高中数学必修1教案 1.3.1-1函数的单调性

合集下载

新课标人教版高中数学必修一 1.3函数的基本性质 教学设计

新课标人教版高中数学必修一 1.3函数的基本性质 教学设计

1.3 函数的基本性质[教学目标]1.理解函数的单调性,初步掌握函数单调性的判别方法.2.理解函数的最大值、最小值及其几何意义.3.结合具体函数了解奇偶性的含义.4.能够运用函数图象理解和研究函数的性质.[教学要求]讨论函数的基本性质,就是要研究函数的重要特征:函数的增与减,最大值与最小值,增长率与衰减率,增长(减少)的快与慢,对称性(奇偶性),函数的零点,函数值的循环往复(周期性)等.引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.[教学重点]函数的单调性的概念;判断、证明函数的单调性;形成奇偶性的定义.[教学难点]1.函数的单调性和奇偶性定义的形式化表达.2.利用增(减)函数的定义判断函数的单调性.[教学时数]3课时[教学过程]第一课时1.3.1单调性与最大(小)值——函数的单调性新课导入一、情景问题如图为2008年北京奥运会奥林匹克公园场馆自动气象站某日一天24小时内的气温变化图(24时与0时气温相同为32︒C ),观察这张气温变化图:问:该图形是否为函数图象?定义域是什么?问:如何用数学语言来刻画温度随时间变化而变化的趋势呢?由“函数在某个区间内随着自变量的增加函数值增大或减小”引入课题——函数的单调性.二、观察函数图象,认识“上升”与 “下降”请同学们画出函数x x f =)(和2)(x x f =的图象,并观察图象的变化特征,说说自己的看法.(呈现这两个函数的图象,课本第27页图)可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.新课进展一、函数的单调性1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).(2)请你仿照增函数的定义给出函数)(x f 在区间D 上是减函数的定义.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数(decreasing function ).3.对定义要点分析问:(1)你能分析一下增函数定义的要点吗?(2)你能分析一下减函数定义的要点吗?引导学生分析增(减)函数定义的数学表述,体会定义中“区间D 上的任意两个自变量都有…”的含义.课堂例题例1 (课本第29页例1)课堂练习课本第39页习题1.3A 组第4题.课本第32页练习第1、2、3题.课堂例题例2 (课本第29页例2)课堂练习课本第32页练习第4题.4.本课小结(1)增减函数的图象有什么特点?增减函数的图象从左自右是上升的,减函数的图象从左自右是下降的.(2)用定义证明函数的单调性,需要抓住要点“在给定区间任意取两个自变量”去比较它们的函数值的大小.(3)如果函数)(x f y =在区间D 上是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做)(x f y =的单调区间.5.布置作业课本第39页习题1.3A 组第1、2、3题.课本第44页复习参考题A 组第9题.第二课时1.3.1单调性与最大(小)值——函数的最大(小)值复习导入通过提问复习上节课主要学习内容.问:如何判断函数的单调性?观察上节课例1中的图象(课本第29页),发现,函数图象在2-=x 时,其函数值最小,而在1=x 时,其函数值最大.函数2)(x x f =的图象有一个最低点)0,0(,函数2)(x x f -=的图象有一个最高点)0,0(,而函数x x f =)(的图象没有最低点,也没有最高点.新课进展二、函数的最大(小)值1.函数的最大(小)值的定义设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值(maximum value).请你仿照函数最大值的定义,给出函数)(x f y =的最小值的定义.设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≥)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最小值(minimum value).课堂例题例1 (课本第30页例3)说明:本例题是一个实际应用题,教学时应让学生体会问题的实际意义.例2 (课本第30页例4)说明:本例题表明,高一阶段利用函数的单调性求函数的最大(小)值是常用的方法.通过本例题的教学,再一次让学生体会用函数的单调性定义证明函数的单调性的方法.课堂练习课本第32页练习第5题2.函数的最大(小)值与单调性的关系从上面的例题可以看到,函数的最大(小)值与单调性有非常紧密的关系.我们再看一个例子.例3观察下图,用函数的单调性研究以下问题:(1) 若函数()y f x =的定义域为[],x b e ∈,求最大值和最小值;(2) 若函数()y f x =的定义域为[],x a e ∈,求最大值和最小值;(3) 若函数()y f x =的定义域为[),x b d ∈,求最大值和最小值;解:(1)在定义域[],b e 上,函数()y f x =在区间[],b c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f e f c <,则函数()y f x =在[],b e 上的最大值为()f c ,最小值为()f d ;(2) 在定义域[],a e 上,函数()y f x =在区间[],a c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f a f d <,则函数()y f x =在[],a e 上的最大值为()f c ,最小值为()f a ;(3) 在定义域[),b d 上,函数()y f x =在区间[],b c 上是增函数,在区间[),c d 上是减函数, 由于函数在x d =处没有定义,则函数()y f x =在[),b d 上的最大值为()f c ,没有最小值.思考:为什么要讨论)()(c f e f <?说明:从本例中可以看出,在求函数的最值时,除了注意单调区间的变化之外,还要注意定义域的区间端点的函数值.3.本课小结函数的最大(小)值是一个函数在一段区间或者整个定义域上的整体性质.一个函数可能存在最大值也可能不存在最大值,最大值具有唯一性.对于最小值也一样.我们经常利用函数的单调性求函数的最大(小)值.4.布置作业课本第39页习题1.3A 组第5题;课本第39页习题1.3B 组第1、2题第三课时1.3.2 奇偶性创设情景,导入新课从对称的角度,观察下列函数的图象: 函数2()1,().f x x g x x =+=这两个函数图象有什么共同的特征?请列出从-3到3这一段区间上,两个函数的对应值表,并思考:自变量取值互为相反数时,函数值如何变化,有怎样的等量关系?讨论结果:当自变量取值互为相反数时,函数值恰相等.反映在图象上,函数图象关于y 轴对称.新课进展三、函数的奇偶性1.偶函数如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=那么函数()f x 就叫做偶函数(even function).定义域关于坐标原点对称.请你举出偶函数的例子.2)(x x f =,21)(xx f =等等. 2.奇函数 观察函数x x f =)(和x x f 1)(=的图象,说一说这两个函数有什么共同特征?(1)图象看,它们都是关于坐标原点成中心对称;(2)从定义域看,它们的定义域都是关于坐标原点对称;(3)从函数值看,x 与x -的函数值的绝对值相等且符号相反.如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=-则函数()f x 叫做奇函数(old function).请你举出奇函数的例子.3.函数的奇偶性奇函数和偶函数的这种性质叫做函数的奇偶性.(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于y 轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于y 轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.课堂例题例1 (课本第35页例5)课堂练习课本第36页练习第1(1)——(4)、第2题.4.本课小结本节课学习了函数的奇偶性及其判断方法.我们可以把对称性和奇偶性结合起来思考. 定义域具有对称性,函数值具有对称性,图象具有对称性.由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.5.布置作业课本第39页习题1.3A 组第6题,B 组第3题.课本第44页复习参考题A 组第10题.补充:1.已知2(),f x ax bx cx =++∈R 是偶函数,那么32()g x ax bx cx =++是( ).(A)偶函数 (B)奇函数(C)既奇又偶函数 (D)非奇非偶函数 2. 已知函数1,0,()0,0,1,0.x x f x x x x +>⎧⎪==⎨⎪-<⎩试判断并证明它的奇偶性.。

