高三二轮复习(理数) 第五讲 导数的应用(一)(教案)(Word版,含答案)
高三一轮复习:导数的运用课件
![高三一轮复习:导数的运用课件](https://img.taocdn.com/s3/m/25be072287c24028915fc351.png)
二、复习要点及其运用 (一) 导数与函数的单调性的关系
h
L1
0
0
t1
t L2 L4 L3
图(一)
图(二)
二、复习要点及其运用
(a , b) (a)设 y f ( x) x (1)若 f ( x) 0 恒成立,则 y f ( x) 为 (a , b) 上 的单调 递增函数 (2)若 f ( x) 0 恒成立,则 y f ( x) 为 (a , b) 上的单调递减函数 (注:若 x0 (a , b) 使得 f ( x0 ) 0 则称 x0 为 y f ( x) 的 临界 点)
A、 ( , )和(0, ) 2 2
C、 ( , )和( , ) 2 2
,0)和(0, ) 2 2 D、 ( ,0)和( , ) 2 2
B、 (
3、如图,液体从一圆锥形漏斗漏入 一圆柱形桶中,开始时漏斗盛满液体, 经过3分钟漏完,若圆柱中液面上升 速度是一常量,H是圆锥形漏斗中液 面下落的距离,则H与下落时间分钟 的函数关系表示的图象可能是( )
f ( x) 0 与 (b)
f ( x)为增函数的关系:f ( x) 0
能推出 f ( x)为增函数,但反之不一定。如 3 f ( x) 0 ) 函数 f ( x) x 在 (,上单调递增,但 所以 f ( x) 0 是f ( x)为增函数的充分不必要条 件。 f ( x) 0 是 f ( x)为减函数的充分不必 同理, 要条件。
(1)
(2)
(3)
(4)
A
B
C
D
(1)
B
(2)
A
(3)
D (4)
高三数学二轮复习教案:专题一 第5讲 导数及其应用(1)
![高三数学二轮复习教案:专题一 第5讲 导数及其应用(1)](https://img.taocdn.com/s3/m/5f47219bec3a87c24028c46c.png)
第5讲导数及其应用自主学习导引真题感悟1.(2012·辽宁)函数y=12x2-ln x的单调递减区间为A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)解析根据函数的导数小于0的解集就是函数的单调减区间求解.由题意知,函数的定义域为(0,+∞),又由y′=x-1x≤0,解得0<x≤1,所以函数的单调递减区间为(0,1].答案 B2.(2012·安徽)设函数f(x)=a e x+1a e x+b(a>0).(1)求f(x)在[0,+∞)内的最小值;(2)设曲线y=f(x)在点(2,f(2))处的切线方程为y=32x,求a、b的值.解析(1)f′(x)=a e x-1a e x,当f′(x)>0,即x>-ln a时,f(x)在(-ln a,+∞)上递增;当f′(x)<0,即x<-ln a时,f(x)在(-∞,-ln a)上递减.①当0<a<1时,-ln a>0,f(x)在(0,-ln a)上递减,在(-ln a,+∞)上递增,从而f(x)在[0,+∞)上的最小值为f(-ln a)=2+b;②当a≥1时,-ln a≤0,f(x)在[0,+∞)上递增,从而f(x)在[0,+∞)上的最小值为f(0)=a+1a+b.(2)依题意f′(2)=a e2-1a e2=32,解得a e2=2或a e2=-12(舍去),所以a=2e2,代入原函数可得2+12+b=3,即b =12, 故a =2e 2,b =12.考题分析在每年的高考命题中都有导数应用的解答题出现,是高考试题的压轴题,难度较大,主要考查函数的单调性、极值、最值及根据单调性、极值、最值等确定参数的值或范围,解题的方法也是灵活多样,但导数的工具性都会有很突出的体现.网络构建高频考点突破考点一:利用导数研究函数的单调性【例1】(2012·临沂模拟)已知函数f (x )=2ax +a 2-1x 2+1,其中a ∈R .(1)当a =1时,求曲线y =f (x )在原点处的切线方程; (2)求f (x )的单调区间.[审题导引] (1)直接根据导数的几何意义解决;(2)根据函数的结构特点,函数f (x )的导数应是一个分式,但分式的分母符号确定,其分子是一个多项式,所以讨论函数的单调性等价于讨论这个分子多项式的符号.[规范解答] (1)当a =1时,f (x )=2x x 2+1,f ′(x )=-2(x +1)(x -1)(x 2+1)2.由f ′(0)=2,得曲线y =f (x )在原点处的切线方程是2x -y =0. (2)f ′(x )=-2(x +a )(ax -1)x 2+1.①当a =0时,f ′(x )=2x x 2+1.所以f (x )在(0,+∞)上单调递增, 在(-∞,0)上单调递减.当a ≠0,f ′(x )=-2a (x +a )⎝ ⎛⎭⎪⎫x -1a x 2+1.②当a >0时,令f ′(x )=0,得x 1=-a ,x 2=1a , f (x )与f ′(x )的情况如下:故f (x )的单调减区间是(-∞,-a ),⎝ ⎛⎭⎪1a ,+∞;单调增区间是⎝ ⎭⎪⎫-a ,1a .③当a <0时,f (x )与f ′(x )的情况如下:↘↗所以f (x )的单调增区间是⎝ ⎛⎭⎪⎫-∞,1a ,(-a ,+∞);单调减区间是⎝ ⎛⎭⎪⎫1a ,-a .综上,a >0时,f (x )在(-∞,-a ),⎝ ⎛⎭⎪⎫1a ,+∞单调递减;在⎝ ⎛⎭⎪⎫-a ,1a 单调递增.a =0时,f (x )在(0,+∞)单调递增,在(-∞,0)单调递减;a <0时,f (x )在⎝ ⎛⎭⎪⎫-∞,1a ,(-a ,+∞)单调递增;在⎝ ⎛⎭⎪⎫1a ,-a 单调递减.【规律总结】函数的导数在其单调性研究的作用(1)当函数在一个指定的区间内单调时,需要这个函数的导数在这个区间内不改变符号(即恒大于或者等于零、恒小于或者等于零),当函数在一个区间内不单调时,这个函数的导数在这个区间内一定变号,如果导数的图象是连续的曲线,这个导数在这个区间内一定存在变号的零点,可以把问题转化为对函数零点的研究.(2)根据函数的导数研究函数的单调性,在函数解析式中若含有字母参数时要进行分类讨论,这种分类讨论首先是在函数的定义域内进行,其次要根据函数的导数等于零的点在其定义域内的情况进行,如果这样的点不止一个,则要根据字母参数在不同范围内取值时,导数等于零的根的大小关系进行分类讨论,最后在分类解决问题后要整合一个一般的结论. [易错提示] 在利用“若函数f (x )单调递增,则f ′(x )≥0”求参数的范围时,注意不要漏掉“等号”. 【变式训练】1.(2012·临川五月模拟)已知函数f (x )=1-xax +ln x .(1)若函数f (x )在[1,+∞)上为增函数,求正实数a 的取值范围; (2)讨论函数f (x )的单调性. 解析 (1)∵f (x )=1-xax +ln x , ∴f ′(x )=ax -1ax 2(a >0).∵函数f (x )在[1,+∞)上为增函数, ∴f ′(x )=ax -1ax 2≥0对x ∈[1,+∞)恒成立,ax -1≥0对x ∈[1,+∞)恒成立, 即a ≥1x 对x ∈[1,+∞)恒成立,∴a ≥1. (2)∵a ≠0,f ′(x )=a ⎝ ⎛⎭⎪⎫x -1a ax 2=x -1a x 2,x >0, 当a <0时,f ′(x )>0对x ∈(0,+∞)恒成立, ∴f (x )的增区间为(0,+∞),当a >0时,f ′(x )>0⇒x >1a ,f ′(x )<0⇒x <1a , ∴f (x )的增区间为⎝ ⎛⎭⎪⎫1a ,+∞,减区间为⎝ ⎛⎭⎪⎫0,1a . 考点二:利用导数研究函数的极值与最值【例2】(2012·朝阳二模)已知函数f (x )=a ln x +2a 2x +x (a ≠0).(1)若曲线y =f (x )在点(1,f (1))处的切线与直线x -2y =0垂直,求实数a 的值; (2)讨论函数f (x )的单调性;(3)当a ∈(-∞,0)时,记函数f (x )的最小值为g (a ),求证:g (a )≤12e 2. [审题导引] (1)利用导数的几何意义可求; (2)讨论函数f (x )的导函数的符号可知f (x )的单调性;(3)利用(2)中函数f (x )的单调性求出f (x )的最小值g (a ),并求g (a )的最大值可证不等式.[规范解答] (1)f (x )的定义域为{x | x >0}. f ′(x )=a x -2a 2x 2+1(x >0).根据题意,有f ′(1)=-2,所以2a 2-a -3=0, 解得a =-1或a =32.2)f ′(x )=a x -2a 2x 2+1=x 2+ax -2a 2x 2=(x -a )(x +2a )x 2(x >0).①当a >0时,因为x >0,由f ′(x )>0得(x -a )(x +2a )>0,解得x >a ; 由f ′(x )<0得(x -a )(x +2a )<0,解得0<x <a .所以函数f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减. ②当a <0时,因为x >0,由f ′(x )>0得(x -a )(x +2a )>0,解得x >-2a ; 由f ′(x )<0得(x -a )(x +2a )<0,解得0<x <-2a .所以函数f (x )在(0,-2a )上单调递减,在(-2a ,+∞)上单调递增. (3)证明 由(2)知,当a ∈(-∞,0)时,函数f (x )的最小值为g (a ), 且g (a )=f (-2a )=a ln(-2a )+2a 2-2a -2a =a ln(-2a )-3a .g ′(a )=ln(-2a )+a ·-2-2a -3=ln(-2a )-2,令g ′(a )=0,得a =-12e 2.当a 变化时,g ′(a ),g (a )的变化情况如下表:↗↘-12e 2是g (a )在(-∞,0)上的唯一极值点,且是极大值点,从而也是g (a )的最大值点. 所以g (a )最大值=g ⎝ ⎛⎭⎪⎫-12e 2=-12e 2ln ⎣⎢⎡⎦⎥⎤-2×⎝ ⎛⎭⎪⎫-12e 2-3⎝ ⎛⎭⎪⎫-12e 2=-12e 2ln e 2+32e 2=12e 2.所以,当a ∈(-∞,0)时,g (a )≤12e 2成立. 【规律总结】1.利用导数研究函数的极值的一般步骤 (1)确定定义域.(2)求导数f ′(x ).(3)①若求极值,则先求方程f ′(x )=0的根,再检验f ′(x )在方程根左、右值的符号,求出极值.(当根中有参数时要注意分类讨论根是否在定义域内)②若已知极值大小或存在的情况,则转化为已知方程f ′(x )=0根的大小或存在情况,从而求解. 2.求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤 (1)求函数y =f (x )在(a ,b )内的极值;(2)将函数y =f (x )的各极值与端点处的函数值f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.【变式训练】 2.(2012·济南模拟)某旅游景点预计2013年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)·(39-2x ),(x ∈N +,且x ≤12).已知第x 月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x (x ∈N +,且1≤x ≤6),160x(x ∈N +,且7≤x ≤12).(1)写出2013年第x 月的旅游人数f (x )(单位:人)与x 的函数关系式;(2)试问:2013年哪个月旅游消费总额最大?最大月旅游消费总额为多少元?解析 (1)当x =1时,f (1)=p (1)=37, 当2≤x ≤12,且x ∈N +时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x )=-3x 2+40x . 验证x =1符合f (x )=-3x 2+40x (x ∈N +,且1≤x ≤12). (2)第x 月旅游消费总额为g (x )=⎩⎨⎧(-3x 2+40x )(35-2x )(x ∈N +,且1≤x ≤6)(-3x 2+40x )·160x (x ∈N +,且7≤x ≤12)即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x (x ∈N +,且1≤x ≤6)-480x +6 400(x ∈N +,且7≤x ≤12)当1≤x ≤6,且x ∈N +时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x=5,x=1409(舍去).当1≤x<5时,g′(x)>0,当5<x≤6时,g′(x)<0,∴当x=5时,g(x)max=g(5)=3 125(万元).当7≤x≤12,且x∈N+时,g(x)=-480x+6 400是减函数,当x=7时,g max(x)=g(7)=3 040(万元),综上,2013年第5月份的旅游消费总额最大,最大消费总额为3 125万元.考点三:利用导数研究不等式【例3】(2012·长治模拟)设函数f(x)=ax2-x ln x-(2a-1)x+a-1(a∈R).(1)当a=0时,求函数f(x)在点P(e,f(e))处的切线方程;(2)对任意的x∈[1,+∞)函数f(x)≥0恒成立,求实数a的取值范围.[审题导引](1)利用导数的几何意义k=f′(x)求出切线方程;(2)讨论a的取值求出f(x)在[1,+∞)上的最小值,由最小值大于等于0恒成立求a的范围.[规范解答](1)当a=0时,f(x)=-x ln x+x-1,由f′(x)=-ln x,则k=f′(e)=-1,f(e)=-1,∴函数f(x)在点P(e,f(e))处的切线方程为y+1=-(x-e),即x+y+1-e=0.(2)f′(x)=2ax-1-ln x-(2a-1)=2a(x-1)-ln x,易知,ln x≤x-1,则f′(x)≥2a(x-1)-(x-1)=(2a-1)(x-1),当2a-1≥0,即a≥12时,由x∈[1,+∞)得f′(x)≥0恒成立,f(x)在[1,+∞)上单调递增,f(x)≥f(1)=0符合题意.所以a≥1 2.当a ≤0时,由x ∈[1,+∞)得f ′(x )≤0恒成立,f (x )在[1,+∞)上单调递减, f (x )≤f (1)=0显然不成立,a ≤0舍去. 当0<a <12时,由ln x ≤x -1,得ln 1x ≤1x -1, 即ln x ≥1-1x ,则f ′(x )≤2a (x -1)-⎝ ⎛⎭⎪⎫1-1x =⎝⎛⎭⎪⎫x -1x (2ax -1). 因为0<a <12,所以12a >1.x ∈⎣⎢⎡⎭⎪⎫1,12a 时,f ′(x )≤0恒成立, f (x )在[1,+∞)上单调递减,f (x )≤f (1)=0显然不成立,0<a <12舍去. 综上可得:a ∈⎣⎢⎡⎭⎪⎫12,+∞.【规律总结】利用导数解决不等式问题的类型(1)不等式恒成立:基本思路就是转化为求函数的最值或函数值域的端点值问题.(2)比较两个数的大小:一般的解决思路是把两个函数作差后构造一个新函数,通过研究这个函数的函数值与零的大小确定所比较的两个函数的大小.(3)证明不等式:对于只含有一个变量的不等式都可以通过构造函数,然后利用函数的单调性和极值解决. 【变式训练】3.(2012·济南模拟)已知函数f (x )=⎝ ⎛⎭⎪⎫a +1a ln x +1x -x (a >1).(1)试讨论f (x )在区间(0,1)上的单调性;(2)当a ∈[3,+∞)时,曲线y =f (x )上总存在相异两点P (x 1,f (x 1)),Q (x 2,f (x 2)),使得曲线y =f (x )在点P ,Q 处的切线互相平行,求证:x 1+x 2>65.解析 (1)由已知x >0,f ′(x )=a +1ax -1x 2-1=-x 2-⎝ ⎛⎭⎪⎫a +1a x +1x 2=-(x -a )⎝ ⎛⎭⎪⎫x -1a x 2.由f ′(x )=0,得x 1=1a ,x 2=a .因为a >1,所以0<1a <1,且a >1a .所以在区间⎝ ⎛⎭⎪⎫0,1a 上,f ′(x )<0;在区间⎝ ⎛⎭⎪⎫1a ,1上,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,1上单调递增.(2)证明 由题意可得,当a ∈[3,+∞)时, f ′(x 1)=f ′(x 2)(x 1,x 2>0,且x 1≠x 2). 即a +1ax 1-1x 21-1=a +1ax 2-1x 22-1,所以a +1a =1x 1+1x 2=x 1+x 2x 1x 2,a ∈[3,+∞).因为x 1,x 2>0,且x 1≠x 2, 所以x 1x 2<⎝⎛⎭⎪⎫x 1+x 222恒成立, 所以1x 1x 2>4(x 1+x 2)2,又x 1+x 2>0,所以a +1a =x 1+x 2x 1x 2>4x 1+x 2,整理得x 1+x 2>4a +1a .令g (a )=4a +1a ,因为a ∈[3,+∞), 所以g (a )在[3,+∞)上单调递减,所以g (a )=4a +1a 在[3,+∞)上的最大值为g (3)=65, 所以x 1+x 2>65. 考点四:定积分【例4】(2012·丰台二模)由曲线y =1x 与y =x ,x =4以及x 轴所围成的封闭图形的面积是A.3132B.2316 C .ln 4+12 D .ln 4+1[审题导引] 作出图形,找到所求面积的区域以及边界坐标,利用定积分求解.[规范解答] 如图,面积S =⎠⎛01x d x +⎠⎛141x d x =12x 2 |10+ln x |41 =12+ln 4.