方程组和不等式组
线性方程组与不等式
线性方程组与不等式线性方程组和不等式是数学中常见的概念和问题类型,它们在实际生活和各个领域中都有广泛的应用。
本文将从基本概念入手,逐步介绍线性方程组和不等式的定义、解法以及一些实际问题的应用。
一、线性方程组的定义与解法线性方程组是由一组线性方程构成的方程组。
线性方程的一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b,其中a₁、a₂、...、aₙ为系数,x₁、x₂、...、xₙ为变量,b为常数。
为了解决线性方程组,在解法上可以使用消元法、代入法或矩阵法等。
其中,消元法是一种常用的解法。
消元法的基本思路是通过不改变方程组解集的操作,将线性方程组逐步化为简化的形式。
具体步骤如下:1. 化简:将线性方程组化为行简化阶梯形式,即将系数矩阵转化为行阶梯形矩阵。
2. 消元:从最后一行开始,逐行进行消元操作,通过倍乘和相减操作将系数矩阵化为最简形式。
3. 回代:从最后一行开始,逐行进行回代操作,通过代入求解出每个变量的值,得到方程组的解集。
需要注意的是,线性方程组的解不一定存在,或者存在无穷多个解。
通过解方程组可以得到变量的具体取值,从而解决相应的问题。
二、线性不等式的定义与解法线性不等式是包含线性函数或变量的不等关系的数学表达式。
一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b(或≥、<、>)。
解线性不等式的方法主要有图解法和代入法。
图解法利用平面直角坐标系,将不等式绘制成直线或线段,然后根据不等式的性质找到使其成立的解集。
代入法则是通过将不等式中的变量替换为特定的常数,然后求解得到不等式的解集。
与线性方程组不同的是,线性不等式的解集通常是一个区域或者是所有满足不等式条件的点的集合。
解线性不等式可以帮助我们确定变量的取值范围,解决约束条件下的问题。
三、线性方程组与不等式的应用线性方程组和不等式在实际问题中有广泛的应用,涵盖了许多不同领域。
以下是一些常见的应用场景:1. 经济学:线性方程组可以用来描述供求关系、成本与收益关系等经济问题,如经济平衡、市场均衡等。
方程组和不等式组的解法
方程组和不等式组的解法随着数学的发展,方程组和不等式组的解法成为数学中的重要内容。
解方程组和不等式组可以帮助我们解决各种实际问题,比如平衡化学方程、确定数值范围等。
本文将介绍方程组和不等式组的常见解法方法。
一、方程组的解法方程组是由多个方程组成的集合。
解方程组的方法有多种,其中最常见的是代入法、消元法和判别式法。
1. 代入法代入法是一种简单而直观的解方程组方法。
它的基本思想是将一个方程的解代入到另一个方程中,从而得到新的方程,进而求解出未知数的值。
示例:```方程组:2x + 3y = 7 (方程1)3x + 4y = 10 (方程2)解:由方程1可得:2x = 7 - 3y代入方程2,得到:3(7 - 3y) + 4y = 10化简得:21 - 9y + 4y = 10合并同类项,得到:5y = 11解得:y = 11/5将y的值代入方程1,得到:2x + 3(11/5) = 7化简得:2x = 7 - 33/5合并同类项,得到:2x = 12/5解得:x = 6/5所以,方程组的解为:x = 6/5,y = 11/5```2. 消元法消元法是一种通过消去未知数的系数从而简化方程组的解法方法。
它常用于线性方程组的解法。
示例:```方程组:2x + 3y = 7 (方程1)3x + 4y = 10 (方程2)将方程1乘以4,方程2乘以3,得到:8x + 12y = 28 (方程3)9x + 12y = 30 (方程4)将方程3减去方程4,得到新方程:-x = -2解得:x = 2将得到的x的值代入方程1,得到:2(2) + 3y = 7化简得:4 + 3y = 7解得:y = 1所以,方程组的解为:x = 2,y = 1```3. 判别式法判别式法是通过计算方程组的行列式来判断方程组是否有解,以及解的唯一性。
当判别式不为零时,方程组有唯一解;当判别式为零时,方程组无解或有无穷多解。
示例:方程组:2x + 3y = 7 (方程1)4x + 6y = 14 (方程2)解:由第一个方程乘以2,得到:4x + 6y = 14 (方程3)将方程2和方程3写成矩阵形式,计算行列式:| 2 3 | = 0| 4 6 |判别式为零,说明方程组有无穷多解。
中考数学复习第二章方程组与不等式组讲义
第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
七年级方程(组)、不等式(组)复习资料
7、甲、乙两件服装的成本共 500 元,商店老板为获取利润,决定将甲服装按 50﹪的利润定价, 乙服装按 40﹪的利润定价。在实际出售时,应顾客要求,两件服装均按 9 折出售,这样商店共 获利 157 元,求甲、乙两件服装的成本各是多少元?
(1)a+l
b+l; (2)a-5
b-5;
2-3x≤ 8 的解集是
1 x-1< 1 2
(3)-3a
-3b; (4)6-a
3、写出适合不等式 2x+3<9 的正整数解_____________________。
1-x≥ 0
4、不等式组
的整数解是
.
2x-1>-3
5 、 代 数 式 1 - k 的 值 大 于 - 1 而 又 不 大 于 3 ,则k的取值范围是
10、某玩具工厂广告称:“本厂工人工作时间:每天工作 8 小时,每月工作 25 天;待遇:熟练 工人按计件付工资,多劳多得,计件工资不少于 800 元,每月另加福利工资 100 元,按月结 算;……”该厂只生产两种玩具:小狗和小汽车。熟练工人晓云元月份领工资 900 多元,她记 录了如下表的一些数据:
2、 当 x取 什 么 值 时 , 代 数 式 2x +1 -1的 值 不 小 于 3x − 8 +2的 值 ?