高中《数学》函数的单调性教学设计学情分析教材分析课后反思

高中《数学》函数的单调性教学设计学情分析教材分析课后反思

《函数的单调性》教学设计一、教学内容解析1. 教材内容及地位本节课是人教版版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.2. 教学重点函数单调性的概念,判断和证明简单函数的单调性.3. 教学难点函数单调性概念的生成,证明单调性的代数推理论证.二、学生学情分析1. 教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“V随X的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2. 教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.三、课堂教学目标1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随x 的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:1. 指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随x 的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4. 在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.五、教学过程(一)通过问题,引入课题分别作出函数y=x+1,y=-x+1,y=x²的图像,并且观察自变量变化时,函数图像有什么变化趋势?y=-x+10 1X1y=x²1问题一问题二如何描述函数图像的上升或下降?图像上升,y 随着x的增大而增大图像上升,y随着x的增大而减小向题三如何用符号化的数学语言来描述y 随着x 的增大而增大呢?(二)引导探究,生成概念探究在函数y=f(x)的给定区间上任取x₁,x₂,当x₁<x₂时,有f(x)<f(x₂),这时我们就说函数y=f(x)在给定区间上是增函数.单调性的定义一般的,设函数f(x) 的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有_f(x)<f(x₂),那么就说函数f(x) 在区间D上是增函数;如果对于定义域I内某个区间D 上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有f(x)>f(x),那么就说函数f(x) 在区间D上是减函数;如果函数y=f(x) 在区间D上是增函数或是减函数,就说这个函数在这个区间上具有(严格的)单调性;区间D 叫做函数y=f(x)的单调区间(三)学以致用,理解感悟概念理解( 1 ) 已知,因为f(-1)<f(2), 所以函数f(x)是增函数.(2)能不能说y= (x≠0)定义域(-∝,0)∪(0,+∝)上是单调减函数?(3)对于函数f(x),x∈D,若x,x₂∈D,(x₂-x) [f(x₂)-f(x₁)]>0 ,则函数f(x)在D上是增函数.(4)y=f(x) 在区间D上是减函数,若x,x₂∈D,且x₁<x₂,则f(x)>f(x₂).- 用于比较函数值的大小(5)y=f(x) 在区间D上是减函数,若x,x₂∈D,且f(x₁)>f(x₂),则x₁<x₂…用于比较自变量值的大小概念升华:(1)x,x₂具有任意性;(2)单调性是相对区间而言的,在一点处不具有单调性,单调区间之间用“,”隔开(不可用“U”符号连接)(3)定义的等价变形;(4)“知二推一”的应用典型例题—根据图像,指出函数的单调区间,并指明函数在这些区间上的增减性。

高中数学(函数的单调性)教案 新人教版必修1 教案

高中数学(函数的单调性)教案 新人教版必修1 教案

函数的单调性【教学目标】1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念、判断及证明.【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】一、创设情境,引入课题课前布置任务:(1) 由于某种原因,2008年奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2) 通过查阅历史资料研究奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由生活情境引入新课,激发兴趣.二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规律?预案:(1)函数在整个定义域内 y随x的增大而增大;函数在整个定义域内 y随x的增大而减小.(2)函数在上 y随x的增大而增大,在上y随x的增大而减小.(3)函数在上 y随x的增大而减小,在上y随x的增大而减小.引导学生进行分类描述 (增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能根据自己的理解说说什么是增函数、减函数?预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识.〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.探究规律,理性认识问题1:下图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明在为增函数?预案:(1) 在给定区间内取两个数,例如1和2,因为12<22,所以在为增函数.(2) 仿(1),取很多组验证均满足,所以在为增函数.(3) 任取,因为,即,所以在为增函数.对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量.〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念问题:你能用准确的数学符号语言表述出增函数的定义吗?师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念判断题:①.②若函数.③若函数在区间和(2,3)上均为增函数,则函数在区间(1,3)上为增函数.④因为函数在区间上都是减函数,所以在上是减函数.通过判断题,强调三点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数.思考:如何说明一个函数在某个区间上不是单调函数?〖设计意图〗让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展例证明函数在上是增函数.1.分析解决问题针对学生可能出现的问题,组织学生讨论、交流.证明:任取, 设元求差变形,断号∴∴即∴函数在上是增函数.定论2.归纳解题步骤引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.练习:证明函数在上是增函数.问题:要证明函数在区间上是增函数,除了用定义来证,如果可以证得对任意的,且有可以吗?引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在上是增函数.〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.四、归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1) 概念探究过程:直观到抽象、特殊到一般、感性到理性.(2) 证明方法和步骤:设元、作差、变形、断号、定论.(3) 数学思想方法和思维方法:数形结合,等价转化,类比等.2.作业书面作业:课本第60页习题2.3 第4,5,6题.课后探究:(1) 证明:函数在区间上是增函数的充要条件是对任意的,且有.(2) 研究函数的单调性,并结合描点法画出函数的草图.《函数的单调性》教学设计说明一、教学内容的分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据.对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.二、教学目标的确定根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.三、教学方法和教学手段的选择本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.四、教学过程的设计为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.(3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.。

