ch07抽象代数离散数学 .ppt
合集下载
离散数学ppt课件
02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。
《离散数学图论》课件
最短路径问题
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径
离散数学教程PPT课件
A=B C或A=B C或A=B C,则公式A是n+1层公式, n max( i, j)。
例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
《离散数学概述》PPT课件
同 子代数 种
的 积代数 同
类 商代数 型
的 新代数系统
22
半群与群
广群 二元运算的封闭性
结合律
半群
交换律
交换半群
单位元 交换律
独异点
每个元素可逆 交换律
群
交换独异点 实例
Abel群
生成元
Klein群 循环群
有限个元素
有限群
编辑ppt
实例
n元置换群
23
图论
图论是离散数学的重要组成部分,是近代应用数学的重要分支。
由于在计算机内,机器字长总是有限的, 它代表离散的数或其
它离散对象,因此随着计算机科学和技术的迅猛发展,离散数
学就显得重要。
编辑ppt
5
离散数学的内容
数理逻辑: “证明”在计算科学的某些领域至关重要,构 造一个证明和写一个程序的思维过程在本质上是一样的。
组合分析:解决问题的一个重要方面就是计数或枚举对象。
编辑ppt
20
代数系统
近世代数,……,是关于运算的学说,是关于运算规则 的学说,但它不把自己局限在研究数的运算性质上,而 是企图研究一般性元素的运算性质。
——M.Klein
数学之所以重要,其中心原因在于它所提供的数学系统 的丰富多彩;此外的原因是,数学给出了一个系统,以 便于使用这些模型对物理现实和技术领域提出问题,回 答问题,并且也就探索了模型的行为。
1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人
们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专 著《有限图与无限图理论》,这是图论发展史上的重要的里程碑 ,它标志着图论将进入突飞猛进发展的新阶段。
离散数学的ppt课件
科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。
边
连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。
离散数学第7章PPT课件
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路 简单通路 复杂通路
第38页/共94页
例1、(2)
图(2)中过v2的回路 (从 v2 到 v2 )有:
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7
第34页/共94页
一、通路,回路。 2、简单通路,简单回路。 简单通路 (迹) 简单回路 (闭迹) 复杂通路 (回路)
第35页/共94页
一、通路,回路。 3、初级通路,初级回路。 初级通路 (路径) 初级回路 (圈)
初级通路 (回路) 简单通路 (回路),
但反之不真。
4、通路,回路的长度—— 中边的数目。
补图的概念, 5、图的同构的定义。
第4页/共94页
一、图的概念。 1、定义。
无序积 A & B (a,b) a A b B
无向图 G V , E
E V &V , E 中元素为无向边,简称边。
有向图 D V, E
E V V , E 中元素为有向边,简称边。
第5页/共94页
一、图的概念。 1、定义。
2、握手定理。
定理1: 设图 G V , E 为无向图或有向图,
V v1,v1,
则
,vn,E m ( m为边数),
n
d (vi ) 2m
i 1
第20页/共94页
n
2、握手定理 d (vi ) 2m i 1
推论:任何图中,度为奇数的顶点个数为偶数。
定理2: 设D V, E 为有向图,
第36页/共94页
…………
初级通路 简单通路 复杂通路
第38页/共94页
例1、(2)
图(2)中过v2的回路 (从 v2 到 v2 )有:
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7
第34页/共94页
一、通路,回路。 2、简单通路,简单回路。 简单通路 (迹) 简单回路 (闭迹) 复杂通路 (回路)
第35页/共94页
一、通路,回路。 3、初级通路,初级回路。 初级通路 (路径) 初级回路 (圈)
初级通路 (回路) 简单通路 (回路),
但反之不真。
4、通路,回路的长度—— 中边的数目。
补图的概念, 5、图的同构的定义。
第4页/共94页
一、图的概念。 1、定义。
无序积 A & B (a,b) a A b B
无向图 G V , E
E V &V , E 中元素为无向边,简称边。
有向图 D V, E
E V V , E 中元素为有向边,简称边。
第5页/共94页
一、图的概念。 1、定义。
2、握手定理。
定理1: 设图 G V , E 为无向图或有向图,
V v1,v1,
则
,vn,E m ( m为边数),
n
d (vi ) 2m
i 1
第20页/共94页
n
2、握手定理 d (vi ) 2m i 1
推论:任何图中,度为奇数的顶点个数为偶数。
定理2: 设D V, E 为有向图,
第36页/共94页
离散数学PPT教学代数系统
在许多实际问题的研究中都离不开数学模型,而构造 数学模型就要用到某种数学结构,而抽象世代数研究 的中心问题就是一种很重要的数学结构--代数系统: 半群、群、格与布尔代数等等。计算科学的研究也离 不开抽象代数的应用:半群理论在自动机理论和形式 语言中发挥了重要作用;有限域理论是编码理论的数 学基础,在通讯中起过重要的作用;至于格和布尔代 数则更不用说了,是电子线路设计、电子计算机硬件 设计和通讯系统设的重要工具。另外描述机器可计算 的函数、研究算术计算的复杂性、刻画抽象数据结构、 描述作为程序设计基础的形式语义学,都需要抽象代 数知识。
试证:*,△满足吸收律
证明:x,y∈N,
x*(x△y)=max{x,min{x,y}}=x x≥y =x
∴*满足吸收律
x x<y
x△(x*y)=min{x,max{x,y}}=x x≥y =x
∴△满足吸收律
x x<y
12
§7.2 运算及其性质
6.等幂律 已知〈A,*〉,若x∈A,x*x=x 则称*
抽象代数学的主要内容是研究各种各样的代数系统。 它把一些形式上很不相同的代数系统,用统一的方法 描述、研究和推理,从而得到反映出它们共性的一些 本质的结论,然后再把这些结论应用到具体的代数系 统中。
3
抽象代数学在计算机中的应用
抽象代数的概念和方法也是研究计算科学的重要数学 工具。有经验和成熟的计算科学家都知道,除了数理 逻辑处,对计算科学最有用的数学分支学就是代数, 特别是抽象代数。抽象代数是关于运算的学问,是关 于计算规则的学问。
∴当且仅当x与k互质时,x有逆元
20
三、 逆元
2、逆元的性质
Th3: 对于可结合运算ο ,如果元素X有 左逆
元l,
试证:*,△满足吸收律
证明:x,y∈N,
x*(x△y)=max{x,min{x,y}}=x x≥y =x
∴*满足吸收律
x x<y
x△(x*y)=min{x,max{x,y}}=x x≥y =x
∴△满足吸收律
x x<y
12
§7.2 运算及其性质
6.等幂律 已知〈A,*〉,若x∈A,x*x=x 则称*
抽象代数学的主要内容是研究各种各样的代数系统。 它把一些形式上很不相同的代数系统,用统一的方法 描述、研究和推理,从而得到反映出它们共性的一些 本质的结论,然后再把这些结论应用到具体的代数系 统中。
3
抽象代数学在计算机中的应用
抽象代数的概念和方法也是研究计算科学的重要数学 工具。有经验和成熟的计算科学家都知道,除了数理 逻辑处,对计算科学最有用的数学分支学就是代数, 特别是抽象代数。抽象代数是关于运算的学问,是关 于计算规则的学问。
∴当且仅当x与k互质时,x有逆元
20
三、 逆元
2、逆元的性质
Th3: 对于可结合运算ο ,如果元素X有 左逆
元l,
《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散数学 代数系统 ppt课件
1
33 0 1 2 8
代数系统举例
设A={1,2,3,4,6,12} A上的运算*定义为:a*b=|a-b| (1)写出二元运算的运算表; (2)<A,*>能构成代数系统吗?