2
11. 为节约能源,某单位按以下规定收取每月电费:用电不超过 140 度,按每度 0.43 元收费; 如果超过 140 度,超过部分按每度 0.57 元收费。若某用电户四月份的电费平均每度 0.5 元,问 该用户四月应交电费多少元?
与方程(组)、不等式(组)有关的参数问题
4´10 - (3a +1) = 6´10 - 2a +1,
40 - 3a -1 = 60 - 2a +1 ,
39 - 3a = 61- 2a ,
-3a + 2a = -39 + 61,
-a = 22 ,
a = -22 ,
故 a 的值为 -22 .
5.已知关于
x,
y
的方程组
ì2x - y = 2m - 4①
解得: 8 < a £ 3 , 3
即此时 a 的取值范围是 8 < a £ 3 . 3
12.已知
ì2x + íîx + 2
y y
= =
3 3
+
2a 2a
a
¹
0
是关于
x,y
的二元一次方程组.
(1)求方程组的解(用含 a 的代数式表示); (2)若 x - 2 y > 0 ,求 a 的取值范围.
【答案】(1)
mx - 2x > m + 3 , (m - 2)x > m + 3 ,
Q
它的解集是
x
<
m m
+ -
3 2
,
\m-2 < 0,
解得 m < 2 ;
(2) 2x -1 > 3 - x ,
解得: x > 4 , 3
Q
它的解集是
x
>
m m
+ -
3 2
,
\
m m
+ -
3 2
=
4 3
,且
m
-
2
>
二元一次方程组和不等式组
二元一次方程组和不等式组在数学中,方程组和不等式组是两个很常见的概念。
在解决各种实际问题时,它们是不可或缺的工具。
本文将着重探讨二元一次方程组和不等式组的概念和方法。
一、二元一次方程组1. 定义二元一次方程组是由两个形如ax+by=c的方程所组成的方程组。
其中a、b、c分别为已知常数,而x和y是未知量。
2. 解法为了解决二元一次方程组,我们可以采取以下两种方法。
(1) 相减法若方程组为:⑴ax+by=c⑵dx+ey=f则方程两边相减,得到(b-e)y = c-f 。
进而可以解出y的值。
将y的值代入其中一方程,即可求出x的值。
(2) 代入法若方程组为:⑴ax+by=c⑵dx+ey=f则可以将其中一个方程中的一个未知量表示成另一个方程相应未知量的函数。
例如,将⑴式中的x表示成y的函数,则:x = (c-by)/a将其代入⑵式中,就可得到只含有y的方程。
二、不等式组1. 定义不等式组是含有形如ax+b<y和cx+d>z的不等式的方程组。
其中a、b、c和d是已知常数,而x、y和z是未知量。
2. 解法为了解决不等式组,我们可以采取以下两种方法。
(1) 图像法不等式组可以通过对其图像进行研究来解决。
例如:ax+b<y则可以绘制出y = ax+b的函数图像。
从而可以确定该不等式组的解集。
(2) 替换法替换法是将不等式组中的一个不等式代入另一个不等式中,从而得到一个只含有一个未知量的不等式。
例如:ax+b<ycan+d>z可将第一个不等式中的y替换成can+d,从而得到ax+b<can+d。
从而得到只含有x和z的一个不等式。
方程组与不等式组知识点总结
方程组与不等式组知识点总结一、方程组。
1. 二元一次方程组。
- 定义。
- 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
把两个含有相同未知数的二元一次方程(或者一个二元一次方程,一个一元一次方程)联立起来,组成的方程组叫做二元一次方程组。
例如x + y=5 2x - y = 1。
- 解法。
- 代入消元法。
- 步骤:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来,如对于方程组y = 2x - 3 3x+2y = 8,由第一个方程y = 2x - 3,将y代入第二个方程得3x+2(2x - 3)=8,然后解这个一元一次方程求出x的值,再把x的值代入y = 2x - 3求出y的值。
- 加减消元法。
- 步骤:当方程组中两个方程的同一未知数的系数相等或互为相反数时,把这两个方程的两边分别相减或相加,消去这个未知数,得到一个一元一次方程。
例如对于方程组3x+2y = 11 5x - 2y = 13,将两个方程相加得(3x + 2y)+(5x - 2y)=11 + 13,即8x=24,解得x = 3,再把x = 3代入3x+2y = 11求出y的值。
2. 三元一次方程组。
- 定义。
- 含有三个未知数,并且含有未知数的项的次数都是1的整式方程组成的方程组叫做三元一次方程组。
例如x + y+z = 6 2x - y+z = 3 3x + 2y - z=4。
- 解法。
- 思路是通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程求解。
例如先消去z,可以将第一个方程x + y+z = 6与第三个方程3x + 2y - z = 4相加得到4x+3y = 10,再将第一个方程x + y+z = 6与第二个方程2x - y+z = 3相减得到-x + 2y=3,这样就得到了一个二元一次方程组4x + 3y=10 -x+2y = 3,然后用二元一次方程组的解法求解。
不等式组与方程组的关系
不等式组与方程组的关系在数学中,不等式与方程都是常见的数学表示形式。
不等式组与方程组是由多个不等式或方程组成的集合,它们在数学问题的建模和解决中起着重要的作用。
本文将探讨不等式组与方程组之间的关系,并分析其在实际问题中的应用。
一、不等式组的定义与特点不等式组是由多个不等式组成的集合,通常用符号“≤”或“≥”来表示。
不等式组中的每个不等式都是一个条件,通过满足这些条件,我们可以得到一组解或一组满足特定条件的值。
不等式组与方程组的主要区别在于,不等式组的解不一定是精确的数值,而是一组可能的解范围。
不等式组的解可以用区间或集合来表示,而方程组的解则是精确的数值。
二、方程组的定义与特点方程组是由多个方程组成的集合,通常用符号“=”来表示。
方程组中的每个方程都是表示等式的条件,通过满足这些条件,我们可以得到一组精确的数值解。
与不等式组不同,方程组的解只有一个或者没有解。
方程组的解可以用具体的数值表示,或者用变量表示。
三、1. 联立问题不等式组与方程组之间存在联立的问题。
当我们在解决实际问题时,常常需要同时考虑多个条件,这时就需要联立不等式组与方程组。
通过联立不等式组与方程组,可以得到满足所有条件的解。
例如,在求解一个实际问题中,我们可能需要考虑某个物品的价格与折扣的关系,这时就可以使用一个不等式组来表示物品价格的范围,再联立一个方程来表示折扣情况,从而得到合适的购买方案。