高一数学人教版必修1课件:1.3 1.第一课时 函数的单调性

高一数学人教版必修1课件:1.3 1.第一课时 函数的单调性

x),所以
x-2<1-x,解得
3 x<2
②.
由①②得 1≤x<32. [答案] 1,32
[类题通法] 1.上题易忽视函数的定义域为[-1,1],直接利用单调性得 到不等式 x-2<1-x,从而得出 x<32的错误答案. 2.解决此类问题的关键是利用单调性“脱去”函数符号 “f”,从而转化为熟悉的不等式.若函数 y=f(x)在区间 D 上是增 函数,则对任意 x1,x2∈D,且 f(x1)<f(x2),有 x1<x2;若函数 y =f(x)在区间 D 上是减函数,则对任意 x1,x2∈D,且 f(x1)<f(x2), 有 x1>x2.需要注意的是,不要忘记函数的定义域.
由图象可知函数在(-∞,a]和[a,+∞ )上分别单调,因此 要使函数 f(x)在区间[1,2]上单调,只需 a≤1 或 a≥2(其中当 a≤1 时,函数 f(x)在区间[1,2]上单调递增;当 a≥2 时,函数 f(x)在区 间[1,2]上单调递减),从而 a∈(-∞,1]∪[2,+∞).
[类题通法] “函数的单调区间为 I”与“函数在区间 I 上单调”的区别 单调区间是一个整体概念,说函数的单调递减区间是 I,指 的是函数递减的最大范围为区间 I.而函数在某一区间上单调,则 指此区间是相应单调区间的子区间.所以我们在解决函数的单调 性问题时,一定要仔细读题,明确条件含义.
由函数的单调性求参数的取值范围 [例 3] (1)已知 y=f(x)在定义域(-1,1)上是减函数,且 f(1 -a)<f(2a-1),则 a 的取值范围是________. (2)已知函数 f(x)=x2-2ax-3 在区间[1,2]上单调,求实数 a 的取值范围.
(1)[解析]由题意可知--11<<12-a-a<1<1,1

高中数学函数单调性的教案

高中数学函数单调性的教案

高中数学函数单调性的教案一、教学目标1. 理解函数的单调性的概念,了解函数单调递增和单调递减的定义及特点。

2. 能够通过函数的导数或图像来判断函数的单调性。

3. 能够应用函数的单调性解决实际问题。

二、教学重点1. 函数的单调性的概念和特点。

2. 通过导数或图像判断函数的单调性。

三、教学难点1. 如何通过导数或图像来判断函数的单调性。

2. 应用函数的单调性解决实际问题。

四、教学内容1. 函数的单调性的定义和特点。

2. 利用导数判断函数的单调性。

3. 利用图像判断函数的单调性。

4. 单调性在实际问题中的应用。

五、教学过程1. 导入教学:通过一个生活实例引入函数的单调性的概念。

2. 讲解函数的单调性的定义和特点,引导学生理解。

3. 通过对几个函数的图像进行观察,讨论函数的单调递增和单调递减的特点。

4. 讲解如何通过导数或导数图像判断函数的单调性。

5. 练习:让学生通过计算导数或观察导数图像判断给定函数的单调性。

6. 应用:给学生一个实际问题,让他们利用函数的单调性来解决问题。

7. 总结:回顾本节课所学内容,强调函数的单调性在解决问题中的重要性。

六、教学资源1. 课件2. 教科书3. 练习题七、教学评估1. 课堂练习题2. 作业布置并检查八、拓展延伸1. 思考函数的极值点与单调性的关系。

2. 探究其他函数性质与单调性的联系。

以上是本节课的教学内容和组织安排,希望能够帮助学生更好地理解和掌握函数的单调性。

祝学习顺利!。

高一数学函数的单调性

高一数学函数的单调性

课后尝试
1、若定义在R上的单调减函数 f ( x ) 满 足 f (1 a ) f (3 a ) ,你知道 a 的 取值范围吗? 2 2、函数 y x bx c在[0,+∞ ) 是增函数,你能确定字母 b 的值吗?
谢谢!
澳大利亚旅游 澳大利亚旅游
生活实际问题的提供体现了数 学来源于生活,也用于解决生活中 的问题.
-1
y
1
O
x
小结
1、函数的单调性的定义. 2、判断、证明函数的单调性方法.
通过学生的主体参与,使学生 深切体会到本节课的主要内容和思 想方法,从而实现对函数单调性认 识的再次深化.
通过三个方面的 作业布置 作业,使学生养成先 看书,后做作业的习 (1)阅读课本P34-P35 例3 惯.课后尝试是对课 (2)书面作业:课本堂知识的深化理解. P43 1、4、7
vktpksb6
巩固
你能找出气温图中的单调区间吗?
单调增区间: [4,14] 单调减区间: [0,4] ,[14,24]
回顾
我们初中学过的函数
y y y
O
x
O
x
O
x
y 2 x 2
y x 2x 3
2
1 y x
用定义法证明函数单调性的步骤:
①取值; ②作差变形; ③定号; ④判断.
设计说明
2、单调性、单调区间
若函数y=f(x)在区间I上是单调增函数或单调减函数, 那么就说函数y=f(x) 在区间I上具有单调性.单调增区间 和单调减区间统称为单调区间.
设计说明
从学生熟悉的生活情境引入,让学生对函数 单调性产生感性认识,为引出单调性的定义打好 基础,有利于定义的自然生成,也揭示了单调性 最本质的东西. 函数单调性定义产生是本节课的难点 ,难 在:如何使学生从描述性语言过渡到严谨的数学 语言.通过问题的分解,引导学生步步深入,直 至找到最准确的数学语言来描述定义.这里体现 以学生为主体,师生互动合作的教学新理念.