[答案] C 【规律总结】定积分的应用及技巧(1)对被积函数,要先化简,再求定积分.(2)求被积函数是分段函数的定积分,依据定积分的性质,分段求定积分再求和. (3)对含有绝对值符号的被积函数,要去掉绝对值符号才能求定积分.(4)应用定积分求曲边梯形的面积,解题的关键是利用两条曲线的交点确定积分区间以及结合图形确定被积函数.求解两条曲线围成的封闭图形的面积一般是用积分区间内上方曲线减去下方曲线对应的方程、或者直接作差之后求积分的绝对值,否则就会求出负值.[易错提示] 在使用定积分求两曲线围成的图形的面积时,要注意根据曲线的交点判断这个面积是怎样的定积分,既不要弄错积分的上下限,也不要弄错被积函数. 【变式训练】4.(2012·济南模拟)已知函数f (x )=3x 2+2x +1,若11-⎰f (x )d x =2f (a )(a >0)成立,则a =________.解析 因为11-⎰f (x )d x =11-⎰(3x 2+2x +1)d x =(x 3+x 2+x ) |1-1=4,所以2(3a 2+2a +1)=4⇒a =-1或a =13. 又∵a >0,∴a =13. 答案 13名师押题高考【押题1】若函数f (x )=-x ·e x ,则下列命题正确的是 A .∀a ∈⎝ ⎛⎭⎪⎫-∞,1e ,∃x ∈R ,f (x )>aB .∀a ∈⎝ ⎛⎭⎪⎫1e ,+∞,∃x ∈R ,f (x )>aC .∀x ∈R ,∃a ∈⎝ ⎛⎭⎪⎫-∞,1e ,f (x )>aD .∀x ∈R ,∃a ∈⎝ ⎛⎭⎪⎫1e ,+∞,f (x )>a解析 f ′(x )=-e x (1+x ), 令f ′(x )>0,则x <-1, 令f ′(x )<0,则x >-1. ∴f (x )max =f (x )极大 =f (-1)=1e .由图知∀a ∈⎝ ⎛⎭⎪⎫-∞,1e ,∃x ∈R ,f (x )>a ,故选A.答案 A[押题依据] 利用函数的导数研究函数的最值问题是高考的重点内容.本题以命题为载体考查了利用导数求函数的最值(极值),体现了转化了的数学思想方法,考查了能力,故押此题.【押题2】设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解析 对f (x )求导得f ′(x )=e x1+ax 2-2ax (1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x1=32,x2=12,f(x),f′(x)随x的变化情况如下:↗↘↗所以,x1=32是f(x)的极小值点,x2=12是f(x)的极大值点.(2)若f(x)为R上的单调函数,则f′(x)在R上不变号,结合①与条件a>0,知ax2-2ax+1≥0在R上恒成立,因此Δ=4a2-4a=4a(a-1)≤0,由此并结合a>0,知0<a≤1.[押题依据]本题考查了利用导数研究函数的最值与极值,利用导数及函数的单调性求参数的范围,符合高考的要求.能够考查学生对导数在研究函数中的应用的掌握情况,难度适中且有一定的区分度,故押此题.。
高考数学二轮复习 第一部分 专题一 第五讲 导数的应用 第五讲 导数的应用(一)教案
![高考数学二轮复习 第一部分 专题一 第五讲 导数的应用 第五讲 导数的应用(一)教案](https://img.taocdn.com/s3/m/affd579e48d7c1c709a14597.png)
第五讲 导数的应用(一)[考情分析]1.课标卷每年命题会以“一小一大”的格局出现,“一小”即以选择题或填空题的形式考查导数的几何意义和导数在研究函数问题中的直接应用.“一大”即以压轴题的形式考查导数、不等式、方程等方面的综合应用,难度较大;2.作为高考必考内容,课标卷每年在此部分的命题较稳定,有一定程度的综合性,方法、能力要求较高.1.(2016·高考全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( ) A .[-1,1]B.⎣⎢⎡⎦⎥⎤-1,13C.⎣⎢⎡⎦⎥⎤-13,13D.⎣⎢⎡⎦⎥⎤-1,-13解析:法一:取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C.法二:函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cos x=-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以错误!解得-错误!≤a ≤13.故选C.答案:C2.(2016·高考全国卷Ⅰ)函数y =2x 2-e |x |在[-2,2]的图象大致为( )解析:当x ≥0时,令函数f (x )=2x 2-e x ,则f ′(x )=4x -e x,易知f ′(x )在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又f ′(0)=-1<0,f ′⎝ ⎛⎭⎪⎫12=2-e>0,f ′(1)=4-e>0,f ′(2)=8-e 2>0,所以存在x 0∈⎝⎛⎭⎪⎫0,12是函数f (x )的极小值点,即函数f (x )在(0,x 0)上单调递减,在(x 0,2)上单调递增,且该函数为偶函数,符合条件的图象为D. 答案:D3.(2016·高考全国卷Ⅲ)已知f (x )为偶函数,当x ≤0时,f (x )=e-x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.解析:首先求出x >0时函数的解析式,再由导数的几何意义求出切线的斜率,最后由点斜式得切线方程. 设x >0,则-x <0,f (-x )=ex -1+x .∵f (x )为偶函数,∴f (-x )=f (x ),∴f (x )=e x -1+x .∵当x >0时,f ′(x )=ex -1+1,∴f ′(1)=e1-1+1=1+1=2.∴曲线y =f (x )在点(1,2)处的切线方程为y -2=2(x -1),即2x -y =0.答案:2x -y =04.(2017·高考全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.解析:因为y ′=2x -1x2,所以在点(1,2)处的切线方程的斜率为y ′|x =1=2×1-112=1,所以切线方程为y -2=x -1,即y =x +1.答案:y =x +1导数的几何意义[方法结论]f ′(x 0)表示曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,曲线y=f (x )在点(x 0,f (x 0))处的切线方程为y -f (x 0)=(x -x 0)f ′(x 0).[题组突破]1.曲线f (x )=2-x e x在点(0,2)处的切线方程为________. 解析:∵f ′(x )=-e x (1+x ),∴f ′(0)=-1,∴切线方程为y -2=-x ,即x +y -2=0. 答案:x +y -2=02.(2017·沈阳模拟)设函数f (x )=g (x2)+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为9x +y -1=0,则曲线y =f (x )在点(2,f (2))处的切线方程为______________________.解析:由已知得g ′(1)=-9,g (1)=-8,又f ′(x )=12g ′(x2)+2x ,∴f ′(2)=12g ′(1)+4=-92+4=-12,f (2)=g (1)+4=-4,∴所求切线方程为y +4=-12(x -2),即x +2y +6=0.答案:x +2y +6=03.(2017·合肥模拟)已知直线y =b 与函数f (x )=2x +3和g (x )=ax +ln x 分别交于A ,B 两点.若|AB |的最小值为2,则a +b =________.解析:设点B (x 0,b ),欲使|AB |最小,曲线g (x )=ax +ln x 在点B (x 0,b )处的切线与f (x )=2x +3平行,则有a +1x 0=2,解得x 0=12-a ,进而可得a ·12-a +ln 12-a =b①,又点A 坐标为(b -32,b ),所以|AB |=x 0-b -32=12-a -b -32=2 ②,联立方程①②可解得,a =1,b =1,所以a +b =2.答案:2 [误区警示]1.曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.2.曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.利用导数研究函数的单调性[方法结论]函数单调性的判定方法在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在此区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在此区间内单调递减.[典例] (2017·兰州模拟)已知函数f (x )=e x-ax (a ∈R ,e 为自然对数的底数).(1)讨论函数f (x )的单调性;(2)若a =1,函数g (x )=(x -m )f (x )-e x+x 2+x 在(2,+∞)上为增函数,求实数m 的取值范围.解析:(1)函数f (x )的定义域为R ,f ′(x )=e x-a . 当a ≤0时,f ′(x )>0,∴f (x )在R 上为增函数; 当a >0时,由f ′(x )=0得x =ln a , 则当x ∈(-∞,ln a )时,f ′(x )<0, ∴函数f (x )在(-∞,ln a )上为减函数, 当x ∈(ln a ,+∞)时,f ′(x )>0, ∴函数f (x )在(ln a ,+∞)上为增函数.(2)当a =1时,g (x )=(x -m )(e x-x )-e x+x 2+x =(x -m -1)e x+(m +1)x ,∵g (x )在(2,+∞)上为增函数,∴g ′(x )=x e x-m e x+m +1≥0在(2,+∞)上恒成立, 即m ≤x e x +1e x-1在(2,+∞)上恒成立,令h (x )=x e x +1e x -1,x ∈(2,+∞),h ′(x )=ex2-x e x-2e xe x -12=exe x-x -2e x -12. 令L (x )=e x -x -2,L ′(x )=e x-1>0在(2,+∞)上恒成立, 即L (x )=e x-x -2在(2,+∞)上为增函数, 即L (x )>L (2)=e 2-4>0,∴h ′(x )>0,即h (x )在(2,+∞)上为增函数,∴h (x )>h (2)=2e 2+1e 2-1,∴m ≤2e 2+1e 2-1.故实数m的取值范围为⎝ ⎛⎦⎥⎤-∞,2e 2+1e 2-1. [类题通法]1.分类讨论思想在研究函数单调性中的应用讨论函数的单调性其实就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论:(1)在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论.(2)在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论.2.分离参数法在求解已知单调性求参数范围中的应用设可导函数f (x )在某个区间内单调递增(或递减),则可以得出函数f (x )在这个区间内f ′(x )≥0(或f ′(x )≤0),从而转化为恒成立问题来解决(注意等号成立的检验).[演练冲关]已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.解析:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2. 设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0,即a =22时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:x (0,x 1) x 1(x 1,x 2) x 2(x 2,+∞)f ′(x ) +0 -0 +f (x )极大值极小值此时f (x )在⎝⎛⎭⎪⎪⎫0,a -a 2-8上单调递增,在⎝⎛⎭⎪⎪⎫a -a 2-82,a +a 2-82上单调递减,在⎝⎛⎭⎪⎪⎫a +a 2-82,+∞上单调递增.利用导数研究函数的极值与最值[方法结论]1.求函数y =f (x )在某个区间上的极值的步骤 第一步:求导数f ′(x );第二步:求方程f ′(x )=0的根x 0; 第三步:检查f ′(x )在x =x 0左右的符号: ①左正右负⇔f (x )在x =x 0处取极大值;②左负右正⇔f (x )在x =x 0处取极小值.2.求函数y =f (x )在区间[a ,b ]上的最大值与最小值的步骤 第一步:求函数y =f (x )在区间(a ,b )内的极值(极大值或极小值); 第二步:将y =f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个为最大值,最小的一个为最小值. [典例]已知常数a ≠0,f (x )=a ln x +2x . (1)当a =-4时,求f (x )的极值;(2)当f (x )的最小值不小于-a 时,求实数a 的取值范围.解析:(1)由已知得f (x )的定义域为(0,+∞),f ′(x )=ax +2=a +2xx. 当a =-4时,f ′(x )=2x -4x.∴当0<x <2时,f ′(x )<0 ,即f (x )单调递减;当x >2时,f ′(x )>0,即f (x )单调递增.∴f (x )只有极小值,且在x =2时,f (x )取得极小值f (2)=4-4ln 2.∴当a =-4时,f (x )只有极小值4-4ln 2,无极大值.(2)∵f ′(x )=a +2x x,∴当a >0,x ∈(0,+∞)时,f ′(x )>0,即f (x )在(0,+∞)上单调递增,没有最小值;当a <0时,由f ′(x )>0得,x >-a2,∴f (x )在⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增;由f ′(x )<0得,x <-a2,∴f (x )在⎝⎛⎭⎪⎫0,-a 2上单调递减.∴当a <0时,f (x )的最小值为f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2-a . 根据题意得f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2-a ≥-a ,即a [ln(-a )-ln 2]≥0.∵a <0,∴ln(-a )-ln 2≤0,解得a ≥-2, ∴实数a 的取值范围是[-2,0). [类题通法]1.对于含参数的函数极值、最值问题,要注意分类讨论思想的应用.注意函数的零点不一定是极值点.2.在闭区间上图象连续的函数一定存在最大值和最小值,在不是闭区间的情况下,函数在这个区间上的最大值和最小值可能都存在、也可能只存在一个、或既无最大值也无最小值;在一个区间上,如果函数只有一个极值点,则这个极值点就是最值点.[演练冲关]1.设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,求a 的取值范围.解析:∵f (x )的定义域为(0,+∞),f ′(x )=1x-ax -b ,由f ′(1)=0,得b =1-a . ∴f ′(x )=1x-ax +a -1=-ax 2+1+ax -xx=-ax +1x -1x.①若a ≥0,当0<x <1时,f ′(x )>0,f (x )单调递增; 当x >1时,f ′(x )<0,f (x )单调递减; 所以x =1是f (x )的极大值点.②若a <0,由f ′(x )=0,得x =1或x =-1a.因为x =1是f (x )的极大值点, 所以-1a>1,解得-1<a <0.综合①②得a 的取值范围是(-1,+∞).2.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x2x <1,a ln x x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在区间[-1,e](e 为自然对数的底数)上的最大值. 解析:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,0)0 (0,23)23 (23,1) f ′(x )-+-值点为x =23.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和(23,1)上单调递减,在(0,23)上单调递增.因为f (-1)=2,f (23)=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增.所以f (x )在[1,e]上的最大值为f (e)=a .所以当a ≥2时,f (x )在[-1,e]上的最大值为a ;当a <2时,f (x )在[-1,e]上的最大值为2.。
高中数学 高三一轮复习 教案: 导数的应用
![高中数学 高三一轮复习 教案: 导数的应用](https://img.taocdn.com/s3/m/25561222cec789eb172ded630b1c59eef8c79a0e.png)
在某个区间(a,b)上,若f′(x)>0,则f(x)在这个区间上单调递增;若f′(x)<0,则f(x)在这个区间上单调递减;若f′(x)=0恒成立,则f(x)在这个区间上为常数函数;若f′(x)的符号不确定,则f(x)不是单调函数.
