第一章数学模型

合集下载

姜启源 数学模型第五版-第1章

姜启源 数学模型第五版-第1章

1.3
问题
建模示例之一 包饺子中的数学
通常,1kg馅, 1kg面, 包100个饺子. 今天,馅比 1kg多, 1kg面不变, 要把馅包完.
应多包几个(每个小些), 还是少包几个(每个大些)?
分析
直观认识——“大饺子包的馅多”! 但是:“用的面皮也多”!
需要比较:饺子从小变大时馅和面增加的数量关系.
C
C´ B´ B A´
O

A
x

D
A,C 两脚与地面距离之和 ~ f() B,D 两脚与地面距离之和 ~ g()
正方形ABCD 绕O点旋转
模型建立
地面为连续曲面 椅子在任意位置 至少三只脚着地 椅子旋转900, 对 角线AC和BD互换 f() , g()是连续函数 对任意, f(), g() 至少一个为0 g(0)=0,f(0) > 0, f(/2)=0, g(/2)>0.
不平的地面上的椅子, 通常三只脚着地—— 放不稳! 挪动几下,使四只脚着地——椅子放稳!
讨论椅子能放稳的条件.
椅子能在不平的地面上放稳吗
模型假设
四腿一样长,椅脚与地面点接触,四脚连线呈正方形. 地面高度连续变化,可视为数学上的连续曲面. 地面相对平坦,椅子在任意位置至少三只脚着地.
模型建立
椅子位置 利用正方形(椅脚连线)的对称性. 用表示椅子位置. 四只脚着地 椅脚与地面距离为零 距离是的函数. 四个距离 (四只脚) 对称性 两个距离
模 型 构 成
尽量采用简单的数学工具
数学建模的一般步骤 模型 求解 模型 分析 模型 检验 各种数学方法、软件和计算机技术. 如结果的误差分析、统计分析、 模型对数据的稳定性分析. 与实际现象、数据比较, 检验模型的合理性、适用性.

《数学模型电子教案》课件

《数学模型电子教案》课件

《数学模型电子教案》PPT课件第一章:数学模型概述1.1 数学模型的定义与分类1.2 数学模型的构建步骤1.3 数学模型在实际应用中的重要性1.4 数学模型与数学建模的区别与联系第二章:数学模型建立的基本方法2.1 直观建模法2.2 解析建模法2.3 统计建模法2.4 计算机模拟建模法第三章:线性方程组与线性规划模型3.1 线性方程组的求解方法3.2 线性规划的基本概念与方法3.3 线性规划模型的应用案例3.4 线性规划模型的求解算法第四章:微分方程与差分方程模型4.1 微分方程的基本概念与分类4.2 微分方程的求解方法4.3 差分方程的基本概念与分类4.4 差分方程的求解方法与应用第五章:概率论与统计模型5.1 概率论基本概念与随机变量5.2 概率分布与数学期望5.3 统计学基本概念与推断方法5.4 统计模型的应用案例第六章:最优化方法与应用6.1 无约束最优化问题6.2 约束最优化问题6.3 最优化方法的应用案例6.4 遗传算法与优化问题第七章:概率图与贝叶斯模型7.1 概率图的基本概念7.2 贝叶斯定理及其应用7.3 贝叶斯网络与推理方法7.4 贝叶斯模型在实际应用中的案例分析第八章:时间序列分析与预测模型8.1 时间序列的基本概念与分析方法8.2 自回归模型(AR)与移动平均模型(MA)8.3 自回归移动平均模型(ARMA)与自回归积分滑动平均模型(ARIMA)8.4 时间序列预测模型的应用案例第九章:排队论与网络流量模型9.1 排队论的基本概念与模型构建9.2 排队论在服务系统优化中的应用9.3 网络流量模型的基本概念与方法9.4 网络流量模型的应用案例第十章:随机过程与排队网络模型10.1 随机过程的基本概念与分类10.2 泊松过程与Poisson 排队网络10.3 马克威茨过程与随机最优控制10.4 排队网络模型的应用案例第十一章:生态学与种群动力学模型11.1 生态学中的基本概念11.2 种群动力学模型的构建11.3 差分方程在种群动力学中的应用11.4 种群动力学模型的案例分析第十二章:金融数学模型12.1 金融市场的基本概念12.2 金融数学模型概述12.3 定价模型与风险管理12.4 金融数学模型在实际应用中的案例分析第十三章:社会经济模型13.1 社会经济系统的基本特征13.2 经济数学模型的构建方法13.3 宏观经济模型与微观经济模型13.4 社会经济模型的应用案例第十四章:神经网络与深度学习模型14.1 人工神经网络的基本概念14.2 深度学习模型的构建与训练14.3 神经网络在数学建模中的应用案例14.4 当前神经网络与深度学习的发展趋势第十五章:数学模型在工程中的应用15.1 工程问题中的数学建模方法15.2 数学模型在结构工程中的应用15.3 数学模型在流体力学中的应用15.4 数学模型在其他工程领域中的应用案例重点和难点解析本《数学模型电子教案》PPT课件涵盖了数学模型概述、建模方法、线性方程组与线性规划、微分方程与差分方程、概率论与统计、最优化方法、概率图与贝叶斯模型、时间序列分析、排队论与网络流量模型、随机过程、生态学与种群动力学模型、金融数学模型、社会经济模型、神经网络与深度学习模型以及数学模型在工程中的应用等多个领域。

线性规划问题及其数学模型

线性规划问题及其数学模型

第一章线性规划问题及其数学模型一、问题旳提出在生产管理和经营活动中常常提出一类问题,即怎样合理地运用有限旳人力、物力、财力等资源,以便得到最佳旳经济效果。

例1 某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需旳设备台时及A、B两种原材料旳消耗,如表1-1所示。

表1-1该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应怎样安排计划使该工厂获利最多?这问题可以用如下旳数学模型来描述,设x1、x2分别表达在计划期内产品I、II旳产量。

由于设备旳有效台时是8,这是一种限制产量旳条件,因此在确定产品I、II旳产量时,要考虑不超过设备旳有效台时数,即可用不等式表达为:x1+2x2≤8同理,因原材料A、B旳限量,可以得到如下不等式4x1≤164x2≤12该工厂旳目旳是在不超过所有资源限量旳条件下,怎样确定产量x1、x2以得到最大旳利润。

若用z表达利润,这时z=2x1+3x2。

综合上述,该计划问题可用数学模型表达为:目旳函数 max z =2x 1+3x 2 满足约束条件 x 1+2x 2≤84x 1≤16 4x 2≤12 x 1、x 2≥0例2 某铁路制冰厂每年1至4季度必须给冷藏车提供冰各为15,20,25,10kt 。

已知该厂各季度冰旳生产能力及冰旳单位成本如表6-26所示。

假如生产出来旳冰不在当季度使用,每千吨冰存贮一种季度需存贮费4千元。

又设该制冰厂每年第3季度末对贮冰库进行清库维修。

问应怎样安排冰旳生产,可使该厂整年生产费用至少?解:由于每个季度生产出来旳冰不一定当季度使用,设x ij 为第i 季度生产旳用于第j 季度旳冰旳数量。

按照各季度冷藏车对冰旳需要量,必须满足:⎪⎪⎩⎪⎪⎨⎧++++++33231343221242114144x x x x x x x x x x 。

,,,25201510==== 又每个季度生产旳用于当季度和后来各季度旳冰旳数量不也许超过该季度旳生产能力,故又有⎪⎪⎩⎪⎪⎨⎧++++++33232213121143424144x x x x x x x x x x 。

第1章-线性规划模型-宋

第1章-线性规划模型-宋

第一章 线性规划模型线性规划(Linear Programming )是数学规划的一个重要组成部分,是最优化与运筹学理论中的一个重要分支和常用的方法,是最优化理论的基础性内容。