2019-2020学年高中人教A版数学必修1课件:1-3-1-1 函数的单调性

2019-2020学年高中人教A版数学必修1课件:1-3-1-1 函数的单调性
期日:点 十二分。
(3)一个函数出现两个或者两个以上的单调区间时,不 能用“∪”连接,而应该用“和”或“,”连接,如函数 y =1x(x≠0)在区间(-∞,0)和(0,+∞)上都是减函数,不能 认为 y=1x(x≠0)的单调减区间为(-∞,0)∪(0,+∞).
第十三页,编辑于星期日:点 十二分。
象是上升的还是下降的:_上__升__的___. ②在区间__(-__∞__,__+__∞__)__上,随着 x 的增大,f(x)的值
__增__大____,在此区间上函数是增函数还是减函数:_增___函__数__.
第九页,编辑于星期日:点 十二分。
(3)已知函数 f(x)=-2x+1 的图象如图 2 所示,①从左
由图象知函数的单调区间为(-∞,-3],[3,+∞). 其中,单调减区间为(-∞,-3],单调增区间为[3,+ ∞).
第二十一页,编辑于星期日:点 十二分。
拓展提升 常用画图象求单调区间
(1)对于初等函数y=kx+b,y=ax2+bx+c,y=kx单调 区间的确定,常借助于函数图象直接写出.
(2)对于含有绝对值的函数,往往转化成分段函数去处 理其图象,借助于图象的变化趋势分析相应函数的单调性 (区间).
第三十八页,编辑于星期日:点 十二分。
3.函数 y=f(x)在 R 上为增函数,且 f(2m)>f(-m+9),
则实数 m 的取值范围是( )
A.(-∞,-3) B.(0,+∞)
C.(3,+∞)
D.(-∞,-3)∪(3,+∞)
(2)∵f(x)=x2-2(1-a)x+2 =[x-(1-a)]2+2-(1-a)2, ∴f(x)的减区间是(-∞,1-a]. 又∵已知 f(x)在(-∞,4]上是减函数, ∴1-a≥4,即 a≤-3. ∴所求实数 a 的取值范围是(-∞,-3].

人教版高中数学必修一《1.3.1 函数的单调性》教学设计

人教版高中数学必修一《1.3.1 函数的单调性》教学设计

1.3.1函数的单调性教学设计一、教学内容分析:函数的单调性是学生在掌握了函数的概念、函数的表示方法等基础知识后,学习的函数的第一个性质,主要让学生掌握函数在其定义域内某区间上图像(上升或下降)的变化趋势,为进一步学习函数其它性质提供了方法依据。

如在研究函数的值域、最大值、最小值等性质中有着重要应用,而且在解决比较数的大小、解不等式、证明不等式、数列的性质等数学问题时也有重要的应用。

同时它又是后续研究指数函数、对数函数以及三角函数性质的基础。

所以函数的单调性在高中数学中具有核心知识地位和承上启下的重要作用。

二、教学目标设置:(1)知识与技能:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法及单调性的简单运用。

(2)过程与方法:引导学生通过观察、归纳、抽象、概括、自主构建单调增函数、减函数的概念;能运用函数单调性的定义解决一些简单的问题;让学生领会数学结合的数学思想方法,培养学生发现、分析、解决问题的能力。

(3)情感态度价值观:在函数单调性的学习过程中,使学生体验数学的应用价值,培养学生善于观察、勇于探索的良好学习习惯与学习态度。

(三)情感态度与价值观:创设情境引出课题,让学生充分认识到数学源于生活,又能应用于生活,进而激发学生自主学习和主动探究的学习兴趣;在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认知的提升;在概念应用阶段,通过对定义法证明单调性过程的具体分析,以及证明过程的严格板书,帮助学生掌握用定义证明函数单调性的方法和步骤,培养学生清晰地思维、严谨的数学推理能力;最后先由学生自己独立完成再进行小组合作交流,展示自己用单调性定义证明函数单调性的全过程,培养了学生运用所学知识解决实际问题的能力,增强了学生学好数学的信心.三、学生学情分析:学生在初中只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。

人教A版高中数学必修一 1.3.1函数的单调性 教案

人教A版高中数学必修一 1.3.1函数的单调性 教案

1.3.1函数的单调性一、教学目标:1.知识与技能:从形与数两方面理解函数单调性的概念。

初步掌握利用图像和定义判断、证明函数单调性的方法。

2.过程与方法:从已有知识出发,通过学生的观察、归纳、抽象和推理论证培养学生的数学能力。

3.情感态度价值观:通过知识的探究过程,突出学生的主观能动性,培养学生认真分析、科学论证的数学思维习惯.二.重点难点重点:函数单调性的概念;判断、证明函数的单调性。

难点:函数单调性概念的符号语言的认知;应用定义证明单调性的代数推理论证。

三、教学方法问题引导,主动探究,启发式教学.四、教学过程(1)情景导入观察与思考;1.说出上述情境中图像的变化规律。

2.描述上述情境中气温或记忆保持量随时间变化规律。

(2)探究新知;问题1:观察下列函数的图象,回答当自变量x 的值增加时,函数值f (x )是如何变化的?(1)()1f x x =+2(2)()f x x =问题2:你能根据自己的理解说说什么是递增什么是递减?问题3:你能借助数学符号,将上述“函数值随着自变量增大逐渐增大”描述出来吗?当x 增大时 f(x)随着增大,即:当x1<x2时,都有f(x1)<f(x2)。

增函数的定义:一般地,设函数f (x )的定义域为I:如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2 ,当12x x <时,都有12()()f x f x <,那么就说函数f (x )在区间D 上是增函数。

概念辨析()上递增。

,在区间则函数满足]31[)(),3()1()(1-<-x f f f x f()()()()()()()()()[]212,23,99100,1,100f x f f f f f f f x <<<若满足则在上递增。