2. 不等式组的应用不等式组在实际问题中有很广泛的应用。
例如,在线性规划中,我们常常需要求解满足一组约束条件的最优解,这时就可以将约束条件表示为不等式组,通过解不等式组来求解最优解。
此外,在经济学、生物学和工程学等领域,不等式组也被广泛应用于模型的建立和解决中。
3. 方程组的应用方程组在实际问题中同样有着重要的应用。
例如,在电路分析中,我们常常需要联立多个方程来描述电路中的电流和电压关系,从而求解电路中的未知量。
方程组也被广泛应用于数学建模和计算机科学中。
人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理
第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
第2讲 方程(组)与不等式(组)
第2讲 方程(组)与不等式(组)知识点1 一元一次方程1.等式及其性质 ⑴ 等式:用等号“=”来表示等量关系的式子叫等式.⑵ 性质:① 如果,那么b ±c ;② 如果,那么bc ;如果,那么b c2. 方程、一元一次方程的解、概念(1) 方程:含有未知数的等式叫做方程;使方程左右两边的值相等的未知数的值,叫做方程的解;求方程解的过程叫做解方程. 方程的解与解方程不同.(2) 一元一次方程:在整式方程中,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程;它的一般形式为ax+b=0. 3. 解一元一次方程的步骤:①去分母;②去;③移;④合并;⑤系数化为1. 4. 一元一次方程的应用:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数. (3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.b a ==±c a b a ==ac ba =()0≠c =c a ()0≠a(6)“答”就是写出答案,注意单位要写清楚.【典例】例1如果3m =3n ,那么下列等式不一定成立的是( ) A .m ﹣3=n ﹣3 B .2m +3=3n +2C .5+m =5+nD .m −3=n −3例2解方程:(1)2﹣3(x ﹣1)=2(x ﹣2); (2).例3若方程12﹣3(x +1)=7﹣x 的解与关于x 的方程6﹣2k =2(x +3)的解相同,求k 的值.例4若方程2(2x ﹣1)=3x +1与关于x 的方程2ax =(a +1)x ﹣6的解互为倒数,求a 的值.例5我市某区为鼓励毕业大学生自主创业,经过调研决定:在2021年对60名自主创业的大学生进行奖励,共计奖励50万元.奖励标准是:大学生自主创业连续经营一年以上的给予5000元奖励;自主创业且解决3人以上失业人员稳定就业的,再给予1万元奖励.问:该区自主创业大学生中连续经营一年以上的和自主创业且解决3人以上失业人员稳定就业的大学生分别有多少人?例6两辆汽车从相距80km 的两地同时出发相向而行,甲车的速度比乙车的速度快20km /h ,半小时后两车相遇? (1)两车的速度各是多少? (2)两车出发几小时后相距20km ?【随堂练习】1.在下列方程的变形中,正确的是( ) A .由2x +1=3x ,得2x +3x =1 B .由25x =34,得x =34×52C .由2x =34,得x =32D .由−x+13=2,得﹣x +1=62.解方程:(1)3x +2=4(2x +3); (2)﹣1.3.某同学在解关于y 的方程﹣=1去分母时,忘记将方程右边的1乘以12,从而求得方程的解为y =10.(1)求a 的值; (2)求方程正确的解.4.已知关于x 的方程2(x ﹣1)=3m ﹣1与3x ﹣2=﹣4的解相同,求m 的值.5.为加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格如表:每月用水量 单价(元)不超过23立方米的部分 m 超过23立方米的部分m +1.1(1)某用户4月份用水10立方米,共交费26元,求m 的值;(2)在(1)的前提下,该用户5月份交水费82元,请问该用户5月份用水多少立方米?知识点2 一元二次方程1.一元二次方程:在整式方程中,只含一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程.一元二次方程的一般形式是)0(02≠=++a c bx ax .其中2ax 叫做二次项,bx 叫做一次项,c 叫做常数项;a 叫做二次项的系数,b 叫做一次项的系数. 2. 一元二次方程的常用解法:(1)直接开平方法:形如或的一元二次方程,就可用直接开平方的方法.)0(2≥=a a x )0()(2≥=-a a b x(2)配方法:用配方法解一元二次方程的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为的形式,⑤如果是非负数,即,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程的求根公式 .(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为0;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程的根的判别式为=∆. (1)>0一元二次方程有两个不相等的实数根,即242ab b ac -±-.(2)=0一元二次方程有两个相等的实数根,即2ba-. (3)<0一元二次方程没有实数根.4. 一元二次方程根与系数的关系关于x 的一元二次方程有两根分别为,,那么 a b -,c a. 【典例】例1若关于x 的方程(m +1)x |m |+1+x ﹣3=0是一元二次方程,求m 的值.()02≠=++a o c bx ax 2()x m n +=0n ≥20(0)ax bx c a ++=≠221,2440)b b ac x b ac -±-=-≥()002≠=++a c bx ax ac b 42-ac b 42-⇔()002≠=++a c bx ax =2,1x ac b 42-⇔==21x x ac b 42-⇔()002≠=++a c bx ax 20(0)ax bx c a ++=≠1x 2x =+21x x =⋅21x x例2解方程:9(x﹣1)2=16(x+2)2.例3用配方法解方程:x2﹣8x+13=0.例4若关于x的一元二次方程kx2﹣6x+9=0有实数根,求k的取值范围.例5岳池县是电子商务百强县,某商店积极利用网络优势销售当地特产—西板豆豉.已知每瓶西板豆豉的成本价为16元,当销售单价定为20元时,每天可售出80瓶.