第一节 线性规划问题及其数学模型一、问题的提出在生产管理和经营活动中经常提出一类问题,即如何利用有限的人力、物力、财力等资源,以便得到最好的经济效果。

例1 生产计划问题某工厂在计划期内要安排生产Ⅰ、Ⅱ的两种产品,已知生产单位产品所需的设备台时,A 、B 两种原材料的消耗以及每件产品可获得的利润如下表所示。

问应如何安排生产计划使该工厂获利最多?解:设12,x x 分别表示在计划期内生产产品Ⅰ、Ⅱ的产量。

由于资源的限制,所以有:机器设备的限制条件: 1228x x +≤原材料A 的限制条件: 1416x ≤(称为资源约束条件) 原材料B 的限制条件: 2412x ≤同时,产品Ⅰ、Ⅱ的产量不能是负数,所以有120,0x x ≥≥(称为变量的非负约束)。

显然,在满足上述约束条件下的变量取值,均能构成可行方案,且有许许多多。

而工厂的目标是在不超过所有资源限量的条件下,如何确定产量12,x x 以得到最大的利润,即使目标函数1223z x x =+的值达到最大。

综上所述,该生产计划安排问题可用以下数学模型表示:例2 运输问题某公司经销某种产品,三个产地和四个销地的产量、销量、单位运价如下表所示。

问在保证产销平衡的条解:(1)决策变量:设(1,2,3;1,2,3,4)ij x i j ==为从产地i 运到销地j 的运量(2)目标函数:总运费最小3411min ij iji j z c x===∑∑(3)约束条件: 产量约束 销量约束 非负约束 模型为:二、线性规划问题的模型上述几例所提出的问题,可归结为在变量满足线性约束条件下,求使线性目标函数值最大或最小的问题。

它们具有以下共同的特征。

(1)每个问题都可用一组决策变量12(,,,)n x x x 表示某一方案,其具体的值就代表一个具体方案。

1.1 72线性规划问题及其数学模型

1.1 72线性规划问题及其数学模型
可行域
4 3 2
最优解
8 0 3 4
x1
无穷多最优解(多重最优解)
即可行域的范围延伸到无 例: max z=x1+x2
穷远,目标函数值可以无 穷大或无穷小。 ≤4 s.t. -2x1+ x2 一般来说,这说明模型有 x1 - x2 ≤2 错,忽略了一些必要的约 束条件。 ≥0, x2≥0 x1 x2
无穷 多个最优解
2.可行域为非封闭的无界区域
x2 x2 x2
z
z
x1 x1
Z
x1
唯一最优解
无穷多个最优解
无界解
3、可行域为空集
x2
空集 x1
无可行解
两个变量的LP问题的解的启示:
(1)可行域非空时,它是有界或无界凸多边形 (凸集) ,顶点个数只有有限个。 (2)求解LP问题时,解的情况有: 唯一最优解;无穷多最优解;无界解;无可行解。 (3)若可行域非空且有界则必有最优解, 若可行域无界,则可能有最优解,也可能无最优解。 (4)若最优解存在,则最优解或最优解之一一定是 可行域的凸集的某个顶点。 (5)若在两个顶点上同时取到最优解,则这两点的 连线上 任一点都是最优解
由图解法得到的结论:

求解线性规划问题最优解的方法:


确定可行域 = 凸集(凸多边形) 确定可行域顶点 = 求基可行解 寻找最优解, 如果最优解存在,则必在可行域的某一顶点 = 在基可行解中寻找
图解法优点: 直观、易掌握。有助于了解解的结构。
图解法缺点:
只能解决低维问题,对高维无能为力。
1.3 线性规划问题的标准型式
m i nZ
C
j 1
n j1
n
j
Xj

数学模型课件(2007-03-07)

数学模型课件(2007-03-07)

1228年的《算经》修订版载有著名的《兔子问题》:
某人在一处有围墙的地方养了一对兔子,假定这对兔子每月生一对小 兔,而小兔出生后两个月就能生育。问从这对兔子开始一年内能繁殖成多 少对兔子。 对这个问题的回答导致了著名的菲波那契数列的产生。《算经》可以 看作是欧洲数学在经历了漫长的黑夜之后走向复苏的号角。
五、历史上成功的建立数学模型的例 子
阅 读
说到数学模型的建立或数学建模,似乎是一个新 东西、新名词,其实是古已有之的。一个最典型也最 成功的数学建模的例子是行星运动规律的发现。开普 勒根据他的老师第谷近30年天文观测的大量数据,用 了10年时间总结出行星运动的三个规律,但当时还只 是经验的规律,只有确认这些规律,找到它们内在的 根据,才能有效地加以运用。牛顿提出与距离平方成 反比的万有引力公式,利用运动三大定律证明了开普 勒的结论,严格推导出行星运动的三大定律,成功地 解释并预测了行星运动规律,也证明了他建立的数学 模型的正确性。这是数学建模取得光辉成功的一个著 名的例子。
模 型 构 成
椅脚连线为正方形ABCD(如右图)。
t ~椅子绕中心点O旋转角度 f(t)~A,C两脚与地面距离之和 g(t)~B,D两脚与地面距离之和 f(t), g(t) 0
C‘ B‘ C
B t O
A‘
A x D‘
D
模型构成 由假设1,f 和 g都是连续函数 由假设3,椅子在任何位置至少有三只脚 同时着地:对任意t ,f(t)和g(t)中至少有 一个为0。当t=0时,不妨设g(t)=0,f(t)>0,原 题归结为证明如下的数学命题:
通过数学方法对模型进行分析求解,最后再解释和验证所得 的解,进而为解决现实问题提供数据支持和理论指导,这个过程 称为数学建模。

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

2、国际数学建模竞赛(MCM)
创办于1985年,由美国运筹与管理学会,美国工业与应 用数学学会和美国数学会联合举办,开始主要是美国的大学 参赛,90年代以来有来自中国、加拿大、欧洲、亚洲等许多 国家的大学参加,逐渐成为一项全球性的学科竞赛。上一年 11月份报名,每个大学限报4队,每个系限报2队,2月上旬 比赛,4月份评奖。9篇优秀论文刊登在 “The Journal of Undergraduate Mathematics and Its Applications(UMAP)” 专刊上。详见 /
用实际问题的实测数据等 来检验该数学模型
不符合实际 符合实际
交付使用,从而可产生 经济、社会效益
建模过程示意图
七、怎样撰写数学建模的论文? 1、摘要:问题、模型、方法、结果 2、问题重述 3、模型假设 4、分析与建立模型 5、模型求解 6、模型检验 7、模型改进、评价、推广等 8、参考文献 9、附录
数学模型与实验
十一、 资料查询
校内:校图书馆提供电子资源,搜索软件查询 校外:, ,
数学模型与实验
十二 数学建模示例
椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。
1、中国大学生数学建模竞赛(CUMCM)
创办于1990年,由教育部高教司和中国工业与应用数学 学会共同举办,全国几乎所有大专院校都有参加,每年6月份 报名,9月下旬比赛,11月份评奖。优秀论文刊登在《数学 的实践与认识》或?工程数学?每年第一期上。详见

数学模型经典实例

数学模型经典实例





令 f(θ)= xA( θ ) + xC( θ ), g(θ)= xB( θ )+ xD( θ ) 则有 f(θ), g(θ)连续且 f(θ) g(θ)≡0. 桌子在位置 θ* 四脚落地,则有f(θ*) = 0, g(θ*) = 0. 若 f(θ0) = 0, g(θ0) > 0, 则有 f(θ1) > 0, g(θ1) = 0 令 h(θ) = f(θ) - g(θ), 则有 h(θ) 连续 且 h(θ0) < 0, h(θ1) > 0.