()()[)[]()[]上递增。

在区间则上递增,和在区间函数3,03,22,03x f x f问题4:同学们能否类似地得出减函数的定义?(学生讨论、回答)师生共同得出:定义:一般地,设函数f (x )的定义域为I:如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2 ,当12x x <时,都有12()()f x f x >,那么就说函数f (x )在区间D 上是减函数。

高中数学1.3.1函数的单调性与最大小值第2课时教学设计新人教A版必修1

高中数学1.3.1函数的单调性与最大小值第2课时教学设计新人教A版必修1

1.3.1单调性与最大(小)值(第二课时)教学设计一、学情分析本节课是人教版《数学》(必修Ⅰ)第一章第3节函数的单调性与最大(小)值的第二课时,次要学惯用符号言语刻画函数的的最大(小)值,并能用函数的单调性和函数的图象进行一些常见函数最值的求值.在此之前,先生对函数曾经有了一个初步的了解,同时,由于上一节曾经学习函数单调性的定义,先生能初步理解用数学言语抽象概括函数概念的必要性和表达方式,为函数最值概念的构成提供极大帮助.因而本节课经过函数的图象,先生容易找出相应的最大值和最小值.但这只是感性上的认识.为了让先生有一个从具体到抽象、特殊到普通的认识过程,本节课经过设计成绩串,逐渐让先生用数学言语描述函数最值的概念,并利用对概念的辨析深化了解最值的内涵.二、教学目标:1.知识与技能(1)理解函数的最大(小)值的概念及其几何意义.理解函数的最大(小)值是函数的全体性质.(2)能解决与二次函数有关的最值成绩,和利用函数的单调性和函数的图象求函数的最值,掌握用函数的思想解决一些理论成绩.2.过程与方法经过日常生活实例,引导先生进行分析、归纳、概括函数最值的概念.并借助函数的单调性,从数到形,以形助数,逐渐浸透、培养先生数形结合思想、分类讨论思想、优化思想.3.情感、态度与价值观以丰富的实例背景引入,让先生领会数学与日常生活毫不相关.在概念的构成过程中,培养先生从特殊到普通、从直观到抽象的思想提升过程,让先生感知数学成绩求解途径与方法,享用成功的快乐.三、重点、难点:重点:建构函数最值的概念过程,利用函数的单调性和函数的图象求函数的最值.难点:函数最值概念的构成.高一先生的逻辑思想和抽象概括能力较弱,面对抽象的方式化定义,容易产生思想妨碍.对此,本课紧紧捉住新旧知识间的内在联系,设置一系列成绩,让先生充分参与定义的符号化过程,从图形言语和自然言语向数学符号言语转化,逐渐打破难点.四、教学过程:(一)提出成绩,引入目标背景1:成绩1:求函数2)(x x f -=的最大值.意图:从熟习的二次函数动手,将求函数的最大值转化为研讨函数图象的最高点,引导先生经过图象分析.背景2:请看下图,这是某气象观测站某日00:00—24:00这24小时内的气温变化图.(图)成绩2:.(1)我们常说昼夜温差大,是指一天当中的最高温度和最低温度之差.请问,该天的最高气温是多少?(2)该图象能否建立一个函数关系?如何定义自变量?意图:明确是在函数背景下研讨成绩.回顾函数的定义和函数的表示法(图象法) 师:我们称此时该函数的最大值是32.意图:启发先生明确函数图象中存在最高点与函数存在最大值之间是分歧的,即明确函数图象和函数解析式是反映函数关系的不同表现方式,从而无认识地培养先生以形助数解决成绩的认识,并引出课题——《函数的最大(小)值》(二)层层深化,概念建构成绩3:经过这两个成绩,我们能否用数学言语给出普通函数最大值的定义? 意图:以具体实例为背景,让先生用数学言语来进行归纳表达,引导先生过渡到任意化的符号化表示,呈现知识的自然生成,领会从特殊到普通的思想.定义:普通地,设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(成立;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值.(预设:函数最大值定义中的第(1)点成绩不大,第(2)点容易被忽略。

高一数学1.3.1《函数的单调性》教案(新人教A版必修1)

高一数学1.3.1《函数的单调性》教案(新人教A版必修1)

⾼⼀数学1.3.1《函数的单调性》教案(新⼈教A版必修1)§1.3.1函数的单调性⼀、三维⽬标1、知识与技能:(1)建⽴增(减)函数的概念通过观察⼀些函数图象的特征,形成增(减)函数的直观认识. 再通过具体函数值的⼤⼩⽐较,认识函数值随⾃变量的增⼤(减⼩)的规律,由此得出增(减)函数单调性的定义 . 掌握⽤定义证明函数单调性的步骤。

(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学⽣通过⾃主探究活动,体验数学概念的形成过程的真谛。

2、过程与⽅法(1)通过已学过的函数特别是⼆次函数,理解函数的单调性及其⼏何意义;(2)学会运⽤函数图象理解和研究函数的性质;(3)能够熟练应⽤定义判断与证明函数在某区间上的单调性.3、情态与价值,使学⽣感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感. ⼆、教学重点与难点重点:函数的单调性及其⼏何意义.难点:利⽤函数的单调性定义判断、证明函数的单调性.三、学法与教学⽤具1、从观察具体函数图象引⼊,直观认识增减函数,利⽤这定义证明函数单调性。

通过练习、交流反馈,巩固从⽽完成本节课的三维⽬标。

2、教学⽤具:投影仪、计算机. 四、教学思路:(⼀)创设情景,揭⽰课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1 随x 的增⼤,y 的值有什么变化?○2 能否看出函数的最⼤、最⼩值?○3 函数图象是否具有某种对称性? 2.画出下列函数的图象,观察其变化规律:(1)f(x) = x○1 从左⾄右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增⼤,f(x)的值随着 ________ .(2)f(x) = -x+2○1 从左⾄右图象上升还是下降 ______?⼤,f(x)的值随着________ .(3)f(x) = x2○1在区间____________ 上,f(x)的值随着x的增⼤⽽________ .○2在区间____________ 上,f(x)的值随着x的增⼤⽽________ .3、从上⾯的观察分析,能得出什么结论?学⽣回答后教师归纳:从上⾯的观察分析可以看出:不同的函数,其图象的变化趋势不同,同⼀函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的⼀个重要性质——函数的单调性(引出课题)。

