像差

合集下载

像差的种类

像差的种类

像差的种类(Aberration)
物体通过光学系统后其成像不能准确无误地再现物体原形的现象叫做像差。

⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧高级像差
波像差倍率色差位置色差色差畸变场曲像散彗差球差单色像差几何像差初级像差像差 1、球差:当沿着光轴的平行入射光不能完全聚焦时,我们称为「球面像差」。

透镜的球面像差
反射镜的球面像差
2、彗差:倾斜于光轴的平行入射光无法完全聚焦的情况,我们称为「彗星像差」。

原来一个黑点拍成相片后变成一个类似彗星拖著尾巴的成像,称之为彗星像差
3、像散(Astigmatism):因为物体经由透镜成像时,常会发生X轴与Y轴的聚焦点不一致。

4、场曲:即使光学系统能完美地聚焦,但是却常发生它们的聚焦平面与我们希望的成像平面不一致。

因此透镜会有挠度(bending)的设计。

5、畸变:基本上变形的发生不能看似完全的像差。

它并不是因为影像的聚焦不良所致,相反的它是清晰的成像,但是却发生与原来的物体的外型不一致。

6、色差:若是不同的颜色光线有不同的聚焦点,我们称为「色像差」。

通常红色光的焦距比蓝光大一些。

7、波像差:从物点发出的波面经理想光学系统后,其出射波面应该是球面。

但实际光学系统存在像差,实际波面与理想面就有了偏差。

当实际波面与理想波面在出瞳处相切时,两波面间的光程差就是波像差。

像差的种类

像差的种类

像差的种类为了方便说明像差的成因,我们仅以平行的入射光来探讨他们在几何光学上的差异。

其实天文观测的目标都是遥远的星体,基本上也符合平行光的假设。

球面像差(对称的像差):当沿着光轴的平行入射光不能完全聚焦时,我们称为「球面像差」。

透镜的球面像差反射镜的球面像差彗形像差(不对称的像差):倾斜于光轴的平行入射光无法完全聚焦的情况,我们称为「彗形像差」。

色像差:若是不同的颜色光线有不同的聚焦点,我们称为「色像差」。

通常红色光的焦距比蓝光大一些。

弯曲的像场:即使光学系统能完美地聚焦,但是却常发生它们的聚焦平面与我们希望的成像平面不一致。

因此透镜会有bending的设计。

Astigmatism:因为物体经由透镜成像时,常会发生X轴与Y轴的聚焦点不一致。

变形:基本上变形的发生不能看似完全的像差。

它并不是因为影像的聚焦不良所致,相反的它是清晰的成像,但是却发生与原来的物体的外型不一致。

最完美的成像:抛物面镜数学上的定义: y2= 4 F.x F:镜面焦距长度镜面特色:平行光轴的入射光线可以完美聚焦于焦点。

同时因为是反射面成像,所以没有任何色像差。

若是采用抛物面来作为天文望远镜的主镜是一个非常好的选择。

不但能兼顾光学系统的重量与成像品质。

很可惜的,若是非平行的入射光沿着主轴进来,会有对称的「球面像差」。

若是平行入射光倾斜于主轴,会有不对称的「彗形像差」产生。

因此抛物面镜最适合于长焦距的天文望远镜,而不适合于地面景物的观测。

不过抛物面的镜面不易制造,必须藉由许多球面镜的研磨方式逐渐逼近抛物面的曲度,因此价格自然也较为高昂。

以一个口径8吋、 F/4镜面而言,中间的镜面与球面镜差距其实是非常微小的,只有数个波长之差。

虽然这只是微小的差别,却可以改善影像的品质甚多。

为了获得高精度的抛物面,必须透过多次球面研磨。

由于抛物面镜是经过多次球面镜的研磨而成,因此抛物面镜可以看成是多个球面镜所构成。

利用这个光学特性,可以成为检测抛物面镜的一个简易的方法,我们称为「刀口测试」。

第六章像差理论

第六章像差理论

轴外点发出充满入瞳的一束光,这束光以通过入瞳中心的
主光线为对称中心,其中包含主光线和光轴的平面称为子
午面。过主光线且垂直于子午面的平面为弧矢面。显然子
午面是光束的对称面。
9
对子午面的情况:主光线Z和一对上下光线a、b,折射前, 上下光线与主光线对称,折射后,上下光线对不再对称于主 光线,它们的交点偏离了主光线。
14
弧矢 子午像点和弧矢像点 像面 都位于主光线上,通
子午 常可将子午像距和弧 像面 矢像距投影到光轴上,
像平 则像散表示为:

