不等式组与方程组的完美结合
线性方程组与不等式
线性方程组与不等式线性方程组和不等式是数学中常见的概念和问题类型,它们在实际生活和各个领域中都有广泛的应用。
本文将从基本概念入手,逐步介绍线性方程组和不等式的定义、解法以及一些实际问题的应用。
一、线性方程组的定义与解法线性方程组是由一组线性方程构成的方程组。
线性方程的一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b,其中a₁、a₂、...、aₙ为系数,x₁、x₂、...、xₙ为变量,b为常数。
为了解决线性方程组,在解法上可以使用消元法、代入法或矩阵法等。
其中,消元法是一种常用的解法。
消元法的基本思路是通过不改变方程组解集的操作,将线性方程组逐步化为简化的形式。
具体步骤如下:1. 化简:将线性方程组化为行简化阶梯形式,即将系数矩阵转化为行阶梯形矩阵。
2. 消元:从最后一行开始,逐行进行消元操作,通过倍乘和相减操作将系数矩阵化为最简形式。
3. 回代:从最后一行开始,逐行进行回代操作,通过代入求解出每个变量的值,得到方程组的解集。
需要注意的是,线性方程组的解不一定存在,或者存在无穷多个解。
通过解方程组可以得到变量的具体取值,从而解决相应的问题。
二、线性不等式的定义与解法线性不等式是包含线性函数或变量的不等关系的数学表达式。
一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b(或≥、<、>)。
解线性不等式的方法主要有图解法和代入法。
图解法利用平面直角坐标系,将不等式绘制成直线或线段,然后根据不等式的性质找到使其成立的解集。
代入法则是通过将不等式中的变量替换为特定的常数,然后求解得到不等式的解集。
与线性方程组不同的是,线性不等式的解集通常是一个区域或者是所有满足不等式条件的点的集合。
解线性不等式可以帮助我们确定变量的取值范围,解决约束条件下的问题。
三、线性方程组与不等式的应用线性方程组和不等式在实际问题中有广泛的应用,涵盖了许多不同领域。
以下是一些常见的应用场景:1. 经济学:线性方程组可以用来描述供求关系、成本与收益关系等经济问题,如经济平衡、市场均衡等。
二元一次方程组和一元一次不等式的应用
二元一次方程组及不等式的综合应用崔莹莹2016-6-112.(2015•广东省,第22题,7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y .答:A ,B 两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.6.(2015·四川甘孜、阿坝,第26题8分)一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?考点:一元一次不等式的应用..分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.解答:解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).点评:此题考查一元一次不等式的运用,一次函数的实际运用,找出题目蕴含的不等关系与等量关系解决问题.7.(2015·山东潍坊第19 题9分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.解答:解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得.答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.12.(2015•四川眉山,第24题9分)某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)首先用未知数设出买一支钢笔和一本笔记本所需的费用,然后根据关键语“购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元”,列方程组求出未知数的值,即可得解.(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,根据总费用不超过1100元,列出不等式解答即可.解答:解:(1)设一支钢笔需x元,一本笔记本需y元,由题意得解得:答:一支钢笔需16元,一本笔记本需10元;(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,由题意得16x+10(80﹣x)≤1100解得:x≤50答:工会最多可以购买50支钢笔.点评:此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出等量关系,列出方程组和不等式.13. (2015•四川泸州,第21题7分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵。
方程组和不等式组的解法
方程组和不等式组的解法随着数学的发展,方程组和不等式组的解法成为数学中的重要内容。
解方程组和不等式组可以帮助我们解决各种实际问题,比如平衡化学方程、确定数值范围等。
本文将介绍方程组和不等式组的常见解法方法。
一、方程组的解法方程组是由多个方程组成的集合。
解方程组的方法有多种,其中最常见的是代入法、消元法和判别式法。
1. 代入法代入法是一种简单而直观的解方程组方法。
它的基本思想是将一个方程的解代入到另一个方程中,从而得到新的方程,进而求解出未知数的值。
示例:```方程组:2x + 3y = 7 (方程1)3x + 4y = 10 (方程2)解:由方程1可得:2x = 7 - 3y代入方程2,得到:3(7 - 3y) + 4y = 10化简得:21 - 9y + 4y = 10合并同类项,得到:5y = 11解得:y = 11/5将y的值代入方程1,得到:2x + 3(11/5) = 7化简得:2x = 7 - 33/5合并同类项,得到:2x = 12/5解得:x = 6/5所以,方程组的解为:x = 6/5,y = 11/5```2. 消元法消元法是一种通过消去未知数的系数从而简化方程组的解法方法。
它常用于线性方程组的解法。
示例:```方程组:2x + 3y = 7 (方程1)3x + 4y = 10 (方程2)将方程1乘以4,方程2乘以3,得到:8x + 12y = 28 (方程3)9x + 12y = 30 (方程4)将方程3减去方程4,得到新方程:-x = -2解得:x = 2将得到的x的值代入方程1,得到:2(2) + 3y = 7化简得:4 + 3y = 7解得:y = 1所以,方程组的解为:x = 2,y = 1```3. 判别式法判别式法是通过计算方程组的行列式来判断方程组是否有解,以及解的唯一性。
当判别式不为零时,方程组有唯一解;当判别式为零时,方程组无解或有无穷多解。
示例:方程组:2x + 3y = 7 (方程1)4x + 6y = 14 (方程2)解:由第一个方程乘以2,得到:4x + 6y = 14 (方程3)将方程2和方程3写成矩阵形式,计算行列式:| 2 3 | = 0| 4 6 |判别式为零,说明方程组有无穷多解。
不等式与方程组一元一次不等式和方程组的解法
不等式与方程组一元一次不等式和方程组的解法随着数学的发展,不等式和方程组是数学中常见的问题类型。
它们在实际问题的建模和解决中起着重要的作用。
本文将介绍一元一次不等式和方程组的解法。
一、一元一次不等式的解法一元一次不等式指的是只有一个变量的一次不等式。
其一般形式为ax + b > c或ax + b < c,其中a、b、c均为已知的实数。
解一元一次不等式的方法有图像法和代数法两种。
图像法是一种直观的解题方法,通过将不等式转化为一个直线的图像来求解。
以ax + b > c为例,我们可以首先考虑等式ax + b = c,然后绘制与该等式对应的直线。
接下来,根据不等式的符号大于号">",我们在直线上方的某一侧进行标记。
最后,我们找出标记的区域,该区域即为不等式的解集。
代数法是一种通过代数运算求解的方法。
以ax + b > c为例,我们可以首先将不等式转化为等式:ax + b = c,然后移项得到ax = c - b,最后解出x的值,即得到不等式的解集。
二、一元一次方程组的解法一元一次方程组指的是只包含一个变量的一次方程的方程组。
其一般形式为⎧⎨⎩a1x + b1y = c1a2x + b2y = c2其中a1、b1、c1、a2、b2、c2均为已知的实数。
解一元一次方程组的方法有代入法和消元法两种。
代入法是一种较为直观的解题方法,通过将一个方程的解代入另一个方程中,从而得到另一个方程中的变量的值。
以上述方程组为例,我们可以首先解出其中一个变量的值,例如解出x的值,然后将x的值代入另一个方程中求解出y的值,最后得到方程组的解。
消元法是一种通过消去一个变量的方法,从而将方程组转化为一个单变量的方程,再进行解答。
以上述方程组为例,我们可以首先将两个方程中的一个变量消去,例如消去y,然后得到一个关于x的一元一次方程,解得x的值,最后根据x的值求解出y的值,得到方程组的解。
不等式组与方程组的关系
不等式组与方程组的关系在数学中,不等式与方程都是常见的数学表示形式。
不等式组与方程组是由多个不等式或方程组成的集合,它们在数学问题的建模和解决中起着重要的作用。
本文将探讨不等式组与方程组之间的关系,并分析其在实际问题中的应用。
一、不等式组的定义与特点不等式组是由多个不等式组成的集合,通常用符号“≤”或“≥”来表示。
不等式组中的每个不等式都是一个条件,通过满足这些条件,我们可以得到一组解或一组满足特定条件的值。
不等式组与方程组的主要区别在于,不等式组的解不一定是精确的数值,而是一组可能的解范围。
不等式组的解可以用区间或集合来表示,而方程组的解则是精确的数值。
二、方程组的定义与特点方程组是由多个方程组成的集合,通常用符号“=”来表示。
方程组中的每个方程都是表示等式的条件,通过满足这些条件,我们可以得到一组精确的数值解。
与不等式组不同,方程组的解只有一个或者没有解。
方程组的解可以用具体的数值表示,或者用变量表示。
三、1. 联立问题不等式组与方程组之间存在联立的问题。
当我们在解决实际问题时,常常需要同时考虑多个条件,这时就需要联立不等式组与方程组。
通过联立不等式组与方程组,可以得到满足所有条件的解。
例如,在求解一个实际问题中,我们可能需要考虑某个物品的价格与折扣的关系,这时就可以使用一个不等式组来表示物品价格的范围,再联立一个方程来表示折扣情况,从而得到合适的购买方案。
2. 不等式组的应用不等式组在实际问题中有很广泛的应用。
例如,在线性规划中,我们常常需要求解满足一组约束条件的最优解,这时就可以将约束条件表示为不等式组,通过解不等式组来求解最优解。
此外,在经济学、生物学和工程学等领域,不等式组也被广泛应用于模型的建立和解决中。
3. 方程组的应用方程组在实际问题中同样有着重要的应用。
例如,在电路分析中,我们常常需要联立多个方程来描述电路中的电流和电压关系,从而求解电路中的未知量。
方程组也被广泛应用于数学建模和计算机科学中。
七年级数学下册题型突破提高类型十一 一元一次不等式组与二元一次方程组结合求解
类型十一、一元一次不等式组与二元一次方程组结合求解【解惑】已知关于x y 、的二元一次方程组22124x y m x y m +=-⎧⎨+=+⎩的解满足24x y x y +>⎧⎨-<⎩,则m 的取值范围是 __.方法:1.由已知方程组得出1x y m +=+且5x y m -=-;2.根据24x y x y +>⎧⎨-<⎩得出关于m 的不等式组,解之即可得出答案.【融会贯通】1.若x ,y 满足方程3y x -=和不等式组1414x y y +>⎧⎪⎨-≥-⎪⎩,则x 的范围是( )A .15x -<≤B .5x ≥C .11x -<≤D .1x ≥2.若关于x 的不等式组1131()02x x x a -⎧-<⎪⎪⎨⎪--≤⎪⎩有解,且最多有3个整数解,且关于y 、z 的方程组12224y z ay z ⎧+=⎪⎨⎪-=⎩的解为整数,则符合条件的所有整数a 的和为( ) A .9B .6C .-2D .-13.若关于x 、y 的方程组2432x y k x y k +=+⎧⎨+=-⎩满足12x y <+<,则k 的取值范围是______.【知不足】1.如果整数m 使得关于x 的不等式组0443x m x x ->⎧⎪-⎨-≥-⎪⎩有解,且使得关于x ,y 的二元一次方程组521mx y x y +=⎧⎨+=⎩的解为整数(x ,y 均为整数),则符合条件的所有整数m 的个数为( ) A .2个B .3个C .4个D .5个2.已知关于x 、y 的方程组31230ax y x y +=⎧⎨-=⎩的解为整数,且关于x 的不等式组2(1)534x x x a +<+⎧⎨>-⎩有且仅有5个整数解,则所有满足条件的整数a 的和为( ) A .﹣1B .﹣2C .﹣8D .﹣63.若关于x ,y 的二元一次方程组24524x y m x y m +=-+⎧⎨+=+⎩的解满足68x y x y ->-⎧⎨+<⎩,求m 的取值范围______.4.已知关于x y 、的二元一次方程组325x y a x y a -=+⎧⎨+=⎩的解满足x y >,且关于x 的不等式组212213147x a x +<⎧⎪-⎨≥⎪⎩无解,那么所有符合条件的整数a 的个数为________.【一览众山小】1.