为了回馈广大顾客,该商店现决定降价销售(销售单价不低于成本价).经市场调查反映:若销售单价每降低0.5元,则每天可多售出20瓶.(1)当销售单价降低1元时,每天的销售利润为元;(2)为尽可能让利于顾客,若该商店销售西板豆豉每天的实际利润为350元,求西板豆豉的销售单价.例6在学校劳动基地里有一块长40米、宽20米的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横开辟三条等宽的小道,如图.已知这块矩形试验田中种植的面积为741平方米,小道的宽为多少米?【随堂练习】1.解方程:(1)(x﹣1)2﹣=0;(2)2x2+8x﹣1=0.2.已知关于x的方程x2+kx﹣2=0.(1)求证:不论k取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.3.惠友超市于今年年初以25元/件的进价购进一批商品.当商品售价为40元/件时,一月份销售了256件.二、三月份该商品十分畅销,销售量持续走高.在售价不变的基础上,三月份的销售量达到了400件.(1)求二、三月份销售量的月平均增长率.(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每件每降价1元,销售量增加5件.当每件商品降价多少元时,商场获利4250元?4.如图是一张长20cm、宽13cm的矩形纸板,将纸板四个角各剪去一个边长为xcm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.(1)这个无盖纸盒的长为cm,宽为cm;(用含x的式子表示)(2)若要制成一个底面积是144cm2的无盖长方体纸盒,求x的值.知识点3 分式方程1.分式方程:分母中含有未知数的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母中,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解,是否是所列分式方程的解;(2)检验所求的解,是否为增根.【典例】例1解方程:(1)=﹣2.(2)=.例2用换元法解方程(xx+1)2+5(x x+1)+6=0时,若设xx+1=t,则原方程可化为关于t的一元二次方程是.例3定义一种新运算“⊗”,规则如下:a⊗b=,(a≠b2),这里等式右边是实数运算,例如:1⊗3==﹣.求x⊗(﹣2)=1中x的值.例4疫情过后,为做好复工复产,某工厂用A、B两种型号机器人搬运原料.已知A型机器人每小时搬运的原料比B型机器人每小时搬运的原料的一半多50千克,且B型机器人搬运2400千克所用时间与A型机器人搬运2000千克所用时间相等,求这两种机器人每小时分别搬运多少千克原料.例5 2020年春节寒假期间,小伟同学完成数学寒假作业的情况是这样的:原计划每天都做相同页数的数学作业,做了5天后,由于新冠疫情加重,当地加强了防控措施,对外出进行限制,小伟有更多的时间待在家里,做作业的效率提高到原来的2倍,结果比原计划提前6天完成了数学寒假作业,已知数学寒假作业本共有34页,求小伟原计划每天做多少页数学寒假作业?例6要在规定天数内修筑一段公路,若让甲队单独修筑,则正好在规定天数内按期完成;若让乙队单独修筑,则要比规定天数多8天才完成.现在由乙队单独修筑其中一小段,用去了规定时间的一半,然后甲队接着单独修筑2天,这段公路还有一半未修筑.若让两队共同再修筑2天,能否完成任务?【随堂练习】1.用换元法解方程x−1x=3x x−1−2时,设x−1x=y ,换元后化成关于y 的一元二次方程的一般形式为 .2.解方程: (1)=;(2)﹣3.3.若关于x 的方程有增根,则增根是多少?并求方程产生增根时m 的值.4.虎林西苑社区在扎实开展党史学习教育期间,开展“我为群众办实事”活动,为某小区铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.5.某所学校有A、B两班师生前往一个农庄参加植树活动.已知A班每天植树量是B班每天植树量的1.5倍,A班植树300棵所用的天数比B班植树240棵所用的天数少2天,求A、B两班每天各植树多少棵?知识点4 方程组(1)二元一次方程:含有两个未知数(元)并且未知数的次数是2的整式方程.(2) 二元一次方程组:由2个或2个以上的含有相同未知数的二元一次方程组成的方程组叫二元一次方程组.(3)二元一次方程的解:适合一个二元一次方程的两个未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有无数个解.(4)二元一次方程组的解:使二元一次方程组成立的未知数的值,叫做二元一次方程组的解.(5)①代入消元法、②加减消元法.【典例】例1下列方程中,是二元一次方程的是()A.xy=2B.3x=4y C.x+1y=2D.x2+2y=4例2解方程组:(1);(2).例3已知方程组与有相同的解,求m 和n 值.例4糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?例5中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某种药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:车型 甲 乙 运载量(吨/辆) 10 12 运费(元/辆)700720若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?【随堂练习】1.如果3x 3m﹣2n﹣4y n﹣m+12=0是关于x 、y 的二元一次方程,那么m 、n 的值分别为( ) A .m =2,n =3 B .m =2,n =1C .m =﹣1,n =2D .m =3,n =42.如果方程组{ax −by =134x −5y =41与{ax +by =32x +3y =−7有相同的解,则a ,b 的值是( )A .{a =2b =1B .{a =2b =−3C .{a =52b =1D .{a =4b =−53.解方程组:.4.列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?5.某市要在A ,B 两景区安装爱心休闲椅,它有长条椅和弧形椅两种类型,其中每条长条椅可以同时供3人使用,每条弧形椅可以同时供5人使用.(列二元一次方程组解答) (1)市政府现在要为B 景区购买长条椅120条,弧形椅80条,若购买一条长条椅和一条弧形椅的价格共360元,为B 景区购买共花费了32800元,求长条椅和弧形椅的单价分别为多少元?