9
解答
由运算表可知*运算在集合A上不封闭
所以: <A,*>不能构成代数系统
* 1 2 3 4 6 12
1 0 1 2 3 5 11
U=<I,+, > 证明:V=< m,+m, m >
满同态
g:I→Nm 对于所有的iI,有:
g(i)=(i)(modm)
32
证明
类型映射f定义为:f(+)=+m,f()=m (1)显然U=<I,+, >和V=< Nm,+m, m >同类型
(2)运算的象=象的运算
对任意的x,yI: g(x+y)=g(x) +m g(y) g(x y)=g(x) m g(y)
12
4、同类型的代数系统
V1=<S1,Ω1>:代数系统 类型映射 V2=<S2,Ω2>:代数系统 同元运算
存在一个双射函数f: Ω1 → Ω2 每一个ω∈Ω1和f(ω) ∈Ω2具有相同的阶 ωf V1和V2是同类型的代数系统
13
同类型的代数系统举例
V1=<Nm,+m , m > 和V2=<R,+, >是 同类型的代数系统吗?其中:
41
满同态举例(续)
(5)对“+”存在e=0,则: 对“+3”存在e=g(0)=0; (6)对“”存在e=1,则: 对“3”存在e=g(1)=1; (7)对“”存在零元=0,则: 对“3”存在零元=g(0)=0;
离散数学代数结构部分演示精品PPT课件
例5.2 设Q是有理数集合,*是Q上的二元 运算,对任意的a,b∈Q,a*b=a+ba·b,问运算*是否可交换。
解:因为 a*b=a+b-a·b=b+a-b·a=b*a, 所以运算*是可交换的。
7
5.1节 二元运算及其性质
➢定义5.1 设 S 为集合,函数 f : S S S 称 为 S 上的二元运算,简称为二元运算。
义两个二元运算*和★,对于任意 x,y∈N,有x*y=max(x,y), x★y=min(x,y),
验证运算*和★满足吸收律。
13
解:对于任意a,b∈N a*(a★b)=max(a,min(a,b))=a
a★(a*b)=min(a,max(a,b))=a 因此,*和★满足吸收律。
14
5.2节 二元运算中的特殊元素 1. 幺元 ➢定义5.7 设*是S上的二元运算,
23
2. 逆元 ➢定义5.9 设*是S上的二元运算,
24
例5.8 整数集Z上关于加法的幺元是0,对 任意的整数m,它关于加法的逆元是-m, 因为
25
➢定理5.5 设*是S上可结合的二元运算, e为幺元,如果S中元素x存在(关于运 算* )的逆元, 则必是惟一的。
所以对于可结合的二元运算,逆元是惟一的。
15
➢在自然数集N上加法的幺元是0,乘法 的幺元是1. 对于给定的集合和运算有的存在幺 元,有的不存在幺元。
16
17
➢ 定理5.1 设*是S上的二元运算, 如果S中存在关于运算*的)幺元, 则必是唯一的。
所以幺元是唯一的。
18
➢定理5.2 设*是S上的二元运算,
如果S中既存在关于运算*的左幺元 el ,
2 封闭性 集合S中任意的两个元素运算的结果都是 属于S的,就是说S对该运算是封闭的
解:因为 a*b=a+b-a·b=b+a-b·a=b*a, 所以运算*是可交换的。
7
5.1节 二元运算及其性质
➢定义5.1 设 S 为集合,函数 f : S S S 称 为 S 上的二元运算,简称为二元运算。
义两个二元运算*和★,对于任意 x,y∈N,有x*y=max(x,y), x★y=min(x,y),
验证运算*和★满足吸收律。
13
解:对于任意a,b∈N a*(a★b)=max(a,min(a,b))=a
a★(a*b)=min(a,max(a,b))=a 因此,*和★满足吸收律。
14
5.2节 二元运算中的特殊元素 1. 幺元 ➢定义5.7 设*是S上的二元运算,
23
2. 逆元 ➢定义5.9 设*是S上的二元运算,
24
例5.8 整数集Z上关于加法的幺元是0,对 任意的整数m,它关于加法的逆元是-m, 因为
25
➢定理5.5 设*是S上可结合的二元运算, e为幺元,如果S中元素x存在(关于运 算* )的逆元, 则必是惟一的。
所以对于可结合的二元运算,逆元是惟一的。
15
➢在自然数集N上加法的幺元是0,乘法 的幺元是1. 对于给定的集合和运算有的存在幺 元,有的不存在幺元。
16
17
➢ 定理5.1 设*是S上的二元运算, 如果S中存在关于运算*的)幺元, 则必是唯一的。
所以幺元是唯一的。
18
➢定理5.2 设*是S上的二元运算,