已知关于x 、y 的二元一次方程组31234x y a x y a +=-⎧⎨-=+⎩的解满足x y ≥,且关于x 的不等式组212213105x ax +>⎧⎪-⎨≤⎪⎩有解,那么所有符合条件的整数a 的个数为( ) A .6个B .7个C .8个D .9个2.整数m 满足关于x ,y 的二元一次方程组214x y m x y m +=⎧⎨-=-⎩的解是正整数,且关于x 的不等式组54028x m x ->⎧⎨+≤⎩有且仅有2个整数解,则m 的值为______.3.关于x 、y 的二元一次方程组21222x y m x y +=+⎧⎨+=⎩的解满足不等式组81x y x y -<⎧⎨+>⎩,求m 的取值范围.4.(1)利用数轴,确定不等式组的解集:273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②.(2)若关于x ,y 的二元一次方程组:23224x y m x y +=-+⎧⎨+=⎩的解满足232x y x y ⎧+>-⎪⎨⎪-<⎩,求m 的整数值. 5.已知关于x 、y 的方程组213252x y k x y k +=+⎧⎨-=-⎩的解满足5035x y x y ->⎧⎨-+≥-⎩,求整数k 的值.【温故为师】1.已知关于x 、y 的二元一次方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩的解满足x y ≥,且关于s 的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,那么所有符合条件的整数a 的个数为( ) A .4个B .3个C .2个D .1个2.若整数a 使关于x 的不等式组125262x x x a ++⎧≤⎪⎨⎪->⎩至少有4个整数解,且使关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,那么所有满足条件的整数a 的值的和是( ). A .-3B .-4C .-10D .-143.已知关于x ,y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩.(1)试求出m 的取值范围;(2)在m 的取值范围内,当m 为何整数时,不等式2x ﹣mx <2﹣m 的解集为x >1. 4.点(),P x y 满足525744x y ax y a+=⎧⎨+=⎩.(1)当1a =时,求P 点的坐标;(2)点(),P x y 的坐标满足不等式组259x y x y +<⎧⎨->-⎩,求出整数a 的所有值之和.5.已知关于x 、y 的方程组212x y x y m +=⎧⎨-=⎩的解都小于1,若关于a 的不等式组1215231a n a ⎧+≥⎪⎨⎪-≥⎩恰好有三个整数解.(1)分别求出m 与n 的取值范围; (2)化简:|m +3|(52n +﹣n +2)÷32nn++|. 6.当方程中的系数用字母表示时,这样的方程叫做含字母系数的方程,也叫含参数的方程.(1)解关于x ,y 的二元一次方程组33522x y ax y a +=⎧⎨+=⎩,(2)若关于x ,y 的二元一次方程组:33522x y ax y a+=⎧⎨+=⎩的解满足不等式组246x y x y +<⎧⎨->-⎩,求出整数a 的所有值.7.已知a 是不等式组()5131131722a a a a⎧->+⎪⎨-<-⎪⎩的整数解,x ,y 满足方程组27234ax y x y -=-⎧⎨+=⎩,求(x +y )(x 2-xy +y 2)的值. 8.我们把关于x 的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”.(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;①240 523xx-=⎧⎨-⎩<;②5323233124x xx x--⎧=-⎪⎪⎨+-⎪-⎪⎩<.(2)若关于x的组合515032xx aa+=⎧⎪⎨-⎪⎩>是“有缘组合”,求a的取值范围;(3)若关于x的组合5323212a xx ax ax a-⎧-=-⎪⎪⎨-⎪+≤+⎪⎩是“无缘组合”;求a的取值范围.答案与解析【融会贯通】1.若x ,y 满足方程3y x -=和不等式组1414x y y +>⎧⎪⎨-≥-⎪⎩,则x 的范围是( )A .15x -<≤B .5x ≥C .11x -<≤D .1x ≥2.若关于x 的不等式组1131()02x x x a -⎧-<⎪⎪⎨⎪--≤⎪⎩有解,且最多有3个整数解,且关于y 、z 的方程组12224y z ay z ⎧+=⎪⎨⎪-=⎩的解为整数,则符合条件的所有整数a 的和为( ) A .9B .6C .-2D .-13.若关于x 、y 的方程组2432x y k x y k +=+⎧⎨+=-⎩满足12x y <+<,则k 的取值范围是______.【答案】01k <<【详解】解:2432x y k x y k +=+⎧⎨+=-⎩①②用①+②得: 3333x y k +=+,∴1x y k +=+,∵12x y <+<,∴112k <+<,∴01k <<,【知不足】1.如果整数m 使得关于x 的不等式组0443x m x x ->⎧⎪-⎨-≥-⎪⎩有解,且使得关于x ,y 的二元一次方程组521mx y x y +=⎧⎨+=⎩的解为整数(x ,y 均为整数),则符合条件的所有整数m 的个数为( ) A .2个B .3个C .4个D .5个2.已知关于x 、y 的方程组31230ax y x y +=⎧⎨-=⎩的解为整数,且关于x 的不等式组2(1)534x x x a +<+⎧⎨>-⎩有且仅有5个整数解,则所有满足条件的整数a 的和为() A .﹣1B .﹣2C .﹣8D .﹣63.若关于x ,y 的二元一次方程组24524x y m x y m +=-+⎧⎨+=+⎩的解满足68x y x y ->-⎧⎨+<⎩,求m 的取值范围______.4.已知关于x y 、的二元一次方程组325x y a x y a -=+⎧⎨+=⎩的解满足x y >,且关于x 的不等式组212213147x ax +<⎧⎪-⎨≥⎪⎩无解,那么所有符合条件的整数a 的个数为________.【一览众山小】1.已知关于x 、y 的二元一次方程组31234x y a x y a +=-⎧⎨-=+⎩的解满足x y ≥,且关于x 的不等式组212213105x ax +>⎧⎪-⎨≤⎪⎩有解,那么所有符合条件的整数a 的个数为( ) A .6个B .7个C .8个D .9个.x y ≥,∴12-,不等式2.整数m 满足关于x ,y 的二元一次方程组214x y m x y m +=⎧⎨-=-⎩的解是正整数,且关于x 的不等式组54028x m x ->⎧⎨+≤⎩有且仅有2个整数解,则m 的值为______.x ,y 是正整数,解不等式6有且仅有4m 252125m 是整数3.关于x 、y 的二元一次方程组21222x y m x y +=+⎧⎨+=⎩的解满足不等式组81x y x y -<⎧⎨+>⎩,求m 的取值范围.4.(1)利用数轴,确定不等式组的解集:273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②.(2)若关于x ,y 的二元一次方程组:23224x y m x y +=-+⎧⎨+=⎩的解满足232x y x y ⎧+>-⎪⎨⎪-<⎩,求m 的整数值. ∴不等式组的解集是42x -<≤.5.已知关于x 、y 的方程组213252x y k x y k +=+⎧⎨-=-⎩的解满足5035x y x y ->⎧⎨-+≥-⎩,求整数k 的值.【答案】整数k 的值为1、2.【详解】解:213252x y k x y k +=+⎧⎨-=-⎩①②,①+②得:5x −y =6k −1,①-②得:−x +3y =−4k +3,∵关于x 、y 的方程组213252x y k x y k +=+⎧⎨-=-⎩的解满足5035x y x y ->⎧⎨-+≥-⎩,6【温故为师】1.已知关于x 、y 的二元一次方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩的解满足x y ≥,且关于s 的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,那么所有符合条件的整数a 的个数为( ) A .4个B .3个C .2个D .1个2.若整数a 使关于x 的不等式组125262x x x a ++⎧≤⎪⎨⎪->⎩至少有4个整数解,且使关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,那么所有满足条件的整数a 的值的和是( ). A .-3B .-4C .-10D .-141256x a +>,22x x a >+,由不等式组至少有206ax y y +=+=又关于20ax y +=3.已知关于x ,y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩.(1)试求出m 的取值范围;(2)在m 的取值范围内,当m 为何整数时,不等式2x ﹣mx <2﹣m 的解集为x >1.4.点(),P x y 满足525744x y ax y a +=⎧⎨+=⎩.(1)当1a =时,求P 点的坐标;(2)点(),P x y 的坐标满足不等式组259x y x y +<⎧⎨->-⎩,求出整数a 的所有值之和.5.已知关于x 、y 的方程组212x y x y m +=⎧⎨-=⎩的解都小于1,若关于a 的不等式组1215231a n a ⎧+≥⎪⎨⎪-≥⎩恰好有三个整数解.(1)分别求出m 与n 的取值范围; (2)化简:|m +3|(5﹣n +2)÷3n+|.6.当方程中的系数用字母表示时,这样的方程叫做含字母系数的方程,也叫含参数的方程.(1)解关于x ,y 的二元一次方程组33522x y a x y a +=⎧⎨+=⎩, (2)若关于x ,y 的二元一次方程组:33522x y a x y a+=⎧⎨+=⎩的解满足不等式组246x y x y +<⎧⎨->-⎩,求出整数a 的所有值. 7.已知a 是不等式组5131131722a a a a ⎧->+⎪⎨-<-⎪⎩的整数解,x ,y 满足方程组27234ax y x y -=-⎧⎨+=⎩,求(x +y )(x 2-xy +y 2)的值. 【答案】7【详解】解:解不等式①得:a >2解不等式②得:a <4∴不等式组的解集是:2<a <4,∴不等式组的整数解是3,∴方程组为327234x y x y -=-⎧⎨+=⎩,解得12x y =-⎧⎨=⎩,∴(x +y )(x 2-xy +y 2) =(-1+2)(1+2+4)=7.8.我们把关于x 的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”.(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;①240523x x -=⎧⎨-⎩<;②5323233124x xx x--⎧=-⎪⎪⎨+-⎪-⎪⎩<.(2)若关于x的组合515032xx aa+=⎧⎪⎨-⎪⎩>是“有缘组合”,求a的取值范围;(3)若关于x的组合5323212a xx ax ax a-⎧-=-⎪⎪⎨-⎪+≤+⎪⎩是“无缘组合”;求a的取值范围.。
方程与不等式的关系与转化
方程与不等式的关系与转化一、方程与不等式的定义知识点1:方程的定义方程是一个含有未知数的等式,其中等号两边的表达式相等。
方程的目的是找到使等式成立的未知数的值。
知识点2:不等式的定义不等式是一个含有未知数的数学表达式,其中等号被大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)或不等号(≠)代替。
不等式的目的是找到使表达式成立的未知数的范围。
二、方程与不等式的关系知识点3:方程与不等式的联系方程和不等式都是用来描述变量之间关系的数学工具。
方程是通过等号连接两个表达式,表示它们在某个条件下相等;而不等式是通过不等号连接两个表达式,表示它们在某个条件下不相等或不具有大小关系。
知识点4:方程与不等式的区别方程是通过等号表示两个表达式的相等关系,而不等式是通过不等号表示两个表达式的不相等关系或不具有大小关系。
方程的解是唯一的,而不等式的解集是一个范围。
三、方程与不等式的转化知识点5:方程转化为不等式将方程中的等号改为不等号,可以得到相应的不等式。
例如,将2x + 3 = 7转化为2x + 3 ≥ 7,得到的解是x ≥ 2。
知识点6:不等式转化为方程将不等式中的不等号改为等号,可以得到相应的一般方程。
例如,将3x - 5 < 8转化为3x - 5 = 8,解这个方程得到的解是x = 5/3。
知识点7:线性方程与一元一次不等式的转化线性方程和不等式可以通过解集的性质进行转化。
例如,解线性方程2x - 5 = 3,得到的解是x = 4/2。
相应的不等式是2x - 5 ≥ 3,解集是x ≥ 4/2。
四、方程与不等式的解法知识点8:线性方程的解法线性方程可以通过代数方法(如移项、合并同类项、系数化)求解。
例如,解方程3x + 4 = 19,可以得到x = 5。
知识点9:一元一次不等式的解法一元一次不等式可以通过同解原理和数轴法进行解法。
例如,解不等式2x - 5 > 3,可以得到x > 4。
二元一次方程组与不等式实际问题结合
二元一次方程组与不等式实际问题结合二元一次方程组是高中数学中的重要内容之一,它可以帮助我们解决各种实际问题。