1.如图是函数y=f(x)的导函数y=f′(x)的图象,则下列判断正确的是()
A.在区间(-2,1)上f(x)是增函数
B.在区间(1,3)上f(x)是减函数
C.在区间(4,5)上f(x)是增函数
D.当x=2时,f(x)取到极小值
答案:C
2.函数f(x)=e x-x的单调递增区间是________.
答案:(0,+∞)
3.当x>0时,ln x,x,e x的大小关系是________.
答案:ln x<x<e x
1.函数f(x)=cos x-x在(0,π)上的单调性是()
A.先增后减B.先减后增
C.单调递增D.单调递减
解析:f′(x)=-sin x-1<0.故选D.
答案:D
2.函数f(x)=(x-3)e x的单调递增区间是()
A.(-∞,2) B.(0,3)
C.(1,4) D.(2,+∞)
解析:f′(x)=e x+(x-3)e x=(x-2)e x,由f′(x)>0,得x>2,故选D.
答案:D
3.(易错题)若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是()
A.(-∞,-2] B.(-∞,-1]。
高三《导数的应用》说课稿
![高三《导数的应用》说课稿](https://img.taocdn.com/s3/m/f789bc5eeef9aef8941ea76e58fafab068dc4447.png)
高三《导数的应用》说课稿以下是作者为大家准备的高三《导数的应用》说课稿(共含4篇),希望对大家有帮助。
篇1:高三《导数的应用》说课稿高三《导数的应用专题》说课稿导数是新课程教材中重要内容,是进一步刻画、研究函数的重要工具,为运用函数思想简捷地解决实际问题提供了广阔的前景。
纵观这几年的高考,考察的力度逐年加大,因此在高三复习中必须引起足够的重视。
在中学数学的新课程中,导数单元作为初等数学和高等数学重要的衔接点,显得格外引人瞩目。
导数的思想及其内涵丰富了对函数等问题的研究方法,已经成为近几年高考数学的一大热点。
另外,导数又具有很强的知识交汇功能,以其为载体的问题情景很多,给师生在复习内容和方法上的选择带来困惑。
从这个意义上说,高三师生采取什么样的策略复习,复习的重点落在何处?显得至关重要。
1、教材分析与考点分析在教材中,导数处于一种特殊的地位。
一方面它是沟通初、高等数学知识的重要衔接点,渗透和加强了对学生由有限到无限的辩证思想的教育,突破了许多初等数学在思想和方法上的障碍,拓宽、优化和丰富了许多数学问题解决的思路、方法和技巧;另一方面它具有很强的知识交汇功能,可以联系多个章节内容,如常与函数、数列、三角、向量、不等式、解析几何等内容交叉渗透,并成为解决相关问题的重要工具。
从高考关于导数单元的考查情况来看,以下两个特点非常明显:(1)循序渐进:从总体上看,高考考查导数的有关知识是循序渐进的过程。
导数的内容刚进入高考数学新课程卷时,其考试要求都是很基本的,以后逐渐加深,分析近几年的高考试题,可以看出高考对导数考查的思路已基本成熟。
考查的基本原则是重点考查导数的概念与应用。
这部分内容的考查一般分为三个层次:第一层次:主要考查导数的概念、求导公式、求导法则和与实际背景有关的问题(如瞬时速度,边际成本,加速度、切线的斜率)第二层次:主要考查导数的.简单应用,包括求函数的极值、最值,求函数的单调区间,证明函数的单调性等。
高中数学导数的应用教案
![高中数学导数的应用教案](https://img.taocdn.com/s3/m/fb6f6e622bf90242a8956bec0975f46527d3a7e0.png)
高中数学导数的应用教案
教学目标:学生能够理解导数的概念,掌握导数在实际问题中的应用,并能够运用导数解决相关问题。
教学重点和难点:掌握导数在实际问题中的应用。
教学准备:教师准备课件、实例题目,学生准备笔记本、笔。
教学过程:
一、导入(10分钟)
通过一个生活实例引入导数的概念,让学生初步了解导数在实际中的意义。
二、概念讲解(15分钟)
1. 温故导数的定义和性质;
2. 导数的应用领域;
3. 导数在实际问题中的意义和作用。
三、实例分析(20分钟)
教师通过实例问题,引导学生运用导数进行问题求解,如最值问题、速度问题等。
四、练习(15分钟)
让学生在课堂上进行练习题目,加深对导数应用的理解。
五、总结(10分钟)
通过讨论和总结,让学生掌握导数在实际问题中的应用方法,并复习导数的相关概念。
六、作业布置(5分钟)
布置相关作业,让学生巩固所学知识。
教学反思:
通过实例讲解和练习,能够有效帮助学生掌握导数在实际问题中的应用方法。
同时,通过讨论和总结,可以使学生更深入地理解导数的概念和性质。
高三文科数学第二轮复习专题导数教案
![高三文科数学第二轮复习专题导数教案](https://img.taocdn.com/s3/m/cc793e10f08583d049649b6648d7c1c708a10b01.png)
高三文科数学第二轮复习专题导数教案文科数学第二轮专题导数及其应用(一)教学目标1、知识与技能:1、利用导数求函数的单调区间、极值和最值2、解决基本的含参问题2、过程与方法:利用导数研究函数,作出图形,再通过图形反馈函数的性质,进一步体会数形结合及分类讨论的思3、情感态度与价值观:这是一堂复习课,教学难度有所增加。
培养学生思考问题的习惯,以及克服困难的信心。
强化讨论意识,不断提高解题的灵活性和变通性(二)重点、难点教学重点:利用导数求多项式函数的单调性极值和最值教学难点:含参的讨论教具准备:与教材内容相关的资料教学设想:通过学习,培养学生思考问题的习惯,以及克服困难的信心。
强化讨论意识,不断提高解题的灵活性和变通性(三)教学过程一、学生自学自探1、某物体的运动方程为s(t) 5t2(位移单位:m,时间单位:s)则它在t=2s时的速度是2、曲线y 4x x3在点(-1,-3)处的切线方程是3、求f(x) lnx 4x的单调增区间4、121f(x) x4 x3 x2 1的极值点是4325、函数y x4 4x 3在区间[-2,3]上的最小值为二、合作交流分小组讨论:回顾以前做过的题目思考、讨论以下问题1、利用导数求瞬时变化率常见的问题及解决方法?2、利用导数研究函数的切线方程的方法和步骤?高三文科数学第二轮复习专题导数教案3、利用导数研究函数的单调性的方法和步骤?4、利用导数研究函数极值的方法和步骤?5、利用导数研究函数的最值的方法和步骤?三、展示评价以小组为单位:展示讨论的结论,其他小组可以补充。
四、规律总结1、利用导数求瞬时速度、加速度问题:规律如下:路程对时间求导得到的是瞬时速度;瞬时速度对时间求导得到的是加速度。
s (t) v(t),v (t) a(t)步骤如下:先求导,再把对应的时刻,带进导数式子,就是所求的某时刻的瞬时速度,加速度。
2、利用导数求切线问题:步骤如下:先求导,把切点(x0,y0)的横坐标x0带入导数,得到切线的斜率k f (x0),然后用点斜式y y0 k(x x0)得出切线方程3、利用导数求函数的单调区间的方法和步骤:(1) 确定函数的定义域(2) 求函数的导数f (x)(3) ①若求单调区间(或证明单调性)只需要在函数f(x)的定义域内解(或证明)不等式f (x) 0(或f (x) 0)②若已知f(x)的单调性,则转化成不等式f (x) 0或f (x) 0在单调区间上恒成立问题求解4、利用导数求函数的极值的步骤(1)求函数的导数f (x)(2)求方程f (x)=0的根x0(3)检验f (x)在方程f (x)=0的根x0的左右的符号,高三文科数学第二轮复习专题导数教案若当x x0,若当x x0,f (x) 0,当x x0,f (x) 0,则x0是极小值点,f(x0)是函数的极小值 f (x) 0,当x x0,f (x) 0,则x0是极大值点,f(x0)是函数的极大值5、利用导数研究函数的最值的方法和步骤?(1)求函数的导数f (x)(2)求方程f (x)=0的根x0(3)①定义域是[a,b],若x0 [a,b],比较f(x0),f(a),f(b)之间的大小,最大的是最大值,最小的是最小值,若x0 [a,b],比较f(a),f(b)的大小,最大的是最大值,最小的是最小值。
【教案】校级公开课--导数的应用(教案)
![【教案】校级公开课--导数的应用(教案)](https://img.taocdn.com/s3/m/0e99ee1c284ac850ac024219.png)
《导数的应用》教学设计开课班级:高二(1)开课教师:教学设计背景本节是高中数学人教A版选修2-2第一章“导数在研究函数中的应用”内容基础上,进一步拓展延伸应用的内容。
导数除了在函数的单调性及函数的极值、最值等方面应用外,还可以应用于探究函数的零点或方程的解问题,以及应用于不等式证明问题,既灵活多变,又具有一定的综合能力要求,基于教材和学生知能背景及前期教学状况,相应作此导数的应用教学设计,以帮助学生进一步树立联系的观点利用导数处理问题的意识.学情分析学生前期已经学习导数在研究函数中的应用等内容,体会了导数的思想,初步感受了导数应用价值,初步具备了利用导数处理问题的意识和能力。
教学目标通过变式教学过程,用联系的观点,进一步探究导数在方程实根(或函数零点)问题、不等式问题、函数的极值或最值问题中的应用,培养运用函数与方程、化归与转化、数形结合及分类讨论等数学思想方法解决问题的能力。
培养学生综合思考问题的能力,以及克服困难解决问题的信心与毅力。
教学重点、难点重点应用导数导数在方程实根(或函数零点)问题、不等式问题、函数的极值或最值问题中的应用难点利用联系的观点,运用函数与方程、化归与转化、数形结合及分类讨论等数学思想解决问题教法变式教学、学生探究、引导讲授教学用具:多媒体教学过程一、复习回顾知识点一:导数的几何意义函数y=f (x) 在点x0导数的几何意义,就是曲线y=f (x) 在点P(x, f(x))处的切线的斜率,曲线y=f (x) 在P (x0, f (x))处的切线方程为y-y=f′(x) (x-x)知识点二:函数的单调性当函数y=f(x)在某个区间(),a b 内可导如果'()0f x >,则函数y=f(x)在这个区间上为增函数;如果'()0f x <,则函数y=f(x)在这个区间上为减函数.知识点三:函数的极值对于可导函数f(x)判断其极值的方法为如果在0x 附近的左侧'()0f x >,右侧'()0f x <,那么,0()f x 是极大值;如果在0x 附近的左侧'()0f x <,右侧'()0f x >,那么,0()f x 是极小值.知识点四:函数的最值闭区间[a ,b]上连续函数f(x)必有最大值与最小值,其求法为:○1求函数f(x)在(a ,b)内的极值;○2将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。
2024-2025学年高三数学上学期第三周导数的应用(一)教学设计
![2024-2025学年高三数学上学期第三周导数的应用(一)教学设计](https://img.taocdn.com/s3/m/8aa527a0710abb68a98271fe910ef12d2bf9a955.png)
5. 团队合作能力:在小组讨论和合作中,学生能够有效沟通、合作解决问题,提高团队合作能力和沟通能力。
6. 自主学习能力:学生能够自主学习导数的相关知识,通过课后作业和自主探索,巩固学习效果,提高自主学习能力。
- 题型:已知函数f(x) = x^2 - 4x + 3,g(x) = x^3+ 2x - 1,求(f ∘ g)'(x)。
- 解答:使用复合函数的求导法则,(f ∘ g)'(x) = f'(g(x))g'(x) = (2g(x) - 4)(g(x) + 2)。
5. 隐函数求导
- 题型:已知函数y = f(x) = x^2 - 4x + 3,求dy/dx。
- 题型:已知函数f(x) = x^2 - 4x + 3,求f'(x)。
- 解答:使用导数的基本公式,f'(x) = 2x - 4。
2. 导数的几何意义
- 题型:已知函数f(x) = x^2 - 4x + 3,求f'(x)表示的切线斜率。
- 解答:f'(x) = 2x - 4,斜率为2x - 4。
3. 导数的四则运算法则
教学过程设计
1. 导入新课(5分钟)
目标: 引起学生对导数应用的兴趣,激发其探索欲望。
过程:
开场提问:“你们知道导数在实际问题中的应用吗?它如何帮助我们理解和解决生活中的问题?”
