统计推断答案(打印版)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Solutions Manual for Statistical Inference, Second Edition

George Casella University of Florida

Roger L. Berger

North Carolina State University Damaris Santana

University of Florida

α {−∞

2e θ c (α) = µ µ . 2 4

σ

α −

Second Edition 3-13

c. (i) h (x ) = 1 I

(x ), c (α) = α α > 0, w

(α) = α, w (α) = α,

x {0

Γ(α)

1

2

t 1(x ) = log(x ), t 2(x ) = −x . (ii) A line. d. (i) h (x ) = C exp(x 4)I

(x ), c (θ) = exp(θ4) − ∞ < θ < ∞, w 1

(θ) = θ, w 2(θ) = θ2, w 3(θ) = θ3, t 1(x ) = −4x 3, t 2(x ) = 6x 2, t 3(x ) = −4x . (ii) The curve is a spiral in 3-space.

(iii) A good picture can be generated with the Mathematica statement

ParametricPlot3D[{t, t^2, t^3}, {t, 0, 1}, ViewPoint -> {1, -2, 2.5}].

3.35 a. In Exercise 3.34(a) w 1(λ) = 1 and for a n(e θ, e θ ), w 1(θ) = 1

. b. E X = µ = αβ, then β = µ . Therefore h (x ) = 1 I (x ),

α x {0

α Γ(α)( α

)α , α > 0, w 1 (α) = α, w 2 (α) = α , t 1(x ) = log(x ), t 2(x ) = −x . c. From (b) then (α1, . . . , αn , β1, . . . , βn ) = (α1, . . . , αn , α1 , . . . , αn )

µ µ

The pdf ( 1

)f (

(x −µ) ) is symmetric about µ because, for any ǫ > 0,

o

σ

1 f .(µ+ǫ)−µ .

= σ

σ

1 f . ǫ . = σ σ 1 f . ǫ . =

σ σ

1 f .(µ−ǫ)−µ

. . σ σ

Thus, by Exercise 2.26b, µ is the median.

P (X > x α) = P (σZ + µ > σz α + µ) = P (Z > z α) by Theorem 3.5.6.

First take µ = 0 and σ = 1.

a. The pdf is symmetric about 0, so 0 must be the median. Verifying this, write

¸ ∞ 1 1 1 1 .∞

1 . π . 1 P (Z ≥ 0) = 0 π 1+z

2 dz = tan − π (z ). = .0 π 2 −0 = 2 .

b. P (Z ≥ 1) = 1 tan −1(z ).∞ = 1 π − π = 1

. By symmetry this is also equal to P (Z ≤ −1).

π

.1

π . 2

4

. 4

Writing z = (x − µ)/σ establishes P (X ≥ µ) = 1 and P (X ≥ µ + σ) = 1 .

Let X ∼ f (x ) have mean µ and variance σ2. Let Z = X −µ . Then

E Z = . 1 .

σ

E(X − µ

) = 0

and

Var Z = Var

. X − µ . σ . 1 . = σ2

Var(X − µ) = . 1 . σ2 σ2 Var X = σ2 = 1.

Then compute the pdf of Z , f Z (z ) = f x (σz + µ)· σ = σf x (σz + µ) and use f Z (z ) as the standard

pdf.

a. This is a special case of Exercise 3.42a.

b. This is a special case of Exercise 3.42b. a. Let θ1 > θ2. Let X 1 ∼ f (x − θ1) and X 2 ∼ f (x − θ2). Let F (z ) be the cdf corresponding to

f (z ) and let Z ∼ f (z ).Then

F (x | θ1) = P (X 1 ≤ x ) = P (Z + θ1 ≤ x ) = P (Z ≤ x − θ1) = F (x − θ1)

≤ F (x − θ2) = P (Z ≤ x − θ2) = P (Z + θ2 ≤ x ) = P (X 2 ≤ x ) = F (x | θ2).

相关文档
最新文档