在此,我们将通过几个实际问题来结合二元一次方程组和不等式的内容,来说明它们的应用。
问题一:小明去超市购买香蕉和苹果。
已知香蕉的价格是每斤2元,苹果的价格是每斤3元。
小明共购买了10斤水果,总共花费了24元。
问小明购买了多少斤香蕉和苹果?解答:设小明购买的香蕉的斤数为x,购买的苹果的斤数为y。
根据题意,可以得到如下二元一次方程组:x + y = 10 (方程一)2x + 3y = 24 (方程二)我们可以通过解这个方程组来求得x和y的值。
首先,我们可以从方程一中得到x = 10 - y;然后,我们将x的值代入方程二中,得到2(10 - y) + 3y = 24;化简得到20 - 2y + 3y = 24;继续化简得到y = 4;将y的值代入方程一中可以求得x = 10 - 4 = 6。
因此,小明购买了6斤香蕉和4斤苹果。
问题二:一条钢筋工厂共生产两种规格的钢筋,每根重量为x 千克和y千克。
已知钢筋工厂每天生产的重量总和为1000千克,共生产了300根。
已知钢筋的总价值为10000元,且每根x千克的钢筋价格为20元,每根y千克的钢筋价格为30元。
问x和y的值分别是多少?解答:设每根重量为x千克的钢筋的数量为a,每根重量为y千克的钢筋的数量为b。
根据题意可以得到如下二元一次方程组:a +b = 300 (方程三)20ax + 30by = 10000 (方程四)由于每天生产的钢筋的重量总和为1000千克,所以可以得到方程:x*a + y*b = 1000。
为了求得x和y的值,我们可以先解方程三,得到b = 300 - a;将b的值代入方程四中,得到20ax + 30(300 - a)y = 10000;化简得到20ax + 9000y - 30ay = 10000;继续化简得到y = (10000 - 20ax)/(9000 - 30a)。
2024中考备考热点02 方程(组)与不等式(组)(12大题型+满分技巧+限时分层检测)(原卷版)
热点02 方程(组)与不等式(组)中考数学中《方程(组)与不等式(组)》部分主要考向分为四类:一、一元一次方程与二元一次方程(组)(每年2~4道,8~14分)二、一元二次方程(每年1~2道,3~8分)三、分式方程(每年1~3题,3~12分)四、不等式(组)(每年2~4题,8~18分)方程(组)与不等式(组)在数学中考中的难度中等,题型比较多,选择题、填空题、解答题都可以考察。
其中,一元一次方程与二元一次方程(组)是比较接近的两个考点,出题一般都只有1题,一元一次方程多考察其在实际问题中的应用,多为选择题;二元一次方程组则以计算和应用题为主占分较多。
一元二次方程单独出题时多考察其根的判别式、根与系数的关系以及在实际问题中提炼出一元二次方程;一元二次方程的计算则主要出现在几何大题中,辅助解压轴题。
分式方程的考察内容不多,但基本属于必考考点,可以是一道小题考察其解法,也可以是应用题。
不等式组是这四个考点中占分最多的一个,考察难度也是可大可小,其解法、含参数的不等式组问题、和方程结合的应用题都经常考到。
虽然该热点难度中等,一般不会失分,但是组合出题时,难度也可以变大,复习时需要特别注意。
考向一:一元一次方程与二元一次方程组【题型1 实际问题抽象出一元一次方程】行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.12240150x x+=B.12240150x x=-C.240(12)150x x-=D.240150(12)x x=+2.(2023•丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝为斤.3.(2023•陕西)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.【题型2 二元一次方程组的解法相关】满分技巧解二元一次方程组有2种方法——带入消元法和加减消元法不管是带入法还是加减法,目的都在于利用等式的基本性质将二元一次方程组转化为一元一次方程,所以做题中也必须注意一元一次方程解法的易错点。
高中数学研究数学中的不等式与方程组
高中数学研究数学中的不等式与方程组在高中数学学科中,不等式和方程组是重要的研究内容。
它们在数学的各个领域中都发挥着重要作用,特别是在代数、函数、几何和数学建模等方面。
不等式和方程组的研究有助于我们深入理解数学的基本原理和关系,提高我们的问题解决能力和逻辑推理能力。
本文将探讨高中数学中的不等式和方程组,并分析其应用和解决方法。
一、不等式的概念和性质不等式是数学中的一种比较关系,用符号“<”、“>”、“≤”或“≥”表示。
不等式中的变量可以是实数、整数或分数。
在不等式中,我们可以进行加减乘除等基本运算,并可以应用不等式的性质进行简化和变形。
不等式的解集通常表示为一个区间,可以是开区间、闭区间或半开半闭区间。
通过解不等式,我们可以确定变量的取值范围,从而获得问题的解答。
二、不等式的解法和应用解不等式的方法主要有图解法、代入法和符号法。
当不等式中只有一个变量时,我们可以利用数轴上的点来表示变量的取值范围,并通过图解法找到不等式的解集。
代入法则是将可行解代入不等式中验证,确定满足不等式的取值范围。
符号法是通过对不等式进行变形和等价转化,运用不等式的性质来求解。
不等式的应用十分广泛,特别是在优化问题、经济学、自然科学和社会科学等领域。
例如,在数学建模中,我们常常通过设立不等式约束条件来寻找函数的最大值或最小值。
在经济学中,我们可以利用不等式来解决资源分配问题或者最优生产问题。
不等式还可以用来描述两个数的大小关系,从而应用在几何学和物理学中。
三、方程组的概念和解法方程组是由多个方程组成的一个集合,其中的未知量可以是一个或多个。
方程组旨在找到满足所有方程的未知量的取值。
方程组的解即是使得所有方程都成立的变量值的集合。
方程组的解可以有无穷多个,也可以没有解,这取决于方程组的性质。
解方程组的方法有代入法、消元法和Cramer法则等。
代入法是将一个方程的解代入另一个方程中,逐步求解得到所有方程的解。
消元法则是通过变量的消去,将方程组转化为一个简化的方程组或一个等价的方程组,从而得到解。
人教版七年级数学下册 第九章:不等式(组)和方程(组)的综合应用(含答案)
不等式(组)与方程(组)的综合应用1.方程组或不等式出现字母系数时可将字母当数字,解方程组成不等式的参数解。
2.解决不等式(组)或方程(组)的问题可运用整体思想、转化思想、消元思想。
【例1】若方程组3133x y k x y +=+⎧⎨+=⎩解为x ,y ,且2<k <4,则x -y 的取值范围是( ) A.102x y -<<B.01x y -<<C.31x y ---<<D.11x y --<<【例2】若关于x ,y 的二元一次方程组323225x y m x y m -=+⎧⎨-=-⎩的解满足x >y ,求m 的取值范围。
【例3】若2a +b =12,其中a ≥0,b ≥=0,又P=3a +2b ,试确定P 的最小值和最大值。
【例4】若关于x ,y 的二元一次方程组25x y a x y +=⎧⎨-=⎩的解满足1x >,1y ≤,其中a 是满足条件的最小整数,求a 2+1的值。
【例5】已知关于x,y的方程组2232 4x y mx y m-=⎧⎨+=+⎩①②的解满足不等式组3050x yx y+≤⎧⎨+⎩>,求满足条件的m的整数值。
1.已知关于x,y的方程组2121x y ax y a-=+⎧⎨+=-⎩的解满足不等式21x y->,求a的取值范围。
2.已知x、y同时满足三个条件:①324x y p-=-,②4x-3y=2+p,③x>y,则()A.p>-1B.p<1C.1p-< D.1p>3.若30x y z++=,350x y z+-=,x、y、z皆为非负数,求M=5x+4y+2z的取值范围。
4.在关于x ,y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值在数轴上应表示为( )5.已知关于x ,y 的方程组213252x y k x y k +=+⎧⎨-=-⎩的解满足5035x y x y -⎧⎨-+≥-⎩>,求整数k 的值。
一元一次不等式(组)与二元一次方程(组)结合培优资料
一元一次不等式(组)与方程(组)的结合培优资料考点·方法·破译1.进一步熟悉二元一次方程组的解法,以及一元二次不等式组的解法.2.综合运用一元一次不等式组和二元一次方程组解决一些典型的实际问题. 经典·考题·赏析【例1】求方程3x +27=17的正整数解.【解法指导】一般地,一个二元一次方程有无数个解,但它的特殊解是有限个,如一个二元一次方程的正整数解,非负整数解都是有限个.求不定方程的正(非负)整数解时,往往借助不等式,整数的奇偶性等相关知识来帮助求解.解:将方程变形为2y =17-3x 即2317x y -= ∵y >0 ∴2317x ->0 ∴x <317即x <325 又∵y 为正整数(即2317x -为整数) ∴17-3x 为偶数∴x 必为奇数∴x =1,3,5当x =1时,7213172317=⨯-=-=x y 当x =3时,4233172317=⨯-=-=x y 当x =5时,1253172317=⨯-=-=x y故原方程的正整数解为⎩⎨⎧x =1y =7 或⎩⎨⎧x =3y =4 或⎩⎨⎧x =5y =1 【变式题组】01.求下列各方程的正整数解:⑴2x +y =10 (2) 3x +4y =2102.有10个苹果,要分给两个女孩和一个男孩,要求苹果不得切开,且两个女孩所得的苹果数相等,每个孩子都有苹果吃,问有哪几种分法?【例2】足球联赛得分规定如下:胜1场得3分,平1场得1分,负1场得0分•某队在足球联赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?【解法指导】本题中,所有的等量关系只有两个,而未知量有三个•因而所列方程的个数少于未知数的个数,即为不定方程组,但每个未知数量的数目必为非负整数•因此,此题的实质就是滶不定方程的非负整数解的问题.此方程组有两个方和,三个未知数,解法仍然是消元,即消去某一个未知数后,变为二元一次方程,再仿照例1的解法施行.解:设该队胜了x 场,平了y 场 ,负了z 场,依题意可得:⎩⎨⎧x +y =4 ①3x +y =6 ②②-①得:2x -z =2 ③变形得: z =2x -2∵0≤z ≤2∴0≤2x -2≤2即1≤x ≤2又x 为正整数∴x =1,2相应地,y =3,0 z =0,2答:这个队胜了1场,平了3场,或胜了2,负了2场.【变式题组】01.(佳木斯)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么可能购买甲种笔( ).A .11支B .9支C .7支D .5支02.一旅游团50人到一旅舍住宿,旅舍的客户有三人间、二人间、单人间三种•其中三人间的客房每人每晚20元,二人间的客房每人每晚30元,单人间的客房每人每晚50元.(1)若旅游团共住满了20间客房,问三种客房各住了几间?怎样住消费最低?(2)若该旅游团中,夫妻住二人间,单身住三人间,小孩随父母住在一起,现已知有小孩4人(每对夫妻最多只带1个小孩),单身30人,其中男性17人,有两名单身心脏病患者要求住单人间,问这一行人共需多少间客房?【例3】已知:关于x 、y 的方程组⎩⎨⎧x -y =a +32x +y =5a若x >y ,求a 的取值范围. 【解法指导】解本题的指导思想就是构建以a 为未知数的不等式•解之即得a 的取值范围,构建不等式的依据就是x >y ,而解方程组即可用a 的代数式分别表示x 和y ,进而可得不等式.解:解方程组⎩⎨⎧x -y =a +32x +y =5a 得 ⎩⎨⎧x =2a +1y =a -2∵x >y ∴2a +1>a -2 解得a >-3故a 的取值范围是a >-3.【变式题组】01.已知:关于x 的方程3x -(2a -3) =5x +(3a +6)的解是负数,则a 的取值范围是_____.02.已知:关于x 、y 的方程组⎩⎨⎧x +y =3a +9x -y =5a +1的解为非负数. (1)求a 的取值范围;(2)化简|4a +5|-|a -4|.03.当m 为何值时,关于x 的方程2153166--=--m x m x 的解大于1?4.已知方程组⎩⎨⎧2x +y =5m +6x -2y =-17 的解x 、y 都是正数,且x 的值小于y 的值,求m 的取值范围.【例4】(凉州)若不等式⎩⎨⎧x -a >2b -2x >0 的解集是-1<x <1,求(a +b )2009的值. 【解法指导】解此不等式组得a +2<x <2b ,而依题意,该不等式的解集又是-1<x <1,而解集是唯一的,因此两解集的边界点分别“吻合”,从而得两等式即得方程组,解之可得a 、b 之值.解:解不等式组⎩⎨⎧x -a >2a -2x >0 得a +2<x <2b 又∵此不等式组的解集是-1<x <1∴ ⎩⎪⎨⎪⎧a +2=-12b =1a 解设⎩⎨⎧a =-3a b =2a ∴(a +b )2009=(-1)2009=-1【变式题组】01.若⎩⎨⎧2a +x >a 2-3x >a的解集为-1<x <2,则a =___________,b =_____________. 02.已知:关于x 的不等式组⎩⎨⎧x -a ≥b 2x -a <2b +1的解集为3≤x <5,则ab 的值为( )A .-2B .21-C .-4D . 41- 03.若关于x 的不等式组⎩⎪⎨⎪⎧34+x >12+x x +a >0b的解集为x <2,则a 的取值范围是___________.04.