(2)现决定从某公司为A 景区采购两种爱心休闲椅共400条,且正好可让1400名游客同时使用,求A 景区采购的长条椅和弧形椅分别为多少条?知识点5不等式(组)1. 用不等号连接起来的式子叫不等式;使不等式成立的未知数的值叫做不等式的解;一些使不等式成立的未知数的值叫做不等式的解集.求一个不等式的解的过程或证明不等式无解的过程叫做解不等式. 2.不等式的基本性质:(1)若<,则+<; (2)若>,>0则> (或> ); a b a c c b a b c ac bc c a cb(3)若>,<0则 < (或< ). 3.一元一次不等式:只含有一个未知数,且未知数的次数是一次且系数不等于0的不等式,称为一元一次不等式;一元一次不等式的一般形式为ax >b 或;解一元一次不等式的一般步骤:去分母、去括号 、移项、合并同类项、系数化为1.4.一元一次不等式组:几个含有相同未知数的一元一次不等式合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)的解集是,即“小小取小”;的解集是,即“大大取大”;的解集是,即“大小小大中间找”;的解集是空集,即“大大小小取不了”. 6.求不等式(组)的特殊解:不等式(组)的解一般有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案. 7.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥答:检验所求解是否符合题意,写出答案(包括单位).a b c ac bc c a cb ax b <a b <x a x b <⎧⎨<⎩x a <x ax b >⎧⎨>⎩x b >x ax b>⎧⎨<⎩a x b <<x ax b <⎧⎨>⎩x【典例】例1如果a <b ,c <0,那么下列不等式中成立的是( ) A .a +c >b +c B .ac <bcC .ac 2>bc 2D .ac +1>bc +1例2解不等式10−x 3≤2x +1,并在数轴上将解集表示出来.例3解不等式组{2x −2≤xx +2>−12x −1,并把解集在数轴上表示出来.例4已知某校六年级学生超过130人,而不足150人,将他们按每组12人分组,多3人,将他们按每组8人分组,也多3人,该校六年级学生有多少人?例5为了美化校园,我校欲购进甲、乙两种工具,如果购买甲种3件,乙种2件,共需56元;如果购买甲种1件,乙种4件,共需32元. (1)甲、乙两种工具每件各多少元?(2)现要购买甲、乙两种工具共100件,总费用不超过1000元,那么甲种工具最多购买多少件?【随堂练习】1.若a >﹣1,则下列各式中错误的是( ) A .6a >﹣6 B .a 2>−12C .a +1>0D .﹣5a <﹣52.解不等式: (1)x +1>2x ﹣4; (2)−2x−13>4.3.解不等式组﹣2≤7x−53+2<5,并在数轴上表示出它的解集.4.某街道组织志愿者活动,选派志愿者到小区服务.若每一个小区安排4人,那么还剩下78人;若每个小区安排8人,那么最后一个小区不足8人,但不少于4人.求这个街道共选派了多少名志愿者?5.“端午节”将至,某商家预测某种粽子能够畅销,就准备购进甲、乙两种粽子.若购进甲种400个,乙种200个,需要用2800元;若购进甲种粽子700个,乙种粽子300个,需要4500元.(1)该商家购进的甲、乙两种粽子每个进价多少元?(2)该商家准备2500元全部用来购买甲乙两种粽子,计划销售每个甲种粽子可获利3元,销售每个乙种粽子可获利5元,且这两种粽子全部销售完毕后总利润不低于1900元,那么商家至少应购进甲种粽子多少个?综合运用1.若关于x 的方程x+m 3=x −m2与方程3+4x =2(3﹣x )的解互为倒数,求m 的值.2.解方程: (1)x−12=4x 3;(2)5x+13−2x−16=1.3.解不等式组{3−2(x −1)<3x 1−x−13≥0,把其解集在数轴上表示出来,并写出它的整数解.4.已知方程x 2﹣(k +1)x +k ﹣1=0是关于x 的一元二次方程. (1)求证:对于任意实数k ,方程总有两个不相等的实数根; (2)若方程的一个根是2,求k 的值及方程的另一个根.5.某工厂生产一批小家电,2018年的出厂价是144元,2019年,2020年连续两年改进技术,降低成本,2020年出厂价调整为100元.(1)这两年出厂价下降的百分比相同,求平均下降率.(2)某商场今年销售这批小家电的售价为140元时,平均每天可销售20台,为了减少库存,商场决定降价销售,经调查发现小家电单价每降低5元,每天可多售出10台,如果每天盈利1250元,单价应降低多少元?6.假期里,学校组织部分团员同学参加“关爱老年人”的爱心援助活动,计划分乘大、小两辆车前往相距140km的乡村敬老院.(1)若小车速度是大车速度的1.4倍,则小车比大车早一个小时到达,求大、小车速度.(2)若小车与大车同时以相同速度出发,但走了60千米以后,发现有物品遗忘,小车准备加速返回取物品,要想与大车同时到达,应提速到原来的多少倍?7.某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎.该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:里程数(千米)时间(分钟)车费(元)小聪3109小明61817.4(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从三水荷花世界打车到大旗头古村,总里程为23千米,耗时30分钟,求小强需支付多少车费.8.我市创全国卫生城市,梅溪湖社区积极响应,决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱,若购买4个垃圾箱比购买5个温馨提示牌多350元,垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)如果该街道需购买温馨提示牌和垃圾箱共3000个.该街道计划费用不超过35万元,而且垃圾箱的个数不少于温馨提示牌的个数的1.5倍,求有几种可供选择的方案?并找出资金最少的方案,求出最少需多少元?。
中考数学常见易错知识点汇总(方程组与不等式组)
中考数学常见易错知识点汇总(方程组与不
等式组)
方程(组)与不等式(组)
易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0 的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带X 公因式要回头检验!
