数值 的对应表,然后在坐标系 中描出各点,最后用平滑 的曲线连接各点。
解析法
根据函数解析式,直接利 用函数的性质绘制出函数 的图像。
图象变换法
通过对基本初等函数的图 像进行平移、伸缩、对称 等变换,得到所求函数的 图像。
PART 02
一次函数图像知识点
一次函数表达式及性质
一次函数表达式
y = kx + b (k ≠ 0)
性质
当 k > 0 时,函数图像为增函数;当 k < 0 时,函数图像为减函数。
一次函数图像特征
直线性
一次函数的图像是一条直 线。
斜率
直线的斜率等于一次函数 表达式中的 k 值。
截距
直线在 y 轴上的截距等于 一次函数表达式中的 b 值 。
PART 05
三角函数图像知识点
三角函数基本概念及性质

高一数学函数图像知识点总结

高一数学函数图像知识点总结

高一数学函数图像知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)高一数学函数图像知识点总结一、函数图像知识点汇总1.函数图象的变换(1)平移变换(2)对称变换由对称变换可利用y=f(x)的图象得到y=|f(x)|与y=f(|x|)的图象.①作出y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象;②作出y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.(3)伸缩变换①y=af(x)(a>0)的图象,可将y=f(x)图象上每点的纵坐标伸(a>1时)或缩(a<1时)到原来的a倍,横坐标不变.②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)或缩(a>1时)到原来的倍,纵坐标不变.(4)翻折变换①作为y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象;②作为y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.2.等价变换可看出函数的图象为半圆.此过程可归纳为:(1)写出函数解析式的等价组;(2)化简等价组;(3)作图.3.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.注意:一条主线数形结合的思想方法是学习函数内容的一条主线,也是考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.两个区别(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.(2)一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种途径明确函数图象形状和位置的方法大致有以下三种途径.(1)图象变换:平移变换、伸缩变换、对称变换.(2)函数解析式的等价变换.(3)研究函数的性质.二、例题解析三、复习指导函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。

高一数学一函数知识点总结归纳.docx

高一数学一函数知识点总结归纳.docx

高一数学必修一函数知识点总结归纳1.函数的奇偶性(1)若 f(x) 是偶函数,那么 f(x)=f(-x);(2)若 f(x) 是奇函数, 0 在其定义域内,则 f(0)=0( 可用于求参数);(3)判断函数奇偶性可用定义的等价形式: f(x) ±f( -x)=0 或(f(x)≠0);(4) 若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性 ; 偶函数在对称的单调区间内有相反的单调性 ;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为 [a ,b], 其复合函数f[g(x)] 的定义域由不等式 a≤g(x) ≤b解出即可 ; 若已知 f[g(x)] 的定义域为 [a,b], 求 f(x) 的定义域,相当于 x∈[a,b] 时,求 g(x) 的值域 ( 即f(x) 的定义域 ); 研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定 ; 3.函数图像 ( 或方程曲线的对称性 )(1)证明函数图像的对称性,即证明图像上任意点关于对称中心( 对称轴 ) 的对称点仍在图像上 ;(2)证明图像 C1 与 C2的对称性,即证明 C1 上任意点关于对称中心(对称轴 ) 的对称点仍在 C2上,反之亦然 ;(3) 曲线 C1:f(x,y)=0, 关于 y=x+a(y=-x+a) 的对称曲线 C2的方程为 f(y-a,x+a)=0( 或 f(-y+a,-x+a)=0);(4)曲线 C1:f(x,y)=0 关于点 (a,b) 的对称曲线 C2方程为: f(2a-x,2b-y)=0;(5) 若函数 y=f(x) 对 x∈R时, f(a+x)=f(a-x) 恒成立,则 y=f(x) 图像关于直线 x=a 对称 ;(6)函数 y=f(x-a) 与 y=f(b-x) 的图像关于直线 x=对称 ; 4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立 , 则 y=f(x) 是周期为 2a 的周期函数;(2)若 y=f(x) 是偶函数,其图像又关于直线 x=a 对称,则 f(x) 是周期为 2︱a︱的周期函数 ;x=a 对称,则f(x)是周(3) 若 y=f(x) 奇函数,其图像又关于直线期为 4︱a︱的周期函数 ;(4)若 y=f(x) 关于点 (a,0),(b,0) 对称,则 f(x) 是周期为 2 的周期函数 ;(5)y=f(x)的图象关于直线x=a,x=b(a ≠b) 对称,则函数y=f(x)是周期为 2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-或f(x+a)=,则y=f(x)是f(x)(周期为 2 的周期函数 ;5. 方程k=f(x)有解k∈D(D 为f(x)的值域 );6.a ≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1);(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);8.判断对应是否为映射时,抓住两点:(1)A 中元素必须都有象且唯一 ;(2)B 中元素不一定都有原象,并且 A 中不同元素在 B中可以有相同的象 ;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