高中数学《函数的单调性》教学设计 新人教A必修1

高中数学《函数的单调性》教学设计 新人教A必修1

《函数的单调性》教学设计一、设计理念:1、重视数学概念、公式的发生、发展过程,在概念的形成过程中培养学生发现问题、研究问题、解决问题的能力2、重视学生的学习过程,在教学中注重培养学生独立思考、相互交流、合作探究的能力3、重视诱思探究的教学理论在课堂教学中的渗透,在课堂教学中要体现“教师为主导、学生为主体”,教师启发诱导,学生自主探究,激发学生的学习兴趣、培养学生良好的思维习惯和思维品质二、设计思路:1、以函数的单调性的概念为主线,贯穿于整个教学过程中对函数单调性概念的深入而准确的认识往往是学生认知过程的难点。

因此在教学中突出对概念的分析一方面是为了分析函数单调性的定义,另一方面让学生掌握如何学会、弄懂一个概念的方法,也为今后对其他数学概念的学习有所帮助。

使用单调性的定义证明具体函数的单调性是教学中的又是一个难点。

使用单调性的定义证明具体函数的单调性是对单调性定义的深层理解,给出“作差、变形、定号”的具体步骤是非常必要的,一方面是有利于学生理解函数单调性的概念;另一方面有利于学生掌握证明方法、形成证明思路。

另外也为今后学习不等式证明中的作差法做一定的铺垫。

2、加强“数”与“形”的结合,由直观到抽象、由特殊到一般的数学思维能力的培养始终贯穿于函数单调性概念教学过程中函数单调性的研究方法很具有典型性,体现了对函数研究的一般方法。

在函数单调性的教学中要引导学生逐步学会“直观感受---定性描述---定量刻画---具体应用”的探究方法,这样一方面为了便于对单调性概念有更好地理解,同时也为今后学习函数的其他概念和性质提供一定的参考方法。

3、在单调性概念的教学与研究中要体现出单调性是函数的一个局部性质函数的单调性是研究“当自变量不断增大时,函数值随着增大还是减小”,即函数图像的升降性,与函数奇偶性不同,函数的奇偶性是研究“当自变量的值互为相反数时,函数值是否也互为相反数”,即函数图像的对称性。

函数的单调性与函数的极值是函数的局部性质,与函数的奇偶性、最大(或小)值有着本质的区别,后者是函数的整体性质,在教学中要体现出函数的单调区间是函数定义域上的一个子集(区间),关注的是函数在这个子集上的增减性。

函数单调性优秀教案

函数单调性优秀教案

函数单调性优秀教案【篇一:《函数单调性》教学设计】《函数单调性》教学设计【设计思路】有效的概念教学必须建立在学生已有的知识结构基础之上顺应学生的思维发展,因此在教学设计中注意在学生已有知识结构和新概念间寻找“最近发展区”,呈现知识的发生和形成过程,使学生始终处于问题探索研究状态之中。

为达到本节课的教学目标,突出重点,突破难点,在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,使得学生对概念的认识不断深入.在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.考虑到学生数学思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔。

在教学设计中发挥好多媒体教学的优势,注意结合图形,由浅入深,采用数形结合方法,从感知发展到理性思维,让学生经历“创设情境——探究概念——理解反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。

【教学目标】1.理解函数单调性的概念,初步掌握判断、证明函数单调性的方法. 2.通过观察、归纳、抽象、概括自主建构函数单调性概念的过程,体会数形结合的思想方法,提高发现、分析、解决问题的能力;通过对函数单调性的证明,体会数学的严谨性,提高学生的推理论证能力.3.在学习中体会数学的科学价值和应用价值,培养学生细心观察、认真分析、严谨论证、勇于探索的良好习惯和严谨的科学态度,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【背景分析】1、教材分析本节是高中数学新教材必修1第1章第1.3.1节第一课时,主要学习函数单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。

他是高中数学中相当重要的一个基础知识点。

是高中数学中起着承上启下作用的核心知识之一.是函数概念的延续和拓展,又是后续研究指数函数、对数函数单调性的基础.在比较数的大小、解方程或不等式、求函数的值域或最值、函数的定性分析以及相关的数学综合问题中也有广泛的应用。

函数单调性教案

函数单调性教案

变量的值x1, x2当x1 < x2时,都有f(x1 )>f(x2 ), 那么就说f(x)在这个区间D上是减函数。
图形判断单调性: 从左到右图象上升,函数在此区间为增函数 从左到右图象下降,函数在此区间为减函数
函数单调性的定义:
如果y=f(x)在某个区间是增函数或减函数,那么 就说函数y=f(x)在这一区间具有(严格的)单调性, 这一区间叫做y=f(x)的单调区间.
3、证明函数单调性步骤为:
(1)任取 (2)作差(3)变形 (4)定号 (5)下结论
课后作业
教材39页习题1.3 A组第1~4题
六、教学反思:
通过函数的单调性教学,我从以下方面对自己 的教学作一个反思,以便更好的发现不足之处, 及时调整,让学生更好学习。
这部分知识需要学生有严谨的论证思维和相应 的论述能力,因此学生在归纳总结函数单调性的 概念时,叙述不准确,这需要老师的提点。从作 业上看,反映出学生在证明函数单调性和函数单 调区间的表示上出现了问题,这需要在以后的习 题训练课中进行相关的加强和强调。
f (x1) f (x2 ) 0 ,即 f (x1) f (x2 ) .

f
(x)

1 x
在(0,
)上是减函数
.
想一想:如果
x
(,0),函数f
(x)

1 x
是增函数还是减函数? 并证明你的结论 .
解:任取x1,x2 ( ,0),且 x1 x2 ,则
f
(x1)
右是上升的
f(x2)
f(x1)
x1
x2
如果对属于定义域I内某个区间D上的任意两个自
变量的值x1, x2当x1 < x2时,都有f(x1 )< f(x2 ), 那么就说f(x)在这个区间D上是增函数。