已知:不等式组⎩⎨⎧x +2>a +b x -1<a -b 的解庥为-1<x <2,求(a +b )2008的值.【例5】(永春)商场正在销售“福娃”玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元•(1)一盒“福娃”玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买金额不能超过450元,请你帮该公司设计购买方案•【解法指导】本题属材料选择类的方程与不等式结合的实际应用题,但方程组与不等式组是分开的•分析可知:第(1)问只需依照题目主干所提供的两个等量关系即可列出二元一次方程组•第(2)问由题目所给不等关系“购买金额不能超过450元”及第(1)问所求出的数据列出不等式,从而求解•解:(1)设一盒“福娃”玩具和一盒徽章的价格分别为x 元和y 元.依题意,得⎩⎨⎧x +2y =142x +3y =280 解得⎩⎨⎧x =125y =10答:一盒“福娃”玩具和一盒徽章的价格分别是125元和10元.(2)设购买“福娃”玩具m 盒,则购买徽章(20-m )盒.由题意,得125m +10(20-m )≤450,解得m ≤2.17.所以m 可以取1,2. 答:该公司有两种购买方案.方案一:购买“福娃”玩具1盒,徽章19盒;方案二:购买“福娃”玩具2盒,徽章18盆.【变式题组】01.(益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品, 奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.02. (眉山)渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.⑴若购买这批鱼苗共用了 2600元,求甲、乙两种鱼苗各购买了多少尾?⑵若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?⑶若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗? 03.(盐城)整顿药品市场,降低药品价格是国家的惠民政策之一.根据国家的《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%根据相关信息解决下列问题:⑴降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?⑵降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实 际情况决定:对甲种药品每盒加价15%对、乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?【例6】认真阅读下面三个人的对话.小朋友:阿姨,我买一盒饼干和一袋牛奶(递上10元钱入).售货员:本来你用10元钱买一盒饼干是多余的,但再买一袋牛奶就不够了.不过今天是儿童节,我给你买的饼干打九折,两样东西请拿好,还有找你的8角钱.旁边者:一盒饼干的标价可是整数哦!根据对话内容,试求出饼干和牛奶的标价各是多少?【解法指导】本题的条件蕴藏在对话中,应学会从对话中获取信息,“用10元钱买一盒饼干是多余的”, 说明一盒饼干的售价小于10元,此不等关系之一;“但再买一袋牛奶就不够了 ”,说明一盒饼干和一袋牛奶的价格之和大于10元,此不等关系之二.对话中还包含有一个等量关系,就是用10元钱买上述两样东西剩余0.8 元钱,即是说一袋牛奶与一盒饼干的价格之和等于10元减去0.8元,由一个方程和两个不等式结合最终可求出答案.解:设饼干的标价为每盒x 元,牛奶的标价为每袋^元.根据题意,得⎩⎪⎨⎪⎧x +y >10 ①0.9x +y =10-0.8 ②x <10 ③由②,得y =9.2-9x 将其代入①,得x +9.2-9x >10,解得:x >8.所以综合③可知8<x <10.又因为x 为整数,所以x =9,y =9.2-9x =1.1即饼干的标价为每盒9元,牛奶的标价为每袋1. 1元.【变式题组】01.某次足球联赛A 组共6队,比赛规定采取小组循环赛的形式,取前3名进人决赛,记分方法为胜1场得2 分,负1场扣1分,平1场不得分,问该小组共需比赛几场?某队得了 7分,则它是几胜几负?能否进人决赛?02.(杭州)宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班” 学生,也有一般普通班学生.由于场地、师资等条件限制,今年招生最多比去年增加100人,其中普通班学生可多招20%,“宏志班”学生可多招10%问今年最少可招收“宏志班”学生多少名?03.把一些书分给几个学生,如果每人分3本,那么余8本,如果前面的每个学生分5本,那么最后一个同学分不到3本,这些书有多少本?学生有多少人?【例7】(北京市竞赛题)已知:a 、b 、c 是三个非负数,并且满足3a +2b +c =5,2a +b -3c =1,设m =3a +b -7 c ,设x 为m 的最大值,y 为m 的最小值.求xy 的值.【解法指导】要求某一代数式的最大(或最小)值,往往依题意构建一个不等式组:若s ≤m ≤t ,则m 的最小值为s ,最大值为t .本题思路亦类此,首先利用前两个等式,将c 看作已知量,解关于a 、b 的二元一次方程组,得到用含c 的式子表示a 、b 的形式,代入第三个等式,得到用含c 的式子表示m 的形式,同时依据a 、b 、c 均为非负数,得到c 的范围,代入m 与c 的关系式,得m 的范围,因而x 、y 可求.解:由条件得:解得: ⎩⎨⎧3a +2b =5-c 2a +b =1+3 c⎩⎨⎧a =7c -3b =7-11 c则m =3a +7-7c =3(7c -3)+ (7-11 c ) -7 c =3 c -2由a ≥0,b ≥0,c ≥0得⎩⎪⎨⎪⎧7c -3≥07-11c ≥0c ≥0解得,37≤c ≤711从而x =-57,y =-111故xy =577. 【变式题组】01.若a 、b 满足3a +5∣b ∣=7,S =2a 2-3∣b ∣,则 S 的取值范围是 .02.已知:x 、y 、z 是三个非负有理数,且满足3 x +2 y +z =5,x +y -z =2,若S =3 x + y -z ,则S 的取值范围是 .演练巩固 反馈提高一、填空题01.方程3x +y = 10的解有 个,其正整数解有 个.02.若关于x 的不等式(a -1)<a +5和2x <4的解集相同,则a 的值为 .03.已知:关于x 的不等式2x -a ≥-3的解集如图所示,则a = .04.已知方程组⎩⎨⎧2x -y =m 2y -x =1,若未知数x 、y 满足尤x +y >0,则m 的取值范围是 . 05.若方程组⎩⎨⎧3x +2y =2k 2y -x =3的解满足无x <1且y >0,则整数k 的个数是 . 06.若∣x -1∣ x -1=-1则x 的取值范围是 . 二、选择题07.已知:关于尤的不等式组⎩⎨⎧x -y ≥b 2x -a <2b +1的解为3≤x <5,则b a 的值为( ) A .-2 B .-2 C .2 D .108.若∣x +1∣=-1-x ,∣3x +4∣=3x +4.则x 取值范围是( )A .-43≤x ≤-1B .x ≥-1C .―43≤x ≤―1D .―43<x <―1 09.已知:m 、n 是整数,3 m +2=5n +3,且3 m +2>30,5n +3<40,则mn 的值是〈 〕A .70B .72C .77D .8410.某次测验共20道选择题,答对一题记5分,答错一题记―2分,不答记0分,某同学得48分,那么他答对的题目最多是( )道.A .9B .10C .11D .12三、解答题11.学校举办奥运知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖二等奖 三等奖 1盒福娃和1枚徽章 1盒福娃 1枚徽章用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和徽章前,了解到图所示的信息:⑴求一盒“福娃”和一枚徽章各多少元?⑵若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?12.(宿迁)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1 株,共需成本1500元.⑴求甲、乙两种花木每株成本分别为多少元;⑵据市场调研,1株甲种花木的售价为760元,1株乙种花木的售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?13.—项维修工程,若由甲工程队单独做,则40天可以完成,需费用24万元;若由乙工程队单独做,则60天可以完成,需费用21万元•现打算由甲、乙两工程队共同完成,要使该项目的总费用不超过22万元,则乙工程队至少要施工多少天?14.足球联赛得分办法是胜一场得3分,平一场得1分,负一场得0分•在一次足球赛中,南方足球队参加了14场比赛,至少负了1场,共积分19分.试推算南方足球队胜、平、负各多少场.15.(温州)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.⑴现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x个.①根据题意,完成以下表格:盒纸板竖式纸盒(个)横式纸盒(个)x正方形纸板(张)2(100-x)长方形纸板(张)4x②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则求a的值.(写出一个即可)培优升级 奥赛检测01.若方程组⎩⎨⎧4x +y =k +1x+4y =3的解满足条件0<x+y <1,则k 的取值范围是( ) A .-4<k <1 B .-4<k <0 C .0<k <9 D .k <-402.(浙江省竞赛题)要使方程组⎩⎨⎧3x +2y =a 2x+3y =2的解是一对异号的数,则a 的取值范围是( ) A .43<k <3 B .a <43 C .a >3 D .a <43或a >3 03.已知a +b +c =0,a >b >c ,则 c a的取值范围是 . 04.(新加坡竞赛题)正整数m 、n 满足8m +9n =mn +6,则m 的最大值是 .05.(“希望杯”邀请赛初一试题)(中国古代问题)唐太宗传令点兵,若一千零一卒为一营,则剩余一人;若一千零二卒为一营,则剩余四人,此次点兵至少有 人.06.(第15届“希望杯”邀请赛试题)若正整数x 、y 满足2004x =15y ,则x +y 的最小值为 . 07.(北京市竞赛题)有8个连续的正整数,其和可以表示成7个连续的正整数的和,但不能表示为3个连续的正整数的和,那么这8个连续的正整数中最大数的最小值是 .三、解答题08.已知:关于x 的方程组⎩⎨⎧x -y =a +32x+y =5a的解满足x >y >0,化简∣a ∣+∣3-a ∣.09.a 、b 、c 、d 是正整数,且a +b =20,a +c =24,a +d =22,设a +b +c +d 的最大值为M ,最小值为N ,求M -N 的值.10.在车站开始检票时,有a (a >0)名旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以便后来到站的旅客能随到随检,至少要同时开放几个检票口?11.(河南省竞赛题)一个盒子里装有不多于200粒棋子,如果每次2粒、3粒、4粒或6粒地取出,最终盒内都剩一粒棋子;如果每次11粒地取出,那正好取完,求盒子里共有多少粒棋子?12.(“希望杯”初二竞赛题)一个布袋中有红、黄、蓝三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2,蓝球上标有数字3,小明从布袋中摸出10个球,它们上面所标数字和等于21,则小明摸出的球中,红球的个数最多不超过多少个?13.(第20届香港中学数学竞赛题)已知:n 、k 皆为自然数,且1<k <n ,若1+2+3+…+n -k n -1,及n +k =a ,求a 的值.。
《方程(组)与不等式相结合的解集问题》专题(含解析)