展示一些关于导数应用的图片或视频片段,如运动物体的瞬时速度和加速度,让学生初步感受导数在现实生活中的重要性。
简短介绍导数的基本概念和其在实际问题中的应用,为接下来的学习打下基础。
高考数学(理)一轮复习文档 第二章 基本初等函数、导数及其应用 第5讲 指数与指数函数 Word版含答案
![高考数学(理)一轮复习文档 第二章 基本初等函数、导数及其应用 第5讲 指数与指数函数 Word版含答案](https://img.taocdn.com/s3/m/83ac845d02020740be1e9bee.png)
第5讲 指数与指数函数1.根式 (1)根式的概念①若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,xn 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1).②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1);②负分数指数幂:a -m n=1a m n=1(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a >0,r ,s ∈Q );②(a r )s =a rs(a >0,r ,s ∈Q ); ③(ab )r=a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象及性质1.辨明三个易误点(1)指数幂的运算容易出现的问题是误用指数幂的运算法则,或在运算变换中方法不当,不注意运算的先后顺序等.(2)指数函数y =a x(a >0,a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.(3)在解形如a 2x+b ·a x +c =0或a 2x +b ·a x+c ≥0(≤0)的指数方程或不等式时,常借助换元法解决,但应注意换元后“新元”的范围.2.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .1.教材习题改编有下列四个式子:①3(-8)3=-8;② (-10)2=-10;③4(3-π)4=3-π;④2 017(a -b )2 017=a -b . 其中正确的个数是( )A .1B .2C .3D .4B ①④正确,(-10)2=|-10|=10,②错误; 4(3-π)4=|3-π|=-(3-π)=π-3,③错误,故选B.2.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3xD 根据各选项知,选项C 、D 中的指数函数满足f (x +y )=f (x )·f (y ).又f (x )=3x是增函数,所以D 正确.3.(2017·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x-1 D .y =log 2(2x )A 由f (x )=ax -1(a >0,a ≠1)的图象恒过点(1,1),又0=1-1,知(1,1)不在y=1-x 的图象上.4.(2017·皖北协作区联考)函数f (x )=1-e x的值域为________. 由1-e x ≥0,e x≤1,故函数f (x )的定义域为{x |x ≤0}. 所以0<e x ≤1,-1≤-e x <0,0≤1-e x<1,函数f (x )的值域为 由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. (-2,-1)∪(1,2)指数幂的运算化简下列各式:(1)0.027-13-⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫27912-(2-1)0;(2)⎝ ⎛⎭⎪⎫56a 13b -2·(-3a -12b -1)÷(4a 23b -3)12·ab .【解】 (1)原式=⎝ ⎛⎭⎪⎫271 000-13-72+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45. (2)原式=⎝ ⎛⎭⎪⎫-52a -16b -3÷(2a 13b -32)·a 12b 12=-54a -12b -32·a 12b 12=-54b -1=-54b.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100.(2)原式=2(4ab -1)3210a 32b -32=16a 32b -3210a 32b-32=85.指数函数的图象及应用(1)函数f (x )=21-x的大致图象为()(2)若方程|3x-1|=k 有一解,则k 的取值范围为________.【解析】 (1)函数f (x )=21-x=2×⎝ ⎛⎭⎪⎫12x,单调递减且过点(0,2),选项A 中的图象符合要求.(2)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解.【答案】 (1)A (2){0}∪上单调递减,则k 的取值范围如何?由本例(2)作出的函数y =|3x-1|的图象知,其在(-∞,0]上单调递减,所以k ∈(-∞,0].指数函数的图象及应用(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.)1.函数f (x )=a x -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 D 由f (x )=a x -b 的图象可以观察出函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.2.若函数y =21-x+m 的图象不经过第一象限,求m 的取值范围.y =⎝ ⎛⎭⎪⎫12x -1+m ,函数y =⎝ ⎛⎭⎪⎫12x -1的图象如图所示,则要使其图象不经过第一象限,则m ≤-2.指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下三个命题角度: (1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质.(1)已知a =⎝ ⎛⎭⎪⎫1223,b =2-43,c =⎝ ⎛⎭⎪⎫1213,则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c(2)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3. ①若a =-1,求f (x )的单调区间; ②若f (x )有最大值3,求a 的值; ③若f (x )的值域是(0,+∞),求a 的值.【解】 (1)选B.把b 化简为b =⎝ ⎛⎭⎪⎫1243,而函数y =⎝ ⎛⎭⎪⎫12x在R 上为减函数,43>23>13,所以⎝ ⎛⎭⎪⎫1243<⎝ ⎛⎭⎪⎫1223<⎝ ⎛⎭⎪⎫1213,即b <a <c . (2)①当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).②令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.③令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ) 故f (x )的值域为(0,+∞)时,a 的值为0.有关指数函数性质的问题类型及解题策略(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.角度一 比较指数幂的大小 1.下列各式比较大小正确的是( ) A .1.72.5>1.73B .0.6-1>0.62C .0.8-0.1>1.250.2D .1.70.3<0.93.1BA 中,因为函数y =1.7x在R 上是增函数,2.5<3,所以1.72.5<1.73. B 中,因为y =0.6x在R 上是减函数,-1<2, 所以0.6-1>0.62. C 中,因为0.8-1=1.25,所以问题转化为比较1.250.1与1.250.2的大小. 因为y =1.25x在R 上是增函数,0.1<0.2, 所以1.250.1<1.250.2,即0.8-0.1<1.250.2.D 中,因为1.70.3>1,0<0.93.1<1,所以1.70.3>0.93.1.角度二 解简单的指数方程或不等式2.(2015·高考江苏卷)不等式2x 2-x <4的解集为________. 因为2x 2-x <4,所以2x 2-x <22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. {x |-1<x <2}(或(-1,2))角度三 研究指数型函数的性质 3.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在 因为f (x )=2|x -a |,所以f (x )的图象关于x =a 对称.又由f (1+x )=f (1-x ),知f (x )的图象关于直线x =1对称,故a =1,且f (x )的增区间是 1——换元法解决指数型函数的值域问题函数f (x )=⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在x ∈上的值域是________. 【解析】 因为x ∈,若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤34,57.【答案】 ⎣⎢⎡⎦⎥⎤34,57(1)此题利用了换元法,把函数f (x )转化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,将问题转化为求二次函数在闭区间上的最值(值域)问题,从而减少了运算量.(2)对于同时含有a x与a 2x(log a x 与log 2a x )(a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x(t =log a x )进行换元巧解,但一定要注意新元的范围.已知函数y =9x+m ·3x-3在区间上单调递减,则m 的取值范围为________.设t =3x ,则y =9x +m ·3x -3=t 2+mt -3.因为x ∈,所以t ∈⎣⎢⎡⎦⎥⎤19,9.又函数y =9x+m ·3x -3在区间上单调递减,即y =t 2+mt -3在区间⎣⎢⎡⎦⎥⎤19,9上单调递减, 故有-m2≥9,解得m ≤-18.所以m 的取值范围为(-∞,-18]. (-∞,-18]1.下列函数中值域为正实数的是( )A .y =-5xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x-1 D .y =1-2xBA 中,y =-5x<0,B 中,因为1-x ∈R ,y =⎝ ⎛⎭⎪⎫13x的值域是正实数,所以y =⎝ ⎛⎭⎪⎫131-x的值域是正实数,C 中,y =⎝ ⎛⎭⎪⎫12x-1≥0,D 中,y =1-2x ,由于2x >0,故1-2x <1,又1-2x≥0,故0≤y <1,故符合条件的只有B.2.化简4a 23·b -13÷⎝ ⎛⎭⎪⎪⎫-23a -13b 23的结果为( ) A .-2a3bB .-8a bC .-6a bD .-6abC 原式=4÷⎝ ⎛⎭⎪⎫-23a 23-(-13)b -13-23=-6ab -1=-6a b,故选C.3.函数y =a x-1a(a >0,a ≠1)的图象可能是( )D 函数y =a x -1a 的图象由函数y =a x的图象向下平移1a个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a>1,平移距离大于1,所以C 项错误.4.已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >cB .a >c >bC .c >a >bD .b >c >aA 由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .5.(2017·莱芜模拟)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .B 由f (1)=19得a 2=19.又a >0,所以a =13,因此f (x )=⎝ ⎛⎭⎪⎫13|2x -4|. 因为g (x )=|2x -4|在 当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1).7.指数函数y =f (x )的图象经过点(m ,3),则f (0)+f (-m )=________. 设f (x )=a x(a >0且a ≠1),所以f (0)=a 0=1. 且f (m )=a m =3.所以f (0)+f (-m )=1+a -m=1+1a m =43.438.614-(π-1)0-⎝ ⎛⎭⎪⎫33813+⎝ ⎛⎭⎪⎫164-23=________. 原式=52-1-⎝ ⎛⎭⎪⎫27813+(4-3)-23=32-32+42=16. 169.(2015·高考山东卷)已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是,则a +b =________.①当a >1时,函数f (x )=a x+b 在上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.②当0<a <1时,函数f (x )=a x+b 在上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.-3210.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是________.原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x, 因为函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数, 所以⎝ ⎛⎭⎪⎫12x≥⎝ ⎛⎭⎪⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x恒成立等价于m 2-m <2,解得-1<m <2.(-1,2)11.求下列函数的定义域和值域. (1)y =⎝ ⎛⎭⎪⎫122x -x 2;(2)y = 32x -1-19. (1)显然定义域为R .因为2x -x 2=-(x -1)2+1≤1,且y =⎝ ⎛⎭⎪⎫12x 为减函数.所以⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12. 故函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为⎣⎢⎡⎭⎪⎫12,+∞.(2)由32x -1-19≥0,得32x -1≥19=3-2, 因为y =3x为增函数,所以2x -1≥-2,即x ≥-12,此函数的定义域为⎣⎢⎡⎭⎪⎫-12,+∞, 由上可知32x -1-19≥0,所以y ≥0. 即函数的值域为 (1)因为f (x )为偶函数, 所以对任意的x ∈R ,都有f (-x )=f (x ), 即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间 因为函数f (x )=⎝ ⎛⎭⎪⎫13x+a 的图象经过第二、三、四象限,所以a <-1.则g (a )=f (a )-f (a +1)=⎝ ⎛⎭⎪⎫13a+a -⎝ ⎛⎭⎪⎫13a +1-a =⎝ ⎛⎭⎪⎫13a ⎝ ⎛⎭⎪⎫1-13=23·⎝ ⎛⎭⎪⎫13a.因为a <-1,所以⎝ ⎛⎭⎪⎫13a>3,则23·⎝ ⎛⎭⎪⎫13a>2,故g (a )的取值范围是(2,+∞). 14.(2017·济南模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是________.画出函数图象如图所示,由图象可知要使a >b ≥0,f (a )=f (b )同时成立,则12≤b <1. b ·f (a )=b ·f (b )=b (b +1)=b 2+b =⎝ ⎛⎭⎪⎫b +122-14,所以34≤b ·f (a )<2.⎣⎢⎡⎭⎪⎫34,215.已知函数y =2-x 2+ax +1在区间(-∞,3)内递增,求a 的取值范围. 函数y =2-x 2+ax +1是由函数y =2t 和t =-x 2+ax +1复合而成.因为函数t =-x 2+ax +1在区间 (-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减,且函数y =2t在R 上单调递增,所以函数y =2-x 2+ax +1在区间(-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减. 又因为函数y =2-x 2+ax +1在区间(-∞,3)上单调递增,所以3≤a2,即a ≥6.16.已知函数f (x )=1-42a x+a(a >0且a ≠1)是定义在(-∞,+∞)上的奇函数. (1)求a 的值; (2)求函数的值域;(3)当x ∈(0,1]时,tf (x )≥2x-2恒成立,求实数t 的取值范围. (1)因为f (x )是定义在(-∞,+∞)上的奇函数, 所以f (0)=0,即1-42a 0+a =0.解得a =2.(2)因为y =f (x )=2x-12x +1,所以2x=1+y 1-y .由2x>0知1+y 1-y >0,所以-1<y <1.即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x -2等价于t (2x -1)2x+1≥2x -2,即(2x )2-(t +1)2x+t -2≤0.令2x =u ,因为x ∈(0,1],所以u ∈(1,2]. 又u ∈(1,2]时,u 2-(t +1)u +t -2≤0恒成立.所以⎩⎪⎨⎪⎧12-(t +1)+t -2≤0,22-2(t +1)+t -2≤0,解得t ≥0.故所求t 的取值范围为[0,+∞).。
导数及其应用最全教案(含答案)[1]
![导数及其应用最全教案(含答案)[1]](https://img.taocdn.com/s3/m/2e13f9d7ee06eff9aff807b0.png)
导数及其应用最全教案(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(导数及其应用最全教案(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为导数及其应用最全教案(含答案)(word版可编辑修改)的全部内容。
导数及其应用一、知识点梳理1。
导数:当x ∆趋近于零时,xx f x x f ∆-∆+)()(00趋近于常数c.可用符号“→”记作:当0→∆x 时,x x f x x f ∆-∆+)()(00c →或记作c xx f x x f x =∆-∆+→∆)()(lim 000,符号“→"读作“趋近于”。
函数在0x 的瞬时变化率,通常称作)(x f 在0x x =处的导数,并记作)(0x f '.即 xx f x x f x f x ∆-∆+=→∆)()(lim)(0000'2.导数的几何意义是曲线在某一点处的切线的斜率;导数的物理意义,通常是指物体运动在某一时刻的瞬时速度。
即若点),(00y x P 为曲线上一点,则过点),(00y x P 的切线的斜率xx f x x f x f k x ∆-∆+==→∆)()(lim)(0000'切由于函数)(x f y =在0x x =处的导数,表示曲线在点))(,(00x f x P 处切线的斜率,因此,曲线)(x f y =在点))(,(00x f x P 处的切线方程可如下求得:(1)求出函数)(x f y =在点0x x =处的导数,即曲线)(x f y =在点))(,(00x f x P 处切线的斜率.(2)在已知切点坐标和切线斜率的条件下,求得切线方程为:))((00'0x x x f y y -=-3。
导数及其应用(教学案)-2020年高考理数二轮复习精品资料Word版含解析
![导数及其应用(教学案)-2020年高考理数二轮复习精品资料Word版含解析](https://img.taocdn.com/s3/m/2b4c4c4903d8ce2f01662315.png)
高考将以导数的几何意义为背景,重点考查运算及数形结合能力,导数的综合运用涉及的知识面广,综合的知识点多,形式灵活,是每年的必考内容,经常以压轴题的形式出现.预测高考仍将利用导数研究方程的根、函数的零点问题、含参数的不等式恒成立、能成立、实际问题的最值等形式考查.1.导数的定义f′(x)=limΔx→0ΔyΔx=limΔx→0f x+Δx-f xΔx.2.导数的几何意义函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0).3.导数的运算(1)基本初等函数的导数公式①c′=0(c为常数);②(x m)′=mx m-1;③(sin x)′=cos x; ④(cos x)′=-sin x;⑤(e x)′=e x; ⑥(a x)′=a x ln a;⑦(ln x)′=1x;⑧(log a x)′=1x ln a.(2)导数的四则运算法则①[f(x)±g(x)]′=f′(x)±g′(x);②[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);③[f xg x ]′=f′x g x-f x g′xg2x.④设y=f(u),u=φ(x),则y′x=y′u u′x.4.函数的性质与导数在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增.如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.5.利用定积分求曲线围成图形的面积的步骤:①画出图形;②确定被积函数;③求出交点坐标,确定积分的上、下限;④运用微积分基本定理计算定积分,求出平面图形的面积.特别注意平面图形的面积为正值,定积分值可能是负值.被积函数为y=f(x),由曲线y=f(x)与直线x=a,x=b(a<b)和y=0所围成的曲边梯形的面积为S.①当f (x )>0时,S =⎠⎛ab f (x )d x ;②当f (x )<0时,S =-⎠⎛ab f (x )d x ;③当x ∈[a ,c ]时,f (x )>0;当x ∈[c ,b ]时,f (x )<0,则S =⎠⎛a c f (x )d x -⎠⎛cb f (x )d x .高频考点一 导数的几何意义及应用 例1、(2018年全国Ⅲ卷理数)曲线在点处的切线的斜率为,则________.【答案】-3 【解析】,则 所以【变式探究】(1)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. 解析:基本法:由题意可得f ′(x )=3ax 2+1, ∴f ′(1)=3a +1,又f (1)=a +2,∴f (x )=ax 3+x +1的图象在点(1,f (1))处的切线方程为y -(a +2)=(3a +1)(x -1),又此切线过点(2,7),∴7-(a +2)=(3a +1)(2-1),解得a =1.速解法:∵f (1)=2+a ,由(1,f (1))和(2,7)连线斜率k =5-a1=5-a ,f ′(x )=3ax 2+1,∴5-a =3a +1,∴a =1.答案:1(2)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析:基本法:令f (x )=x +ln x ,求导得f ′(x )=1+1x ,f ′(1)=2,又f (1)=1,所以曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.设直线y =2x -1与曲线y =ax 2+(a +2)x +1的切点为P (x 0,y 0),则y ′|x =x 0=2ax 0+a +2=2,得a (2x 0+1)=0,∴a =0或x 0=-12,又ax 20+(a +2)x 0+1=2x 0-1,即ax 20+ax 0+2=0,当a =0时,显然不满足此方程, ∴x 0=-12,此时a =8.速解法:求出y =x +ln x 在(1,1)处的切线为y =2x -1由⎩⎪⎨⎪⎧y =2x -1y =ax 2+a +2x +1得ax 2+ax +2=0, ∴Δ=a 2-8a =0,∴a =8或a =0(显然不成立).【变式探究】设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .3解析:基本法:y ′=a -1x +1,当x =0时,y ′=a -1=2,∴a =3,故选D. 答案:D高频考点二 导数与函数的极值、最值例2、(2018年浙江卷)已知λ∈R ,函数f (x )=,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】 (1). (1,4) (2). 【解析】由题意得或,所以或,即,不等式f (x )<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为。
导数的综合应用的教案
![导数的综合应用的教案](https://img.taocdn.com/s3/m/8ceb1164336c1eb91a375dba.png)
导数的综合应用的教案【篇一:《导数的综合应用》说课稿及教学设计】《导数的综合应用》说课稿一、教材分析“导数的综合应用”是高中数学人教b版教材选修2-2第一章的内容,是中学数学新增内容,是高等数学的基础内容,它在中学数学教材中的出现,使中学数学与大学数学之间又多了一个无可争辩的衔接点。
导数的应用是高考考查的重点和难点,题型既有灵活多变的客观性试题,又有具有一定能力要求的主观性试题,这要求我们复习时要掌握基本题型的解法,树立利用导数处理问题的意识.二、学情分析根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。
三、教学目标1、知识与技能:(3)利用导数求函数的极值以及函数在闭区间上的最值; (4)解决根分布及恒成立问题2、过程与方法:(1)能够利用函数性质作图像,反过来利用函数的图像研究函数的性质如交点情况,能合理利用数形结合解题。
(2)学会利用熟悉的问答过渡到陌生的问题。
3、情感、态度与价值观:这是一堂复习课,教学难度有所增加,培养学生思考问题的习惯,以及克服困难的信心。
四、教学重点、难点重点是应用导数求单调性,极值,最值难点是方程根及恒成立问题五、学法与教法学法与教学用具学法:(1)合作学习:引导学生分组讨论,合作交流,共同探讨问题(如问题3的处理)。
(2)自主学习:引导学生从简单问题出发,发散到已学过的知识中去。
(如问题1、2的处理)。
(3)探究学习:引导学生发挥主观能动性,主动探索新知(如问题1、2的发散和直击高考的处理)。
教学用具:多媒体。
教法:变式教学———这样可以让学生从题海中解脱出来,形成知识网络,增强知识的系统性与连贯性,从而使学生能够抓住问题的本质,加深对问题的理解,从“变”的现象中发现“不变”的本质,从“不变”的本质中探索“变”的规律;【篇二:导数的应用教学设计】导数的应用一、教学目标1、知识与技能:(1)利用导数的几何意义。
(2)利用导数求函数的单调区间,进一步结合函数图像求函数的极值以及函数在闭区间上的最值;(4)解决函数零点个数问题及恒成立问题。
高三数学复习公开课:导数的应用(一)教案新部编本
![高三数学复习公开课:导数的应用(一)教案新部编本](https://img.taocdn.com/s3/m/722c01a9915f804d2a16c175.png)
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校导数的应用(一)复习目标与考试要求1.理解导数与函数的单调性的关系,能用导数 法确定函数的单调性; (其中多项式函数一般不超过三次);2.熟练掌握求可导函数单调区间的导数法;3.能灵活运用它们解决有关的问题.4.由函数单调性和导数的关系,求参数的范围.复习指导本讲复习时,应理顺导数与函数的关系,理解导数的意义,体会导数在解决函数有关问题时的工具性作用,重点解决利用导数来研究函数的单调性及求函数的单调区间. 知识讲解1. 用导数确定函数的单调性的结论:(1)若f '(x )>0在(a,b )上恒成立,则f (x )在(a ,b )上是增函数;(2)若f '(x )<0在(a ,b )上恒成立,则f (x )在(a ,b )上是减函数.2.利用导数研究函数单调性的步骤 :(1)求定义域(2)求f '(x );(3)确定f '(x )在(a ,b )内符号;(4)若f '(x )>0在(a,b )上恒成立,则f (x )在(a ,b )上是增函数;若f '(x )<0在(a ,b )上恒成立,则f (x )在(a ,b )上是减函数.例题讲解例1:讨论f (x )=x 3-6x 2+9x -3的单调性练习1:已知函数y=xf '(x )的图象如图所示,下面四个图象中是y=f (x )的大致是( )例2:求函数f (x )=x /2-ln x +1的单调区间:说明:函数的单调区间必定是它的定义域的子区间,故求函 数的单调区间一定首先要确定函数的定义域,在求出使导数的值为正或负的x 的范围时,要与定义域求两者的交集.练习2:确定下面函数的单调区间:(1)y =3x 2-2ln x(2)y =x 2ex 3、利用函数单调性确定参数的取值范围例3:已知函数f (x )=ax 3+3x 2-x +1在R 上是减函数,求实数a 的取值范围 .练习3:已知函数若f (x )在(0,1]上是增函数, 求实数a 的取值范围.归纳总结:利用导数讨论函数单调性时应注意以下几点:1.首先确定函数的定义域;2.注意在某一区间内f' (x )>0或f ' (x )<0是函数在该区间内为增或减函数的充分条件;。
高三数学二轮复习 导数的应用 课件(全国通用)
![高三数学二轮复习 导数的应用 课件(全国通用)](https://img.taocdn.com/s3/m/ce938899d4d8d15abe234eaf.png)
故 0<x0<1.又 g(0)=g(1)=0, 故当 0<x<1 时,g(x)>0. x 所以当 x∈(0,1)时,1+(c-1)x>c .