1. 模型分析 :T=(nd+L)/v, v↗, 则T↘; d↗, 则 T↗. 2. 多行行进 3. d ↘, 则T↘ . 令d=0, 则有T=L/v。 疏散时间与人数无关! 假设中忽略了人体的厚度!!
修 改 假 设
1.单排教室,直走道,一个出口。 2.人员撤离时, 单行、有序、间隔
d x F ma m 2 dt
2
例2:哥尼斯堡七桥问题
1736 Konigsberg Pregel Euler
数学模型
数学模型是架于数学与实际 问题之间的桥梁 在数学发展的进程中无时无 刻不留下数学模型的印记。

三. 数 学 模 型 的特征
1. 实践性:有实际背景,有 针对性。接受实践的检验。 2. 应用性:注意实际问题的 要求。强调模型的实用价值。 3. 综合性:数学知识的综合。 模型的综合。





问题:求出售时间使净收益最高 令 P’(t)=0 则有 0.8 t - 2×0.05 t = 0 得 t=8 P(8)=130+0.8×8-0.05×82= 133.2 结论: 饲养8天后出售,收益最高为133.2美元

运筹学课件1-1线性规划问题及其数学模型

运筹学课件1-1线性规划问题及其数学模型
上页 下页 返回
• 第三步:确定目标函数 第三步: 以 Z 表示生产甲和乙两种产品各为x1 表示生产甲和乙两种产品各为x 时产生的经济价值, 和x2(吨)时产生的经济价值,总经济价值 最高的目标可表示为: 最高的目标可表示为:
max z=7 x1十5 x2 z=
这就是该问题的目标函数 这就是该问题的目标函数。 目标函数。
上页
下页
返回
• 第1步 -确定决策变量
•设 ——I x1——I的产量 ——II x2 ——II的产量
是问题中要确定的未知量, 是问题中要确定的未知量, 表明规划中的用数量表示的 方案、措施,可由决策者决 方案、措施, 定和控制。 定和控制。
x1
x2
上页
下页
返回
第2步 --定义目标函数
利润
Max Z =
x1 +
x2
上页
下页
返回
第2步 --定义目标函数
Max Z = 2 x1 + 3 x2
上页
下页
返回
对我们有 何限制?
上页
下页
返回
第3步 --表示约束条件
x1 + 2 x2 ≤ 8 4 x1 ≤ 16 4 x2 ≤ 12 x1、 x2 ≥ 0
设备 原材料A 原材料 原材料B 原材料 利润 I 1 4 0 2 II 2 0 4 3 资源限量 8 台时 16kg 12kg
上页 下页 返回
– 用向量表示
m Z = CX ax n ∑Pj xj = b i=1 x ≥ 0 j =1 2,...n , j 其 : 中 x1 x 2 X= ... xn C = (c1, c2 , ) a1 j a2 j Pj = ... amj b 1 b 2 b= ... bm

数学建模例题[1]

数学建模例题[1]

数学建模习题指导第一章 初等模型讨论与思考讨论题1 大小包装问题在超市购物时你注重到大包装商品比小包装商品便宜这种现象吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1,试用比例方法构造模型解释这种现象。

(1)分析商品价格C 与商品重量w 的关系。

(2)给出单位重量价格c 与w 的关系,并解释其实际意义。

提示:决定商品价格的主要因素:生产成本、包装成本、其他成本。

单价随重量增加而减少单价的减少随重量增加逐渐降低思考题2 划艇比赛的成绩赛艇是一种靠浆手划桨前进的小船,分单人艇、双人艇、四人艇、八人艇四种。

各种艇虽大小不同,但形状相似。

T .A .M c M a h o n 比较了各种赛艇1964—1970年四次2000m 比赛的最好成绩(包括1964年和1968年两次奥运会和两次世界锦标赛),见下表。