如果S中既存在关于运算*的左幺元 el ,
2 封闭性 集合S中任意的两个元素运算的结果都是 属于S的,就是说S对该运算是封闭的
《离散数学》代数系统--代数系统的基本概念 ppt课件
解:(1) 封闭、可交换、等幂、幺元是b、无零元
b-1=b a-1=c c-1=a
(2) 封闭、不可交换、无等幂性、幺元是a、
无零元,d是左零元、
a-1=a b-1=b c-1=b b-1=c
23
P184
作业
(1)(2)
24
16
定理2:*是A上的二元运算,且在A中有关于*的左零元l和右零元 r,则l = r = ,且A中零元是唯一的。
证明:(1) r = l * r = l = (2) 设’也是A中关于*的零元,则 * ’= ’ 又∵ 是A中关于*的零元, ∴ * ’= ∴ = ’
定理3:设<A,*>是一个代数系统,且 | A |>1,若<A,*>中存在幺元e 和零元,则e ≠ 。 证明: 假设 = e ,则 对于A中任意元素,有x=e*x= *x= =e 即A中所有元素都是 ,也都是e,所有元素都相同, ∴ | A |=1 与已知矛盾,假设错 ∴e≠
例:代数系统<I,+>满足消去律。
11
代数系统的组成
N元运算法则
如+、-
×………
特异元素
如×中的1和0
代数载体
(集合:如实数集、整数集)
代数系统
12
4. 代数常元
幺元
定义3:设*是集合A上的二元运算 若elA,对于xA ,都有el*x=x,则称el为A中 关于运算*的左幺元; 若erA,对于xA ,都有x*er=x,则称er为A中 关于运算*的右幺元; 若eA,对于xA ,都有e*x=x*e=x,则称e为A 中关于运算*的幺元。
15
零元
定义4:设*是集合A上的二元运算 若lA,对于xA ,都有l*x=l ,则称l为A中关于运 算*的左零元; 若rA,对于xA ,都有x*r=r ,则称r为A中关于 运算*的右零元; 若A,对于xA ,都有*x=x*=,则称为A中关于 运算*的零元。
《离散数学数论》课件
素数与合数的应用
素数的应用
在密码学中,大素数是生成加密密钥的 重要材料;在计算机科学中,素数的性 质被用于实现一些加密算法和散列函数 等。
VS
合数的应用
在计算机科学中,合数的性质被用于实现 一些算法和数据结构,如快速排序、堆排 序等;在数学中,合数的性质被用于证明 一些数学定理和猜想等。
04
CHAPTER
THANKS
谢谢
02
在计算机科学中,最大公约数 和最小公倍数的概念也被广泛 应用,如算法设计、数据结构 等领域。
03
在日常生活和工作中,最大公 约数和最小公倍数的概念也有 很多应用,如解决时间安排问 题、资源分配问题等。
05
CHAPTER
同余方程
同余方程的定义
同余方程
01
在数论中,同余方程是一个关于模的等式,表示两个或多个整
离散概率论的应用领域
离散概率论在计算机科学、统计学、决策理论等 领域有广泛应用。
3
离散概率论与连续概率论的联系
离散概率论是连续概率论的离散化形式,两者在 概念和方法上有许多相似之处。
离散概率论的基本概念
样本空间
样本空间是随机实验所有可能结果的集合。
概率
概率是用来描述随机事件发生可能性大小的 数值。
计算机科学
在计算机科学中,同余方程可以用于实现快速模运算,从而提高 算法的效率。
数论研究
同余方程也是数论研究中的一个重要工具,可以用于研究整数的 性质和结构。
06
CHAPTER
离散概率论基础
离散概率论简介
1 2
离散概率论的定义
离散概率论是研究离散随机现象的数学分支,主 要研究离散随机事件、离散随机变量等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i+j-k i+jk 显然+k为二元运算,称为Nk上模k的加法运算。容易 判断, +k满足交换律、结合律。
7.2 代数结构及其性质
上述代数运算的表示方法称为解析公式法, 也就是用函数来表示运算。此外, 对于有限集合 上的二元运算还可以使用运算表。
例如设N3={0, 1, 2}, 则N3上的模3加法+3可 以使用运算表来表示, 如下表所示。
例7.2 设R为实数集合, R-{0}是全体非零实数 集合, 定义法则*: 对任意a, b∈R, a*b=a-b, -为一般的减法运算。在R-{0}上按照*法则运算 得到的结果可能等于0, 而0R-{0}, 也就是说, 法则*在R上是封闭的, 而在R-{0}上不满足封闭 性。简单地说, 法则*在集合R上是代数运算, 但相对于R-{0}却不是代数运算。