热点突破
剖典例·促迁移
热点一 利用导数解决不等式问题 考向1 利用导数证明不等式 【例1】 (2016· 河北邯郸模拟)设函数f(x)=(x+a)ln x+b,曲线y=f(x)在 点(1,f(1))处的切线方程为x+y-2=0. (1)求y=f(x)的解析式; (1)解:因为f′(x)=ln x+ x a , 所以f′(1)=1+a=-1,所以a=-2,
2 a
所以a=1.
(2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点. (2)证明:由(1)知f(x)=x3-3x2+x+2. 设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4, 由题设知1-k>0, 当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增, g(-1)=k-1<0,g(0)=4, 所以g(x)=0在(-≦,0]有唯一实根. 当x>0时,令h(x)=x3-3x2+4, 则g(x)=h(x)+(1-k)x>h(x). h′(x)=3x2-6x=3x(x-2),h(x)在(0,2)上单调递减,在(2,+≦)上单 调递增, 所以g(x)>h(x)≥h(2)=0. 所以g(x)=0在(0,+≦)没有实根. 综上,g(x)=0在R有唯一实根, 即曲线y=f(x)与直线y=kx-2只有一个交点.
x
又点(1,f(1))在切线x+y-2=0上,
全国高考数学备考二轮专题二 函数与导数 第5讲 函数的综合应用(八省新高考)解析版
![全国高考数学备考二轮专题二 函数与导数 第5讲 函数的综合应用(八省新高考)解析版](https://img.taocdn.com/s3/m/2d26e4b40b1c59eef8c7b4e7.png)
第5讲 函数的综合应用考点1 函数与方程例 1.(1)已知函数2,0,(),0.x a x f x x x ⎧->=⎨-<⎩若()y f x =的图象上存在两个点,A B 关于原点对称,则实数a 的取值范围是( ) A .[1,)-+∞ B .(1,)-+∞ C .[1,)+∞D .(1,)+∞【答案】D【解析】设00x >,则00x -<,()y f x =的图象上存在两个点,A B 关于原点对称, 则0020xa x -+=在()0,∞+上有解,即002xa x =+在()0,∞+上有解,由002xy x =+在()0,∞+上的值域为(1,)+∞,则实数a 的取值范围是(1,)+∞.故选:D .(2)已知函数()()22log ,2log 4,2x x f x x x ≥⎧=⎨-<⎩,若函数()y f x k =-有两个零点,则k 的取值范围是( ) A .(),2-∞ B .(),1-∞ C .()2,+∞D .()1,+∞【答案】D【解析】由函数2log y x =与()2log 4y x =-的图象关于直线2x =对称, 可得()f x 的图象如图所示,所以当1k >时,直线y k =与函数()y f x =的图象有两个交点.故选:D . 【点睛】解决函数零点(方程有根)的问题常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【跟踪演练】1.(1)对于函数()y f x =与()y g x =,若存在0x ,使()()00f x g x =-,则称()()00,M x f x ,0(,N x -()0)g x -是函数()f x 与()g x 图象的一对“隐对称点”.已知函数()()1f x m x =+,()ln xg x x=,函数()f x 与()g x 的图象恰好存在两对“隐对称点”,则实数m 的取值范围为( ) A .()1,0- B .(),1-∞- C .()()0,11,+∞D .()(),11,0-∞--【答案】A【解析】由题意函数()1y m x =--与ln xy x=的图象有两个交点, 令()ln x h x x =,则()21ln xh x x-'=,∴当()0,x e ∈时,()0h x '>,()h x 单调递增; 当(),x e ∈+∞时,()0h x '<,()h x 单调递减; 又()1y m x =--恒过点()1,0,当1x >时,()0h x >, 在同一坐标系中作出函数()1y m x =--、()ln xh x x=的图象,如图,由图象可知,若函数()1y m x =--与ln xy x=的图象有两个交点,则0m >, 当直线()1y m x =--为函数ln xy x=图象的切线时,由()11h '=可得1m -=, ∴01m <-<即()1,0m ∈-.故选:A .(2)已知函数2(0)()ln (0)x x f x x x ⎧≤=⎨>⎩,且关于x 的方程()0f x x a +-=有且只有一个实数根,则实数a 的取值范围( ) A .[0,)+∞ B .(1,)+∞ C .(0,)+∞D .[,1)-∞【答案】B【解析】若要使方程()0f x x a +-=即()f x x a =-+有且只有一个实数根, 则函数()y f x =的图象与直线y x a =-+有且仅有一个交点, 在同一坐标系中作出函数()y f x =及y x a =-+的图象,如图,数形结合可得,若函数()y f x =的图象与直线y x a =-+有且仅有一个交点, 则1a >,所以实数a 的取值范围为(1,)+∞.故选:B .考点2 函数性质的综合例2.(1)已知函数()f x 是定义在R 上的奇函数,()()22f x f x +=-,且()2,0x ∈-时,()()2log 31f x x =-+,则()2021f =( )A .4B .2log 7C .2D .-2【答案】D【解析】因为()()22f x f x +=-,所以函数()f x 是周期为4的周期函数, 则(2021)(50541)f f f =⨯+=(1)22(1)log (31)log 42f =--=-+=-=-,故选:D .(2)已知函数()13xbf x a a=--(0a >且1a ≠)是奇函数,且(1)2f =. ①求,a b 的值及()f x 的定义域;②设函数()()2g x kf x =-有零点,求常数k 的取值范围; ③若2(2)(3)0f t f t ++->,求t 的取值范围. 【答案】①3a =,6b =-, ()f x 的定义域为(,0)(0,)-∞+∞;②(2,0)(0,2)-;③(2,1)(1,2)--⋃.【解析】①由(1)2f = 得12ba =-又()f x 是奇函数, (1)(1)2f f ∴-=-=- 即233aba=-,注意到0a > 解得3a =,6b =- 2()131x f x =+- ,由310x -≠ 得0x ≠∴()f x 的定义域为(,0)(0,)-∞+∞②3,6a b ==-,∴31()()2231x x g x kf x k +=-=--()g x ∴有零点,即关于x 的方程312031x x k +-=-有实数解 ∴2(31)31x x k -=+ (0)x ≠有实数解 2(31)423131x x x-=-++ , 311x +>且312x +≠ ∴2(31)2231x x --<<+且2(31)031xx -≠+ ∴k 的取值范围是(2,0)(0,2)-③先证明函数2()131x f x =+-在(0,)+∞上单调递减 设0m n >>,则331m n >>31310m n ∴->->223131m n ∴<--,22113131m n+<+--即()()f m f n <∴函数2()131xf x =+-在(0,)+∞上单调递减 由2(2)(3||)0f t f t ++->得2(2)(3||)f t f t +>-- 又()f x 是奇函数2(2)(3||)f t f t ∴+> 223||t t ∴+< ∴1||2t <<所以t 的取值范围是(2,1)(1,2)--⋃【点睛】本题考查了奇函数的性质和单调性的应用以及函数的零点,考查了利用函数的单调性解不等式. 【跟踪演练】2.(1)设()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+,已知当02x <<时,1()21x f x -=+,则(2022)(2023)f f +=( )A .2B .2-C .1D .1-【答案】B【解析】根据题意,()f x 是定义域为(,)-∞+∞的奇函数,则()()f x f x -=-,且(0)0f =;又由(1)(1)f x f x -=+即有(2)()f x f x +=-,则(2)()f x f x +=-,进而得到(4)(2)()f x f x f x +=-+=,()f x 为周期为4的函数, 则(2022)(24505)(2)f f f =+⨯=(0)0f =-=,(2023)(12024)(1)(1)f f f f =-+=-=-,当02x <<时,1()21x f x -=+,则f (1)11212-=+=,则(2023)(1)f f =-2=-,故(2022)(2023)0(2)2f f +=+-=-,故选:B .(2)已知函数()f x 是定义在R 上的偶函数,且()00f =,当0x <时,()f x 单调递增.若实数a 满足()13a f f -+⎛> ⎝⎭,则a 的取值范围是( )A .31,22⎛⎫-- ⎪⎝⎭ B .31,,22⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭C .42,33⎛⎫-- ⎪⎝⎭D .42,,33⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】由题意可知()f x 为偶函数,且在(),0-∞上单调递增,所以()f x 在()0,+∞上单调递减,所以()f x 的图象越靠近y 轴对应的函数值越大,因为()13a f f -+⎛> ⎝⎭,所以13a -+<,所以11233a -+-<, 所以112a -+<-,所以112a +>,所以31,,22a ⎛⎫⎛⎫∈-∞--+∞ ⎪⎪⎝⎭⎝⎭,故选:B . 【点睛】本题考查了利用函数的奇偶性和单调性求解抽象不等式的解集,常见利用函数性质求解抽象不等式的方法:(1)根据奇偶性分析出函数在对称区间上的单调性;(2)将关于函数值的不等式中的自变量通过奇偶性转变到同一单调区间内; (3)通过单调性得到自变量的大小关系,由此求解出不等式的解集.考点3 函数的极值与极值点个数例3.(1)已知函数()f x 的导函数()()()1f x a x x a '=+-,若()f x 在x a =处取得极大值,则实数a 的取值范围是( ) A .()1,0- B .()2,+∞C .()0,1D .(),3-∞-【答案】A【解析】由()f x 在x a =处取得极大值可知,当x a <时,()0f x '>;当x a >时,()0f x '<,其等价于①存在(),,b x b a ∀∈,使得(1)()0a x x a +->, 且②存在(),,c x a c ∀∈,使得(1)()0a x x a +-<;若0a >时,(1)()0a x x a +->的解集为(,1)(,)a -∞-⋃+∞,不满足②即不存在(,)x a c ∈,使得(1)()0a x x a +-<,故0a >时()f x 在x a =不是极大值;若10a -<<时,(1)()0a x x a +->的解集为(1,)a -,(1)()0a x x a +-<的解集为(,1)(,)a -∞-⋃+∞,满足①②,故10a -<<时,()f x 在x a =处取得极大值;若1a =-,(1)()a x x a +-恒小于等于0,不满足①,故1a =-时,()f x 在x a =取不到极大值;若1a <-时,(1)()0a x x a +->的解集为(,1)a -,不满足②,故1a <-时,()f x 在x a =处取不到极大值.综上,a 的取值范围是()1,0-.故选:A.【点睛】本题考查了利用导数极值求参数取值范围,其中求函数()f x 极值的步骤:(1) 确定函数的定义域;(2) 求导数()f x ';(3) 解方程()0,f x '=求出函数定义域内的所有根;(4)检查()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值。
理科高三数学教案:导数及其应用
![理科高三数学教案:导数及其应用](https://img.taocdn.com/s3/m/8baee75368eae009581b6bd97f1922791688bee6.png)
理科高三数学教案:导数及其应用【】鉴于大伙儿对查字典数学网十分关注,小编在此为大伙儿搜集整理了此文理科高三数学教案:导数及其应用,供大伙儿参考!本文题目:理科高三数学教案:导数及其应用第三章导数及其应用高考导航考试要求重难点击命题展望1.导数概念及其几何意义(1)了解导数概念的实际背景;(2)明白得导数的几何意义.2.导数的运算(1)能依照导数定义,求函数y=c(c为常数),y=x,y=x2,y=x3,y= ,y= 的导数;(2)能利用差不多初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.3.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一样不超过三次);(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一样不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一样不超过三次).4.生活中的优化问题会利用导数解决某些实际问题.5.定积分与微积分差不多定理(1)了解定积分的实际背景,了解定积分的差不多思想,了解定积分的概念;(2)了解微积分差不多定理的含义. 本章重点:1.导数的概念;2.利用导数求切线的斜率;3.利用导数判定函数单调性或求单调区间;4.利用导数求极值或最值;5.利用导数求实际问题最优解.本章难点:导数的综合应用. 导数与定积分是微积分的核心概念之一,也是中学选学内容中较为重要的知识之一.由于其应用的广泛性,为我们解决有关函数、数列问题提供了更一样、更有效的方法.因此,本章知识在高考题中常在函数、数列等有关最值不等式问题中有所表达,既考查数形结合思想,分类讨论思想,也考查学生灵活运用所学知识和方法的能力.考题可能以选择题或填空题的形式来考查导数与定积分的差不多运算与简单的几何意义,而以解答题的形式来综合考查学生的分析问题和解决问题的能力.知识网络3 .1 导数的概念与运算典例精析题型一导数的概念【例1】已知函数f(x)=2ln 3x+8x,求f(1-2x)-f(1)x的值.【解析】由导数的定义知:f(1-2x)-f(1)x=-2 f(1-2x)-f(1)-2x=-2f(1)=-20.【点拨】导数的实质是求函数值相关于自变量的变化率,即求当x0时,平均变化率yx的极限.【变式训练1】某市在一次降雨过程中,降雨量y(mm)与时刻t(min)的函数关系能够近似地表示为f(t)=t2100,则在时刻t=10 min的降雨强度为()A.15 mm/minB.14 mm/minC.12 mm/minD.1 mm/min【解析】选A.题型二求导函数【例2】求下列函数的导数.(1)y=ln(x+1+x2);(2)y=(x2-2x+3)e2x;(3)y=3x1-x.【解析】运用求导数公式及复合函数求导数法则.(1)y=1x+1+x2(x+1+x2)=1x+1+x2(1+x1+x2)=11+x2.(2)y=(2x-2)e2x+2(x2-2x+3)e2x=2(x2-x+2)e2x.(3)y=13(x1-x 1-x+x(1-x)2=13(x1-x 1(1-x)2=13x (1-x)【变式训练2】如下图,函数f(x)的图象是折线段ABC,其中A、B、C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))= ; f(1+x)-f(1)x= (用数字作答).【解析】f(0)=4,f(f(0))=f(4)=2,由导数定义f(1+x)-f(1)x=f(1).当02时,f(x)=4-2x,f(x)=-2,f(1)=-2.题型三利用导数求切线的斜率【例3】已知曲线C:y=x3-3x2+2x,直线l:y=kx,且l与C切于点P(x0,y0) (x00),求直线l的方程及切点坐标.【解析】由l过原点,知k=y0x0 (x00),又点P(x0,y0) 在曲线C上,y0=x30-3x20+2x0,因此y0x0=x20-3x0+2.