高一数学函数图像知识点总结

高一数学函数图像知识点总结

高一数学函数图像知识点总结一、函数图像知识点汇总1.函数图象的变换1平移变换①水平平移:y=fx±aa>0的图象,可由y=fx的图象向左+或向右-平移a个单位而得到.②竖直平移:y=fx±bb>0的图象,可由y=fx的图象向上+或向下-平移b个单位而得到.2对称变换①y=f-x与y=fx的图象关于y轴对称.②y=-fx与y=fx的图象关于x轴对称.③y=-f-x与y=fx的图象关于原点对称.由对称变换可利用y=fx的图象得到y=|fx|与y=f|x|的图象.①作出y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作出y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.3伸缩变换①y=afxa>0的图象,可将y=fx图象上每点的纵坐标伸a>1时或缩a<1时到原来的a倍,横坐标不变.②y=faxa>0的图象,可将y=fx的图象上每点的横坐标伸a<1时或缩a>1时到原来的倍,纵坐标不变.4翻折变换①作为y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作为y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.2.等价变换可看出函数的图象为半圆.此过程可归纳为:1写出函数解析式的等价组;2化简等价组;3作图.3.描点法作图方法步骤:1确定函数的定义域;2化简函数的解析式;3讨论函数的性质即奇偶性、周期性、单调性、最值甚至变化趋势;4描点连线,画出函数的图象.注意:一条主线数形结合的思想方法是学习函数内容的一条主线,也是高考考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.两个区别1一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.2一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种途径明确函数图象形状和位置的方法大致有以下三种途径.1图象变换:平移变换、伸缩变换、对称变换.2函数解析式的等价变换.3研究函数的性质.二、例题解析三、复习指导函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。

高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

完整版)高一数学必修一函数知识点总结

完整版)高一数学必修一函数知识点总结

完整版)高一数学必修一函数知识点总结二、函数的概念和相关概念函数是从一个非空数集A到另一个非空数集B的一个确定的对应关系f,使得集合A中的每个数x都有唯一的数f(x)与之对应。

我们把f:A→B称为从集合A到集合B的一个函数,记作y=f(x),其中x是自变量,A是函数的定义域,而与x对应的y值是函数值,其集合{f(x)| x∈A }是函数的值域。

需要注意的是,在求函数的定义域时,我们需要注意分式的分母不等于零,偶次方根的被开方数不小于零,对数式的真数必须大于零,指数、对数式的底必须大于零且不等于1,以及函数是由一些基本函数通过四则运算结合而成的。