7.2 代数结构及其性质
定义7.4 设V=<S; *1,*2,…,*n >, S′S, 如 果运算*1,*2,…,*n在S′上封闭,则称<S′; *1,*2,…,*n>为V的子代数结构,简称为V的子代 数(Subalgebra)。
根据上述子代数的定义,代数结构V上运 算满足的性质,其子代数结构也满足。
(2)设Mn(R)是全体n×n实矩阵的集合, 考虑Mn(R) 中普通的矩阵乘法*, 则对于任意两个n×n实 矩阵A、B, 根据矩阵乘法法则可得到Mn(R)中 惟一的一个n×n实矩阵C作为A乘B的结果。我 们记C=A*B。
7.2 代数结构及其性质
上述示例中, 虽然是对不同集合给 出的不同运算, 但它们都具有这样一个 共同的特点:它们都是某个给定的集合 S(S分别为上述二例中的P(A)和Mn(R))中 的任意一个或一对有序取出的元素, 根 据这个法则可在S中找到惟一的一个元素 与之对应。由此, 我们可以抽象出在一 个集合上的二元代数运算的概念。
7.2 代数结构及其性质
例7.3 设*是定义在集合A上的一个n元运算, S1和S2是在A上运算*下封闭的A的子集, 则 S1∩S2在*下也是封闭的。
证明 对任一组元素a1, a2, …, an∈S1∩S2, 因为a1, a2, …, an∈S1, 且S1在运算*下是 封闭的, 所以, *(a1, a2, …, an)∈S1, 又 因为a1, a2, …, an∈S2, 且S2在运算*下也是 封闭的, 所以有*(a1, a2, …, an)∈S2, 由 此得知*(a1, a2, …, an)∈S1∩S2。即: S1∩S2在*下也是封闭的。
7.2 代数结构及其性质
例7.6 设S为一非空集合, *为S上满足结 合律、交换律的二元运算, 那么<S; *>为 代数结构, 称为抽象代数结构, 即为一类 具体代数结构的抽象, 例如<N; +>, <Z; *>, <P(A); ∪>等都是<S; *>的具体例子。 其中,N,Z分别为自然数集合、整数集合, +,*为一般加与乘运算。
根据上述定义, 一个代数结构需满足如下 两个条件: (1)有一个非空集合A, 称为载体; (2)一些定义在载体A上的运算。
若S为有限集,则该称代数结构为有限代数 结构。
7.2 代数结构及其性质
例7.5 前面例7.1到7.3的例子分别列举 了如下代数结构:<P(A);∪, ∩>, < Mn(R); *>, <A; f>, <I; f>, <I; +, ~>, <{0, 1}; , , , >, < Nk; +k>。这些代数结构均是具体代数结构。 集合论与数理逻辑可以抽象为两种代数, 即集合代数:<P(A);∪, ∩, >, 与逻辑 代数:<{0, 1}; , , >。
第7章 抽象代数
本章内容提要:
重点:
1. 抽象代数概述
代数结构的判定与构造
代数结构关系:同态、同构
2. 代数结构及其性质 特殊关系:同余关系
3. 同态与同构 4. 同余与商代数
难点: 同余关系
7.1 抽象代数概述
抽象代数的创始人是两位英年早逝的青 年数学家,阿贝尔与伽罗瓦。阿贝尔, 是挪威 青年数学家, 乡村牧师之子, 幼年丧父, 家贫。 多独创性成果, 但大都未受重视, 贫病而逝。 去逝后3天, 柏林大学寄来教授聘书, 让后人 叹息!后人曾评价说:“他工作不是为自己, 而是为他热爱的科学”。2001,在阿贝尔诞生 200周年之际,挪威王国政府宣布,设立面向 国际的“阿贝尔数bra
本部分所要探讨的数学结 构是由集合上定义若干运 算而组成的系统——称为 代数系统(代数结构)。
抽象代数
主要内容
✓ 第7章 ✓ 第8章 ✓ 第9章
抽象代数 群 布尔代数
第7章 抽象代数
相对古典代数而言, 抽象代数也称为近世代 数(Modern Algebra), 由于其研究对象是由对象 集合及运算组成的数学结构,即代数结构, 因此, 抽象代数也被称为代数结构或代数系统。
Niels Abel
A statue of Abel in Oslo
7.1 抽象代数概述