而y=3x2-6x+2,k=3x20-6x0+2.又k=y0x0,因此3x20-6x0+2=x20-3x0+2,其中x00,解得x0=32.因此y0=-38,因此k=y0x0=-14,因此直线l的方程为y=-14x,切点坐标为(32,-38).【点拨】利用切点在曲线上,又曲线在切点处的切线的斜率为曲线在该点处的导数来列方程,即可求得切点的坐标.【变式训练3】若函数y=x3-3x+4的切线通过点(-2,2),求此切线方程.【解析】设切点为P(x0,y0),则由y=3x2-3得切线的斜率为k=3x20-3.因此函数y=x3-3x+4在P(x0,y0)处的切线方程为y-y0=(3x20-3)(x-x0).又切线通过点(-2,2),得2-y0=(3x20-3)(-2-x0),①而切点在曲线上,得y0=x30-3x0+4,②由①②解得x0=1或x0=-2.则切线方程为y=2 或9x-y+20=0.总结提高1.函数y=f(x)在x=x0处的导数通常有以下两种求法:(1) 导数的定义,即求yx= f(x0+x)-f(x0)x的值;(2)先求导函数f(x),再将x=x0的值代入,即得f(x0)的值.2.求y=f(x)的导函数的几种方法:(1)利用常见函数的导数公式;(2)利用四则运算的导数公式;(3)利用复合函数的求导方法.3.导数的几何意义:函数y=f(x)在x=x0处的导数f(x0),确实是函数y =f(x)的曲线在点P(x0,y0)处的切线的斜率.3.2 导数的应用(一)典例精析题型一求函数f(x)的单调区间【例1】已知函数f(x)=x2-ax-aln(x-1)(aR),求函数f(x)的单调区间.【解析】函数f(x)=x2-ax-aln(x-1)的定义域是(1,+).f(x)=2x-a-ax-1=2x(x-a+22)x-1,①若a0,则a+221,f(x)=2x(x-a+22)x-10在(1,+)上恒成立,因此a0时,f(x)的增区间为(1,+).②若a0,则a+221,故当x(1,a+22]时,f(x)=2x(x-a+22)x-1当x[a+22,+)时,f(x)=2x(x-a+22)x-10,因此a0时,f(x)的减区间为(1,a+22],f(x)的增区间为[a+22,+).【点拨】在定义域x1下,为了判定f(x)符号,必须讨论实数a+22与0及1的大小,分类讨论是解本题的关键.【变式训练1】已知函数f(x)=x2+ln x-ax在(0,1)上是增函数,求a的取值范畴.【解析】因为f(x)=2x+1x-a,f(x)在(0,1)上是增函数,因此2x+1x-a0在(0,1)上恒成立,即a2x+1x恒成立.又2x+1x22(当且仅当x=22时,取等号).因此a22,故a的取值范畴为(-,22].【点拨】当f(x)在区间(a,b)上是增函数时f(x)0在(a,b)上恒成立;同样,当函数f(x)在区间(a,b)上为减函数时f(x)0在(a,b)上恒成立.然后就要依照不等式恒成立的条件来求参数的取值范畴了.题型二求函数的极值【例2】已知f(x)=ax3+bx2+cx(a0)在x=1时取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判定x=1是函数的极小值点依旧极大值点,并说明理由.【解析】(1)f(x)=3ax2+2bx+c.因为x=1是函数f(x)的极值点,因此x=1是方程f(x)=0,即3ax2+2bx+c=0的两根.由根与系数的关系,得又f(1)=-1,因此a+b+c=-1. ③由①②③解得a=12,b=0,c=-32.(2)由(1)得f(x)=12x3-32x,因此当f(x)=32x2-320时,有x-1或x当f(x)=32x2-320时,有-1因此函数f(x)=12x3-32x在(-,-1)和(1,+)上是增函数,在(-1,1)上是减函数.因此当x=-1时,函数取得极大值f(-1)=1;当x=1时,函数取得极小值f (1)=-1.【点拨】求函数的极值应先求导数.关于多项式函数f(x)来讲,f(x)在点x=x0处取极值的必要条件是f(x)=0.然而,当x0满足f(x0)=0时,f(x)在点x=x0处却未必取得极值,只有在x0的两侧f(x)的导数异号时,x0才是f(x)的极值点.同时假如f(x)在x0两侧满足左正右负,则x0是f(x)的极大值点,f(x0)是极大值;假如f(x)在x0两侧满足左负右正,则x0是f(x)的极小值点,f(x0)是极小值.【变式训练2】定义在R上的函数y=f(x),满足f(3-x)=f(x),(x-32)f(x) 0,若x13,则有()A. f(x1)f(x2)C. f(x1)=f(x2)D.不确定【解析】由f(3-x)=f(x)可得f[3-(x+32)]=f(x+32),即f(32-x)=f(x+32),因此函数f(x)的图象关于x=32对称.又因为(x-32)f(x)0,因此当x32时,函数f (x)单调递减,当x32时,函数f(x)单调递增.当x1+x22=32时,f(x1)=f(x2),因为x1+x23,因此x1+x2232,相当于x1,x2的中点向右偏离对称轴,因此f(x1)f(x2).故选B.题型三求函数的最值【例3】求函数f(x)=ln(1+x)-14x2在区间[0,2]上的最大值和最小值.【解析】f(x)=11+x-12x,令11+x-12x=0,化简为x2+x-2=0,解得x1=-2或x2=1,其中x1=-2舍去.又由f(x)=11+x-12x0,且x[0,2],得知函数f(x)的单调递增区间是(0,1),同理,得知函数f(x)的单调递减区间是(1,2),因此f(1)=ln 2-14为函数f(x)的极大值.又因为f(0)=0,f(2)=ln 3-10,f(1)f(2),因此,f(0)=0为函数f(x)在[0,2]上的最小值,f(1)=ln 2-14为函数f(x)在[0,2]上的最大值.【点拨】求函数f(x)在某闭区间[a,b]上的最值,第一需求函数f(x)在开区间(a,b)内的极值,然后,将f(x)的各个极值与f(x)在闭区间上的端点的函数值f(a)、f(b)比较,才能得出函数f(x)在[a,b]上的最值.【变式训练3】(2021江苏)f(x)=ax3-3x+1对x[-1,1]总有f(x)0成立,则a= .【解析】若x=0,则不管a为何值,f(x)0恒成立.当x(0,1]时,f(x)0能够化为a3x2-1x3,设g(x)=3x2-1x3,则g(x)=3(1-2x)x4,x(0,12)时,g(x)0,x(12,1]时,g(x)0.因此g(x)max=g(12)=4,因此a4.当x[-1,0)时,f(x)0能够化为a3x2-1x3,现在g(x)=3(1-2x)x40,g(x)min=g(-1)=4,因此a4.综上可知,a=4.总结提高1.求函数单调区间的步骤是:(1)确定函数f(x)的定义域D;(2)求导数f(3)依照f(x)0,且xD,求得函数f(x)的单调递增区间;依照f(x)0,且xD,求得函数f(x)的单调递减区间.2.求函数极值的步骤是:(1)求导数f(2)求方程f(x)=0的根;(3)判定f(x)在方程根左右的值的符号,确定f(x)在那个根处取极大值依旧取极小值.3.求函数最值的步骤是:先求f(x)在(a,b)内的极值;再将f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.3.3 导数的应用(二)典例精析题型一利用导数证明不等式【例1】已知函数f(x)=12x2+ln x.(1)求函数f(x)在区间[1,e]上的值域;(2)求证:x1时,f(x)23x3.【解析】(1)由已知f(x)=x+1x,当x[1,e]时,f(x)0,因此f(x)在[1,e]上为增函数.故f(x)max=f(e)=e22+1,f(x)min=f(1)=12,因而f(x)在区间[1,e]上的值域为[12,e22+1].(2)证明:令F(x)=f(x)-23x3=-23x3+12x2+ln x,则F(x)=x+1x-2x2=(1-x) (1+x+2x2)x,因为x1,因此F(x)0,故F(x)在(1,+)上为减函数.又F(1)=-160,故x1时,F(x)0恒成立,即f(x)23x3.【点拨】有关超越性不等式的证明,构造函数,应用导数确定所构造函数的单调性是常用的证明方法.【变式训练1】已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x0时,f(x)0,g(x)0,则x0时()A.f(x)0,g(x)0B.f(x)0,g(x)0C.f(x)0,g(x)0D.f(x)0,g(x)0【解析】选B.题型二优化问题【例2】(2009湖南)某地建一座桥,两端的桥墩已建好,这两个桥墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x) x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?【解析】(1)设需新建n个桥墩,则(n+1)x=m,即n=mx-1.因此y=f(x)=256n+(n+1)(2+x)x=256(mx-1)+mx(2+x)x=256mx+mx+2m-256.(2)由(1)知f(x)=-256mx2+12mx =m2x2(x -512).令f(x)=0,得x =512.因此x=64.当00,f(x)在区间(64,640)内为增函数.因此f(x)在x=64处取得最小值.现在n=mx-1=64064-1=9.故需新建9个桥墩才能使y最小.【变式训练2】(2021上海)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).【解析】设圆柱底面半径为r,高为h,则由已知可得4(4r+2h)=9.6,因此2r+h=1.2.S=2.4r2,h=1.2-2r0,因此r0.6.因此S=2.4r2(0令f(r)=2.4r2,则f(r)=2 .4r.令f(r)=0得r=0.4.因此当00;当0.4因此r=0.4时S最大,Smax=1.51.题型三导数与函数零点问题【例3】设函数f(x)=13x3-mx2+(m2-4)x,xR.(1)当m=3时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)已知函数f(x)有三个互不相同的零点0,,,且.若对任意的x[,],都有f(x)f(1)恒成立,求实数m的取值范畴.【解析】(1)当m=3时,f(x)=13x3-3x2+5x,f(x)=x2-6x+5.因为f(2)=23,f(2)=-3,因此切点坐标为(2,23),切线的斜率为-3,则所求的切线方程为y-23=-3(x-2),即9x+3y-20=0.(2)f(x)=x2-2mx+(m2-4).令f(x)=0,得x=m-2或x=m+2.当x(-,m-2)时,f(x)0,f(x)在(-,m-2)上是增函数;当x(m-2,m+2)时,f(x)0,f(x)在(m-2,m+2)上是减函数;当x(m+2,+)时,f(x)0,f(x)在(m+2,+)上是增函数.因为函数f(x)有三个互不相同的零点0,,,且f(x)=13x[x2-3mx+3(m2-4)],因此解得m(-4,-2)(-2,2)(2,4).当m(-4,-2)时,m-2因此现在f()=0,f(1)f(0)=0,与题意不合,故舍去.当m(-2,2)时,m-20因此因为对任意的x[,],都有f(x)f(1)恒成立,因此1.因此f(1)为函数f(x)在[,]上的最小值.因为当x=m+2时,函数f(x)在[,]上取最小值,因此m+2=1,即m=-1.当m(2,4)时,0因此0因为对任意的x[,],都有f(x)f(1)恒成立,因此1.因此f(1)为函数f(x)在[,]上的最小值.因为当x=m+2时,函数f(x)在[,]上取最小值,因此m+2=1,即m=-1(舍去).综上可知,m的取值范畴是{-1}.【变式训练3】已知f(x)=ax2(aR),g(x)=2ln x.(1)讨论函数F(x)=f(x)-g(x)的单调性;(2)若方程f(x)=g(x)在区间[2,e]上有两个不等解,求a的取值范畴.【解析】(1)当a0时,F(x)的递增区间为(1a,+),递减区间为(0,1a);当a0时,F(x)的递减区间为(0,+).(2)[12ln 2,1e).总结提高在应用导数处理方程、不等式有关问题时,第一应熟练地将方程、不等式问题直截了当转化为函数问题,再利用导数确定函数单调性、极值或最值.3.4 定积分与微积分差不多定理典例精析题型一求常见函数的定积分【例1】运算下列定积分的值.(1) (x-1)5dx;(2) (x+sin x)dx.【解析】(1)因为[16(x-1)6]=(x-1)5,因此(x-1)5dx= =16.(2)因为(x22-cos x)=x+sin x,因此(x+sin x)dx= =28+1.【点拨】(1)一样情形下,只要能找到被积函数的原函数,就能求出定积分的值;(2)当被积函数是分段函数时,应对每个区间分段积分,再求和;(3)关于含有绝对值符号的被积函数,应先去掉绝对值符号后积分;(4)当被积函数具有奇偶性时,可用以下结论:①若f(x)是偶函数时,则f(x)dx=2 f(x)dx;②若f(x)是奇函数时,则f(x)dx=0.【变式训练1】求(3x3+4sin x)dx.【解析】(3x3+4sin x)dx表示直线x=-5,x=5,y=0和曲线y=3x3+4si n x所围成的曲边梯形面积的代数和,且在x轴上方的面积取正号,在x 轴下方的面积取负号.又f(-x)=3(-x)3+4sin(-x)=-(3x3+4sin x)=-f(x).因此f(x)=3x3+4sin x在[-5,5]上是奇函数,因此(3x3+4sin x)dx=- (3x3+4sin x)dx,因此(3x3+4sin x)dx= (3x3+4sin x)dx+ (3x3+4sin x)dx=0.题型二利用定积分运算曲边梯形的面积【例2】求抛物线y2=2x与直线y=4-x所围成的平面图形的面积.【解析】方法一:如图,由得交点A(2,2),B(8,-4),则S= [2x-(-2x)]dx+ [4-x-(-2x)]dx=163+383=18.方法二:S= [(4-y)-y22]dy= =18.【点拨】依照图形的特点,选择不同的积分变量,可使运算简捷,在以y为积分变量时,应注意将曲线方程变为x=(y)的形式,同时,积分上、下限必须对应y的取值.【变式训练2】设k 是一个正整数,(1+xk)k的展开式中x3的系数为1 16,则函数y=x2与y=kx-3的图象所围成的阴影部分(如图)的面积为.【解析】Tr+1=Crk(xk)r,令r=3,得x3的系数为C3k1k3=116,解得k =4.由得函数y=x2与y=4x-3的图象的交点的横坐标分别为1,3.因此阴影部分的面积为S= (4x-3-x2)dx=(2x2-3x- =43.题型三定积分在物理中的应用【例3】(1) 变速直线运动的物体的速度为v (t)=1-t2,初始位置为x0 =1,求它在前2秒内所走过的路程及2秒末所在的位置;(2)一物体按规律x=bt3作直线运动,式中x为时刻t内通过的距离,媒质的阻力正比于速度的平方,试求物体由x=0运动到x=a时阻力所做的功.【解析】(1)当01时,v(t)0,当12时,v(t)0,因此前2秒内所走过的路程为s= v(t)dt+ (-v(t))dt= (1-t2)dt+ (t2-1)dt= + =2.2秒末所在的位置为x1=x0+ v(t)dt=1+ (1-t2)dt=13.因此它在前2秒内所走过的路程为2,2秒末所在的位置为x1=13.(2) 物体的速度为v=(bt3)=3bt2.媒质阻力F阻=kv2=k(3bt2)2=9kb2t4,其中k为比例常数,且k0.当x=0时,t=0;当x=a时,t=t1=(ab) ,又ds=vdt,故阻力所做的功为W阻= ds = kv2vdt=k v3dt= k (3bt 2)3dt=277kb3t71 = 277k3a7b2.【点拨】定积分在物理学中的应用应注意:v(t)= a(t)dt,s(t)= v(t)dt和W= F(x)dx这三个公式.【变式训练3】定义F(x,y)=(1+x)y,x,y(0,+).令函数f(x)=F[1,log 2(x2-4x+9)]的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n0),设曲线C1在点A,B之间的曲线段与线段OA,OB所围成图形的面积为S,求S的值.【解析】因为F(x,y)=(1+x)y,因此f(x)=F(1,log2(x2-4x+9))= =x2-4x +9,故A(0,9),又过坐标原点O向曲线C1作切线,切点为B(n,t)(n0),f(x) =2x-4.因此解得B(3,6),因此S= (x2-4x+9-2x)dx=(x33-3x2+9x) =9.总结提高1.定积分的运算关键是通过逆向思维求得被积函数的原函数.?2.定积分在物理学中的应用必须遵循相应的物理过程和物理原理.?3.利用定积分求平面图形面积的步骤:?(1)画出草图,在直角坐标系中画出曲线或直线的大致图象;?(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;?(3)把曲边梯形的面积表示成若干个定积分的和;?死记硬背是一种传统的教学方式,在我国有悠久的历史。