建立数学模型解释比赛成绩与浆手数量之间的关系。

329434w w c γβ+=''-各种艇的比赛成绩与规格第二章 线性代数模型森林管理问题森林中的树木每年都要有一批砍伐出售。

为了使这片森林不被耗尽且每年都有所收获,每当砍伐一棵树时,应该就地补种一棵幼苗,使森林树木的总数保持不变。

被出售的树木,其价值取决于树木的高度。

开始时森林中的树木有着不同的高度。

我们希望能找到一个方案,在维持收获的前提下,如何砍伐树木,才能使被砍伐的树木获得最大的经济价值。

思考:试解释为什么模型中求解得到的 为每周平均销售量会略小于模型假设中给出的1。

练习:857.0 nR将钢琴销售的存贮策略修改为:当周末库存量为0或1时订购,使下周初的库存达到3架;否则,不订购。

建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。

2.将钢琴销售的存贮策略修改为:当周末库存量为0时订购本周销售量加2架;否则,不订购。

建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。

数学建模综合练习

数学建模综合练习

数学建模综合练习第一章数学建模方法论1.举出两三个实例说明建立数学模型的必要性,包括实际问题的背景,建模目的,需要大体上什么样的模型以及怎样应用这种模型.2.怎样解决下面的实际问题.包括需要哪些数据资料,要作些什么观察、试验以及建立什么样的数学模型等.(1)估计一个人体内血液的总量.(2)为保险公司制定人寿保险计划(不同年龄的人应缴纳的金额和公司赔偿的金额).(3)估计一批日光灯管的寿命.(4)确定火箭发射至最高点所需的时间.(5)决定十字路口黄灯亮的时间长度.(6)为汽车租赁公司制订车辆维修、更新和出租计划.(7)一高层办公楼有4部电梯,早晨上班时间非常拥挤,试制订合理的运行计划3.下面是众所周知的智力游戏:人带猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米.试设计一个安全过河方案,并使渡河次数尽量地少.4.假定人口的增长服从这样的规律:时间t的人口为x (t),t到t+∆t时间内人口的增长与x m- x(t)成正比(其中x m为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.5.为了培养想象力、洞察力,考察对象时除了从正面分析外,还常常需要从侧面或反面思考,试尽可能迅速地回答下列的问题:(1)某甲早8:00从山下旅馆出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅馆.某乙说,甲必在2天中的同一时刻经过路径中的同一地点.为什么?(2)甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同,甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站.问开往甲乙两站的电车经过丙站的时刻表是如何安排的?(3)某人住T市在他乡工作,每天下班后乘火车于6:00抵达T市车站,他的妻子驾车准时到车站接他回家.一日他提前下班搭乘早一班火车于5:30抵T市车站,随即步行回家,他的妻子像往常一样驾车前往,在半路上遇到他,即接他回家,此时发现比往常提前10分钟.问他步行了多长时间.6.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗?比如洁银牙膏50g装的每支1.50元,120g装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象.(1)分析商品价格c与商品重量w的关系.价格由生产成本、包装成本和其它成本决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素.(2)给出单位重量价格c与w加c减小的程度变小.解释实际意义是什么?7.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角α应多大(如图1).若知道管道长度,需用多长布条(可考虑两端的影响).如果管道是其它形状呢?8.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,k >r .在每一生产周期T 内,开始的一段时间(0<t <T 0)一边生产一边销售,后来的一段时间(T 0<t <T )只销售不生产,画出贮存量)(t q 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期.讨论k 》r 和k ≈ r 的情况.第二章 初等数学模型1.在2.5节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.2.设某产品的售价为p ,成本为q ,售量为x (与产量相等),则总收入与总支出分别为px I =,qx C =.试在产销平衡的情况下建立最优价格模型.3.在最优价格模型中,如果考虑到成本q 随着产量x 的增加而降低,试做出合理的假设,重新求解模型.4.在考虑最优价格模型问题时,设销售期为T ,由于商品的损耗,成本q 随时间增长,设q =q 0 +βt ,β为增长率.又设单位时间的销售量为x = a – bp (p 为价格).今将销售期分为0< t <T /2和T /2< t <T 两段,每段的价格固定,记作p 1,p 2.求p 1,p 2的最优值,使销售期内的总利润最大.如果要求销售期T 内的总销售量为Q 0,再求p 1,p 2的最优值.第三章 微分方程模型1.对于技术革新的推广,在下列几种情况下分别建立模型.(1)推广工作通过已经采用新技术的人进行,推广速度与采用新技术的人数成正比,推广是无限的.(2)总人数有限,因而推广速度还会随着尚未采用新技术人数的减少而降低. (3)在(2)的前提下考虑广告等媒介的传播作用.2.建立铅球掷远模型.不考虑阻力,设铅球初速度为v ,出手高度为h ,出手角度为α(与地面夹角),建立投掷距离与v ,h ,α的关系式,并求v ,h 一定的条件下求最佳出手角度.3.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:xNrx t xln )(= ,其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为h =Ex .讨论渔场鱼量的平衡点及其稳定性,求最大持续产量h m 及获得最大产量的捕捞强度E m 和渔场鱼量水平x *0.4.在一种溶液中,化学物质A 分解而形成B ,其速度与未转换的A 的浓度成比例.转换A 的一半用了20分钟,把B 的浓度y 表示为时间的函数,并作出图象.第四章 运筹学模型1.一家保姆公司专门向顾主提供保姆服务.根据估计,下一年的需求是:春季6000人日,夏季7500人日,秋季5500人日,冬季9000人日.公司新招聘的保姆必须经过5天的培训才能上岗,每个保姆每季度工作(新保姆包括培训)65天,保姆从该公司而不从顾主那里得到报酬,每人每月工作800元.春季开始时公司拥有120名保姆,在每个季度结束后,将有15%的保姆自动离职. (1)如果公司不允许解雇保姆,请你为公司制定下一年的招聘计划.(建立数学模型) (2)如果在每个季度结束后允许解雇保姆,请为公司制定下一年的招聘计划.(建立数学模型)2.某工厂生产两种产品A、B分两班生产,每周生产总时间为80小时,两种产品的预测销售量、生产率和赢利如下表(1)充分利用现有能力,避免设备闲置;(2)周加班时间限制在10小时以内;(3)两种产品周生产品量应满足预测销售,满足程度的权重之比等于它们单位利润之比;(4)尽量减少加班时间.例3 医院为病人配制营养餐,要求每餐中含有铁不低于50单位,蛋白质不低于40单位,钙不低于42单位.假设仅有两种食品A和B可供配餐,相关数据见下表.试问,如何购买两种食品进行搭配,才能即使病人所需营养达到需求,又使总花费最低?第五章概率统计模型1.报童每天订购的报纸,每卖出一份赢利a元,如果卖不出去并将报纸退回发行单位,将赔本b元.每天买报人数不定,报童订报份数如超过实际需要,就要受到供过于求的损失;反之,要受到供不应求的损失.设P(m)是售出m份报纸的概率,试确定合理的订报份数,使报童的期望损失最小.2.血友病也是一种遗传疾病,得这种病的人由于体内没有能力生产血凝块因子而不能使出血停止.很有意思的是,虽然男人及女人都会得这种病,但只有女人才有通过遗传传递这种缺损的能力.若已知某时刻的男人和女人的比例为1:1.2,试建立一个预测这种遗传疾病逐代扩散的数学模型.3.假设有一笔1000万元的资金于依次三年年初分别用于工程A和B的投资.每年初如果投资工程A,则年末以0.4的概率回收本利2000万元或以0.6的概率分文不收;如果投资工程B,则年末以0.1的概率回收2000万元或以0.9的概率回收1000万元.假定每年只允许投资一次,每次只投1000万元;试确定第3年末期望资金总数为最大的投资策略.4.某石油公司必须就下一个打井位置作出决定.如果打出来的井什么也没有(既无油也无天然气),则投资费用(打井费用)全部赔掉.如果打出来的是气井,则可以说是部分成功,如果打出来的是油井,则是完全成功.由于结果的不确定性,更由于做某种测试(取样)只能得到不完全的信息,因而作出决定是困难的.试建立一个数学模型,使公司的预期收益最大参考答案第一章数学建模方法论1.解(略)2.解(1)注射一定量的葡萄糖,采集一定容量的血样,测量注射前后葡萄糖含量的变化,即可估计人体的血液总量.注意采集和测量的时间要选择恰当,使血液中的葡萄糖含量充分均匀,又基本上未被人体吸收.(2)调查不同年龄的人的死亡率,并估计其在未来一定时期的变化,还应考虑银行存款利率和物价指数,保险金与赔偿金之比大体上应略高于死亡率.(3)从一批灯管中取一定容量的样本,测得其平均寿命,可作为该批灯管寿命的估计值.为衡量估计的精度,需要从样本寿命确定该批灯管寿命的概率分布,即可得到估计值的置信区间.还可试验用提高电压的办法加速寿命测试,以缩短测量时间.(4)根据牛顿第二定律建立火箭向上发射后的运动方程,初速已知,若不考虑空气阻力,很容易算出到达最高点(即速度为零)时间;若考虑空气阻力,不妨设其与火箭速度(或速度的平方)成正比,并有试验及拟合方法确定阻力系数,再解方程得到结果.(5)司机看到黄灯后停车要有一定的刹车距离S 1,设通过十字路口的距离为S 2,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线S 1之内的汽车能通过路口,即t ≈(S 1+S 2)/v .S 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.(6)根据资料和经验确定维修费用随着车龄和行驶里程的增加而增加的关系,再考虑维修和更新费用,可以以一年为一个时段,结合租金决定应该维修或更新.(7)统计在各层上班的人数,通过数据或计算确定电梯运行时间,以等待的人数与时间乘积为目标,建立优化模型,确定每部电梯运行的楼层(有的从大厅直接运行到高层).3.解 人、猫、鸡、米分别记为i =1, 2, 3, 4,当i 在此岸时记x i =1,否则记x i =0,则此岸的状态可用s =(x 1, x 2, x 3, x 4)表示.记s 的反状态为s '=(1-x 1, 1-x 2, 1-x 3, 1-x 4),允许状态集合为S ={(1, 1, 1, 1),(1, 1, 1, 0),(1, 1, 0, 1),(1, 0, 1, 1)(1, 0, 1, 0)及它们的5个反状态}. 决策为乘船方案,记作d =(u 1, u 2, u 3, u 4),当i 在船上时记u i =1,否则记u i =0,允许决策集合为D ={(1, 1, 0, 0),(1, 0, 1, 0),(1, 0, 0, 1),(1, 0, 0, 0)}.记第k 次渡河前的状态为s k ,第k 次渡河的决策为d k ,则状态转移律为s k +1=s k +(-1)k d k ,设计安全过河方案归结为求决策序列d 1, d 2, …, d n ∈D ,使状态s n ∈S 按状态转移律由初始状态s 1=(1, 1, 1, 1)经n 步到达s n +1=(0, 0, 0, 0).一个可行方案如下:4.解 )(d d x x r txm -=,r 为比例系数,0)0(x x =,解为rtm m x x x t x ---=e )()(0,如图2中粗实线所示.当t 充分大时,它与Logistic 模型相近.5.解(1)设想有两个人一人上山,一人下山,同 一天同时出发,沿同一路径,必定相遇.(2)不妨设从甲站到乙站经过丙站的时刻表是: 8:00,8:10,8:20,…,那么从乙站到甲站经过丙 图2 站的时刻表应该是:8:09,8:19,8:29,….(3)步行了25分钟.设想他的妻子驾车遇到他后,先带他去车站,再回家,汽车多行驶了10分钟,于是带他去车站这段路程汽车跑了5分钟,而到车站的时间是6:00,所以妻子驾车遇到他的时刻是5:55.x x6.解 (1)生产成本主要与重量w 成正比,包装成本主要与表面积s 成正比,其它成本也包含与w 和s 成正比的部分,上述三种成本中都含有与w 和s 无关的成分.