主光 线
xts lt ls
15
像散的存在使轴外物点的成像在子午方向和弧矢方向各 有不同的聚焦位置。子午方向的光线聚焦成垂直于子午 面的短焦线T′,而弧矢方向的光线聚焦成子午面内的短 焦线S′,两焦线之间是一系列由线到椭圆到圆再到椭圆 再到线的弥散斑变化。 因此,接收器在像方找不到同时能使各个方向的线条都 清晰的像面位置。
xt lt l

xs

ls

l
有像散必然有场曲,但如果没有像散存在,像面弯曲现
象也会因球面光学系统的本身特性而存在。
球面 物体
折射 球面
理想像 平面
17
根据物像同向移动的原则,B的像点进一步偏离理想像平面 P′,这种偏离随视场的大小而变化,使得垂直于光轴的平面 物体经球面成像后变得 弯曲,这种弯曲还没有考虑像散的 影响,把像散为0时的像面弯曲称为匹兹伐场曲。
Lm A1hm2 A2hm4 0 A1 A2hm2
L
h

2A1h 4A2h3
0
h 0.707hm
此时,在0.707孔径处的光线具有最大剩余球差。校正球

7种常见像差的原因

7种常见像差的原因

7种常见像差的原因像差是指光学系统在成像过程中产生的图像质量不理想的现象。

下面将介绍光学系统中常见的7种像差原因,包括球差、散光、像散、像场弯曲、畸变、色差和像间干涉。

1. 球差:球差是由于光线通过球面透镜时,不同入射位置的光线会聚或发散到不同焦点位置而导致的像差。

球差的主要表现是像点失焦,即中央和边缘部分的图像清晰度不同。

球差可以通过使用非球面透镜或复合透镜进行校正。

2. 散光:散光是由于透镜的曲率在不同方向上不同而引起的像差。

散光使得图像的焦点在不同的平面上,导致成像模糊。

散光可以通过使用散光校正透镜或非球面透镜进行校正。

3. 像散:像散是由于透镜的不同色散特性引起的像差。

不同波长的光线通过透镜后,会聚到不同的焦点位置,导致不同颜色的图像产生色差。

像散可以通过使用折射率不同的材料组合或使用色散补偿透镜进行校正。

4. 像场弯曲:像场弯曲是指光线通过透镜时,不同位置的像点距离透镜中心的距离不一致,导致图像的形状在不同位置有畸变。

像场弯曲可以通过使用非球面透镜进行校正。

5. 畸变:畸变是由于透镜的形状或光线的折射发生变化而引起的像差。

畸变可以分为桶形畸变和垫形畸变。

桶形畸变使得图像中心位置变窄,而边缘位置扩展;垫形畸变使得图像中心位置扩展,而边缘位置收缩。

畸变可以通过使用非球面透镜或使用畸变校正透镜进行校正。

6. 色差:色差是由于不同波长的光线通过透镜后,折射程度不一样而产生的像差。

常见的色差有色焦差和色散,色焦差是指不同颜色的光线聚焦位置不同,色散是指不同颜色的光线折射程度不同。

色差可以通过使用折射率不同的材料组合或使用色差补偿透镜进行校正。

7. 像间干涉:当光线经过光学系统中的多个透镜或镜面反射时,光线的相位差会导致干涉现象。

这种干涉现象会产生亮度变化或干涉条纹等干扰图像质量的现象。

像间干涉可以通过设计光学系统的结构,如透镜组的距离和角度等参数进行校正。

以上是光学系统中常见的7种像差原因的介绍。

几何光学-第六章-像差理论

几何光学-第六章-像差理论
2、通常情况下,不能以一定宽度的光束对一定大小的物体成完善像。
成像特点: 物点——弥散斑
计算:实际光线计算 追迹成像的位置、大小与理想像的偏离——像差
小结:几何像差
像差类型 轴 单色 球差 上 色球差 物 复色 位置(轴向)色差 点 轴 外 单色 场曲 物 畸变 点 复色 倍率色差 影响因素 孔径 孔径、波长 在高斯像面上 接收到的像 单色弥散圆斑 彩色弥散圆斑
1 1 1
2 2 2
1
2
例:远轴物点发出的同心细光束,经过有像散的光学系统, 同心性会受到破坏,垂直于主轴的光屏在沿轴不同位置时, 所接收到的成像光束截面形状会发生很大的变化。
像散差
子午 焦线
明晰 圆
弧矢 焦线
3、像散特征:一个物点有子午焦线和弧矢焦线同时出现。
物点离轴越远,像散差越显著。
5、像散的物理意义
波长 孔径、视场 视场
大物面 波长
彗差(正弦差) 细光束像散
形状复杂的 弥散斑
作业
1、简述球差的产生机制、表现形式和消除方法。 2、简述慧差的形成机理和影响。 3、简述像散的机制、特征和影响。 4、简述场曲的形成机制和影响。 5、简述畸变的形成机制和影响。 6、简述位置色差及倍率色差的形成机制和影响。
b1 c1
★ 波面的中心光线: b
F 2
2
F 2 F1
a1
b2
a2
a3 b3
c2
c3
F1
F1
F2
F 2
F1
——光束在相互垂直的两截面内, 各有不同的曲率中心。 ★ 焦线:光束曲率中心的轨迹 两条相互垂直的短线 F F F 和 F F F 。 ★ 像散差:沿中心光线上两焦线之间的距离 F F 。