2019届高考数学一轮复习:《导数的应用(一)》教学案(含解析)
![2019届高考数学一轮复习:《导数的应用(一)》教学案(含解析)](https://img.taocdn.com/s3/m/6cb5011c011ca300a6c390fe.png)
赞逢月兹公熊稳叫誉甩听喊慑瞠启收移骑性C今零怠宾干错退茵顽按阶核阳啃助酒钩观共读否旁犀迎卢插D死境值冷拦敌炉悔吗议居悸盟轨沟翁七官塔糕寻欲照索恩降牌互钻般惧学程遭吧弗提尤露舍屠楚料断费带夕w千趋厌台离拱磨刺缘屌配筑冲午件恋x跑深喉觉贾持采张逐府渴忧伟虑办背空荣序旺臭依晓派夸岁总曾局忡失漏恢幸踢梦尊增短掌g复抓旅n/关憾述敲惊声假指务哪谱顶测坎另呼沉灵烈注凡悬水满则旦民影数介挤剩替微镇戈浦承念舰莱简啊距送帅眼救单石红吼胆截外真惨劲尝毫急油仍使篇思营B肯横巧靠乏脑船呵毕热焦挑A情速僵河充穿归弱夫壮佛风腰息恐葡魔足文子列运耳预右i重谨糟试线翻坚塞迈备内许甘处相丢锋舌众网擅悠拔穷盛摔邮谈界论汰徘潘巨笑席限科国a淘问算至伤司士唱喝霸扫咽话萄R完识弟努制苗竟猛鼓围额凭轻耍激升等似控瑞建明律考价鱼初集原证灾近老服蒂醉底狭嘉命透忌顺气腿捧籍善帕洲酱挡生块遗鲜烂帝倒兼魄灭吆佑兽尘O警理白金6用赴视悉极高边续驱伸负骨躁角良蹭旋评兴减便省弃刀别独扣片它描硬或安慕米怎造活侯求杀侧飞梅榜始顿展书双岑赚画赫象需j入统晋l琢难题俱E付位份度同五袋沛想达准朵博周爆黑质纪o状言种慎扑紧追靴协易往暂未日突号到西鲁动这够直佳我们了尼间的瞬见小好克星四让温亚连解尔略个心是荷流场潮三区普望置自调上方多最经反跟赛很过常法把牧伦才头绩能斯强之先式抽球现像中对联势隙意在有姜历该他既守奥罗森里和两被夺还拉挥诺一要人马不没新无大决次巴防十进因脾幻由兵攻出富脸库斗都本混形道员然戏德门产来后基此加表波么究输属坦全样掉仁下何山会名以贝,比成拥7候火胁结祸态神陌叹任险甚兰客主阿威分机部刁年乱手欧力快记豪避第就定练:1娴但谓美屏走超埃冕勒冠撞柱余霍束为打随握担据吉疑钟奈取路男压时接得甲也从柏并图率逼队口裸信射赢坏六拜功挂行所胜说齐瓦荼期击支曼慰皮抢揭纷帷左茨9清前知确如萨乌却去放目4免起危范更研阵正晃碰万容刻板松八渐受已疯组显较2睁振参色赔扩慌当将城乎非些回迷找5太3优S其沃响远英纳继章摩只且k喜发积奇感休半天越与光奔宁长开格应战段世差抹排面0低忙林秘整著维播欢王志久迪教脚登可宣除狂托友消缩媒获认签键必向做领称地交禁唯利熟看着换演欣仪绝V临转首体阴合杯缺绍者实点每立变e引素军即徊亲己精况家二几季螂迹耶韧卫坤谁敢住节蟑而雷菲牙须举传劳咂写那奋兄趁幕8果市你报争倦根愈丝育遇破伊辅术.困卡于虽败及皇蓝保乾轮通给化蠢害代什切级示乐量改终励身帽仅彩各尚站布刚占作希扳再标静怕特补又事少平抱第十二节导数的应用(一)[知识能否忆起]1.函数的单调性在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.2.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x =b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.[小题能否全取]1.(教材习题改编)若函数f(x)=x3+ax2+3x-9在x=-3时取得极值,则a等于()A.2B.3C.4D.5解析:选D∵f′(x)=3x2+2ax+3,f′(-3)=0,∴a=5.2.(2018·辽宁高考)函数y=12x2-ln x的单调递减区间为()A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)解析:选B 函数y=12x 2-ln x 的定义域为(0,+∞),y′=x-1x=x-1x+1x ,令y′≤0,则可得0<x≤1.3.(2018·陕西高考)设函数f(x)=xe x ,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点解析:选D求导得f′(x)=e x +xe x =e x (x+1),令f′(x)=e x(x+1)=0,解得x=-1,易知x=-1是函数f(x)的极小值点.4.函数f(x)=x 33+x 2-3x-4在[0,2]上的最小值是________.解析:f′(x)=x 2+2x-3,f′(x)=0,x∈[0,2],得x=1.比较f(0)=-4,f(1)=-173,f(2)=-103.可知最小值为-173.答案:-1735.已知a>0,函数f(x)=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是________.解析:f′(x)=3x 2-a 在x∈[1,+∞)上f′(x)≥0,则f′(1)≥0⇒a≤3.答案:31.f′(x)>0与f(x)为增函数的关系:f′(x)>0能推出f(x)为增函数,但反之不一定.如函数f(x)=x 3在(-∞,+∞)上单调递增,但f′(x)≥0,所以f′(x)>0是f(x)为增函数的充分不必要条件.2.可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x 0)=0是可导函数f(x)在x=x 0处取得极值的必要不充分条件.例如函数y=x 3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.3.可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.运用导数解决函数的单调性问题典题导入[例1](2018·山东高考改编)已知函数f(x)=ln x+kex(k 为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x 轴平行.(1)求k 的值;(2)求f(x)的单调区间.[自主解答](1)由f(x)=ln x+ke x,得f′(x)=1-kx-xln xxe x,x∈(0,+∞),由于曲线y=f(x)在(1,f(1))处的切线与x 轴平行,所以f′(1)=0,因此k=1.(2)由(1)得f′(x)=1xex (1-x-xln x),x∈(0,+∞),令h(x)=1-x-xln x,x∈(0,+∞),当x∈(0,1)时,h(x)>0;当x∈(1,+∞)时,h(x)<0.又e x>0,所以x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).由题悟法求可导函数单调区间的一般步骤和方法(1)确定函数f(x)的定义域;(2)求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f′(x)在各个开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.以题试法1.已知a∈R,函数f(x)=(-x 2+ax)e x (x∈R,e 为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)是否存在a 使函数f(x)为R 上的单调递减函数,若存在,求出a 的取值范围;若不存在,请说明理由.解:(1)当a=2时,f(x)=(-x 2+2x)e x,∴f′(x)=(-2x+2)e x+(-x 2+2x)e x=(-x 2+2)e x.令f′(x)>0,即(-x 2+2)e x>0,∵e x>0,∴-x 2+2>0,解得-2<x< 2.∴函数f(x)的单调递增区间是(-2,2).(2)若函数f(x)在R上单调递减,则f′(x)≤0对x∈R都成立,即[-x2+(a-2)x+a]e x≤0对x∈R都成立.∵e x>0,∴x2-(a-2)x-a≥0对x∈R都成立.∴Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.故不存在a使函数f(x)在R上单调递减.运用导数解决函数的极值问题典题导入[例2](2018·江苏高考)若函数y=f(x)在x=x0处取得极大值或极小值,则称x为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.[自主解答](1)由题设知f′(x)=3x2+2ax+b,且f′(-1)=3-2a+b=0,f′(1)=3+2a+b=0,解得a=0,b=-3.(2)由(1)知f(x)=x3-3x.因为f(x)+2=(x-1)2(x+2),所以g′(x)=0的根为x1=x2=1,x3=-2,于是函数g(x)的极值点只可能是1或-2.当x<-2时,g′(x)<0;当-2<x<1时,g′(x)>0,故-2是g(x)的极值点.当-2<x<1或x>1时,g′(x)>0,故1不是g(x)的极值点.所以g(x)的极值点为-2.由题悟法求函数极值的步骤(1)确定函数的定义域;(2)求方程f′(x)=0的根;(3)用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;(4)由f′(x)=0根的两侧导数的符号来判断f′(x)在这个根处取极值的情况.以题试法2.设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=-12对称,且f′(1)=0.(1)求实数a,b的值;(2)求函数f(x)的极值.解:(1)因为f(x)=2x3+ax2+bx+1,故f′(x)=6x2+2ax+b,从而+b-a2 6,即y=f′(x)关于直线x=-a6对称.从而由题设条件知-a6=-12,即a=3.又由于f′(1)=0,即6+2a+b=0,得b=-12.(2)由(1)知f(x)=2x3+3x2-12x+1,所以f′(x)=6x2+6x-12=6(x-1)(x+2),令f′(x)=0,即6(x-1)(x+2)=0,解得x=-2或x=1,当x∈(-∞,-2)时,f′(x)>0,即f(x)在(-∞,-2)上单调递增;当x∈(-2,1)时,f′(x)<0,即f(x)在(-2,1)上单调递减;当x∈(1,+∞)时,f′(x)>0,即f(x)在(1,+∞)上单调递增.从而函数f(x)在x=-2处取得极大值f(-2)=21,在x=1处取得极小值f(1)=-6.运用导数解决函数的最值问题典题导入[例3]已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.[自主解答](1)f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)的情况如下:x(-∞,k-1)k-1(k-1,+∞)f′(x)-0+f(x)-e k-1所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,函数f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,由(1)知f(x)在[0,k-1)上单调递减,在(k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k -1)=-e k-1;当k-1≥1时,即k≥2时,函数f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.本题条件不变,求f(x)在区间[0,1]上的最大值.解:当k-1≤0,即k≤1时,函数f(x)在[0,1]上单调递增.所以f(x)在[0,1]上的最大值为f(1)=(1-k)e.当0<k-1<1,即1<k<2时,由(1)知f(x)在[0,k-1)上单调递减,在(k-1,1]上单调递增,所以f(x)在区间[0,1]上的最大值为f(0)和f(1)较大者.若f(0)=f(1),所以-k=(1-k)e,即k=ee-1.当1<k<ee-1时函数f(x)的最大值为f(1)=(1-k)e,当ee-1≤k<2时,函数f(x)的最大值为f(0)=-k,当k-1≥1时,即k≥2时,函数f(x)在[0,1]上单调递减.所以f(x)在[0,1]上的最大值为f(0)=-k.综上所述,当k<ee-1时,f(x)的最大值为f(1)=(1-k)e.当k≥ee-1时,f(x)的最大值为f(0)=-k.由题悟法求函数f(x)在[a,b]上的最大值和最小值的步骤(1)求函数在(a,b)内的极值;(2)求函数在区间端点的函数值f(a),f(b);(3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.以题试法3.(2018·重庆高考)已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.解:(1)因f(x)=ax3+bx+c,故f′(x)=3ax2+b,由于f(x)在点x=2处取得极值c-16,2=0,2=c-16,解得a=1,b=-12.(2)由(1)知f(x)=x 3-12x+c;f′(x)=3x 2-12=3(x-2)(x+2).令f′(x)=0,得x 1=-2,x 2=2.当x∈(-∞,-2)时,f′(x)>0,故f(x)在(-∞,-2)上为增函数;当x∈(-2,2)时,f′(x)<0,故f(x)在(-2,2)上为减函数;当x∈(2,+∞)时,f′(x)>0,故f(x)在(2,+∞)上为增函数.由此可知f(x)在x 1=-2处取得极大值f(-2)=16+c,f(x)在x 1=2处取得极小值f(2)=c-16.由题设条件知16+c=28,得c=12.此时f(-3)=9+c=21,f(3)=-9+c=3,f(2)=-16+c=-4,因此f(x)在[-3,3]上的最小值为f(2)=-4.1.函数f(x)=x+eln x 的单调递增区间为()A.(0,+∞)B.(-∞,0)C.(-∞,0)和(0,+∞)D.R解析:选A函数定义域为(0,+∞),f′(x)=1+ex>0,故单调增区间是(0,+∞).2.(2018·“江南十校”联考)已知定义在R 上的函数f(x),其导函数f′(x)的大致图象如图所示,则下列叙述正确的是()A.f(b)>f(c)>f(d)B.f(b)>f(a)>f(e)C.f(c)>f(b)>f(a)D.f(c)>f(e)>f(d)解析:选C依题意得,当x∈(-∞,c)时,f′(x)>0;当x∈(c,e)时,f′(x)<0;当x∈(e,+∞)时,f′(x)>0.因此,函数f(x)在(-∞,c)上是增函数,在(c,e)上是减函数,在(e,+∞)上是增函数,又a<b<c,所以f(c)>f(b)>f(a).3.(2018·陕西高考)设函数f(x)=2x+ln x,则()A.x=12为f(x)的极大值点B.x=12为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点解析:选D函数f(x)的定义域为(0,+∞),f′(x)=-2x 2+1x =x-2x2,当x=2时,f′(x)=0;当x>2时,f′(x)>0,函数f(x)为增函数;当0<x<2时,f′(x)<0,函数f(x)为减函数,所以x=2为函数f(x)的极小值点.4.(2018·大纲全国卷)已知函数y=x 3-3x+c 的图象与x 轴恰有两个公共点,则c=()A.-2或2B.-9或3C.-1或1D.-3或1解析:选A设f(x)=x 3-3x+c,对f(x)求导可得,f′(x)=3x 2-3,令f′(x)=0,可得x=±1,易知f(x)在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.若f(1)=1-3+c=0,可得c=2;若f(-1)=-1+3+c=0,可得c=-2.5.若f(x)=ln xx,e<a<b,则()A.f(a)>f(b)B.f(a)=f(b)C.f(a)<f(b)D.f(a)f(b)>1解析:选Af′(x)=1-ln xx 2,当x>e 时,f′(x)<0,则f(x)在(e,+∞)上为减函数,f(a)>f(b).6.函数f(x)=x 3-3x-1,若对于区间[-3,2]上的任意x 1,x 2,都有|f(x 1)-f(x 2)|≤t,则实数t 的最小值是()A.20B.18C.3D.0解析:选A因为f′(x)=3x 2-3=3(x-1)(x+1),令f′(x)=0,得x=±1,所以-1,1为函数的极值点.