同时,指数为零底不可以等于零,实际问题中的函数的定义域还要保证实际问题有意义。

相同函数的判断方法有两种:表达式相同(与表示自变量和函数值的字母无关)和定义域一致。

在考虑函数的值域时,我们可以使用观察法、配方法或代换法。

函数图象是指在平面直角坐标系中,以函数y=f(x)。

(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C。

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。

我们可以使用描点法或图象变换法来画函数图象,其中常用的变换方法有平移变换、伸缩变换和对称变换。

区间是指数轴上的一段连续的区域,可以分为开区间、闭区间和半开半闭区间。

同时,还有无穷区间。

我们可以使用数轴来表示区间。

映射是指两个非空集合A和B之间的确定对应关系f,使得集合A中的每个元素x都有唯一的元素y与之对应。

我们把对应f:A→B称为从集合A到集合B的一个映射,记作“f (对应关系):A(原象)→B(象)”。

对于映射f:A→B来说,应该满足集合A中的每一个元素,在集合B中都有象,并且象是唯一的;集合A中不同的元素,在集合B中对应的象可以是同一个。

3.分段函数分段函数是指在定义域的不同部分上有不同的解析表达式的函数。

高一数学函数知识点归纳

高一数学函数知识点归纳

高一数学函数知识点归纳一、函数的概念1. 函数定义:函数是从一个数集A(定义域)到另一个数集B(值域)的映射,通常表示为y=f(x)。

2. 定义域:能够输入到函数中的所有可能的x值的集合。

3. 值域:函数输出的所有可能的y值的集合。

4. 函数图像:函数在坐标系中的图形表示。

二、函数的表示法1. 公式法:用数学公式表示函数关系,如y=2x+3。

2. 表格法:用表格列出x与y的对应值。

3. 图像法:通过函数图像直观表示函数关系。

三、函数的性质1. 单调性:函数在定义域内随着x的增加,y值单调递增或递减。

2. 奇偶性:函数f(x)如果满足f(-x)=-f(x)称为奇函数;如果满足f(-x)=f(x)称为偶函数。

3. 周期性:函数如果存在一个非零常数T,使得对于所有x,都有f(x+T)=f(x),则称函数具有周期性。

4. 有界性:函数的值域在某个区间内有限,称函数在该区间内有界。

四、基本初等函数1. 线性函数:y=kx+b(k≠0),其中k为斜率,b为截距。

2. 二次函数:y=ax^2+bx+c(a≠0),顶点形式为y=a(x-h)^2+k。

3. 幂函数:y=x^n,其中n为实数。

4. 指数函数:y=a^x(a>0,a≠1)。

5. 对数函数:y=log_a(x)(a>0,a≠1)。

6. 三角函数:正弦函数y=sin(x),余弦函数y=cos(x),正切函数y=tan(x)等。

五、函数的运算1. 函数的和差:(f±g)(x)=f(x)±g(x)。

2. 函数的乘积:(f*g)(x)=f(x)g(x)。

3. 函数的商:(f/g)(x)=f(x)/g(x)(g(x)≠0)。

六、复合函数1. 复合函数定义:如果有两个函数f(x)和g(x),那么(f∘g)(x)=f(g(x))。

2. 复合函数的运算法则:(f∘g)(x)=f(g(x)),其中g(x)≠0。

七、反函数1. 反函数定义:如果函数y=f(x)在区间I上是单调的,则存在一个函数x=f^(-1)(y),使得f(f^(-1)(y))=y。

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结一、内容描述高一数学必修一函数的概念与性质知识点总结涵盖了高中阶段关于函数基础概念及其性质的核心内容。