伽罗瓦, 是法国青年数学家, 其父亲是自由主义 思想家, 母亲亦受了良好教育, 中学时就对数学产生 强烈兴趣, 他两次投考巴黎综合技术学院而未被录取, 后进入巴黎高师学习, 提出“群”的概念。但其论文 未被数学家柯西、泊松等接受。跟大多数数学家不问 政治不同,伽罗瓦是一个非常激进的革命者,后因政 治原因入狱。最后与人决斗受伤而去逝。在其决斗前 几天, 写下了其主要研究成果, 直到40年后, 其成果 才被世人所接受。后有著名数学家评价说:“伽罗瓦 的去逝使数学的发展推迟了几十年”。从伽罗瓦的工 作以后,代数学结束了解方程的历史,进入研究新的 数学对象——群、环、域的抽象代数的发展阶段。
抽象代数对计算机科学的发展有着重大的理 论和实践意义, 如在程序理论、语义学、数据结 构和编码理论, 以及逻辑电路设计的研究, 此外, 抽象代数还被广泛用于物理学、生物学以及社会 科学中。本章将探讨代数结构的数学描述以及一 般代数结构的基本性质。后续两章将深入讨论群、 布尔代数等典型的代数结构及其应用。
类似于初等代数以及集合论、数理逻辑中 讨论的运算之性质,对于二元运算ο以及*:
若对于任意a, b∈A有:aοb=bοa, 则称 ο在A上是可交换的(或称ο满足交换律)。
若对于任意a∈A有:aοa=a, 则称ο在A 上是满足幂等律的。
若对于任意a, b, c∈A有:当aοb=aοc 时,有b=c, 则称ο在A上是可左可消去的(或称 ο满足左消去律),若ο在A上是满足左可消去 律与右可消去律,则称ο在A上是可消去的(或 称ο满足消去律)。
Evariste Galois
A drawing done in 1848 from memory by Evariste's brother. This is taken from a French stamp
7.2 代数结构及其性质
7.2.1 代数运算
例7.1
(1)设A是一个非空集合, P(A)是A的幂集, 则集 合的交、并在P(A)上运算的结果均在P(A)中。
例7.4 (1)设A={1, 2, …, m}, m是一个正整数。A2 到A的映射定义为: f:(i, j)→max{i, j}, (i, j)∈A2
则f是A上的一个二元运算, 显然, f满足交换 律、结合律。 (2) 设I为全体整数集合, n是正整数, 规定In 到I的映射为f:(a1, a2, …, an)→a1, 对于任 意(a1, a2, …, an)∈In, 则f是一个n元运算。 其中f(a1, a2, …, an)=a1。
例7.7 设N为自然数集合,Ο为非负奇数集,E 为非负偶数集,则对于代数结构<N; +>(+为一 般加法运算),<E; +>为其子代数,但<Ο; +> 不是其子代数,因为后者+在Ο上不满足封闭性。
7.2 代数结构及其性质
练习4 设V=<I;+,·>,其中I表示整数集, +和分别表示通常数的加法和乘法运算。 对下面I的每个子集,确定它是否能构成 V的子代数?为什么? (1)H1={2n+1|nI} (2)H2={-1,0,1} (3)H3={2n|nI}
7.2 代数结构及其性质
于是, 进一步可令an=a*a*…*a,an读作a的 n次幂。可以通过如下递归定义得到: (1) a1=a; (2) an+1=an*a。
利用数学归纳法,不难证明下列公式: (1) am*an=am+n; (2) (am)n=amn。 其中,m,n∈I+。
7.2 代数结构及其性质
7.2 代数结构及其性质
练习2 A={x|x=2n,n∈N},问<A,>运算是 否封闭,<A,+>,<A,/>呢? 解 2r,2s∈A,2r 2s=2r+s∈A(r+s∈N)
∴<A, >运算封闭 2,4∈A,2+4A,∴<A,+>运算不封闭 2,4∈A,2/4A, ∴<A,/>运算不封闭
7.2 代数结构及其性质
7.2 代数结构及其性质
(3) 自然数集合N上的加法和乘法是N上的二元代数运算, 但减法与除法不是N上的二元运算, 因为每两个自然数相 减或相除可能得到的不是自然数。
(4) 设I为全体整数集合, 考虑Ⅰ上的求相反数运算“~” 和普通加法运算“+”, 则对于Ⅰ中任意的数a有~(a)=-a, ~(-a)=a, 对于Ⅰ中任意两个数c, d, 根据整数加法运算 法则, 可得到Ⅰ中唯一的一个整数e作为c加d的结果, 我 们记为e=c+d。显然, “+”是I上的二元运算, 且满足交 换律、结合律, “~”是I上的一元运算。
7.2 代数结构及其性质
上述代数运算的表示方法称为解析公式法, 也就是用函数来表示运算。此外, 对于有限集合 上的二元运算还可以使用运算表。
例如设N3={0, 1, 2}, 则N3上的模3加法+3可 以使用运算表来表示, 如下表所示。