易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。
易错点6:解分式方程时首要步骤去分母,分数相相当于括
号,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
方程组与不等式组知识点
第二章 方程(组)与不等式(组)方程与方程组解法总结一元一次方程等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
解二元一次方程组的方法:代入消元法/加减消元法.一元二次方程的解法(1)配方法(2)分解因式法(3)公式法解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=—ab ,二根之积=ac 也可以表示为1x +2x =-a b ,21x x =a c 。
利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式I 当△>0时,一元二次方程有2个不相等的实数根; II 当△=0时,一元二次方程有2个相同的实数根;III 当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)难点提示:1。
一元二次方程的根的判别式:△=b 2+4ac ,当△〉0 方程有两个不相等的实数根;当△=0 时 方程有两个相等的实数根;当△〈0 方程没有实数根。
2。
根与系数的关系:若一元二次方程2ax +bx+c=0(a≠0)的两根为12,x x ,则1x +2x =— ab,1x 2x ·= ac . 反过来,以12,x x 为根的一元二次方程是(x-1x )(x-2x )=0,展开代入两根和与两根积,仍得到方程 2ax +bx+c=0(a≠0).特殊的:对二次项系数为1的方程2x +px+q=0的两根为12,x x 时,那么1x +2x =—p,1x . 2x =q 。
不等式组和不等式方程组
不等式组和不等式方程组
一、不等式组
1、不等式的定义:用不等号连接表示不等关系的式子,叫做不等式
2、不等号:>、<、≥、≤、≠
3、不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4、不等式的解集:一个含的未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集。
5、解不等式:求不等式的解集的过程叫做解不等式。
二、不等式组的性质
1、不等式的性质1:不等号两边同时加上或减去同一个数(或同一个式子),不等号的方向不变。
2、不等式的性质2:不等号两边同时乘或除以同一个正数(或同一个大于0的式子),不等号的方向不变。
3、不等式的性质3:不等号两边同时乘或除以同一个负数(或同一个小于0的式子),不等号的方向改变。
三、一元一次不等式:
1、一元一次不等式的定义:含有一个未知数,未知数的次数是1,未知数的系数不为0,这样的不等式叫做一元一次不等式。
2、一元一次不等式的一般形式:
ax+b>0或ax+b<0(a、b为常数,且a≠0)
3、一元一次不等式的最简形式:
ax>b或ax<b(a、b为常数,且a≠0)
四、一元一次不等式组:
1、一元一次不等式组的定义:把几个含有相同未知数的一元一次不等式合在一起,就组成了一元一次不等式组。
2、一元一次不等式组的解集:在一个一元一次不等式组中,所有一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。
3、解不等式组:求不等式组的解集的过程,叫做解不等式组。
4、一元一次不等式组的解的情况:。
数学中的不等式与方程组
数学中的不等式与方程组一、不等式的定义与性质数学中的不等式是指数之间的大小关系,包括大于、小于、大于等于、小于等于等。
不等式可以用来描述实际问题中的约束关系,常见于数学、物理、经济等领域的建模与求解过程中。
不等式的定义:设a和b为实数,则a不等于b可以表示为a≠b,a 大于b可以表示为a>b,a小于b可以表示为a<b,a大于等于b可以表示为a≥b,a小于等于b可以表示为a≤b。
不等式的性质包括传递性、对称性、加法性、乘法性等。
传递性指若a>b,b>c,则a>c;对称性指若a>b,则b<a;加法性指若a>b,则a+c>b+c,乘法性指若a>b,且c>0,则ac>bc。
这些性质在不等式的推导与解答过程中起到关键作用。
二、一元一次不等式的解法一元一次不等式是指只含有一个未知数,并且未知数的最高次数为一的不等式。
解一元一次不等式的基本思路是找到未知数的取值范围使不等式成立。
对于形式为ax+b>0的不等式,可按以下步骤求解:1. 若a>0,则不等式解集为(-∞, -b/a);2. 若a<0,则不等式解集为(-b/a, +∞);3. 若a=0且b>0,则不等式无解;4. 若a=0且b≤0,则不等式解集为(-∞,+∞)。
对于形式为ax+b<0的不等式,求解步骤与以上类似,只需将“>”号替换为“<”号即可。
类似地,对于形式为ax+b≥0和ax+b≤0的不等式,只需将“>”号替换为“≥”,“<”号替换为“≤”即可得到解集。
三、一元二次不等式的解法一元二次不等式是指未知数的最高次数为二的不等式。
解一元二次不等式的方法可以归结为求解一元二次方程的方法,即先化简不等式为二次方程,然后通过判别式和根的位置关系来确定不等式的解集。
对于形式为ax²+bx+c>0的一元二次不等式,可按以下步骤求解:1. 求出对应的一元二次方程ax²+bx+c=0的判别式Δ=b²-4ac;2. 若Δ>0,则方程有两个不相等的实根x₁和x₂,此时不等式的解集为(-∞, x₁)∪(x₂, +∞);3. 若Δ=0,则方程有两个相等的实根x₁=x₂,此时不等式的解集为(-∞, x₁)∪(x₁, +∞);4. 若Δ<0,则方程无实根,此时不等式的解集为空集。
最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编
中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。
(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。
(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。
对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。
(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。
注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。