《方程(组)与不等式相结合的解集问题》专题姓名:__________________ 班级:______________ 得分:_________________ 1.(2020春•常熟市期末)已知关于x、y的方程组(m是常数).(1)若x+y=1,求m的值;(2)若1≤x﹣y≤15.求m的取值范围;(3)在(2)的条件下,化简:|2m+1|﹣|m﹣7|=.2.(2020春•鼓楼区期末)已知4x+y=1.(1)y=.(用含x的代数式表示)(2)当y为非负数时,x的取值范围是.(3)当﹣1<y≤2时,求x的取值范围.3.(2020春•仪征市期末)已知关于x、y的方程组.(1)求该方程组的解(用含a的代数式表示);(2)若方程组的解满足x<0,y>0,求a的取值范围.4.(2020春•张家港市期末)已知关于x、y的方程组.(1)求方程组的解(用含m的代数式表示);(2)若方程组的解满足x≤0,y<0,且m是正整数,求m的值.5.(2020春•相城区期末)已知方程组的解x、y的值均大于零.(1)求a的取值范围;(2)化简:|2a+2|﹣2|a﹣3|.6.(2020春•汕尾期末)已知关于x,y的二元一次方程组(1)用含有m的代数式表示方程组的解;(2)如果方程组的解x,y满足x+y>0,求m的取值范围.7.(2020春•东丽区期末)已知方程组的解x,y满足x+y<1,且m为非负数,求m的取值范围.8.(2020春•高州市期末)已知关于x,y的二元一次方程组的解满足不等式x+y为非负数,求实数m的取值范围.9.(2020春•定襄县期末)已知关于x、y的方程组.(1)若a=2,求方程组的解;(2)若方程组的解x、y满足x>y,求a的取值范围.10.(2019春•三门县期末)已知关于x,y的二元一次方程组.(1)当a=2时,求方程组的解;(2)当a为何值时,y≥0?11.(2020春•张家港市校级月考)已知关于x,y的方程组.(1)求方程组的解(用含a的代数式表示);(2)若方程组的解满足xy<0,求a的取值范围.12.(2018春•开福区校级期中)已知关于x、y的方程组的解满足不等式x+y <3.(1)求实数a的取值范围;(2)在(1)的条件下,解关于a的方程|a﹣1|2.13.(2019春•新野县期中)已知关于x的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用k的代数式表示).(2)若方程组的解满足x+y>5,求k的取值范围.14.(2018春•宽城区期中)感知:解方程组,下列给出的两种方法中,最佳的方法是(A)由①,得x代入②,先消去x,求出y,再代入求解;(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:利用最佳的方法解方程组应用:若关于x、y的二元一次方程组的解中x的值是正数,则a的取值范围为.15.(2019春•房山区期中)关于x,y的二元一次方程组的解满足x+y >5.求m的取值范围.16.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.17.(2019春•雁江区期末)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解集为x>1.18.(2020春•南关区月考)感知:解方程组,下列给出的两种方法中,方法简单的是.(A)由①,得x,代入②,先消去x,求出y,再代入求解.(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:解方程组.应用:若关于x,y的二元一次方程组的解中的x是正数,则a的取值范围为.19.(2020春•荔城区校级月考)已知关于x、y的方程组.(1)若此方程组的解是二元一次方程2x+3y=16的一组解,求m的值;(2)若此方程组的解满足不等式x+3y>6,求m的取值范围.20.(2020春•宝应县期末)已知关于x,y的二元一次方程组.(1)若满足方程x﹣2y=k,请求出此时这个方程组的解;(2)若该方程组的解满足x>y,求k的取值范围.21.(2020春•万州区期末)已知方程组的解满足x﹣2y<8.(1)求m的取值范围;(2)当m为正整数时,求代数式2(m2﹣m+1)﹣3(m2+2m﹣5)的值.22.(2020春•叙州区期末)若关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求k的值;(2)若x+y≤﹣1,求k的取值范围.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:;当k=3时,不等式组的解集是:(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.24.(2020春•海淀区校级期中)已知关于x,y的方程组的解满足x<y,求p的取值范围?25.(2020春•沭阳县期末)关于x、y的方程组的解满足x+y.(1)求k的取值范围;(2)化简:|5k﹣1|﹣|4﹣5k|.1.(2020春•常熟市期末)已知关于x、y的方程组(m是常数).(1)若x+y=1,求m的值;(2)若1≤x﹣y≤15.求m的取值范围;(3)在(2)的条件下,化简:|2m+1|﹣|m﹣7|=3m﹣6.【分析】(1)①+②,化简得出x+y,由x+y=1列出关于m的方程,解之可得答案;(2)①﹣②,得:x﹣y=2m+2,结合1≤x﹣y≤15得出关于m的不等式组,解之可得;(3)利用绝对值的性质去绝对值符号,再去括号、合并即可得.【解析】(1),①+②,得:3x+3y=8m﹣2,则x+y,∵x+y=1,∴1,解得m;(2)①﹣②,得:x﹣y=2m+2,∵1≤x﹣y≤15,∴1≤2m+2≤15,解得2m+2≥1,得:m≥﹣0.5,解2m+2≤15,得m≤6.5,则﹣0.5≤m≤6.5;(3)∵﹣0.5≤m≤6.5,∴2m+1≥0,m﹣7≤﹣0.5,则原式=2m+1﹣(7﹣m)=2m+1﹣7+m=3m﹣6,故答案为:3m﹣6.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集和等式、不等式的基本性质、绝对值的性质是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(2020春•鼓楼区期末)已知4x+y=1.(1)y=1﹣4x.(用含x的代数式表示)(2)当y为非负数时,x的取值范围是x.(3)当﹣1<y≤2时,求x的取值范围.【分析】(1)根据等式的性质移项即可;(2)根据题意得出不等式,求出不等式的解集即可;(3)根据题意得出不等式组,求出不等式组的解集即可.【解析】(1)4x+y=1,移项得:y=1﹣4x,故答案为:1﹣4x;(2)∵y为非负数,∴y=1﹣4x≥0,解得:x,故答案为:x;(3)∵﹣1<y≤2,∴﹣1<﹣4x+1≤2,∴﹣2<﹣4x≤1,∴x,即x的取值范围是:x.【点评】本题考查了解二元一次方程,解一元一次不等式,解一元一次不等式组等知识点,能根据等式的性质进行变形是解(1)的关键,能得出不等式或不等式组是进而(2)(3)的关键.3.(2020春•仪征市期末)已知关于x、y的方程组.(1)求该方程组的解(用含a的代数式表示);(2)若方程组的解满足x<0,y>0,求a的取值范围.【分析】(1)利用加减消元法求解可得;(2)根据题意列出关于a的不等式组,解之可得.【解析】(1),②﹣①,得:x=﹣2a+1,将x=﹣2a+1代入①,得:﹣2a+1﹣y=﹣a﹣1,解得y=﹣a+2,所以方程组的解为;(2)根据题意知,解不等式﹣2a+1<0,得,解不等式﹣a+2>0,得a<2,解得:.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2020春•张家港市期末)已知关于x、y的方程组.(1)求方程组的解(用含m的代数式表示);(2)若方程组的解满足x≤0,y<0,且m是正整数,求m的值.【分析】(1)利用加减消元法求解可得;(2)根据题意列出不等式组,解之求出m的取值范围,从而得出答案.【解析】(1),由①,得2x+2y=2m﹣18.③,由②+③,得5x=10m﹣20,x=2m﹣4;将x=2m﹣4代入①,得y=﹣m﹣5,∴原方程组的解为;(2)∵,∴,解得﹣5<m≤2,且m是正整数,∴m=1或m=2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2020春•相城区期末)已知方程组的解x、y的值均大于零.(1)求a的取值范围;(2)化简:|2a+2|﹣2|a﹣3|.【分析】(1)把a看做已知数表示出方程组的解,根据x与y同号求出a的范围即可;(2)由a的范围判断绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解析】(1),①+②得:5x=15﹣5a,即x=3﹣a,代入①得:y=2+2a,根据题意得:解得﹣1<a<3;(2)∵﹣1<a<3,∴|2a+2|﹣2|a﹣3|=2a+2+2a﹣6=4a﹣4.【点评】此题考查了二元一次方程组的解,解一元一次不等式组,绝对值的性质,是基础题,难度不大.6.(2020春•汕尾期末)已知关于x,y的二元一次方程组(1)用含有m的代数式表示方程组的解;(2)如果方程组的解x,y满足x+y>0,求m的取值范围.【分析】(1)将m看做已知数求出方程组的解即可;(2)根据已知不等式求出m的范围即可.【解析】(1)①﹣②,得3y=12﹣3m,解得y=4﹣m.将y=4﹣m代入②,得x﹣(4﹣m)=3m,解得x=2m+4.故方程组的解可表示为;(2)∵x+y>0,∴2m+4+4﹣m>0,解得m>﹣8.故m的取值范围是m>﹣8.【点评】此题考查了解一元一次不等式,二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.7.(2020春•东丽区期末)已知方程组的解x,y满足x+y<1,且m为非负数,求m的取值范围.【分析】根据消元法,得出x、y的值,再根据x+y<1,且m为非负数,可得答案.【解析】,①+②,得:3x+3y=2+2m,∴x+y,∵x+y<1,即1,解得,m,又∵m≥0,∴.【点评】本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求出m的取值范围.8.(2020春•高州市期末)已知关于x,y的二元一次方程组的解满足不等式x+y为非负数,求实数m的取值范围.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解析】方程组中两个方程相加得3x+3y=3+m,即x+y=1m,又x+y≥0,即1m≥0,解一元一次不等式得m≥﹣3.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.9.(2020春•定襄县期末)已知关于x、y的方程组.(1)若a=2,求方程组的解;(2)若方程组的解x、y满足x>y,求a的取值范围.【分析】(1)将a=2代入,解利用加减消元法求解可得;(2)解方程组得出x、y,再根据x>y得出关于a的不等式,解之可得.【解析】(1)当a=2时,,①﹣②,得:3y=6,y=2,将y=2代入①,得:x+2=11,x=9,则方程组的解为;(2)解方程组得,∵x>y,∴,解得a.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.10.(2019春•三门县期末)已知关于x,y的二元一次方程组.(1)当a=2时,求方程组的解;(2)当a为何值时,y≥0?【分析】(1)用加减消元法求解即可;(2)解出二元一次方程组中y关于a的式子,然后即可解出a的范围.【解析】(1)当a=2时,方程组为,②×3﹣①×2得,17y=17,解得y=1,把y=1代入①得,3x﹣4=2,解得x=2,所以,方程组的解是;(2)①×2﹣②×3得,﹣17y=5a﹣27,即y,解0,得,a,∴当a时,y≥0.【点评】此题考查的是二元一次方程组和解一元一次不等式,明确解题步骤是关键.11.(2020春•张家港市校级月考)已知关于x,y的方程组.(1)求方程组的解(用含a的代数式表示);(2)若方程组的解满足xy<0,求a的取值范围.【分析】(1)利用加减消元法解之可得;(2)根据xy<0得出关于a的不等式组,解之可得.【解析】(1)两个方程相加,得:3x=6a+3,解得x=2a+1,将x=2a+1代入2x+y=5a,得:4a+2+y=5a,解得y=a﹣2,∴方程组的解为;(2)根据题意,得:或,解得a<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(2018春•开福区校级期中)已知关于x、y的方程组的解满足不等式x+y <3.(1)求实数a的取值范围;(2)在(1)的条件下,解关于a的方程|a﹣1|2.【分析】(1)先用a表示出x、y的值,再代入不等式x+y<3即可得出关于a的不等式,进而得出a的取值范围.(2)先取绝对值,再解一元一次方程即可求解.【解析】,①+②得3x=6a+3,解得x=2a+1;把x=2a+1代入①得2a+1﹣y=3,解得y=2a﹣2,∵x+y<3,∴2a+1+2a﹣2<3,解得a<1.故实数a的取值范围为a<1;(2)∵a<1,∴|a﹣1|2可以变形为﹣a+12,解得a.【点评】本题考查的是解二元一次方程组及一元一次不等式,先根据题意用a表示出x、y的值是解答此题的关键.13.(2019春•新野县期中)已知关于x的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用k的代数式表示).(2)若方程组的解满足x+y>5,求k的取值范围.【分析】(1)利用加减消元法求解可得;(2)由方程组的解满足x+y>5,得5,解之可得.【解析】(1)①+②得4x=2k﹣1,∴,代入①得,所以方程组的解为;(2)方程组的解满足x+y>5,所以5,∴.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(2018春•宽城区期中)感知:解方程组,下列给出的两种方法中,最佳的方法是(B)(A)由①,得x代入②,先消去x,求出y,再代入求解;(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:利用最佳的方法解方程组应用:若关于x、y的二元一次方程组的解中x的值是正数,则a的取值范围为a>4.【分析】感知:根据题目中的解答过程可知(B)种方法简答;探究:根据感知中的解答方法可以解答此方程组;应用:根据感知中的方法,可以用含a的代数式表示出x,再根据方程组的解中x是正数,从而可以求得a的取值范围.