文章首先介绍了函数的基本概念,包括函数的定义、表示方法以及函数的性质等。

文章详细阐述了函数的性质,包括单调性、奇偶性、周期性以及复合函数的性质等。

文章还介绍了函数图像的画法及其与性质之间的关系,以及如何利用函数性质解决实际问题。

文章总结了函数在数学学习中的重要性,强调掌握函数概念与性质对于后续数学学习的基础作用。

通过本文的学习,学生可以更好地理解和掌握函数知识,为后续数学学习打下坚实的基础。

1. 简述函数概念的重要性函数是描述自然现象和规律的重要工具。

在物理、化学、生物等自然学科中,许多现象的变化过程都可以通过函数关系进行描述。

物理学中的运动规律、化学中的化学反应速率与浓度的关系等,都需要借助函数概念进行建模和分析。

函数是数学体系中的核心和基础。

函数连接了代数、几何、三角学等多个分支,是数学知识和方法综合运用的基础。

对函数概念的深入理解,有助于我们更好地理解和掌握数学的其它分支和领域。

函数也是解决实际问题的重要工具。

在现实生活中,很多问题的解决都需要建立数学模型,而函数作为构建数学模型的基本元素之一,能够帮助我们准确地描述问题并找到解决方案。

在经济学、统计学、工程学等领域,函数的运用非常广泛。

函数概念的重要性不言而喻。

高一学生在学习数学时,应深入理解函数的概念,掌握其性质和特点,为后续学习和解决实际问题打下坚实的基础。

2. 引出本文目的:总结函数的概念与性质本文旨在系统梳理和归纳高一数学必修一课程中函数的核心概念与基本性质。

函数是数学中的核心概念之一,具有广泛的应用领域。

在高中阶段,学生需要深入理解函数的基础定义、性质和图像特征,为后续学习奠定坚实基础。

本文的目的在于帮助学生全面总结函数的相关知识点,加深对函数概念与性质的理解,以便更好地掌握和应用函数这一重要的数学工具。

高一数学函数知识点总结归纳(3篇)

高一数学函数知识点总结归纳(3篇)

高一数学函数知识点总结归纳【(一)、映射、函数、反函数】1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.【(二)、函数的解析式与定义域】1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.【(三)、函数的值域与最值】1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.【(四)、函数的奇偶性】1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

高一数学必修1函数的知识点归纳

高一数学必修1函数的知识点归纳

高一数学必修1函数的知识点归纳一、函数的概念和表示方法1.函数的定义:函数是一个数学概念,是一个输入-输出的对应关系。

2.函数的表示方法:函数可以通过集合表示法、解析式表示法、图像表示法等方式进行表示。

二、函数的性质1.定义域和值域:函数的定义域是所有能够使函数有意义的输入值的集合,值域是所有函数可能的输出值的集合。

2.奇偶性:如果对于定义域中的任意x,有f(-x)=f(x),则函数是偶函数;如果对于定义域中的任意x,有f(-x)=-f(x),则函数是奇函数。

3.增减性:如果对于定义域中的任意两个数a和b,有a<b时f(a)<f(b),则函数是增函数;如果a<b时f(a)>f(b),则函数是减函数;如果存在a和b,使得a<b但f(a)>f(b),则函数是不严格增函数。

4.周期性:如果存在一个正数T,使得对于定义域中的任意x,有f(x+T)=f(x),则函数是周期函数。

三、一次函数1. 一次函数的定义:一次函数又叫线性函数,表示为 f(x) = kx+b,其中 k 和 b 是常数,k 称为斜率,b 称为截距。

2.特殊情况下的一次函数:当k=0时,函数是与x轴平行的直线,称为常量函数;当b=0时,函数是通过原点的直线,称为比例函数。

四、二次函数1. 二次函数的定义:二次函数表示为 f(x) = ax^2+bx+c,其中 a、b、c 是常数,且 a 不等于 0。

2.二次函数的图像:二次函数的图像是一个抛物线,开口的方向和二次项系数a的正负有关。

3.二次函数的性质:二次函数的顶点坐标为(-b/2a,f(-b/2a)),是抛物线的最低点或最高点;对于任意定义域内的x,有f(x)=f(-b/2a)-D,其中D是抛物线与x轴的距离。