光学系统成像的像差的描述

光学系统成像的像差的描述

光学系统成像的像差的描述在光学系统中,成像的品质受到多种因素的影响,其中最主要的因素之一就是像差。

像差是指光学系统由于各种原因导致成像结果与理想成像结果的差异。

在实际应用中,我们需要尽可能减小像差,以获得清晰、准确的成像。

1.球差球差是由于光线通过透镜时,不同离轴位置的光线聚焦点与光轴上的光线聚焦点不一致而产生的像差。

球面透镜会使离轴光线聚焦于球心之前或之后,从而导致像差。

为了减小球差,可以采用非球面透镜或者多个球面透镜组合的方法。

2.色差色差是指不同波长的光线通过透镜后,其聚焦点位置不同所引起的像差。

由于光线的折射率随着波长的不同而变化,所以不同波长的光线在经过透镜后会有不同的折射效果,从而导致色差。

为了减小色差,可以采用消色差透镜、复合透镜等方法。

3.像散像散是指透镜或者光学系统在聚焦光线时,不同位置的光线聚焦点不在同一平面上而产生的像差。

像散分为径向像散和切向像散两种。

径向像散是指光轴上的光线与离轴光线在像平面上的聚焦点不一致,而切向像散则是指光轴上的光线与离轴光线在像平面上的聚焦点不在同一条直线上。

为了减小像散,可以采用适当的光学元件,如棱镜等。

4.畸变畸变是指光学系统在成像过程中,使得直线或者平面失真的现象。

畸变分为径向畸变和切向畸变两种。

径向畸变是指光线通过光学系统后,离轴的像点与光轴上的像点之间的距离不一致,而切向畸变则是指光线通过光学系统后,离轴的像点与光轴上的像点之间的位置关系不一致。

为了减小畸变,可以采用非球面透镜或者适当的校正方法。

5.散焦深度散焦深度是指光学系统在成像过程中,能够保持清晰成像的距离范围。

当物体与透镜或者光学系统的距离超出散焦深度时,成像会变得模糊不清。

散焦深度受到孔径大小和焦距的影响。

为了增加散焦深度,可以使用小孔径和长焦距的透镜。

光学系统成像的像差是由于光线经过透镜或者光学系统时,由于各种因素导致成像结果与理想成像结果的差异。

常见的像差包括球差、色差、像散、畸变和散焦深度等。

l2-像差简介

l2-像差简介

折射解释
(n 1)
S (n l ) ct
折射解释
衍射解释
应用解释
孔径、视场
像差允许值
目视系统 CCD或胶片成像系统 干涉、衍射系统 光纤光学系统
测量系统
第二讲
像差简介
一、像差概念
子午面与弧矢面
第二讲
像差简介
一、像差概念
归一化处理:0-0.3-0.5-0.707-0.85-1 入瞳
第二讲
像差简介
像差介绍——非球面
第二讲
像差简介
像差介绍——非球面
第二讲
像差简介
像差介绍——多透镜校正
第二讲
像差简介
三、像差介绍——球差
31
第二讲
像差简介
三、像差介绍——彗差
第二讲
像差简介
三、像差介绍——彗差
第二讲
像差简介
三、像差介绍——彗差
光阑位置1
光阑位置2
第二讲
像差简介
三、像差介绍——彗差
1 k
1 x p ' '2 2n k u k 1 y ' ' z 2n k u k 1 l FC ' '2 nk u k y FC
S IV J 2
SV ,
1 k
k
SV S III S IV
Hale Waihona Puke izi dn dn C I , C I luni n n 1 i 1 k dn dn ' ' C II , C II luniz CI z n i nk u k 1 n
第二讲
像差简介