【解析】感知:由题目中的解答过程可知,最佳的方法是(B),故答案为:(B);探究:,将①代入②,得2×2018﹣5y=3951,解得,y=17,将y=17代入①,得x=2001,故原方程组的解是;应用:,将①代入②,得,解得,x,∵关于x、y的二元一次方程组的解中x的值是正数,∴0,解得,a>4,故答案为:a>4.【点评】本题考查解一元一次不等式、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.15.(2019春•房山区期中)关于x,y的二元一次方程组的解满足x+y >5.求m的取值范围.【分析】将两个方程相加得出3x+3y=﹣2m+2,结合x+y>5知3x+3y>15,据此列出关于m的不等式,解之可得.【解析】两个方程相加可得3x+3y=﹣2m+2,∵x+y>5,∴3x+3y>15,则﹣2m+2>15,解得m.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.【分析】首先对不等式组进行化简,根据不等式的解集的确定方法,就可以得出a的范围.【解析】将x=1代入3x﹣5≤2x﹣4a,得4a≤4,解得a≤1;将x=1代入3(x﹣a)<4(x+2)﹣5,得a.不等式组解集是a≤1,a的取值范围是a≤1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.(2019春•雁江区期末)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解集为x>1.【分析】首先对方程组进行化简,根据方程的解满足x为非正数,y为负数,就可以得出m的范围,然后再化简(2),最后求得m的值.【解析】(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m,∴﹣2<m,∴m=﹣1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.(2020春•南关区月考)感知:解方程组,下列给出的两种方法中,方法简单的是B.(A)由①,得x,代入②,先消去x,求出y,再代入求解.(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:解方程组.应用:若关于x,y的二元一次方程组的解中的x是正数,则a的取值范围为a>4.【分析】感知:根据题目中的解答过程可知(B)种方法简答;探究:根据感知中的解答方法可以解答此方程组;应用:根据感知中的方法,可以用含a的代数式表示出x,再根据方程组的解中x是正数,从而可以求得a的取值范围.【解析】感知:由题目中的解答过程可知,最佳的方法是(B),故答案为:(B);探究:,将①代入②,得1009﹣5y=1094,解得,y=﹣17,将y=﹣17代入①,得x=2035,故原方程组的解是;应用:,将①代入②,得,解得,x,∵关于x,y的二元一次方程组的解中的x是正数,∴0,解得,a>4,故答案为:a>4.【点评】本题考查解一元一次不等式、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.19.(2020春•荔城区校级月考)已知关于x、y的方程组.(1)若此方程组的解是二元一次方程2x+3y=16的一组解,求m的值;(2)若此方程组的解满足不等式x+3y>6,求m的取值范围.【分析】(1)根据方程组的解法解答即可;(2)根据不等式的解法解答即可.【解析】(1),①﹣②得:3y=﹣6m,解得:y=﹣2m,①+②×2得:3x=21m,解得:x=7m,将x=7m,y=﹣2m代入2x+3y=16得:14m﹣6m=16,解得m=2;(2)由(1)知:x=7m,y=﹣2m,代入x+3y>6,得(﹣6m)>6,∴m.【点评】此题考查解一元一次不等式问题,关键是根据一元一次不等式的解法解答.20.(2020春•宝应县期末)已知关于x,y的二元一次方程组.(1)若满足方程x﹣2y=k,请求出此时这个方程组的解;(2)若该方程组的解满足x>y,求k的取值范围.【分析】(1)把x与y的值代入已知方程求出k的值,进而求出方程组的解即可;(2)表示出方程组的解,根据x>y,求出k的范围即可.【解析】(1)把代入x﹣2y=k得:k=3+4=7,方程组为,①﹣②×2得:y=﹣9,把y=﹣9代入①得:x=﹣11,则方程组的解为;(2),①﹣②得:x﹣y=5﹣k,∵x>y,即x﹣y>0,∴5﹣k>0,解得:k<5.【点评】此题考查了解一元一次不等式,解二元一次方程组,熟练掌握各自的解法是解本题的关键.21.(2020春•万州区期末)已知方程组的解满足x﹣2y<8.(1)求m的取值范围;(2)当m为正整数时,求代数式2(m2﹣m+1)﹣3(m2+2m﹣5)的值.【分析】(1)解方程组得出x=2m+1,y=1﹣2m,代入不等式x﹣2y<8,可求出m的取值范围;(2)根据题意求出m=1,化简原式即可得出答案.【解析】(1)解方程组得,,∵x﹣2y<8,∴2m+1﹣2(1﹣2m)<8,解得,m.(2)∵m,m为正整数,∴m=1,∴原式=2m2﹣2m+2﹣3m2﹣6m+15=﹣m2﹣8m+17.当m=1时,原式=﹣1﹣8+17=8.【点评】本题考查了解二元一次方程组和一元一次不等式的解法,熟练掌握二元一次方程组的解法是解题的关键.22.(2020春•叙州区期末)若关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求k的值;(2)若x+y≤﹣1,求k的取值范围.【分析】(1)先利用加减消元法解方程组得到,则利用x﹣y=1得到﹣17k﹣15﹣(9k+10)=1,然后解关于k的方程即可;(2)利用x+y≤﹣1得到﹣17k﹣15+9k+10≤﹣1,然后解关于k的不等式即可.【解析】(1)解方程组得,∵x﹣y=1,∴﹣17k﹣15﹣(9k+10)=1,∴k=﹣1;(2)∵x+y≤﹣1,∴﹣17k﹣15+9k+10≤﹣1,∴k.【点评】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式.也考查了解二元一次方程组.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:﹣1<x<1;当k=3时,不等式组的解集是:无解(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.【分析】(1)把k=﹣2和k=3分别代入已知不等式组,分别求得三个不等式的解集,取其交集即为该不等式组的解集;(2)当k为任意有理数时,要分1﹣k<﹣1,1﹣k>1,﹣1<1﹣k<1三种情况分别求出不等式组的解集.【解析】(1)把k=﹣2代入,得,解得﹣1<x<1;把k=3代入,得,无解.故答案是:﹣1<x<1;无解;(2)若k为任意实数,不等式组的解集分以下三种情况:当1﹣k≤﹣1即k≥2时,原不等式组可化为,故原不等式组的解集为无解;当1﹣k≥1即k≤0时,原不等式组可化为,故原不等式组的解集为﹣1<x<1;当﹣1<1﹣k<1即0<k<2时,原不等式组可化为,故原不等式组的解集为﹣1<x<1﹣k.【点评】本题考查的是不等式的解集,特别注意在解(2)时要分三种情况求不等式组的解集.24.(2020春•海淀区校级期中)已知关于x,y的方程组的解满足x<y,求p的取值范围?【分析】解不等式组求出,再根据x<y得出关于p的不等式,解之可得答案.【解析】解方程组,得:,∵x<y,∴p+5<﹣p﹣7,解得p<﹣6.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.25.(2020春•沭阳县期末)关于x、y的方程组的解满足x+y.(1)求k的取值范围;(2)化简:|5k﹣1|﹣|4﹣5k|.【分析】(1)两方程相加、化简得出x+y,结合x+y知,解之可得答案;(2)根据绝对值的性质去绝对值符号,再去括号、合并即可得.【解析】(1)将两个方程相加可得3x+3y=k+1,则x+y,∵x+y,∴,解得k;(2)原式=5k﹣1﹣(5k﹣4)=5k﹣1﹣5k+4=3.【点评】本题主要考查解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.。
专题2.10方程(组)与不等式相结合的解集问题(重难点培优)-2021年八年级数学下册尖子生同步培优
2020-2021学年八年级数学下册尖子生同步培优题典【北师大版】专题2.10方程(组)与不等式相结合的解集问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________1.(2020秋•拱墅区月考)(1)已知关于x 的不等式①x +a >7的解都能使不等式②x−2a 5>1﹣a 成立,求a 的取值范围.(2)若关于x 、y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y >−32,求出满足条件的m 的所有正整数值.【分析】(1)分别取出求出不等式①②的解集,再根据题意得到7﹣a ≥5﹣3a ,最后解不等式即可求出a 的取值范围.(2)两个方程相加,即可得出关于m 的不等式,求出m 的范围,即可得出答案. 【解析】(1)解不等式①x +a >7得:x >7﹣a , 解不等式②x−2a 5>1﹣a 得:x >5﹣3a ,根据题意得,7﹣a ≥5﹣3a , 解得:a ≥﹣1.(2){2x +y =−3m +2①x +2y =4②,①+②得:3x +3y =﹣3m +6, ∴x +y =﹣m +2,∵关于x 、y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y >−32,∴﹣m +2>−32, ∴m <72,∴满足条件的m 的所有正整数值是1,2,3,.2.(2020春•南关区月考)感知:解方程组{2x +3y =7,①4(2x +3y)−y =27②,下列给出的两种方法中,方法简单的是B .(A )由①,得x =7−3y2,代入②,先消去x ,求出y ,再代入求解. (B )将①代入②,得4×7﹣y =27,解得y =1,再代入求解.探究:解方程组{x +y =2018x+y2−5y =1094.应用:若关于x ,y 的二元一次方程组{3x −2y =1+2a3x−2y 3−2x =3的解中的x 是正数,则a 的取值范围为 a >4 .【分析】感知:根据题目中的解答过程可知(B )种方法简答; 探究:根据感知中的解答方法可以解答此方程组;应用:根据感知中的方法,可以用含a 的代数式表示出x ,再根据方程组的解中x 是正数,从而可以求得a 的取值范围.【解析】感知:由题目中的解答过程可知,最佳的方法是(B ), 故答案为:(B ); 探究:{x +y =2018①x+y2−5y =1094②,将①代入②,得 1009﹣5y =1094, 解得,y =﹣17, 将y =﹣17代入①,得 x =2035,故原方程组的解是{x =2035y =−17;应用:{3x −2y =1+2a ①3x−2y 3−2x =3②,将①代入②,得1+2a 3−2x =3,解得,x =a−43,∵关于x ,y 的二元一次方程组{3x −2y =1+2a3x−2y3−2x =3的解中的x 是正数,∴a−43>0,解得,a >4, 故答案为:a >4.3.(2020秋•沙坪坝区校级月考)若关于x 、y 的方程组{2x +y =5kx −y =4k +3的解满足x +y ≤6,求k 的取值范围.【分析】先把k 当作已知表示出x 、y 的值,再根据x +y ≤6列出不等式,求出k 的取值范围即可. 【解析】解方程组{2x +y =5k x −y =4k +3得,{x =3k +1y =−k −2,∵x +y ≤6, ∴3k +1﹣k ﹣2≤6, 解得k ≤72.∴k 的取值范围为k ≤72.4.(2020春•南岗区校级月考)关于x 、y 的二元一次方程组{x +2y =2m −5x −2y =3−4m 的解x 、y 满足x +y ≥0,求此时m 的取值范围.【分析】将m 看做已知数求出方程组的解,然后根据已知不等式求出m 的范围即可. 【解析】{x +2y =2m −5①x −2y =3−4m②,①+②得2x =﹣2﹣2m , 解得x =﹣1﹣m . ①﹣②得4y =6m ﹣8, 解得y =32m ﹣2. ∵x +y ≥0,∴﹣1﹣m +32m ﹣2≥0, 解得m ≥6.故m 的取值范围是m ≥6.5.(2020春•荔城区校级月考)已知关于x 、y 的方程组{x +2y =3mx −y =9m .(1)若此方程组的解是二元一次方程2x +3y =16的一组解,求m 的值; (2)若此方程组的解满足不等式12x +3y >6,求m 的取值范围.【分析】(1)根据方程组的解法解答即可; (2)根据不等式的解法解答即可. 【解析】(1){x +2y =3m ①x −y =9m②,①﹣②得:3y =﹣6m , 解得:y =﹣2m ,①+②×2得:3x =21m , 解得:x =7m ,将x =7m ,y =﹣2m 代入2x +3y =16得:14m ﹣6m =16, 解得m =2;(2)由(1)知:x =7m ,y =﹣2m , 代入12x +3y >6,得7m 2+(﹣6m )>6,∴m <−125. 6.(2020春•高邮市期末)已知关于x 、y 的二元一次方程组{3x −5y =4m5x −3y =8(1)若方程组的解满足x ﹣y =6,求m 的值; (2)若方程组的解满足x <﹣y ,求m 的取值范围.