例7.2 设R为实数集合, R-{0}是全体非零实数 集合, 定义法则*: 对任意a, b∈R, a*b=a-b, -为一般的减法运算。在R-{0}上按照*法则运算 得到的结果可能等于0, 而0R-{0}, 也就是说, 法则*在R上是封闭的, 而在R-{0}上不满足封闭 性。简单地说, 法则*在集合R上是代数运算, 但相对于R-{0}却不是代数运算。
7.2 代数结构及其性质
定义7.4 设V=<S; *1,*2,…,*n >, S′S, 如 果运算*1,*2,…,*n在S′上封闭,则称<S′; *1,*2,…,*n>为V的子代数结构,简称为V的子代 数(Subalgebra)。
根据上述子代数的定义,代数结构V上运 算满足的性质,其子代数结构也满足。
(2)设Mn(R)是全体n×n实矩阵的集合, 考虑Mn(R) 中普通的矩阵乘法*, 则对于任意两个n×n实 矩阵A、B, 根据矩阵乘法法则可得到Mn(R)中 惟一的一个n×n实矩阵C作为A乘B的结果。我 们记C=A*B。
7.2 代数结构及其性质
上述示例中, 虽然是对不同集合给 出的不同运算, 但它们都具有这样一个 共同的特点:它们都是某个给定的集合 S(S分别为上述二例中的P(A)和Mn(R))中 的任意一个或一对有序取出的元素, 根 据这个法则可在S中找到惟一的一个元素 与之对应。由此, 我们可以抽象出在一 个集合上的二元代数运算的概念。
7.2 代数结构及其性质
例7.3 设*是定义在集合A上的一个n元运算, S1和S2是在A上运算*下封闭的A的子集, 则 S1∩S2在*下也是封闭的。
证明 对任一组元素a1, a2, …, an∈S1∩S2, 因为a1, a2, …, an∈S1, 且S1在运算*下是 封闭的, 所以, *(a1, a2, …, an)∈S1, 又 因为a1, a2, …, an∈S2, 且S2在运算*下也是 封闭的, 所以有*(a1, a2, …, an)∈S2, 由 此得知*(a1, a2, …, an)∈S1∩S2。即: S1∩S2在*下也是封闭的。
7.2 代数结构及其性质
例7.6 设S为一非空集合, *为S上满足结 合律、交换律的二元运算, 那么<S; *>为 代数结构, 称为抽象代数结构, 即为一类 具体代数结构的抽象, 例如<N; +>, <Z; *>, <P(A); ∪>等都是<S; *>的具体例子。 其中,N,Z分别为自然数集合、整数集合, +,*为一般加与乘运算。
根据上述定义, 一个代数结构需满足如下 两个条件: (1)有一个非空集合A, 称为载体; (2)一些定义在载体A上的运算。
若S为有限集,则该称代数结构为有限代数 结构。
7.2 代数结构及其性质
例7.5 前面例7.1到7.3的例子分别列举 了如下代数结构:<P(A);∪, ∩>, < Mn(R); *>, <A; f>, <I; f>, <I; +, ~>, <{0, 1}; , , , >, < Nk; +k>。这些代数结构均是具体代数结构。 集合论与数理逻辑可以抽象为两种代数, 即集合代数:<P(A);∪, ∩, >, 与逻辑 代数:<{0, 1}; , , >。
第7章 抽象代数
本章内容提要:
重点:
1. 抽象代数概述
代数结构的判定与构造
代数结构关系:同态、同构
2. 代数结构及其性质 特殊关系:同余关系
3. 同态与同构 4. 同余与商代数
难点: 同余关系
7.1 抽象代数概述
抽象代数的创始人是两位英年早逝的青 年数学家,阿贝尔与伽罗瓦。阿贝尔, 是挪威 青年数学家, 乡村牧师之子, 幼年丧父, 家贫。 多独创性成果, 但大都未受重视, 贫病而逝。 去逝后3天, 柏林大学寄来教授聘书, 让后人 叹息!后人曾评价说:“他工作不是为自己, 而是为他热爱的科学”。2001,在阿贝尔诞生 200周年之际,挪威王国政府宣布,设立面向 国际的“阿贝尔数bra
本部分所要探讨的数学结 构是由集合上定义若干运 算而组成的系统——称为 代数系统(代数结构)。
抽象代数
主要内容
✓ 第7章 ✓ 第8章 ✓ 第9章
抽象代数 群 布尔代数
第7章 抽象代数
相对古典代数而言, 抽象代数也称为近世代 数(Modern Algebra), 由于其研究对象是由对象 集合及运算组成的数学结构,即代数结构, 因此, 抽象代数也被称为代数结构或代数系统。
Niels Abel
A statue of Abel in Oslo
7.1 抽象代数概述