1.3.1(1)函数的单调性

1.3.1(1)函数的单调性

f(x2)
的;即当x>0时,即f(x)随着x 的增大而增大.
f(x1)
x1 x2
活动3:仿照f(x)=x2,用符号语言刻画函数f(x)=|x|和 f(x)=-x2各有怎样的单调性?
符号语言:
函数单调性的定义
特别地:当函数f(x)在它的定义域上单调递增时,我们就称它 是增函数,例如f(x)=x,当函数f(x)在它的定义域上单调递减 时,我们就称它是减函数,例如f(x)=-x。
(3)y=x2-3x+2
3 2
单调递增区间:
(-∞,+∞)
增函数
单调递减区间:
(-∞,0),(0 (1.5,+∞)
单调递减区间
(-∞,1.5)
不是单调函数
例1. 求下列函数的单调区间
(1)y=lx+2l
(2)y=xlx+2l
题型一 由函数图象求函数的单调区间
例2.画出下列函数图象,并写出单调区间:
f ( x) kxb(k 0) 为减函数.
当k 0时,k(x1 x2 )0, 即f (x1) f (x2) f ( x) kxb(k 0) 为增函数.
大本题型二 函数单调性的证明或判断 [例 2] 求证:函数 f(x)=x12在(0,+∞)上是减函数, 在(-∞,0)上是增函数.
[跟踪训练] 根据定义证明 y=x+1x在(0,1)上是减函数.
例3:已知函数f(x)定义域为R, x1,x2∈R,
满足
f
( x1 ) x1
f (x2 x2
)
0

f
( x1 )
f (x2 )x1 x2 0
求证:函数f(x)在R上单调递增
函数单调性定义的等价形式:

高中数学必修一课件 第一章集合与函数概念 1.3.1.1 函数的单调性

高中数学必修一课件 第一章集合与函数概念 1.3.1.1 函数的单调性

[规律方法] 1.本题逆用函数单调性,将函数值的不等关系,转 化为与之等价的代数不等式组,但一定注意定义域.
2.设x1,x2∈D,且x1<x2: (1)f(x1)<f(x2)⇔f(x)在D上是增函数; (2)f(x1)>f(x2)⇔f(x)在D上是减函数.
【活学活用 3】 已知函数 f(x)的定义域为[-2,2],且 f(x)在区 间[-2,2]上是增函数,f(1-m)<f(m),求实数 m 的取值范围. 解 ∵f(x)在[-2,2]上是增函数,且 f(1-m)<f(m),
类型二 求函数的单调区间 【例 2】 画出函数 y=-x2+2|x|+1 的图象并写出函数的单调 区间. [ 思 路 探 索 ] 去绝对值 → 化为分段函数 → 作图象 → 求单调区间
解 y=--xx22+-22xx++11,,xx≥<00,, 即 y=- -xx- +1122+ +22, ,xx≥ <00,. 函数的大致图象如图所示,单调增区间为(-∞,-1],[0,1], 单调减区间为[-1,0],[1,+∞).
高一数学必修一
第一章 集合与函数概念 1.3 函数的基本性质
1.3.1 单调性与最大(小)值 第1课时 函数的单调性
【课标要求】 1.理解函数的单调性的概念. 2.掌握判断函数单调性的一般方法. 【核心扫描】 1.单调性的概念.(重点、难点) 2.判断函数的单调性及函数单调性的应用.(重点)
新知导学 1.定义域为I的函数f(x)的增减性
探究点3 若函数f(x)在定义域内的两个区间A、B上都是减(增) 函数,你能认为f(x)在区间A∪B上是减(增)函数吗? 提示 不能.如f(x)=在(-∞,0)上是减函数,在(0,+∞)上 也是减函数,但不能说它在定义域(-∞,0)∪(0,+∞)上是 减函数,如取x1=-1<1=x2,有f(-1)=-1<1=f(1),不 满足减函数.

2022高中数学必修一的优秀教案

2022高中数学必修一的优秀教案

有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样
4. 元素与集合的关系;
(1)假如a是集合A的元素,就说a属于(belong to)A,记作
a∈A(2)假如a不是集合A的元素,就说a不属于(not belong to)A,记作a A(或a A)
5. 常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N_或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来许多不便,除此之外还常用列举法和描述法来表示集合。

(1) 列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{_2,3_+2,5y3-_,_2+y2},…;
思索2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.3.1函数的单调性与最大(小)值(1)第一课时 单调性【教学目标】1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;2. 学会运用函数图象理解和研究函数的性质;3. 能够熟练应用定义判断与证明函数在某区间上的单调性. 【教学重点难点】重点:函数的单调性及其几何意义.难点:利用函数的单调性定义判断、证明函数的单调性 【教学过程】(一)创设情景,揭示课题1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: ○1 随x 的增大,y 的值有什么变化? ○2 能否看出函数的最大、最小值? ○3 函数图象是否具有某种对称性? 2. 画出下列函数的图象,观察其变化规律:(1)f(x) = x ○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .(2)f(x) = -x+2○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . (3)f(x) = x 2 ○1在区间 ____________ 上,f(x)的值随着x 的增大而 ________ .○2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .3、从上面的观察分析,能得出什么结论?学生回答后教师归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的一个重要性质——函数的单调性(引出课题)。

(二)研探新知1、y = x 2的图象在y 轴右侧是上升的,如何用数学符号语言来描述这种“上升”呢? 学生通过观察、思考、讨论,归纳得出:函数y = x 2在(0,+∞)上图象是上升的,用函数解析式来描述就是:对于(0,+∞)上的任意的x 1,x 2,当x 1<x 2时,都有x 12<x 22. 即函数值随着自变量的增大而增大,具有这种性质的函数叫增函数。

2.增函数一般地,设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),y x1 -1 1 -1y x 1 -1 1 -1 y x 1 -1 1-1那么就说f(x)在区间D 上是增函数(increasing function ).3、从函数图象上可以看到,y= x 2的图象在y 轴左侧是下降的,类比增函数的定义,你能概括出减函数的定义吗?注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f(x 1)<f(x 2) . 4.函数的单调性定义如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间: (三)质疑答辩,发展思维。