又因为形状一定时一般有s ∝w 2/3,故商品的价格可表为C = αw +β w 2/3+γ(α,β,γ为大 于0的常数).(2)单位重量价格131--++==w w wCc γβα,其简图 如图3所示.显然c 是w 的减函数,说明大包装商品比小包 装商品便宜;曲线是下凸的,说明单价的减少值随包装的变大是逐渐降低的,不要追求太大包装的商品. 图3 7.解 将管道展开如图4,可得απcos d w =,若d 一 定,0→w ,2πα→;d w π→,0→α.若管道长度为l ,不考虑两端的影响时布条长度显然为wdlπ,若考虑两端的影响,则应加上απsin dw.对于其它形状管道,只需将d π改为相应的周长即可. 图48.解 贮存量)(t q 的图形如图5.单位时间总费用KT r k r c T c T c 2)()(21-+=, 使)(T c 达到最小值的最优周期)(221r k r c kc T -=*.当k 》r 时,rc c T 212=*,相当 于不考虑生产的 图5 情况.当k ≈ r 时,∞→*T ,因为产量被销量抵消,无法形成贮存量.第二章 初等数学模型1.解 不妨设1)(+'=b b λλ,表示火势b 越大,灭火速度λ越小,分母b +1中的1是防止b →0x时λ→∞而加的.最优解为λβλβλ'++'+++'=)1()(21]()1(2[23221b c b b b c b c x . 2.解 因为售量x 依赖于价格p ,记作)(p f x =,称为需求函数,它是p 的减函数.由此可知收入I 和支出C 都是价格p 的函数,所以利润U 可以表示为)()()(p C p I p U -= (1)使利润U (p )达到最大的最优价格p *可以由0d d *==p p p U 得到,即**d d d d p p p p pC pI ===(2)其中p I d d 称为边际收入,pC d d 称为边际支出.(2)式表明最大利润在边际收入等于边际支出时达到. 假设需求函数是线性函数,即bp a p f -=)(,0,>b a (3)并且每件产品的成本q 与产量x 无关,将总收入函数、总支出函数、需求函数和(3)式代入(1)式可得))(()(bp a q p p U --=用微分法求出使U (p )达到最大的最优价格p *为baq p 22*+=(4) 在(3)式中a 可以理解为这种产品免费供应时(p = 0)社会的需求量,称为“绝对需求量”.pxb d d -=表示价格上涨一个单位时销售量下降的幅度.在实际工作中a ,b 可以由价格p 和售量x 的统计数据用最小二乘法拟合来确定.(4)式表明最优价格是两部分之和,一部分是成本q 的一半,另一部分与“绝对需求量”成正比,与市场需求对价格的敏感系数成反比. 3.不妨设kx q x q -=0)(,k 是产量增加一个单位时成本的降低.最优价格为bakb ka q p 2)1(20*+--=.4.总利润为 ⎰⎰--+--=TT T t bp a t q p t bp a t q p p p U 222201121d ))](([d ))](([),()]}43([)()]4([){(022011Tq p b bp a Tq p b bp a ββ+---++---= 由01=∂∂p U ,02=∂∂p U,可得最优价格 )]4([2101T q b a b p β++=,)]43([2102Tq b a b p β++= 设总销量为Q 0,)(2d )(d )(21222010p p bTaT t bp a t bp a Q T T T +-=-+-=⎰⎰在此约束条件下),(21p p U 的最大值点为8~01T bT Q b a p β--=,8~02T bT Q b a p β+-=第三章 微分方程模型1.解 设t 时刻采用新技术的人数为x (t ).(1)指数模型x t xλ=d d . (2)Logistic 模型)(d d x N ax tx-=,N 为总人数.(3)广告等媒介在早期作用较大,它对传播速度的影响与尚未采用新技术的人数成正比,在模型(2)的基础上,有))((d d x N b ax tx-+= (2)和(3)区别见图6.图6 2.解 在图7坐标下铅球运动方程为0=x,g y -= ,0)0(=x ,h y =)0(, αcos )0(v x= ,αsin )0(v y = . 解出)(t x ,)(t y 后,可以得铅球掷远为ααααcos )2sin (cos sin 212222v g hgv g v R ++=图7 这个关系还可表为 )tan (cos 2222ααR h v g R +=. 由此计算0d d =*ααR ,得最佳出手角度)(2sin 21gh v v +=-*α,和最佳成绩gh v gvR 22+=*.设h =1.5m ,v =10m/s ,则 4.41=*α,m 4.11=*R . 3.解 模型为Ex xNrx x F x-==ln )( ,如图8所rN/示,有2个平衡点:x = 0和x 0 =rE N -e.可证x = 0不稳定,x 0稳定(与E ,r 的大小无关).最大持续产量为h m = rN/e ,获得h m 的E m = r ,x *0 =e /N .4.解 记B 的浓度为时间t 的函数y (t ),A 的浓度为x (t ). 图8 一、假设1.1molA 分解后产生n molB . 2.容体的体积在反应过程中不变. 二、建立模型,求解有假设知,A 的消耗速度与A 的浓度成比例,故有下列方程成立kx tx-=d d 其中k 为比例系数.设反应开始时t = 0,A 的浓度为x 0,由题中条件知当t = 20(分)时,A 的浓度为021)20(x x =.解初值问题⎪⎩⎪⎨⎧==-)0(d d x x kx tx得 ktx t x -=e )(0它应满足020021e )20(x x x k ==⨯- 解得 2ln 201=k 所以得 )2ln 200e )((tx t x -=由于B 的浓度为x 浓度减少量的n 倍,故有)e1(]e[)(2ln 2002ln 2000ttnx x x n t y ---=-=三、作图(如图9) 图9第四章 运筹学模型1.解 (1)设4个季度开始时公司新招聘的保姆数量分别为x 1, x 2, x 3, x 4人,4个季度开始时nx保姆总数量分别为S 1, S 2, S 3, S 4人.以本年度付出的总报酬最少(即4个季度开始时保姆总数量之和最小)为目标,则模型为s .t .⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥+=+=+=+=+≥+≥+≥+≥+++=0,,,,,,,85.085.085.01205900065555006557500655600065min4321432143432321211443322114321S S S S x x x x x S S x S S xS S x S x S x S xS x S S S S S Z (2)设4个季度开始时公司新招聘的保姆数量分别为x 1, x 2, x 3, x 4人,4个季度结束时解雇的保姆数量分别为y 1, y 2, y 3, y 4人,4个季度开始时保姆总数量分别为S 1, S 2, S 3, S 4人.以本年度付出的总报酬最少(即4个季度开始时保姆总数量之和最小)为目标,则模型为s .t .⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥-+=-+=-+=+=+≥+≥+≥+≥+++=0,,,,,,,,,,85.085.085.01205900065555006557500655600065min4321321432134342323121211443322114321S S S S y y y x x x x y x S S y x S S yx S S x S x S x S xS x S S S S S Z 2.解 (1)建立模型设:①每班上班时间为8小时,在上班时间内只能生产一种产品; ②周末加班时间内生产哪种产品不限;③生产A 产品用x 班,生产B 产品用y 班,周加班时生产A 产品用x 1小时,生产B 产品用y 1小时.则有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤+=++≤+≤+=+且为整数0,,,101:2148:987084581011111111y x y x y x x x y y x x y y y x (2)求解现在求满足(1)中第2,3个方程可看出:8≤x ,5≥y ;将(1)中的第1个方程代入第4个方程得:1179720128y x y -+= 现在就是在满足5≤y ,1011≤+y x 条件下,使上式两端的取值尽量接近.显然5=y ,01=x ,101=y因此 5=x制定方案为,生产A ,B 两种产品所占总时间各一半,周加班10小时全用于生产产品B .3.解:设购买食品A 和B 依次为x 1和x 2(kg ),则有 营养最低要求满足:10x 1+5x 2≥50 (铁含量) 5x 1+8x 2≥40 (蛋白质含量)6x 1+5x 2≥42 (钙含量)总花费数记为Z ,则有数学模型2134min x x Z +=s .t .⎪⎪⎩⎪⎪⎨⎧≥≥+≥+≥+0,)3.3(,4256)2.3(,4085)1.3(,5051021212121x x x x x x x x 用图解法求解上述问题.首先以x 1,x 2为坐标轴,建立平面直角坐标系(如图3-10),由于x 1,x 2均非负,故只画出了第一象限.其次,将其余约束条件几何化.条件(3.1)表示的是一个半平面,先画出直线10x 1+5x 2=50,因为10x 1+5x 2≥50,故直线(3.1)的上方区域即条件(3.1)所满足的x 1,x 2的取值范围;同理将条件(3.2)、(4.3)也几何化,并注意到几个条件要同时满足,便求得一个以顶点A 、B 、C 、D 为顶点的右上方无界的五边形区域1x ABCD 2x .这个区域内的任一点(x 1,x 2)都是一个可行性配餐方案.图3—10图3—11最后,为了求出最优解,将目标函数也进行几何化,有11)4.3(33412Z x x +-=称为目标函数直线族,因为其中的Z 作为参数出现.易见,随着Z 的逐渐增大,目标函数直线(3.4)向右上方平行移动.也就是说,随着目标函数直线的逐渐往右上方平移,Z 的值越来越大,反之,Z 的值越来越小(如图3-11).又原问题是求函数Z 的最小值,故应令目标函数直线尽可能往左下方平移.但这种平移是有限制的,即点(x 1,x 2)必须在可行域内.于是两者的结合便可确定本例的最优解.通过上述斜率关系分析可知目标函数直线与直线(3.1)和直线(3.3)的交点(顶点C )相切,即直线(3.1)与直线(3.3)的交点即最优解点.于是问题就变成了求解方程组⎩⎨⎧=+=+.4256,505102121x x x x 易解得x 1=2,x 2=6为最优解,通常记作:Tx )6,2(62=⎪⎪⎭⎫⎝⎛=* 对应的目标函数值称为最优值,记作 Z *=26第五章 概率统计模型1.解 设报童每天订购Q 份报纸,则其收益函数为⎩⎨⎧>≤--=Q m am Qm b m Q am m y ,,)()( 利润的期望为∑∑∞+==+-+=1)()(])[()]([Q m Qm m aQP m P bQ m b a m y E比较各个m 的)]([m y E 值,使其最大者即为所求.若m 的取值过多,可将)]([m y E 当成m 的连续函数或借鉴连续函数求极值的方法令0d )]([d =mm y E .2.解 假设有α%的人患有血友病,并假设下一代与上一代虽人数可能不等,但所生男女比例一样.基于这样一个假设,不妨设下一代男女与上一代相同,设初始第一代男女分别占总人数的比例占总人数的比例为 a 0,b 0,由题设,a 0:b 0=1:1.2.注意到只有女人遗传血友病,由此,第一代将有%210αb 个女人及%210αb 个男人有血友病,血友病占总人数的百分比为 %2.22.1%0001αα=+=b a b c同理,第二代将有%21210αb ⋅个女人及%21210αb ⋅个男人有血友病,血友病占总人数的百分比为 %2.22.121%210002αα⋅=+=b a b c依次类推,第n 代将有%)21(0αb n个女人及%)21(0αb n个男人有血友病,血友病占总人数的百分比为%2.22.1)21(%)21(10001αα⋅=+=--n n n b a b c令∞→n ,则0→n c .3.解 建立决策树(如图13).图13在投资A 的决策树中,第一年投资A ,第二年投资B ,第三年投资B 的期望值最大. 在投资B 的决策树中(只在A 的决策树中②节点中的0.4,0.6分别换成0.1,0.9即可),可算得第一年投资B ,第二年投资B ,第三年投资B 的期望值是两个决策树中的最大者. 4.解 建立模型B 1——预测是油井,B 2——预测是气井,B 3——预测是无油气井.由于做取样只能得到不完全的信息,因此根据取样结果,计算出在B 1,B 2,B 3分别发生的条件下,B 1,B 2,B 3发生的概率.然后利用贝叶斯公式,计算出实际是油井、气井和废井情况下,而预测是B 1,B 2,B 3之一的概率值,若给出各种情况下的费用,计算出各个期望值即可.下面画出决策3000 0 20001000 2000 4000 4000 3000 1000 3000 3000 2000树(如图14).图14。