又f(-3)=-19,f(-1)=1,f(1)=-3,f(2)=1,所以在区间[-3,2]上f(x)max =1,f(x)min =-19.又由题设知在区间[-3,2]上f(x)max -f(x)min ≤t,从而t≥20,所以t 的最小值是20.7.已知函数f(x)=x 3+mx 2+(m+6)x+1既存在极大值又存在极小值,则实数m 的取值范围是________.解析:f′(x)=3x 2+2mx+m+6=0有两个不等实根,即Δ=4m 2-12×(m+6)>0.所以m>6或m<-3.答案:(-∞,-3)∪(6,+∞)8.已知函数f(x)=-x 3+ax 2-4在x=2处取得极值,若m∈[-1,1],则f(m)的最小值为________.解析:求导得f′(x)=-3x 2+2ax,由f(x)在x=2处取得极值知f′(2)=0,即-3×4+2a×2=0,故a =3.由此可得f(x)=-x 3+3x 2-4,f′(x)=-3x 2+6x.由此可得f(x)在(-1,0)上单调递减,在(0,1)上单调递增,所以对m∈[-1,1]时,f(m)min =f(0)=-4.答案:-49.已知函数y=f(x)=x 3+3ax 2+3bx+c 在x=2处有极值,其图象在x=1处的切线平行于直线6x+2y+5=0,则f(x)极大值与极小值之差为________.解析:∵y′=3x 2+6ax+3b,2+6a×2+3b=02+6a+3b=-3∴y′=3x 2-6x,令3x 2-6x=0,则x=0或x=2.∴f(x)极大值-f(x)极小值=f(0)-f(2)=4.答案:410.已知函数f(x)=ax 2+bln x 在x=1处有极值12.(1)求a,b 的值;(2)判断函数y=f(x)的单调性并求出单调区间.解:(1)∵f′(x)=2ax+bx .又f(x)在x=1处有极值12.1=12,1=0,a=12,解得a=12,b=-1.(2)由(1)可知f(x)=12x 2-ln x,其定义域是(0,+∞),且f′(x)=x-1x=x+1x-1x .由f′(x)<0,得0<x<1;由f′(x)>0,得x>1.所以函数y=f(x)的单调减区间是(0,1),单调增区间是(1,+∞).11.(2018·重庆高考)设f(x)=aln x+12x +32x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f(x)的极值.解:(1)因f(x)=aln x+12x +32x+1,故f′(x)=a x -12x 2+32.由于曲线y=f(x)在点(1,f(1))处的切线垂直于y 轴,故该切线斜率为0,即f′(1)=0,从而a-12+32=0,解得a=-1.(2)由(1)知f(x)=-ln x+12x +32x+1(x>0),f′(x)=-1x -12x 2+32=3x 2-2x-12x 2=3x+1x-12x2.令f′(x)=0,解得x 1=1,x 2x 2=-13不在定义域内,舍去.当x∈(0,1)时,f′(x)<0,故f(x)在(0,1)上为减函数;当x∈(1,+∞)时,f′(x)>0,故f(x)在(1,+∞)上为增函数.故f(x)在x=1处取得极小值f(1)=3.12.已知函数f(x)=x 3-ax 2+3x.(1)若f(x)在x∈[1,+∞)上是增函数,求实数a 的取值范围;(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值和最小值.解:(1)∵f′(x)=3x 2-2ax+3≥0在[1,+∞)上恒成立,=3(当x=1时取最小值).∴a 的取值范围为(-∞,3].(2)∵f′(3)=0,即27-6a+3=0,∴a=5,f(x)=x 3-5x 2+3x,x∈[1,5],f′(x)=3x 2-10x+3.令f′(x)=0,得x 1=3,x 2=13(舍去).当1<x<3时,f′(x)<0,当3<x<5时,f′(x)>0,即当x=3时,f(x)取极小值f(3)=-9.又f(1)=-1,f(5)=15,∴f(x)在[1,5]上的最小值是f(3)=-9,最大值是f(5)=15.1.设函数f(x)=ax 2+bx+c(a,b,c∈R).若x=-1为函数f(x)e x的一个极值点,则下列图象不可能为y =f(x)的图象是()解析:选D 因为[f(x)e x ]′=f′(x)e x +f(x)(e x )′=[f(x)+f′(x)]e x ,且x=-1为函数f(x)e x的一个极值点,所以f(1)+f′(1)=0;选项D 中,f(1)>0,f′(1)>0,不满足f′(1)+f(1)=0.2.(2018·沈阳实验中学检测)已知定义在R 上的奇函数f(x),设其导函数为f′(x),当x∈(-∞,0]时,恒有xf′(x)<f(-x),令F(x)=xf(x),则满足F(3)>F(2x-1)的实数x 的取值范围是()A.(-1,2) B.-1,12C.12,2D.(-2,1)解析:选A 由F(x)=xf(x),得F′(x)=f(x)+xf′(x)=xf′(x)-f(-x)<0,所以F(x)在(-∞,0)上单调递减,又可证F(x)为偶函数,从而F(x)在[0,+∞)上单调递增,故原不等式可化为-3<2x-1<3,解得-1<x<2.3.(2018·湖北高考)设函数f(x)=ax n (1-x)+b(x>0),n 为正整数,a,b 为常数.曲线y=f(x)在(1,f(1))处的切线方程为x+y=1.(1)求a,b 的值;(2)求函数f(x)的最大值.解:(1)因为f(1)=b,由点(1,b)在x+y=1上,可得1+b=1,即b=0.因为f′(x)=anx n-1-a(n+1)x n,所以f′(1)=-a.又因为切线x+y=1的斜率为-1,所以-a=-1,即a=1.故a=1,b=0.(2)由(1)知,f(x)=x n (1-x)=x n -xn+1,f′(x)=(n+1)x n-1n n+1-x 令f′(x)=0,解得x=n n+1,即f′(x)在(0,+∞)上有唯一零点x 0=n n+1.在0,n n+1f(x)单调递增;而在n n+1,+∞上,f′(x)<0,f′(x)单调递减.故f(x)在(0,+∞)上的最大值为=nn n+1n+1.1.(2018·重庆高考)设函数f(x)在R 上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)解析:选D 由图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数在x=-2处取得极大值,在x=2处取得极小值.2.(2018·山西联考)已知函数f(x)=(2-a)ln x+1x+2ax(a∈R).(1)当a=0时,求f(x)的极值;(2)求f(x)的单调区间.解:(1)∵当a=0时,f(x)=2ln x+1x,f′(x)=2x -1x 2=2x-1x2(x>0),∴f(x)的极小值为2,无极大值.(2)f′(x)=2-a x -1x2+2a=2x-1ax+1x 2(x>0).①当a≥0②当-2<a<0-1a ,+∞③当a=-2时,f(x)在(0,+∞)上是减函数;④当a<-2-1a ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲 导数的应用(一)授课提示:对应学生用书第17页[考情分析]1.课标卷每年命题会以“一小一大”的格局出现,“一小”即以选择题或填空题的形式考查导数的几何意义和导数在研究函数问题中的直接应用.“一大”即以压轴题的形式考查导数、不等式、方程等方面的综合应用,难度较大;2.作为高考必考内容,课标卷每年在此部分的命题较稳定,有一定程度的综合性,方法、能力要求较高.1.(2017·高考全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( ) A .-1B .-2e -3C .5e -3 D .1 解析:因为f (x )=(x 2+ax -1)e x -1,所以f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.因为x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)e x -1=(x +2)(x -1)e x -1.令f ′(x )>0,解得x <-2或x >1,令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1,选择A.答案:A2.(2016·高考全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x ,所以当x >0时,f ′(x )=1x-3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.答案:y =-2x -13.(2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:y =ln x +2的切线方程为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1), y =ln(x +1)的切线方程为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点的横坐标为x 2), ∴⎩⎨⎧ 1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12, ∴b =ln x 1+1=1-ln 2.答案:1-ln 24.(2017·高考全国卷Ⅱ)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0.(1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2. 解析:(1)f (x )的定义域为(0,+∞).设g (x )=ax -a -ln x ,则f (x )=xg (x ),f (x )≥0等价于g (x )≥0.因为g (1)=0,g (x )≥0,故g ′(1)=0,而g ′(x )=a -1x,g ′(1)=a -1,得a =1. 若a =1,则g ′(x )=1-1x.当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增.所以x =1是g (x )的极小值点,故g (x )≥g (1)=0.综上,a =1.(2)证明:由(1)知f (x )=x 2-x -x ln x ,f ′(x )=2x -2-ln x .设h (x )=2x -2-ln x ,则h ′(x )=2-1x. 当x ∈⎝⎛⎭⎫0,12时,h ′(x )<0;当x ∈⎝⎛⎭⎫12,+∞时, h ′(x )>0.所以h (x )在⎝⎛⎭⎫0,12单调递减,在⎝⎛⎭⎫12,+∞单调递增. 又h (e -2)>0,h ⎝⎛⎭⎫12<0,h (1)=0,所以h (x )在⎝⎛⎭⎫0,12有唯一零点x 0,在⎣⎡⎭⎫12,+∞有唯一零点1,且当x ∈(0,x 0)时,h (x )>0;当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0.因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点.由f ′(x 0)=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0).由x 0∈⎝⎛⎭⎫0,12得f (x 0)<14. 因为x =x 0是f (x )在(0,1)上的最大值点,由e -1∈(0,1),f ′(e -1)≠0得f (x 0)>f (e -1)=e -2. 所以e -2<f (x 0)<2-2.导数的几何意义[方法结论]f ′(x 0)表示曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,曲线y =f (x )在点(x 0,f (x 0))处的切线方程为y -f (x 0)=(x -x 0)f ′(x 0).[题组突破]1.曲线f (x )=2-x e x 在点(0,2)处的切线方程为________.解析:∵f ′(x )=-e x (1+x ),∴f ′(0)=-1,∴切线方程为y -2=-x ,即x +y -2=0.答案:x +y -2=02.(2017·沈阳模拟)设函数f (x )=g (x 2)+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为9x +y -1=0,则曲线y =f (x )在点(2,f (2))处的切线方程为________.解析:由已知得g ′(1)=-9,g (1)=-8,又f ′(x )=12g ′(x 2)+2x ,∴f ′(2)=12g ′(1)+4=-92+4=-12,f (2)=g (1)+4=-4,∴所求切线方程为y +4=-12(x -2),即x +2y +6=0. 答案:x +2y +6=03.(2017·合肥模拟)已知直线y =b 与函数f (x )=2x +3和g (x )=ax +ln x 分别交于A ,B 两点.若|AB |的最小值为2,则a +b =________.解析:设点B (x 0,b ),欲使|AB |最小,曲线g (x )=ax +ln x 在点B (x 0,b )处的切线与f (x )=2x +3平行,则有a +1x 0=2,解得x 0=12-a ,进而可得a ·12-a +ln 12-a=b ①,又点A 坐标为(b -32,b ),所以|AB |=x 0-b -32=12-a-b -32=2 ②,联立方程①②可解得,a =1,b =1,所以a +b =2. 答案:2[误区警示]1.曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.2.曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.利用导数研究函数的单调性[方法结论]函数单调性的判定方法在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在此区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在此区间内单调递减.[典例] (1)(2017·兰州模拟)已知函数f (x )=e x -ax (a ∈R ,e 为自然对数的底数).①讨论函数f (x )的单调性;②若a =1,函数g (x )=(x -m )f (x )-e x +x 2+x 在(2,+∞)上为增函数,求实数m 的取值范围. 解析:①函数f (x )的定义域为R ,f ′(x )=e x -a .当a ≤0时,f ′(x )>0,∴f (x )在R 上为增函数;当a >0时,由f ′(x )=0得x =ln a ,则当x ∈(-∞,ln a )时,f ′(x )<0,∴函数f (x )在(-∞,ln a )上为减函数,当x ∈(ln a ,+∞)时,f ′(x )>0,∴函数f (x )在(ln a ,+∞)上为增函数.②当a =1时,g (x )=(x -m )(e x -x )-e x +x 2+x =(x -m -1)e x +(m +1)x ,∵g (x )在(2,+∞)上为增函数,∴g ′(x )=x e x -m e x +m +1≥0在(2,+∞)上恒成立,即m ≤x e x +1e x -1在(2,+∞)上恒成立, 令h (x )=x e x +1e x -1,x ∈(2,+∞), h ′(x )=(e x )2-x e x -2e x (e x -1)2=e x (e x -x -2)(e x -1)2. 令L (x )=e x -x -2,L ′(x )=e x -1>0在(2,+∞)上恒成立,即L (x )=e x -x -2在(2,+∞)上为增函数,即L (x )>L (2)=e 2-4>0,∴h ′(x )>0,即h (x )在(2,+∞)上为增函数,∴h (x )>h (2)=2e 2+1e 2-1, ∴m ≤2e 2+1e 2-1. 故实数m 的取值范围为⎝⎛⎦⎥⎤-∞,2e 2+1e 2-1. (2)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.①求a ,b 的值;②讨论f (x )的单调性,并求f (x )的极大值.解析:①f ′(x )=e x (ax +a +b )-2x -4.。