【分析】(1)用加减消元法解出x 和y 的值,把x 和y 用含有m 的式子表示,代入x ﹣y =6,求出m 的值即可,(2)把x 和y 用含有m 的式子表示,代入x +y <0,得到关于m 的一元一次不等式,解之即可. 【解析】(1){3x −5y =4m ①5x −3y =8②,①+②得:8x ﹣8y =4m +8,即x ﹣y =1+12m , 代入x ﹣y =6得:1+12m =6, 解得:m =10, 故m 的值为10,(2)②﹣①得:2x +2y =8﹣4m ,即x +y =4﹣2m , ∵x <﹣y , ∴x +y <0, ∴4﹣2m <0, 解得:m >2,故m 的取值范围为:m >2.7.(2020秋•路北区月考)(1)解方程组:{3x −y =3①x 2+y 3=2②;(2)已知关于x ,y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y >−32,求出满足条件的m 的所有正整数值.【分析】(1)先整理方程②,再用加减消元法解方程组即可;(2)方程组两方程相加表示出x +y ,代入已知不等式求出m 的范围,确定出正整数值即可. 【解析】(1){3x −y =3①x 2+y 3=2②,由②得3x +2y =12 ③ 由③﹣①得,3y =9, 解得:y =3,把y =3代入①得,x =2. 所以这个方程组的解是{x =2y =3;(2){2x +y =−3m +2①x +2y =4②,①+②得:3(x +y )=﹣3m +6,即x +y =﹣m +2, 代入不等式得:﹣m +2>−32, 解得:m <72,则满足条件m 的正整数值为1,2,3.8.(2020•历下区校级模拟)已知关于x ,y 的二元一次方程组{x −3y =5x −2y =k 的解满足x >y ,求k 的取值范围.【分析】加减法求得x ,y 的值(用含k 的式子表示),然后再列不等式求解即可. 【解析】{x −3y =5①x −2y =k②,①﹣②得:﹣y =5﹣k , ∴y =k ﹣5,将y =k ﹣5代入②得,x =3k ﹣10, ∵x >y , ∴3k ﹣10>k ﹣5. ∴k >52.即k 的取值范围为k >52.9.(2020春•宝应县期末)已知关于x ,y 的二元一次方程组{2x −3y =5x −2y =k.(1)若{x =3y =−2满足方程x ﹣2y =k ,请求出此时这个方程组的解;(2)若该方程组的解满足x >y ,求k 的取值范围.【分析】(1)把x 与y 的值代入已知方程求出k 的值,进而求出方程组的解即可; (2)表示出方程组的解,根据x >y ,求出k 的范围即可. 【解析】(1)把{x =3y =−2代入x ﹣2y =k 得:k =3+4=7,方程组为{2x −3y =5①x −2y =7②,①﹣②×2得:y =﹣9, 把y =﹣9代入①得:x =﹣11, 则方程组的解为{x =−11y =−9;(2){2x −3y =5①x −2y =k②,①﹣②得:x ﹣y =5﹣k , ∵x >y ,即x ﹣y >0, ∴5﹣k >0, 解得:k <5.10.(2020春•沭阳县期末)关于x 、y 的方程组{x +2y =3k 2x +y =−2k +1的解满足x +y >35.(1)求k 的取值范围; (2)化简:|5k ﹣1|﹣|4﹣5k |.【分析】(1)两方程相加、化简得出x +y =k+13,结合x +y >35知k+13>35,解之可得答案; (2)根据绝对值的性质去绝对值符号,再去括号、合并即可得. 【解析】(1)将两个方程相加可得3x +3y =k +1, 则x +y =k+13, ∵x +y >35, ∴k+13>35,解得k >45;(2)原式=5k ﹣1﹣(5k ﹣4) =5k ﹣1﹣5k +4 =3.11.(2020春•东城区校级期末)若关于x ,y 的二元一次方程组{x +y =5k ,x −y =k的解满足x ﹣2y <1,求k 的取值范围.【分析】首先解关于x 的方程组,求得x ,y 的值,然后代入方程x ﹣2y <1,即可得到一个关于k 的不等式,再解不等式即可解答.【解析】由方程组{x +y =5k ,x −y =k 得:{x =3k y =2k ,∵关于x ,y 的二元一次方程组{x +y =5k ,x −y =k的解满足x ﹣2y <1,∴3k ﹣4k <1, 解得:k >﹣1.∴k 的取值范围是k >﹣1. 12.(2020春•万州区期末)已知方程组{x −y =4m ①2x +y =2m +3②的解满足x ﹣2y <8.(1)求m 的取值范围;(2)当m 为正整数时,求代数式2(m 2﹣m +1)﹣3(m 2+2m ﹣5)的值.【分析】(1)解方程组得出x =2m +1,y =1﹣2m ,代入不等式x ﹣2y <8,可求出m 的取值范围; (2)根据题意求出m =1,化简原式即可得出答案.【解析】(1)解方程组{x −y =4m ①2x +y =2m +3②得,{x =2m +1y =1−2m ,∵x ﹣2y <8,∴2m +1﹣2(1﹣2m )<8, 解得,m <32.(2)∵m <32,m 为正整数, ∴m =1,∴原式=2m 2﹣2m +2﹣3m 2﹣6m +15=﹣m 2﹣8m +17. 当m =1时,原式=﹣1﹣8+17=8.13.(2020春•叙州区期末)若关于x 、y 的二元一次方程组{2x +3y =−7k2y +x =k +5.(1)若方程组的解满足x ﹣y =1,求k 的值; (2)若x +y ≤﹣1,求k 的取值范围.【分析】(1)先利用加减消元法解方程组得到{x =−17k −15y =9k +10,则利用x ﹣y =1得到﹣17k ﹣15﹣(9k +10)=1,然后解关于k 的方程即可;(2)利用x +y ≤﹣1得到﹣17k ﹣15+9k +10≤﹣1,然后解关于k 的不等式即可. 【解析】(1)解方程组{2x +3y =−7k 2y +x =k +5得{x =−17k −15y =9k +10,∵x ﹣y =1,∴﹣17k ﹣15﹣(9k +10)=1, ∴k =﹣1; (2)∵x +y ≤﹣1,∴﹣17k ﹣15+9k +10≤﹣1, ∴k ≥−12.14.(2020春•南安市期中)已知关于x ,y 的二元一次方程组{2x −y =3mx −2y =6的解满足x +y >3,求满足条件的m的取值范围.【分析】先将m 看做常数解方程组求出x =2m ﹣2、y =m ﹣4,再代入x +y >3可得关于m 的不等式,解之可得答案.【解析】{2x −y =3m ①x −2y =6②,①×2得:4x ﹣2y =6m ③, ③﹣②得:3x =6m ﹣6, ∴x =2m ﹣2,把x =2m ﹣2代入①得:2(2m ﹣2)﹣y =3m , ∴y =m ﹣4, ∵x +y >3,∴(2m ﹣2)+(m ﹣4)>3, ∴m >3.15.(2020春•北流市期末)已知不等式组{2x −5<5x +43(x +1)≤2x +5的最小整数解是关于x 的方程12x ﹣mx =5的解,求m 的值.【分析】分别求出不等式组中两不等式的解集,找出解集中的公共部分,确定出不等式组的解集,找出解集中的整数解,确定出x 的值,将x 的值代入已知方程计算,即可求出m 的值. 【解析】{2x −5<5x +4①3(x +1)≤2x +5②,由 ①,得:x >﹣3; 由 ②,得:x ≤2;∴原不等式组的解集为:﹣3<x ≤2, ∵x 为最小整数 ∴x =﹣2,把x =﹣2代入方程12x ﹣mx =5,得:12×(−2)−m ×(−2)=5,解得m =3.16.(2014春•福清市校级期末)已知不等式组{x >−1x <1x <1−k(1)当k =﹣2时,不等式组的解集是: ﹣1<x <1 ;当k =3时,不等式组的解集是: 无解 (2)由(1)可知,不等式组的解集随k 的值变化而变化,若不等式组有解,求k 的取值范围并求出解集. 【分析】(1)把k =﹣2和k =3分别代入已知不等式组,分别求得三个不等式的解集,取其交集即为该不等式组的解集;(2)当k 为任意有理数时,要分1﹣k <﹣1,1﹣k >1,﹣1<1﹣k <1三种情况分别求出不等式组的解集. 【解析】(1)把k =﹣2代入,得 {x >−1x <1x <3,解得﹣1<x <1; 把k =3代入,得 {x >−1x <1x <−2,无解.故答案是:﹣1<x <1;无解;(2)若k 为任意实数,不等式组的解集分以下三种情况: 当1﹣k ≤﹣1即k ≥2时,原不等式组可化为{x >−1x <−1,故原不等式组的解集为无解;当1﹣k ≥1即k ≤0时,原不等式组可化为{x >−1x <1,故原不等式组的解集为﹣1<x <1;当﹣1<1﹣k <1即0<k <2时,原不等式组可化为{x >−1x <1−k ,故原不等式组的解集为﹣1<x <1﹣k .17.(2014春•无锡期末)已知方程组{x +y =4a +5x −y =6a −5的解满足不等式4x ﹣5y <9.求a 的取值范围.【分析】先解得不等式的解集,再根据题意,求出a 的取值范围. 【解析】两个方程相加得,x =5a , 两个方程相减得,y =﹣a +5, ∵4x ﹣5y <9,∴20a ﹣5(﹣a +5)<9 ∴a <342518.(2020春•惠东县期中)若关于x ,y 的方程组{2x +y =ax +2y =5a 的解满足x ﹣y >12,求a 的取值范围.【分析】将两个方程相减得出x ﹣y =﹣4a ,结合x ﹣y >12得出关于a 的不等式,解之可得. 【解析】两方程相减可得x ﹣y =﹣4a , ∵x ﹣y >12, ∴﹣4a >12, 解得a <﹣3.19.(2020•黄石模拟)若关于x 、y 的二元一次方程组{3x +y =1+ax +3y =3的解满足x +y <2,求a 的正整数解.【分析】将两个方程相加可得4(x +y )=4+a ,根据x +y <2知4(x +y )<8,从而列出关于a 的不等式,解之可得.【解析】将两个方程相加可得4x +4y =4+a ,即4(x +y )=4+a , ∵x +y <2, ∴4(x +y )<8, ∴4+a <8, 解得a <4,∴a 的正整数解为1、2、3.20.(2020春•海淀区校级期中)已知关于x ,y 的方程组{3x +2y =p +14x +3y =p −1的解满足x <y ,求p 的取值范围? 【分析】解不等式组求出{x =p +5y =−p −7,再根据x <y 得出关于p 的不等式,解之可得答案. 【解析】解方程组{3x +2y =p +14x +3y =p −1,得:{x =p +5y =−p −7, ∵x <y ,∴p +5<﹣p ﹣7,解得p <﹣6.。
数学中的不等式与方程组
数学中的不等式与方程组一、不等式的定义与性质数学中的不等式是指数之间的大小关系,包括大于、小于、大于等于、小于等于等。
不等式可以用来描述实际问题中的约束关系,常见于数学、物理、经济等领域的建模与求解过程中。
不等式的定义:设a和b为实数,则a不等于b可以表示为a≠b,a 大于b可以表示为a>b,a小于b可以表示为a<b,a大于等于b可以表示为a≥b,a小于等于b可以表示为a≤b。
不等式的性质包括传递性、对称性、加法性、乘法性等。
传递性指若a>b,b>c,则a>c;对称性指若a>b,则b<a;加法性指若a>b,则a+c>b+c,乘法性指若a>b,且c>0,则ac>bc。
这些性质在不等式的推导与解答过程中起到关键作用。
二、一元一次不等式的解法一元一次不等式是指只含有一个未知数,并且未知数的最高次数为一的不等式。
解一元一次不等式的基本思路是找到未知数的取值范围使不等式成立。
对于形式为ax+b>0的不等式,可按以下步骤求解:1. 若a>0,则不等式解集为(-∞, -b/a);2. 若a<0,则不等式解集为(-b/a, +∞);3. 若a=0且b>0,则不等式无解;4. 若a=0且b≤0,则不等式解集为(-∞,+∞)。
对于形式为ax+b<0的不等式,求解步骤与以上类似,只需将“>”号替换为“<”号即可。
类似地,对于形式为ax+b≥0和ax+b≤0的不等式,只需将“>”号替换为“≥”,“<”号替换为“≤”即可得到解集。
三、一元二次不等式的解法一元二次不等式是指未知数的最高次数为二的不等式。
解一元二次不等式的方法可以归结为求解一元二次方程的方法,即先化简不等式为二次方程,然后通过判别式和根的位置关系来确定不等式的解集。
对于形式为ax²+bx+c>0的一元二次不等式,可按以下步骤求解:1. 求出对应的一元二次方程ax²+bx+c=0的判别式Δ=b²-4ac;2. 若Δ>0,则方程有两个不相等的实根x₁和x₂,此时不等式的解集为(-∞, x₁)∪(x₂, +∞);3. 若Δ=0,则方程有两个相等的实根x₁=x₂,此时不等式的解集为(-∞, x₁)∪(x₁, +∞);4. 若Δ<0,则方程无实根,此时不等式的解集为空集。
二元一次方程组和不等式的结合应用题
二元一次方程组和不等式的结合应用题摘要:一、二元一次方程组的定义和基本解法1.二元一次方程组的定义2.代入法解二元一次方程组3.消元法解二元一次方程组二、不等式的基本性质和解法1.不等式的定义和基本性质2.解不等式的方法3.解含有绝对值的不等式三、二元一次方程组和不等式的结合应用题1.结合二元一次方程组解不等式2.结合不等式解二元一次方程组3.二元一次方程组和不等式的实际应用正文:一、二元一次方程组的定义和基本解法二元一次方程组是指包含两个未知数,且每个方程中的次数都是一次的方程组。
解决二元一次方程组的方法有代入法和解元法。