根据函数图象说明函数的单调性.例1 如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单 调区间,以及在每一单调区间上,它是增函数还是减函数?解:略点评:从图像中看出函数的单调区间是立即单调性的基础。

变式训练1 函数x x f 2)(=在]2,1[-∈x 上的单调性为 ( )A.减函数B.增函数.C.先增后减.D.先减后增 例2 物理学中的玻意耳定律P=Vk(k 为正常数)告诉我们,对于一定量的气体,当其体积V 减少时,压强P 将增大。

试用函数的单调性证明之。

分析:按题意,只要证明函数P=Vk在区间(0,+∞)上是减函数即可。

证明:略点评:实际问题与函数模型之间的关联十分密切,我们常常借助函数的单调性解决问题。

变式训练2 若函数b mx y +=在),(+∞-∞上是增函数,那么 ( )A.b>0B. b<0C.m>0D.m<0例3.16.求证:函数()1f x x x=+,在区间()0,1上是减函数 解:设()120,1x x <∈则()()()()()()121212211212121212121211 1 11 f x f x x x x x x x x x x x x x x x x x x x x x -=+---=-+⎛⎫=-- ⎪⎝⎭-=-12x x < 120x x -< ()120,1x x ∈ 120x x > 1210x x -<()()120f x f x ∴-> ()()12f x f x ∴>∴()1f x x x=+在区间()0,1上是减函数。

点评:利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤: ① 任取x 1,x 2∈D ,且x 1<x 2;② 作差f(x 1)-f(x 2);③变形(通常是因式分解和配方); ④定号(即判断差f(x 1)-f(x 2)的正负);⑤下结论(即指出函数f(x)在给定的区间D 上的单调性).变式训练3.:画出反比例函数xy 1=的图象. ○1 这个函数的定义域是什么? ○2 它在定义域I 上的单调性怎样?证明你的结论. 四、归纳小结函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 → 作 差 → 变 形 → 定 号 → 下结论 【板书设计】 一、 函数单调性 二、 典型例题例1: 例2: 小结:【作业布置】完成本节课学案预习下一节。

§1.3.1函数的单调性与最大(小)值(1)课前预习学案一、预习目标:1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;2.熟记函数单调性的定义二、预习内容:1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: ○1○2 能否看出函数的最大、最小值? ○3 函数图象是否具有某种对称性? 2.画出下列函数的图象,观察其变化规律:(1)f(x) = x ○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .(2)f(x) = -x+2○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . (3)f(x) = x 2 ○1在区间 ____________ 上, f(x)的值随着x 的增大而 ________ .○2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .3.一般地,设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,(1)当x 1<x 2时,都有f(x 1) f(x 2),那么就说f(x)在区间D 上是 函数 (2)当x 1<x 2时,都有f(x 1) f(x 2),那么就说f(x)在区间D 上是 函数 三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;2. 学会运用函数图象理解和研究函数的性质;3. 能够熟练应用定义判断与证明函数在某区间上的单调性. 学习重点:函数的单调性及其几何意义.学习难点:利用函数的单调性定义判断、证明函数的单调性 二、学习过程例1 如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单 调区间,以及在每一单调区间上,它是增函数还是减函数?y x1 -1 1 -1y x 1 -1 1 -1 y x 1 -1 1-1解:变式训练1 函数x x f 2)(=在]2,1[-∈x 上的单调性为 ( ) A.减函数 B.增函数. C.先增后减. D.先减后增 例2 物理学中的玻意耳定律P=Vk(k 为正常数)告诉我们,对于一定量的气体,当其体积V 减少时,压强P 将增大。

试用函数的单调性证明之。

证明:变式训练2 若函数b mx y +=在),(+∞-∞上是增函数,那么 ( )A.b>0B. b<0C.m>0D.m<0例3.证明函数xx y 1+=在(1,+∞)上为增函数 解:变式训练3.:画出反比例函数xy 1=的图象. ○1 这个函数的定义域是什么? ○2 它在定义域I 上的单调性怎样?证明你的结论. 三、当堂检测1、函数2x y -=的单调增区间为 ( ) A.]0,(-∞ B.),0[+∞ C.),(+∞-∞ D.),1(+∞-2、函数32)(2+-=mx x x f ,当),2[+∞-∈x 时是增函数,当]2,(--∞∈x 时是减函数,则)1(f 等于 ( )A.-3B.13C.7D.由m 而定的常数3、若函数xxk x f -=)(在)0,(-∞上是减函数,则k 的取值范围是 ( ) A.0=k B.0>k C.0<k D.0≥k4、函数||)(x x f =的减区间是____________________.5、若函数n x m x f +-=)12()(在),(+∞-∞上是减函数,则m 的取值范围是______.课后练习与提高一、 选择题1、下列函数中,在区间(0,2)上为增函数的是 ( )A.13+-=x yB. 3x y =C.342+-=x x y D.xy 4=2、函数322-+=x x y 的单调减区间是 ( )A.]3,(--∞B.),1[+∞-C.]1,(--∞D.),1[+∞ 二、填空题:3、函数163)(2+-=x x x f ,)4,3(∈x 上的单调性是_____________________. 4、已知函数582++=ax x y 在),1[+∞上递增,那么a 的取值范围是________.三、解答题:5、设函数)(x f 为R 上的增函数,令)2()()(x f x f x F --= (1)、求证:)(x F 在R 上为增函数(2)、若0)()(21>+x F x F ,求证221>+x x参考答案例一 略 变式训练一B 例二 略 变式训练二C 例三解:设()120,1x x <∈则()()()()()()121212211212121212121211 1 11 f x f x x x x x x x x x x x x x x x x x x x x x -=+---=-+⎛⎫=-- ⎪⎝⎭-=-12x x < 120x x -< ()120,1x x ∈ 120x x > 1210x x -<()()120f x f x ∴->()()12f x f x ∴>变式训练三略。

相关文档
最新文档