五、幂函数1.幂函数的定义:幂函数表示为f(x)=x^n,其中x是自变量,n是常数。

2.幂函数的图像:幂函数的图像根据n的奇偶性、正负和定义域的正负情况,分为四种情况。

高一数学必修一 - 函数图像知识点总结

高一数学必修一 - 函数图像知识点总结

高一数学必修一 - 函数图像知识点总结函数图像是数学中的重要概念,它能帮助我们更直观地理解数学函数的特点和行为。

以下是高一数学必修一中与函数图像相关的知识点总结。

1. 函数的定义函数是一种特殊的数学关系,它将一个集合的元素映射到另一个集合的元素上。

函数通常用符号表示为“y = f(x)”,其中x是自变量,y是因变量。

函数图像是函数在平面直角坐标系上的图形表示。

2. 函数图像的基本性质函数图像的基本性质包括定义域、值域、奇偶性和周期性。

- 定义域:函数的自变量取值范围。

- 值域:函数的因变量取值范围。

- 奇偶性:函数关于y轴对称或关于原点对称。

- 周期性:函数图像在横轴方向上的重复性。

3. 常见函数图像高一数学必修一中常见的函数图像有直线、二次函数、指数函数和对数函数。

- 直线:线性函数图像为一条直线,表达式一般为“y = kx + b”,其中k为斜率,b为截距。

- 二次函数:二次函数图像为抛物线,表达式一般为“y = ax^2+ bx + c”,其中a、b、c为常数。

- 指数函数:指数函数图像是以底数大于1的指数为自变量的函数图像。

- 对数函数:对数函数图像是指数函数的反函数,用于解指数方程和指数不等式。

4. 函数图像的变换函数图像可以通过平移、伸缩和翻转等变换得到新的函数图像。

- 平移:将函数图像沿着横轴或纵轴平行地移动。

- 伸缩:将函数图像在横轴或纵轴上进行拉伸或压缩。

- 翻转:将函数图像关于横轴或纵轴进行翻转。

5. 函数图像的应用函数图像在实际应用中有广泛的应用,例如经济学中的需求曲线、物理学中的运动曲线等。

以上是高一数学必修一中与函数图像相关的知识点总结。

希望这份总结能够帮助你更好地理解和应用函数图像。

高一数学必修一函数图像知识点总结

高一数学必修一函数图像知识点总结

高一数学必修一函数图像知识点总结函数图像是高中数学中的重要内容之一,它是数学与实际问题相结合的桥梁。

在高一数学必修一中,我们学习了函数图像的基本概念、性质和绘制方法。

下面将对这些知识点进行总结。

一、函数图像的基本概念函数是一种特殊的关系,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。

函数图像是函数在坐标系中的表示,横坐标表示自变量,纵坐标表示因变量。

函数图像可以用来描述实际问题中的变化规律,比如温度随时间的变化、销售额随月份的变化等。

二、函数图像的性质1. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。

通过观察函数图像可以确定函数的定义域和值域。

2. 奇偶性:如果函数满足$f(x) = f(-x)$,则称该函数为偶函数;如果函数满足$f(x) = -f(-x)$,则称该函数为奇函数。

通过观察函数图像可以确定函数的奇偶性。

3. 单调性:如果函数在定义域上递增,那么称该函数为递增函数;如果函数在定义域上递减,那么称该函数为递减函数。

通过观察函数图像可以确定函数的单调性。

4. 最值和极值:函数的最大值和最小值称为最值,函数的极大值和极小值称为极值。

通过观察函数图像可以确定函数的最值和极值。

三、函数图像的绘制方法1. 函数关系式法:如果已知函数的关系式,可以根据关系式中的变量值来绘制函数图像。

比如,已知函数$y = 2x + 1$,可以取不同的$x$值计算对应的$y$值,然后将这些点连成一条直线。

2. 函数性质法:如果已知函数的性质,可以根据性质来绘制函数图像。

比如,已知函数是偶函数,且在定义域上递增,可以根据这些性质来确定函数的图像形状。

3. 函数变换法:通过对已知函数进行平移、伸缩、翻转等变换,可以得到新的函数图像。

比如,对函数$y = x^2$进行平移变换,可以得到函数$y = (x-2)^2$的图像,它在$x$轴上向右平移了2个单位。

四、常见函数图像1. 一次函数:一次函数的图像是一条直线,可以表示为$y = kx + b$,其中$k$为斜率,$b$为截距。

高一数学一次函数必修一知识点总结

高一数学一次函数必修一知识点总结

1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b’2)/4a)当-b/2a=0时,P在y轴上;当Δ=b’2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b’2-4ac>0时,抛物线与x轴有2个交点。