数学中的方程组和不等式组
数学中的方程组和不等式组1.定义:方程组是由两个或两个以上的方程构成的,这些方程中包含有未知数,并且每个方程都是一些未知数的等式。
a)二元方程组:包含两个未知数的方程组。
b)三元方程组:包含三个未知数的方程组。
c)多元方程组:包含四个或四个以上未知数的方程组。
d)代入法:将一个方程中的未知数用另一个方程中的未知数表示出来,然后代入另一个方程求解。
e)消元法:通过加减乘除等运算,消去方程组中的一个或多个未知数,从而求解。
f)矩阵法:利用矩阵表示方程组,然后通过矩阵运算求解。
2.解的判定:a)有解:如果方程组中未知数的系数和常数项满足一定的条件,那么方程组必有解。
b)无解:如果方程组中未知数的系数和常数项不满足有解的条件,那么方程组无解。
c)无穷多解:如果方程组中未知数的系数和常数项既不满足有解的条件,也不满足无解的条件,那么方程组有无穷多解。
二、不等式组1.定义:不等式组是由两个或两个以上的不等式构成的,这些不等式中包含有未知数,并且每个不等式都是一些未知数的不等式。
a)一元不等式组:包含一个未知数的不等式组。
b)二元不等式组:包含两个未知数的不等式组。
c)多元不等式组:包含四个或四个以上未知数的不等式组。
d)图像法:通过绘制每个不等式的图像,确定不等式组的解集。
e)代入法:将一个不等式中的未知数用另一个不等式中的未知数表示出来,然后代入另一个不等式求解。
f)区间法:通过分析每个不等式的解集,确定不等式组的解集。
2.解的判定:a)有解:如果不等式组中未知数的系数和常数项满足一定的条件,那么不等式组必有解。
b)无解:如果不等式组中未知数的系数和常数项不满足有解的条件,那么不等式组无解。
c)无穷多解:如果不等式组中未知数的系数和常数项既不满足有解的条件,也不满足无解的条件,那么不等式组有无穷多解。
三、方程组与不等式组的关系1.联系:方程组和不等式组都可以用来描述一些实际问题中的数量关系,它们在解决问题时有时会相互转化。
方程组和不等式
方程组和不等式
二元一次方程组
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解。
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组。
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解。
注意:一般说二元一次方程组只有唯一解(即公共解)。
4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键。
5.列二元一次方程组解实际问题。
关键:找等量关系
顺流逆流公式
一元一次不等式(组)
1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.
2.不等式的基本性质:
a不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
b不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
c不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.
4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b>0或ax+b<0 ,(a≠0).
5.用不等式表示,利用数轴或口诀解不等式组(口诀(简单不等式):同大取大,同小取小,大(于)小小(于)大取中间,大(于)大小(于)小,解不见了。
6.一元一次不等式组的解集的四种类型:设a>b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题3:方程(组)和不等式(组)一、选择题1. (2012湖北武汉3分)在数轴上表示不等式x-1<0的解集,正确的是【】2.)若x1、x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是【】A.-2 B.2 C.3 D.13.用配方法解关于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是【】A.(x﹣1)2=4 B.(x+1)2=4 C.(x﹣1)2=16 D.(x+1)2=164. (2012湖北荆门3分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是【】A.B.C.D.5.不等式组x12x4<≥-⎧⎨⎩的解集在数轴上表示正确的是【】A.B.C.D.6. (2012湖北天门、仙桃、潜江、江汉油田3分)如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为【】A.3 B.﹣3 C.13 D.﹣137.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高【】A.40% B.33.4% C.33.3% D.30%8. (2012湖北咸宁3分)不等式组x1042x0>-⎧⎨-≥⎩①②的解集在数轴上表示为【】.9.用配方法解关于x 的一元二次方程x 2﹣2x ﹣3=0,配方后的方程可以是【 】A .(x ﹣1)2=4B .(x+1)2=4C .(x ﹣1)2=16D .(x+1)2=1610.分式方程10060=20+v 20v-的解是【 】 A.v=-20 B. v =5 C. v =-5 D. v =20 11. (2012湖北随州4分)若不等式组x b 0x+a 0<>-⎧⎨⎩的解集为2<x<3,则a ,b 的值分别为【 】 A. -2,3 B.2, -3 C.3,-2 D.-3,212.若关于x 的一元一次不等式组x a 012x x 2>>-⎧⎨--⎩无解,则a 的取值范围是【 】 A .a≥1 B .a >1 C .a≤-1 D .a <-113. (2012湖北襄阳3分)若不等式组1+x a 2x 40>⎧⎨-≤⎩有解,则a 的取值范围是【 】 A .a≤3 B .a <3 C .a <2 D .a≤214. (2012湖北襄阳3分)如果关于x 的一元二次方程2kx 10+=有两个不相等的实数根,那么k 的取值范围是【 】A .k <12B .k <12且k≠0C .﹣12≤k <12D .﹣12≤k <12且k≠0 二、填空题1.若关于x 的不等式组{2x 3x 33x a 5>-->有实数解,则a 的取值范围是 ▲ .2.)“数学王子”高斯从小就善于观察和思考.