第一 线性规划(共188张PPT)

第一 线性规划(共188张PPT)
个要求表述为
x1 ≥0, x2 ≥0
• 综上所述,该问题的数学模型表示为
maxZ= 3x1 +5 x2
x1
≤8
2x2 ≤12
3x1 +4 x2 ≤36
x1 ≥0, x2 ≥0
5
第一节 线性规划一般模型
• 例2. 运输问题 某名牌饮料在国内有三个生产厂,分布在城市A1、 A2、A3,其一级承销商有4个,分布在城市B1、B2、B3、 B4,已知各厂的产量、各承销商的销售量及从Ai到Bj 的每吨饮料运费为Cij,为发挥集团优势,公司要统 一筹划运销问题,求运费最小的调运方案。
(3)约束条件。产量之和等于销量之和,故要满足:
▪ 供应平衡条件
x11+x12+x13+x14=5 x21+x22+x23+x24=2 x31+x32+x33+x34 =3
§ 销售平衡条件
x11+x21+x31=2 x12+x22+x32=3 x13+x23+x33=1 x14+x24+x34=4
§ 非负性约束
29
第三节 线性规划的标准型
§ 标准化2
minZ= x1 +2 (x2′-x 2〃) +3 x3′
函数。可能是最大化,也可能是最小化。 • 线性规划一般模型的代数式 为:
max(min)Z=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn ≤(≥,=)b1 a21x1+a22x2+…+a2nxn ≤(≥,=)b2 …………… am1x1+am2x2+…+amnxn≤(≥,=)bm x1,x2,…,xn ≥(≤)0

运筹学

运筹学
满足
12X1 + 6X2 ≤ 600 X1≥0,X2 ≥0 使 max f(x)=7X1 + 5X2
3.合理配料模型
例1-5 用三种原料A1、A2、A3配制一种食品,要求该食品中 蛋白质、脂肪、碳水化合物和维生素的含量分别不低于150、 200、250、300个单位,这三种原料的单价及每单位原料所含各 种成份的数量如表1-6所示。问如何配制这种食品,使成本最低?
X2 = 18 maxf(x) = 2600
第三节
解的结构
线性规划的解有三种情况:有最优解、有解但无 最优解和无可行解。有最优解又有两种情况:有惟一 的最优解和有无穷多个最优解。 当线性规划的约束条件中出现矛盾约束时,即二 元一次不等式组无解时,线性规划问题无可行解。
在例2-1中,加一个约束条件: 求x1,x2
令f(x)=-f(x) ′ 则maxf(x)=-min[-f(x)] =-minf(x) ′
例1-14 将下列线性规划数学模型化为标准形式: 求 x1,x2,x3
2x1 +
x2 + x3
≤ 8
满足
x1
-
x2
x2
+
x3
≥ 3
3x1 -
– 2x3 ≤ -5
≥0,X3是自由变量
X1≥0,x2
使 maxf(x) = x1 – 2x2 + 3x3
解:令X3=X4-X5,其中X4≥0,X5≥0, 在第一个约束条件的左边加入一个松驰变量X6,化为等式; 在第二个约束条件的左边减去一个松驰变量X7,化为等式; 在第三个约束条件的左边加入一个松驰变量X8,化为等式; 并且等式两边同乘以-1; 将求 maxf(x) = X1 - 2X2 + 3X3 化为求