Δ=b’2-4ac=0时,抛物线与x轴有1个交点。

Δ=b’2-4ac<0时,抛物线与x轴没有交点。

X的取值是虚数(x=-b ±√b’2-4ac的值的相反数,乘上虚数i,整个式子除以2a) 高一数学学习方法1.学习的心态。

多数中等生的数学成绩是很有希望提升。

一方面是目前具备了一定基础,加上努力认真,这种学生态度没有问题,只是缺少方向和适合的方法而已。

另一方面,备考时间还算充足,还有时间进行调整和优化。

所以平日里多给自己一些积极的心里暗示,坚持不断地实践合适自己的学习方法。

2.备考的方向。

什么是备考方向?所谓备考方向就是考试方向。

在平时做题的时候,要弄明白,你面前的题是哪个知识框架下,那种类型的题型,做这样类型的题有什么样的方法,这一类的题型有哪些?等等。

题型和知识点都是有限的,只要我们根据常考的题型,寻找解题思路并合理的训练,那么很容易提升自己的数学成绩。

3.训练的方式。

每个人实际的情况不一样,训练的方式也不不同,考试中取得的好成绩都是考前合理训练的结果。

很多学生抱怨时间不足,每天做完作业以后,身心疲惫。

2021年高一数学知识点总结(15篇)

2021年高一数学知识点总结(15篇)

2021年高一数学知识点总结(15篇)高一数学知识点总结1函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x ∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。

即记为C={P(x,y)|y=f(x),x∈A} 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

(2)画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来。

B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。

提高解题的速度。

高一数学知识点总结2一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修一函数图像知识点总结高一数学必修一函数图像知识点总结 1知识点总结:本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。

函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。

所以理解了前面的几个知识点,函数的图象就迎刃而解了。

一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

常见考法本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。

选择题、填空题和解答题都有,并且题目难度较大。

在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。

多考查函数的单调性、最值和图象等。

误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

高一数学必修一函数图像知识点总结 2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法四、函数的最值的常用求法:1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法五、函数单调性的常用结论:1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数2、若f(x)为增(减)函数,则-f(x)为减(增)函数3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

六、函数奇偶性的常用结论:1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

高一数学必修一函数图像知识点总结 31.函数的定义函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种性质来解决具体的问题。

设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A-B 为从集合A到集合B的一个函数,记作y=f(x),xA2.函数的定义域函数的定义域分为自然定义域和实际定义域两种,如果给定的函数的解析式(不注明定义域),其定义域应指的是使该解析式有意义的自变量的取值范围(称为自然定义域),如果函数是有实际问题确定的,这时应根据自变量的实际意义来确定,函数的值域是由全体函数值组成的集合。

3.求解析式求函数的解析式一般有三种种情况:(1)根据实际问题建立函数关系式,这种情况需引入合适的变量,根据数学的有关知识找出函数关系式。

(2)有时体中给出函数特征,求函数的解析式,可用待定系数法。

(3)换元法求解析式,f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元来解。

掌握求函数解析式的前提是,需要对各种函数的性质了解且熟悉。

目前我们已经学习了常数函数、指数与指数函数、对数与对数函数、幂函数、三角函数、反比例函数、二次函数以及由以上几种函数加减乘除,或者复合的一些相对较复杂的函数,但是这种函数也是初等函数。

高一数学必修一函数图像知识点总结 4(一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。

2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。

(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数、3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f—1(y);(3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域、注意:①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起、②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算、(二)、函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。

求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。

如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。

应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。

(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。

已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域。

2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。

(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。

比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。

(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。

(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(—x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。

(三)、函数的值域与最值1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的.性质,直接观察得出函数的值域。

(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。

(3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。

(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。

(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。

其题型特征是解析式中含有根式或分式。

(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。

(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。

2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。

因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。

如函数的值域是(0,16],最大值是16,无最小值。

再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2。

可见定义域对函数的值域或最值的影响。

3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。

(四)、函数的奇偶性1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数)。

正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=—f(x)或f(—x)=f(x)是定义域上的恒等式。

相关文档
最新文档