在他读小学时候就能在课堂上快速的计算出12398991005050+++⋅⋅⋅⋅⋅⋅+++=,今天我们可以将高斯的做法归纳如下: 令123989910S 0=+++⋅⋅⋅⋅⋅⋅+++ ①1009998321S =+++⋅⋅⋅⋅⋅⋅+++ ②①+②:有2(1100)100S =+⨯ 解得:S 5050=请类比以上做法,回答下列问题: 若n 为正整数,357(218n )16+++⋅⋅⋅⋅⋅⋅++=,则n = ▲ .3.新定义:[a ,b]为一次函数y=ax+b (a≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m ﹣2]的一次函数是正比例函数,则关于x 的方程11+=1x 1m-的解为 ▲ .4.学校举行“大家唱大家跳”文艺汇演,设置了歌唱与舞蹈两类节目,全校师生一共表演了30个节目,其中歌唱类节目比舞蹈类节目的3倍少2个,则全校师生表演的歌唱类节目有 ▲ 个.5.如图,直线y kx b =+经过A (3,1)和B (6,0)两点,则不等式组0<kx+b <13x 的解集为 ▲ .6.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需 ▲ 元.7.2008年北京成功举办了一届举世瞩目的奥运会,今年的奥运会将在英国伦敦举行,奥运会的年份与届数如下表所示:表中n 的值等于 ▲ .8. (2012湖北襄阳3分)分式方程25=x x+3的解是 ▲ . 9. (2012湖北鄂州3分)设x 1、x 2是一元二次方程x 2+5x -3=0的两个实根,且21222x (x 6x 3)a 4+-+=,则a= ▲ .10. (2012湖北鄂州3分)若关于x 的不等式组4x x 232x a 02++⎧>⎪⎪⎨+⎪<⎪⎩的解集为x<2,则a 的取值范围是 ▲ .三、解答题1. (2012湖北武汉6分))解方程2 x +5 = 1 3x . 2. (2012湖北黄石8分)解方程组:22y y x 14-=⎨-=⎪⎩ 3. (2012湖北宜昌6分)解下列不等式:2x ﹣5≤2(﹣3)4. (2012湖北宜昌10分)[背景资料]低碳生活的理念已逐步被人们接受.据相关资料统计:一个人平均一年节约的用电,相当于减排二氧化碳约18kg ;一个人平均一年少买的衣服,相当于减排二氧化碳约6kg .[问题解决]甲、乙两校分别对本校师生提出“节约用电”、“少买衣服”的倡议.2009年两校响应本校倡议的人数共60人,因此而减排二氧化碳总量为600kg .(1)2009年两校响应本校倡议的人数分别是多少?(2)2009年到2011年,甲校响应本校倡议的人数每年增加相同的数量;乙校响应本校倡议的人数每年按相同的百分率增长.2010年乙校响应本校倡议的人数是甲校响应本校倡议人数的2倍;2011年两校响应本校倡议的总人数比2010年两校响应本校倡议的总人数多100人.求2011年两校响应本校倡议减排二氧化碳的总量.5. (2012湖北咸宁8分)解方程:2x 81x 2x 4-=--. 6. (2012湖北黄冈5分)解不等式组()6x+1524x+32x 112x 323>⎧⎪⎨-≥-⎪⎩ 7. (2012湖北黄冈6分)某服装厂设计了一款新式夏装,想尽快制作8800 件投入市场,服装厂有A 、B 两个制衣车间,A 车间每天加工的数量是B 车间的1.2 倍,A 、B 两车间共同完成一半后,A 车间出现故障停产,剩下全部由B 车间单独完成,结果前后共用20 天完成,求A 、B 两车间每天分别能加工多少件.8. (2012湖北十堰8分)一辆汽车开往距离出发地180千米的目的地,按原计划的速度匀速行驶60千米后,再以原来速度的1.5倍匀速行驶,结果比原计划提前40分钟到达目的地,求原计划的行驶速度.9. (2012湖北十堰10分)某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)10. (2012湖北孝感12分)已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若x 1、x 2是原方程的两根,且|x 1-x 2|=m 的值和此时方程的两根.11. (2012湖北襄阳6分)为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m ,宽20m 的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)12. (2012湖北鄂州8分)关于x 的一元二次方程22x (m 3)x m 0---=.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x 1,x 2,且|x 1|=|x 2|-2,求m 的值及方程的根。
一.选择题1-5BCAAC 6-10BBCAB 11-14AABD7.【分析】设购进这种水果a千克,进价为b元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)b元/千克,根据题意得:购进这批水果用去ab元,但在售出时,大樱桃只剩下(1﹣10%)a千克,售货款为(1﹣10%)a(1+x)b=0.9a(1+x)b元,根据公式:利润率=(售货款-进货款)÷进货款×100%可列出不等式:[0.9a(1+x)b-ab]÷ab·100%≥20%,解得x≥13。
∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%。
二.填空题1【答案】a<4。
2.【答案】12。
3.【答案】x=3。
4【答案】22 5【答案】3<x<6。
6.【答案】1100。
7【答案】30 8【答案】x=2 9.【答案】10 10.【答案】a≤-2。
2. 【分析】根据题目提供的信息,找出规律,列出方程求解即可:设S=3+5+7+…+(2n+1)=168①,则S=(2n+1)+…+7+5+3=168②,①+②得,2S=n(2n+1+3)=2×168,整理得,n2+2n-168=0,解得n1=12,n2=-14(舍去)。
∴n=12。
二.解答题1.【答案】解:去分母,得6x=x+5,∴x=1。
经检验x=1确为方程的根。
∴原方程的解为x=1。
2.【答案】解:依题意:22y1)y4x4⎧=⎪⎨=⎪⎩--①②将①代入②中化简得:x2+2x-3=0 ,解得:x=-3或x=1。
当x=-3时,y31)=---;当x=1时,y=0。
∴原方程组的解为:x3y=⎧⎪⎨=⎪⎩--或x1y0=⎧⎨=⎩。
3.【答案】解:去括号得2x﹣5≤x﹣6,移项得,2x﹣x≤﹣6+5,合并同类项,系数化为1得x≤﹣1。
4.【答案】解:(1)设2009年甲校响应本校倡议的人数为x人,乙校响应本校倡议的人数为(60﹣x)人。
依题意得:18x+6(60﹣x)=600。
解之得:x=20,60﹣x=40。