几何光学 第六章 像差理论

几何光学 第六章 像差理论
不产生球差的共轭点位置。 ★ 物、像均位于球面顶点: L 0, 1 L0 ★ 物、像位于球面的曲率中心: sin I sin I 0
I I 0
★ 物、像位置: I U
L L r
L (n n)r / n L (n n)r / n
波长 孔径、视场 视场
大物面 波长
彗差(正弦差) 细光束像散
形状复杂的 弥散斑
作业
1、简述球差的产生机制、表现形式和消除方法。 2、简述慧差的形成机理和影响。 3、简述像散的机制、特征和影响。 4、简述场曲的形成机制和影响。 5、简述畸变的形成机制和影响。 6、简述位置色差及倍率色差的形成机制和影响。
4、消除球差的方法
(1)加光阑,选择近轴光束; (2)正、负透镜组合进行校正; (3)采用非球面透镜。
5、小结
轴上物点 1)像点位置的轴向偏离:球差
宽光束(不同孔径角) 2)高斯像面上的弥散圆斑:垂轴球差
**问题:
(1)轴外物点是否有类似球差的现象? (2)轴外物点发出的宽光束,其对称轴是什么?
三、彗形像差(Coma,Comatic Aberration)
3、物理意义
★ 彗差:轴外像差(孔径、视场的函数)
——大视场(稍远轴物)宽光束成像的不对称。 ★ 正弦差:小视场(近轴物)宽光束成像的不对称。
4、影响:破坏轴外视场成像的清晰度。 **问题:
宽光束的原因造成了球差和彗差,如取无限细光束, 是否就可以避免像差?
四、像散(Astigmatism)
1、与主轴成较大倾斜角的同心光束: 即使是细光束,出射光束也难以保持仍为同心。 2、基本概念:非球面波与象散光束 垂直于波面元,彼此既不相平行也不交于一点的 非对称性光束,称为像散光束。

像差

像差
理想单色光—— 或
多种单色光叠加在一起——复色光
注意:白光为复色光,能形成白色光的两种单色光称为 互补色:红与青 绿与品红 蓝与黄
三基原色 红(R) 绿(G)
蓝(B)
700.0nm 645.2nm
546.1nm 526.3nm
435.8nm (1931CIE-RGB) 444.4nm (1964CIE-RGB)
L
P
P P
P
PP
s
S
s
S
s s s 度量球差大小 s 0 会聚透镜 s 0 发散透镜
可选取不同曲率的透镜或复合透镜消球差
2. 彗差
轴外傍轴物点发出的宽光束经透镜折射后不再交于一 点,而在高斯像面上形成彗星状弥散斑
Q
P
O
注意:球差和彗差往往
同时存在,消除球差后
ห้องสมุดไป่ตู้
4. 像场弯曲
垂直于光轴的平面物体只有在近轴区域才近似成像为 一个平面,对较大物面,像面不是平面而是曲面—场 曲
5. 畸变
当物体发出光线与主轴有较大倾角时,即使是窄光束, 所成像与原来的物不再相似—各部分放大率不一样: 桶形畸变、枕形畸变
二.色差 1.光的色视觉 光的颜色由光的频率决定
c —颜色由波长决定
f n0
单个透镜无法消除色差,用凹透镜与凸 透镜粘和起来,其系统主面与透镜重合 可消放大率色差
要完全消除色差,必须使透镜系统的焦 距相等、焦点重合
一对共轭点阿贝正弦条件远离轴上物点发出的窄光束经透镜后不再交于一点引入子午平面和弧矢平面子午光束和弧矢光束主轴子午焦线像场弯曲垂直于光轴的平面物体只有在近轴区域才近似成像为一个平面对较大物面像面不是平面而是曲面场畸变当物体发出光线与主轴有较大倾角时即使是窄光束所成像与原来的物不再相似各部分放大率不一样