数学建模讲义

数学建模讲义
π π
π
3.模型建立 3.模型建立
已知 f (θ), g(θ)为连续函数, f (0) = 0, g(0) = 0,且对任意 θ , 有
f (θ)g(θ) = 0,证明存在 θ0 ∈(0, ) ,使 f (θ0) = g(θ0) = 0 2
π
4.求解
证明:令 F (θ ) = f (θ ) − g (θ ) 。则 F (θ ) 连续。 且 F (0) = f (0) − g (0) > 0 , F ( ) = f ( ) − g ( ) < 0 , 据介值定理,必定存在 θ 0 ∈ (0, 即 f (θ 0) = g (θ 0 ) = 0 。
三、问题假设 1、人口虽然是离散量,可以看作某个连续量的特 例,不妨假设人口是连续量。 2、设N(t),r(t,N(t))表示t时刻的人口总数和增长 、设N(t),r(t,N(t))表示t 率,其它因素暂不考虑,则在t t+△ 率,其它因素暂不考虑,则在t到t+△t时间内人 口总数的增长为 N(t+△t)-N(t)=r(t,N(t))N(t)△ N(t+△t)-N(t)=r(t,N(t))N(t)△t 连续化即为: dN/dt=r(t,N(t))N(t) 3、由于r(t,N(t))的不确定性,该方程求解十分困 、由于r(t,N(t))的不确定性,该方程求解十分困 难。
π
π
π
π
2
2
2
2
) ,使 F (θ 0 ) = 0 ,
货物交换模型 1.问题描述 1.问题描述
在一个部落内根据分工, 人们从事三种劳动: 农田耕作 (F) 、 农具制作(M)及纺织(C) 。交易系统为实物交易如下:
F F M C 1/2 1/4 1/4

数学模型-第01章(第五版)

数学模型-第01章(第五版)

R ~大皮半径 r ~小皮半径
Sk1R2 V k2R3 VkS3/2 (2)
sk1r2, vk2r3 vks3/2 (3)
(1),(2),(3)
Vn3/2v
消去S, s, k
解释
定性分析 V 比 nv 大 (n>1)——大饺子包得馅多. 定量结果
应用 若100个饺子包1kg馅, 50个饺子能包多少馅?
分析
建立馅、皮与数学概念的联系 :馅——体积,皮——表面积
体积V、面积S 一个大饺子
体积v、面积s
n个小饺子
S
s s…s
V
vv
v
V和 nv 哪个大? 定性分析 V比 nv大多少? 定量结果
假设 1.皮的厚度一样 2.饺子的形状一样
建模
Sns(1)
两个 k1 (及k2) 一样
体积与面积的联系——半径(特征半径 )
一 1.2 数学建模的重要意义
章 1.3 建模示例之一 包饺子中的数学
1.4 建模示例之二 路障间距的设计

立 数 学

1.5 建模示例之三 椅子能在不平的 地面上放稳吗
1.6 数学建模的基本方法和步骤 1.7 数学模型的特点和分类
型 1.8 怎样学习数学建模——学习课程
和参加竞赛
1.1 从现实对象到数学模型
数学建模
计算机技术
知识经济
为教育改革注入强大活力
• 数学教育本质上是一种素质教育. • 数学教育应培养两种能力:算数学(计算、推导、
证明…)和用数学(分析、解决实际问题). 传统的数学教学体系和内容偏重前者,忽略后者. • 让学生参加将数学应用于实际的尝试, 参与发现 和创造的过程.
数学建模引入教学符合教育改革的需要

数学模型程序代码-Matlab-姜启源-第一章-建立数学模型

数学模型程序代码-Matlab-姜启源-第一章-建立数学模型

数学模型程序代码-M a t l a b-姜启源-第一章-建立数学模型-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1章 建立数学模型1.(求解,编程)如何施救药物中毒p10~11人体胃肠道和血液系统中的药量随时间变化的规律(模型):d ,(0)1100d (,0)d ,(0)0d xx x ty x y y tλλμλμ⎧=-=⎪⎪>⎨⎪=-=⎪⎩ 其中,x (t )为t 时刻胃肠道中的药量,y (t )为t 时刻血液系统中的药量,t =0为服药时刻。

1.1(求解)模型求解p10~11要求:① 用MATLAB 求解微分方程函数dsolve 求解该微分方程(符号运算)。

② 用MATLAB 的化简函数simplify 化简所得结果。

③ 结果与教材P11上的内容比较。

提示:dsolve 和simplify 的用法可用help 查询。

建议在命令窗口中操作。

1.2(编程)结果分析p11已知λ=0.1386, μ=0.1155,将上题中得到x (t )和y (t )两条曲线画在同一个图形窗口内。

参考图形如下。

MATLAB命令plot, fplot, hold on/off, grid on/off, xlabel, ylabel, text 。

★ 编写的程序和运行结果:2.(编程,验证)商人们怎样安全过河p8~9三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行。

随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。

但是如何乘船的大权掌握在商人们手中。

商人们怎样才能安全渡河呢?[模型构成]决策:每一步(此岸到彼岸或彼岸到此岸)船上的人员。

要求:在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。

x k第k次渡河前此岸的商人数y k第k次渡河前此岸的随从数x k , y k=0,1,2,3; k=1,2,⋯过程的状态s k=(x k , y k)允许状态集合S={(x, y)|x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}u k第k次渡船上的商人数v k第k次渡船上的随从数u k , v k=0,1,2; k=1,2,⋯决策d k=(u k , v k)允许决策集合D={(u , v)|u+v =1, 2}状态转移律s k+1=s k+(-1)k d k[多步决策问题]求d k∈D(k=1, 2, ⋯, n), 使s k∈S, 并按转移律由s1=(3,3) 到达s n+1=(0,0)。

初等模型-数学模型

初等模型-数学模型

几何模型
01
02
03
平面几何
平面几何是几何模型的基 础,通过点、线、面等基 本元素描述实际问题,如 三角形、四边形、圆等。
立体几何
立体几何是描述三维空间 中物体形状和位置关系的 数学模型,如长方体、球 体、圆柱体等。
解析几何
解析几何是将几何问题转 化为代数问题的数学模型, 通过代数方法解决几何问 题。
提高数学模学模型具有强大的预测和决策支持功能 ,可以提高决策的科学性和准确性。通过 数学模型的建立和应用,可以解决实际问 题,推动科学技术和社会经济的发展。
影响力
加强数学模型的宣传和推广,提高其在社 会、经济、科技等领域的认知度和影响力 。同时,加强国际交流与合作,推动数学 模型在全球范围内的应用和发展。
感谢观看
THANKS
通过数学模型可以模拟物种进化过程, 解释生物多样性的起源和演化。
在商业决策中的应用
市场预测
通过分析历史数据和市场趋势, 可以建立一个数学模型来预测未
来的市场需求和销售情况。
投资决策
利用数学模型评估投资组合的风 险和回报,帮助投资者做出明智
的投资决策。
供应链管理
通过数学模型优化库存管理、物 流和运输,降低成本并提高效率。
01
02
03
04
解析法
通过数学公式推导求解,适用 于有解析解的简单问题。
数值法
通过数值计算求解,适用于大 多数实际问题。
近似法
通过近似计算求解,适用于难 以精确求解的问题。
模拟法
通过模拟实验求解,适用于难 以建立数学模型的问题。
数学模型的验证与优化
模型验证
通过对比模型的预测结果与实际数据 进行验证,确保模型的准确性。

数学模型简介

数学模型简介
所以f(0) = g(0) = 0.
评注和思考:
建模的关键 : 和 f(), g()的确定 考察四脚呈长方形的椅子,是否还有相同的结论
2、商人安全过河问题
问题(智力游戏) 随从们秘密约定, 在河的任一岸, 一旦随从 的人数比商人多, 就杀人越货。但是乘船渡河的 方案由商人决定。商人们怎样才能安全过河?
用数学语言把椅子位臵和四只脚着地的关系表示出来
椅子位臵: 利用正方形(椅脚连线)的对称性 B B´ 用表示对角线与x轴的夹角
两个距离: A,C 两脚与地面距离之和为f() B,D 两脚与地面距离之和为g()