伽罗瓦, 是法国青年数学家, 其父亲是自由主义 思想家, 母亲亦受了良好教育, 中学时就对数学产生 强烈兴趣, 他两次投考巴黎综合技术学院而未被录取, 后进入巴黎高师学习, 提出“群”的概念。但其论文 未被数学家柯西、泊松等接受。跟大多数数学家不问 政治不同,伽罗瓦是一个非常激进的革命者,后因政 治原因入狱。最后与人决斗受伤而去逝。在其决斗前 几天, 写下了其主要研究成果, 直到40年后, 其成果 才被世人所接受。后有著名数学家评价说:“伽罗瓦 的去逝使数学的发展推迟了几十年”。从伽罗瓦的工 作以后,代数学结束了解方程的历史,进入研究新的 数学对象——群、环、域的抽象代数的发展阶段。
抽象代数对计算机科学的发展有着重大的理 论和实践意义, 如在程序理论、语义学、数据结 构和编码理论, 以及逻辑电路设计的研究, 此外, 抽象代数还被广泛用于物理学、生物学以及社会 科学中。本章将探讨代数结构的数学描述以及一 般代数结构的基本性质。后续两章将深入讨论群、 布尔代数等典型的代数结构及其应用。
类似于初等代数以及集合论、数理逻辑中 讨论的运算之性质,对于二元运算ο以及*:
若对于任意a, b∈A有:aοb=bοa, 则称 ο在A上是可交换的(或称ο满足交换律)。
若对于任意a∈A有:aοa=a, 则称ο在A 上是满足幂等律的。
若对于任意a, b, c∈A有:当aοb=aοc 时,有b=c, 则称ο在A上是可左可消去的(或称 ο满足左消去律),若ο在A上是满足左可消去 律与右可消去律,则称ο在A上是可消去的(或 称ο满足消去律)。
Evariste Galois
A drawing done in 1848 from memory by Evariste's brother. This is taken from a French stamp
7.2 代数结构及其性质
7.2.1 代数运算
例7.1
(1)设A是一个非空集合, P(A)是A的幂集, 则集 合的交、并在P(A)上运算的结果均在P(A)中。
例7.4 (1)设A={1, 2, …, m}, m是一个正整数。A2 到A的映射定义为: f:(i, j)→max{i, j}, (i, j)∈A2
则f是A上的一个二元运算, 显然, f满足交换 律、结合律。 (2) 设I为全体整数集合, n是正整数, 规定In 到I的映射为f:(a1, a2, …, an)→a1, 对于任 意(a1, a2, …, an)∈In, 则f是一个n元运算。 其中f(a1, a2, …, an)=a1。
例7.7 设N为自然数集合,Ο为非负奇数集,E 为非负偶数集,则对于代数结构<N; +>(+为一 般加法运算),<E; +>为其子代数,但<Ο; +> 不是其子代数,因为后者+在Ο上不满足封闭性。
7.2 代数结构及其性质
练习4 设V=<I;+,·>,其中I表示整数集, +和分别表示通常数的加法和乘法运算。 对下面I的每个子集,确定它是否能构成 V的子代数?为什么? (1)H1={2n+1|nI} (2)H2={-1,0,1} (3)H3={2n|nI}
7.2 代数结构及其性质
于是, 进一步可令an=a*a*…*a,an读作a的 n次幂。可以通过如下递归定义得到: (1) a1=a; (2) an+1=an*a。
利用数学归纳法,不难证明下列公式: (1) am*an=am+n; (2) (am)n=amn。 其中,m,n∈I+。
7.2 代数结构及其性质
7.2 代数结构及其性质
练习2 A={x|x=2n,n∈N},问<A,>运算是 否封闭,<A,+>,<A,/>呢? 解 2r,2s∈A,2r 2s=2r+s∈A(r+s∈N)
∴<A, >运算封闭 2,4∈A,2+4A,∴<A,+>运算不封闭 2,4∈A,2/4A, ∴<A,/>运算不封闭
7.2 代数结构及其性质
7.2 代数结构及其性质
(3) 自然数集合N上的加法和乘法是N上的二元代数运算, 但减法与除法不是N上的二元运算, 因为每两个自然数相 减或相除可能得到的不是自然数。
(4) 设I为全体整数集合, 考虑Ⅰ上的求相反数运算“~” 和普通加法运算“+”, 则对于Ⅰ中任意的数a有~(a)=-a, ~(-a)=a, 对于Ⅰ中任意两个数c, d, 根据整数加法运算 法则, 可得到Ⅰ中唯一的一个整数e作为c加d的结果, 我 们记为e=c+d。显然, “+”是I上的二元运算, 且满足交 换律、结合律, “~”是I上的一元运算。