代入法是将一个方程的未知数表示为另一个方程的未知数的函数,然后代入另一个方程求解。
解元法是先将两个方程相加或相减,消去一个未知数,然后再用已知条件求解另一个未知数。
二、不等式的基本性质和解法不等式是指含有比较关系的数学表达式,如大于、小于、大于等于、小于等于等。
解不等式首先要了解不等式的基本性质,如加减同一数、乘除同一正数或负数等。
解不等式的方法有移项法、系数化为1法、解集的端点法等。
对于含有绝对值的不等式,可以先将其转化为不含绝对值的不等式,然后再用相应的方法解出。
三、二元一次方程组和不等式的结合应用题在实际问题中,我们常常需要同时解决二元一次方程组和不等式的问题。
例如,一个商店的苹果和香蕉的价格分别为每斤x元和y元,已知苹果的总价不小于100元,香蕉的总价不大于200元,求苹果和香蕉各多少斤。
这类问题需要先根据不等式确定未知数的取值范围,然后再用二元一次方程组求解。
另外,二元一次方程组和不等式的结合应用题也可以是关于时间、速度、距离等问题。
二元一次方程组和不等式的结合应用题
二元一次方程组和不等式的结合应用题二元一次方程组和不等式的结合应用题一、引言在数学学习中,二元一次方程组和不等式是基础且重要的内容。
它们不仅有着独特的解题方法,还能灵活地应用于各种实际情境中。
本文将通过深入讨论二元一次方程组和不等式的结合应用题,探索其在现实生活中的应用和意义。
二、二元一次方程组和不等式的概念回顾在开始探讨二元一次方程组和不等式的结合应用题之前,我们先来回顾一下二元一次方程组和不等式的基本概念。
二元一次方程组是指由两个未知数的一次方程组成的方程组,通常表示为:\[ \begin{cases} ax + by = c \\ dx + ey = f \end{cases} \]其中,a、b、c、d、e、f为已知数,x、y为未知数。
而不等式则表示不同数之间的大小关系,一般形式为:\[ ax + by < c \]\[ dx + ey > f \]其中,a、b、c、d、e、f为已知数,x、y为未知数。
三、二元一次方程组和不等式的结合应用题1. 题目:某商场正在进行促销活动,A品牌和B品牌的T恤分别售价为x和y元,现有总预算为z元,且希望购买数量尽量多,同时要求品牌A的T恤数量不少于品牌B的T恤数量。
请问应该如何安排购买数量才能使总购买数量最多?解析:我们可以建立以下二元一次方程组来表示购买数量:\[ \begin{cases} x \geq y \\ x + y \leq z \end{cases} \]其中,x表示品牌A的T恤数量,y表示品牌B的T恤数量。
根据题意,我们需要找到满足方程组的x和y的取值,使得x+y的值最大。
接下来,我们可以将不等式转化为方程表示:\[ x = y \]\[ x + y = z \]我们可以将x代入x+y=z的方程中,得到:\[ y + y = z \]\[ 2y = z \]\[ y = \frac{z}{2} \]同理,代入x的方程,得到:\[ x = \frac{z}{2} \]品牌A和品牌B的T恤数量应该相等,且都等于预算的一半,这样购买数量才能最多。
不等式组与方程组的完美结合
不等式组与方程组的完满联合不等式组与方程组的完满联合对于不等式组的考察,常常不再是某一知识点的简单重复,而是灵巧地把不等式与其余知识联合起来,下边一同赏析不等式组与方程组相联合考题 .一、依据方程组解的关系列不等式组例 1(2010 年贵州黔东南州) 对于 x ,y 的方程组x ym 3的解知足 x>y>0,则 m2x y 5m的取值范围是() .(A) m>2(B)m>-3(C)-3<m<2(D)m<3或 m>2剖析 :解决此题可先解方程组, 而后依据x>y>0列出对于m 的不等式组, 即可求到 m 的范围 .x=2m+1解: 解方程组 , 得 y=m-22m+1>m-2由 x>y>0, 得 m-2>0 解这个不等式组 , 得 m>2.应选 (A).二、依据不等式组解的范围列方程组x例 2 (2009 年山东烟台) 假如不等式组2+a ≥2的解集是 0≤x<1, 那么 2x-b<3a+b 的值为 ________.剖析 : 解决此题可先解不等式组, 求出不等式组的解集 , 而后与已知的解集进行比较 , 列出对于 a ,b 的方程组 , 即可求到 a ,b 的值 .x ≥4-2 a解: 解不等式组 , 得 b+3 ,x< 24-2 a=0由于不等式组的解集为0≤x<1,因此b+32 =1解这个方程组 , 得a=2,b= - 1, 因此a+b=2+(- 1)=2.三、方程组与不等式组联手例 3 ( 2010 年福州市)郑老师想为希望小学四年(3)班的同学购置学惯用品,认识到某商铺每个书包的价钱比每本字典多8 元,用 124 元恰好能够买到 3 个书包和 2 本字典 .( 1)每个书包和每本字典的价钱各是多少元?( 2)郑老师计划用1000 元为全班40 位同学没认购置一件学惯用品(一个书包或一本字典)后,余下许多于100 元且不超出 120 元的钱购置体育用品,共有哪几种购置书包和字典的方案?剖析:(1)每个书包和每本字典的价钱,可依据问题中的相等关系,列出方程组进行求出;(2)求共有几种方案,则需要依据“余下许多于100 元且不超出 120 元的钱购置体育用品”中所包括的不等关系列不等式组 .设每个书包的价钱为x 元,每本字典的价钱为y 元 , 依据题意 , 得x+y=8x=283x+2y=124解这个方程组 , 得y=20答: 每个书包的的价钱为 28 元, 每本字典的价钱为 20 元 .(2)设购置书包 y 个 , 则购置字典 (40 -y) 本, 依据题意 , 得解得 10≤y≤12.5,由于 y 为整数 , 因此 y 的值为 10 或 11 或 12.因此有三种购置方案, 分别是 :①书包10个,字典30本;②书包11个,字典 29 本; ③书包 12 个, 字典 28 本.点击不等式(组)决议题学习了一元一次不等式(组)此后,能够利用一元一次不等式(组)解决很多与生活亲密有关的实质问题,特别是经营决议问题,下边分类举例说明,供同学们参照.一、最优决议例 1.( 2010 年山西省)某服饰店欲购甲、乙两种新款运动服,甲款每套进价 350 元,乙款每套进价200 元,该店计划用不低于7600 元且不高于 8000 元的资本订购30 套甲、乙两款运动服。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式组与方程组的完
美结合
Revised at 2 pm on December 25, 2020.
不等式组与方程组的完美结合 对于不等式组的考查,往往不再是某一知识点的简单重复,而是灵活地把不等式与其他知识结合起来,下面一起赏析不等式组与方程组相结合考题.
一、根据方程组解的关系列不等式组
例1(2010年贵州黔东南州)关于x ,y 的方程组⎩
⎨⎧=++=-m y x m y x 523 的解满足x>y>0,则m 的取值范围是( ).
(A) m>2 (B)m>-3 (C)-3<m<2 (D)m<3或m>2
分析: 解决本题可先解方程组,然后根据x>y>0列出关于m 的不等式组,即可求到m 的范围.
解: 解方程组,得⎩
⎪⎨⎪⎧x=2m+1y=m-2 由x>y>0,得⎩⎪⎨⎪⎧2m+1>m-2 m-2>0 解这个不等式组,得m>2.
故选(A).
二、根据不等式组解的范围列方程组
例2 (2009年山东烟台)如果不等式组⎩⎪⎨⎪⎧x 2+a ≥22x-b<3
的解集是0≤x<1,那么a+b 的值为________.
分析: 解决本题可先解不等式组,求出不等式组的解集,然后与已知的解集进行比较,列出关于a ,b 的方程组,即可求到a ,b 的值.
解: 解不等式组,得⎩
⎪⎨⎪⎧x≥4-2a
x<b+32 , 因为不等式组的解集为0≤x<1, 所以⎩⎪⎨⎪⎧4-2a =0
b+32
=1 解这个方程组,得a =2,b=-1,所以a +b=2+(-1)=2.
三、方程组与不等式组携手
例3 (2010年福州市)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.
(1)每个书包和每本词典的价格各是多少元?
(2)郑老师计划用1000元为全班40位同学没认购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?
分析:(1)每个书包和每本词典的价格,可根据问题中的相等关系,列出方程组进行求出;(2)求共有几种方案,则需要根据“余下不少于100元且不超过120元的钱购买体育用品”中所包含的不等关系列不等式组.
设每个书包的价格为x 元,每本词典的价格为y 元,根据题意,得
⎩⎨⎧x+y=8 3x+2y=124 解这个方程组,得⎩
⎨⎧x=28y=20 答:每个书包的的价格为28元,每本词典的价格为20元.
(2)设购买书包y 个,则购买词典(40-y)本,根据题意,得
解得10≤y≤,
因为y 为整数,所以y 的值为10或11或12.
所以有三种购买方案,分别是: ①书包10个,词典30本;②书包11个,词典29本;③书包12个,词典28本.
点击不等式(组)决策题
学习了一元一次不等式(组)以后,可以利用一元一次不等式(组)解决许多与生活密切相关的实际问题,特别是经营决策问题,下面分类举例说明,供同学们参考.
一、最优决策
例1.(2010年山西省)某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服。
(1) 该店订购这两款运动服,共有哪几种方案?
(2) 若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最
大?
分析:(1) 设该店订购甲款运动服x 套,根据资金不低于7600元且不高于8000元列不等式组求整数解.(2)根据3种方案的获利数比较确定.
[解] 设该店订购甲款运动服x 套,则订购乙款运动服(30x )套,由题意,得
(1) ⎩⎨⎧≤-+≥-+8000
)30(2003507600)30(200350x x x x ,解这个不等式组,得332x 340, ∵x 为整数,∴x 取11,12,13,∴30x 取19,18,17。
答:该店订购这两款运动服,共有3种方案。
方案一:甲款11套,乙款19套; 方案二:甲款12套,乙款18套; 方案三:甲款13套,乙款17套。
(2) 三种方案分别获利为:
方案一:(400350)11(300200)19=2450(元)。
方案二:(400350)12(300200)18=2400(元)。
方案三:(400350)13(300200)17=2350(元)。
∵2450>2400>2350,∴方案一即甲款11套,乙款19套,获利最大。
点评:
解答方案最优问题一般需构建不等式(组)或函数模型进行分类讨论.
二、方案决策
例2.(2010黑龙江哈尔滨)君实机械厂为青扬公司生产A 、B 两种产品,该机械厂由甲车间生产A 种产品,乙车间生产B 种产品,两车间同时生产.甲车间每天生
产的A种产品比乙车间每天生产的B种产品多2件,甲车间3天生产的A种产品与乙车间4天生产的B种产品数量相同.
(1)求甲车间每天生产多少件A种产品乙车间每天生产多少件B种产品
(2)君实机械厂生产的A种产品的出厂价为每件200元,B种产品的出厂价为每件180元.现青扬公司需一次性购买A、B两种产品共80件,君实机械厂
甲、乙两车间在没有库存的情况下只生产8天,若青扬公司按出厂价购买
A、B两种产品的费用超过15000元而不超过15080元.请你通过计算为青
扬公司设计购买方案.
分析:第1问较简单,可利用一元一次方程或二元一次方程组求解,第2问购买产品的费用由两部分组成,一是A种产品的费用,二是B种产品的费用,根据题意可列出不等式组,进而设计方案.
解:(1)设乙车间每天生产x件B种产品,则甲车间每天生产(x+2)件A种产品.
根据题意3(x+2)=4x
解得x=6
∴x+2=8
答:甲车间每天生产8件A种产品,乙车间每天生产6件B种产品.
(2)设青扬公司购买B种产品m件,则购买A种产品(80-m)件,∵m为整数∴m为46或47或48或49
又∵乙车间8天生产48件∴m为46或47或48
∴有三种购买方案:购买A种产品32件,B种产品48件;购买A种产品33
件,B种产品47件;购买A种产品34件,B种产品46件.
点评:本题以产品的加工与经销问题背景,借助方程与不等式,进行方案设计,突出考查了学生综合运用方程与不等式知识解决实际问题的能力,体现了建模的数学思想.
小试牛刀:
1、(2010年福州市)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典贵8元,用124元恰好可以买到3个书包和2本词典.
①每个书包和每本词典的价格各是多少元?
②郑老师计划用1000元为全班40位学生每人购买一件学习用品(一个书包或.一
本词典)后,余下不少于100元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?
解:(1)设每个书包的价格为x元,则每本词典的价格为(8)
x-元. 根据题意得解得28
x=
∴820
x-=.
答:每个书包的价格为28元,每本词典的价格为20元.
(2)设购买书包y个,则购买词典(40)y
-本. 根据题意得:
解得1012.5
y
≤≤.
因为y取整数,所以y的值为10或11或12.
所以有三种购买方案:①书包10个,词典30本;
②书包11个,词典29本;
③书包12个,词典28本.。