C
O


A
x
D
正方形ABCD 绕O点旋转
地面为连续曲面 椅子在任意位臵 至少三只脚着地
1、尽量使用实数优化模型,减少整数约束和整 数变量的个数。因为求解离散优化问题比连续优 化问题难得多 2、尽量使用光滑优化,避免使用非光滑函数( 是指存在不可微点的函数)。如绝对值函数、符 号函数、多个变量求最大(小)值、四舍五入、 取整函数等,通常采用连续、可微问题处理起来 比较简单。
3、尽量使用线性模型,减少非线性约束和线性 x 变量的个数。如: 5 改为 x 5 y 。
3、席位公平的数学建模问题
三个系的学生共有200名(甲系100,乙系60, 丙系40),代表会议共20席,按比例分配,三个 系分别为10,6,4席。 1、由于学生转系,三个系的学生人数分别为 103、 63、 34, 问20席又该如何分配? 2、若代表增加为21席,又如何分配?
(1)问题提出
系别 学生 比例
p1/n1– p2/n2=5 p1/n1– p2/n2=5
p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学模型主讲:林健良
第一章数学模型导言
§1.1数学与数学模型
1.1.1何谓数学模型
先让我们来看一个简单的例子.
例1.1现要用100×50厘米的板料裁剪出规格分别为40×40 厘米与50×20厘米的零件,前者需要25件,后者需要30件.问如何裁剪,才能最省料?
解:先设计几个裁剪方案.
方案1,如图,在100×50的板料上可裁剪出两块40×40的零件和一块50×20的零件(图中分别用A、B表示).
A A
B
//////////////////////////////
同样,求出方案2
A
B B B
//////////////
方案3
B B B B B
显然,若只用其中一个方案,都不是最省料的方法.最佳方法应是三个方案的优化组合.设方案i 使用原材料x i 件(i =1,2,3).共
用原材料f 件.则根据题意,可用如下数学式子表示:⎪⎩⎪⎨⎧=≥≥++≥+++=),,j (x x x x x x .t .s x x x f min j 3210305325232121321,整数最优解有四个:x 11211109
x 21357x 33210f 的最小值为16. 这是一个整数线性规划模型.数学模型-------描述实际问题数量规律的、由数学符号组成的、抽象的、简化的数学命题、数学公式或图表及算法.1.1.2 数学建模的方法与步骤建模的步骤一般分为下列几步.(1)模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.
(2)模型假设.为了利用数学方法,通常要对问题作出必要的、合理的简化,使问题的主要特征凸现出来,忽略问题的次要方面.
(3)模型构成.根据所作的假设以及事物之间的联系,构造各种量之间的关系把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.
(4)模型求解.利用已知的数学方法来求解上一步所得到的数学问题.这时往往还要作出进一步的简化或假设.
(5)模型分析.对所得到的解答进行分析,特别要注意当数据变化时所得结果是否稳定.
(6)模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改、补充假设或重新建模,有些模型需要经过几次反复,不断完善.
(7)模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.
各步骤之间的关系可用图1.1.1表示.
图1.1.1
§1.2数学模型的分类
在实际应用中,数学模型可以按不同的方式分类.
数学模型可以按照不同的方式分类.
●按模型的应用领域分
可分为生物数学模型、医学数学模型、地质数学模型、数量经济学模型、数学社会学模型等.更详细一些,有人口模型、交通模型、环境模型、生态模型等等.
●按建立模型的数学方法分
可分为几何模型、微分方程模型、图论模型、规划论模型、马氏链模型等等.
●按是否考虑随机因素分
可分为确定性模型和随机性模型两类.
●按是否考虑模型随时间的变化分
可分为静态模型和动态模型.
●按变量的取值情况分
可分为离散模型和连续模型.
●按目前人们对事物发展过程的了解程度分
可分为白箱模型、灰箱模型和黑箱模型.
☆白箱模型-----主要指那些内部规律比较清楚的模型,如力学、热学、电学以及相关的工程技术问题,这些问题大多早已化为比较成熟的数学闸题,解决这些问题大多注重
数学方法的改进,优化设计和控制等.
☆灰箱模型------主要指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题,如生态学、气象学、经济学等领域中的模型.
☆黑箱模型------主要是指一些其内部规律还很少为人们所知的现象,如生命科学、社会科学等领域的问题,这类问
题多利用统计方法研究.有些工程技术问题,理论上可用
白箱模型研究,但由于因素众多、关系复杂,也可简化为
黑箱模型来研究.
§1.3数学建模的重要作用
自然科学各领域的研究工作,要达到一定的深度,都离不开数学这个强有力的工具。

而数学模型是实际问题与数学工具之间的桥梁。

§1.4 一个有趣的例
海盗分金
有五个海盗抢得100枚金币,在如何分赃问题上争吵不休。

于是他们决定:
(1)抽签决定各人的号码(1,2,3,4,5)
(2)由1号提出分配方案,然后5人表决,如果方案超过半数人同意就被通过,否则他将被扔进大海喂鲨鱼;
(3)1号死后,由2号提方案,4人表决,当超过半数人同意时方案通过,否则2号同样被扔进入大海喂鲨鱼;
(4)如此类推,直到方案通过为止。

假定每个海盗精通逻辑推理。

如果你是1号海盗,你该如何提出分配方案才能够使自己的收益最大化?
这个问题如果从前往后推理会很复杂,但是,如果逆向推理就简单多了。

5号不用说了,他的巴不得把前面四个人都送去
喂鲨鱼,这样他就可独吞100枚金币。

即他的方案是:
S5=(0,0,0,0,100)
看4号:如果1,2,3号海盗都喂了鲨鱼,只剩4号和5号的话,他提任何方案
S4=(X,X,X,X,X)
5号一定投反对票让4号喂鲨鱼,以独吞全部金币。

所以, 4号惟有支持3号才能保命。

3号知道这个策略,就会提出分配方案:
S3=(0,0,100,0,0)
对4号和5号一毛不拔而将全部金币归为己有,因为他知道4号一无所获但还是会投赞成票,再加上自己的一票,他的方案即可通过。

不过,2号推知到3号的方案,就提出
S2=(0,98,0,1,1)
的方案,即放弃3号,而给予4号和5号各1枚金币。

由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。

不过,2号的方案会被1号所洞悉,1号并将提出
S1=(97,0,1,2,0) 或 (97,0,1,0,2)
的方案,即放弃2号,而给3号1枚金币,同时给4号或5号2枚金币。

由于1号的方案对于3号和 4号(或5号)来说,相比 2号分配时更优,他们将投1号的赞成票,再加上1号自己的票, 1号的方案可获通过,97枚金币可轻松落入腰包。

这是1号能够获取最大收益的方案.
注:如果把“超过半数人同意就被通过”改为“只需半数人同意就被通过”,则有
S5=(0,0,0,0,100)
S4=(0,0,0,100,0)
S3=(0,0,99,0,1)
S2=(0,99,0,1,0)
S1=(98,0,1,0,1)
“海盗分金”中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”的分配方案件最不得意的人。

想一想历朝历代的农民起义,想一想绵延不断的
宫廷斗争,想一想今天生活中存在的结盟与背叛,想一想企业内部的明争暗斗,哪一个得胜者不是采用类似“海盗分金”的办法?
还可以举出许许多多的例证来。

比如,在国际政治、经济中,各国的地位是不平等的,存在着“先发”和“后发”的区别,正如这个游戏中每个人的顺序。

1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发
优势,结果不但消除了死亡威胁,还收益最大。

而5
号看起来最安全,甚至还能坐收渔人之利,却因不得不看别人脸色行事而只能分得一小杯羹。

相关文档
最新文档