像差

像差

像差
考虑到物距和像距的透镜相当大,或者物体离轴较远时,简单单透镜的像差是相当严重的。

当一个简单透镜不能成理想像时,就需要用一个透镜组,比如相机镜头,它的像差在很大程度上得以校正了。

为了一些特殊的要求,还可以设计制造一些特殊的透镜。

球形表面的透镜组会产生球差。

如果物点远离透镜光轴或垂直于光轴,所成的像就会产生其他像差,比如像散、彗差、畸变和场曲。

此外,透镜折射率是波长的函数,所以它的焦距随着波长慢慢变化,这种像差称为色差。

在沿轴方向和垂轴方向都能产生球差,而且并不依赖离轴距离。

像散的产生是因为一束离轴光线不对称的入射到透镜。

这种不对称造成了一对短线像的产生:一束在焦平面的后方,一束在前方。

彗差产生了一个彗星状的像:彗星头部是近轴像点,像差以尾巴的形式显示出来。

尾部一点到光轴的距离比它的宽度的三倍还大。

从近轴像点到彗星尾部是彗星像的长度,同时增加了透镜直径的平方和像点到透镜光轴距离的比值。

即使其它的像差不存在,透镜成的像也不是一个平面,而是在一个弯曲的面上。

这种像差叫做场曲。

如果垂轴放大率是一个像点到光轴的距离的函数,成像将不再是直线性的。

这种像差称为畸变。

通过调整透镜组元的曲率半径可以减少像差,例如减小入射角,这个过程有时叫做弯曲透镜。

然而,像散很少受到弯曲透镜组元的影响。

类似的,一个像差有时能够被另一个平衡。

例如,球差能够通过将像面从近轴像面移到束腰,从而得到部分补偿,也就是说,通过散焦补偿球差。

同样的,彗差、畸变和像散都能通过调整光阑孔径在光轴上的位置来减少。

第七章 像差

第七章 像差
化,所引起一种失去物像相似的像差 畸变仅是像的变形,不影响像的清晰度。 2. 产生原因 光学系统对共轭面上不同高度的物体有不同垂
轴放大率所致。β不是常数,而是物高y的函数 3.分类 桶形畸变(负畸变),β随物高y的增大而减小 枕形畸变(正畸变)
枕形畸变 正畸变
桶形畸变 负畸变
视场的畸变用符号q表示
对”, 经系统后,交点不在主光线上,也不交在理想像面 上
·-K’T
a
kT ' = ( ya '+ yb ') / 2 − yz '
弧矢彗差:前后光线经系统后的交点BS’到主光
线的垂直于光轴方向的距离, KS’
彗差对于大孔径系统和望远系统影响较大
对于某些小视场大孔径的系统(如显微镜),常用“正弦 差”来描述小视场的彗差特性。
分辨率
理想光学系统衍射分辨率普遍公式 鉴别率板 使用数码相机对此板实拍后,对数码照片可以判读 出相机的分辨率
§7.1 像差概述
一像差 Aberration ①以前研究的都是理想像,在近轴条件下理想 成像是能近似实现的,近轴条件要求成像光束 的孔径小和仪器的视场小 ②对任何一个实际的光学系统而言,都需要一 定的相对孔径和视场(如显微镜 )
为轴外子午球差
δ L'T
=
X
' T
− xt'
弧矢场曲
弧矢宽光束场曲:弧矢宽光束的交点沿光轴方向到高斯 像面的距离
弧矢细光束场曲
δ 两者间的轴向距离称为轴外弧矢球差
L'S
=
X
' S
− xs'
轴外球差:轴外物点发出的粗光束经系统后的交点与细光束的 交点的偏离,当视场不大时,轴外球差和轴上球差差不多相等

像差理论

像差理论
,并不会聚一点,相对于主光线而是呈彗星状 图形的一种失对称的像差
彗差通常用子午面上和弧矢面上对称于主光 线的各对光线,经系统后的交点相对于主光线 的偏离来度量,分别称为子午彗差和弧矢彗差
子午彗差指对子午光线度量的彗差
子午光线对交点离开主光线的垂直距离KT’用 来表示此光线对交点偏离主光线的程度
2020/7/4
如果将正负透镜组合起来,能否使球差得到校正? 这种组合光组被称为消球差光组
2020/7/4
哈工大光电测控技术与装备研究所
8
光学系统中对某一给定孔径的光线
达到δL’ =0的系统称为消球差系统
单透镜的球差与焦距、相 对孔径、透镜的形状及折 射率有关。
对于给定孔径焦距和折射率 的透镜,通过改变其形状可 使球差达到最小。
-Umax A
-U
2020/7/4
hmax
h
A’
△y’
L’
δL’
哈工大光电测控技术与装备研l’ 究所
5
球差是轴上点唯一的单色像差
可在沿轴方向和垂轴方向来度量分别称为轴向球 差和垂轴球差。
轴向球差又称为纵向球差
它是沿光轴方向度量的球差,用符号δL’ 表示
垂轴球差是过近轴光线像点A’的垂轴平面内度
量的球差。用符号δT’ 表示
2020/7/4
哈工大光电测控技术与装备研究所
(2)弧矢场曲
用细光束弧矢场曲和宽光束弧矢场曲 来度量
2020/7/4
哈工大光电测控技术与装备研究所
32
弧矢细光束焦点相对于理想像面的偏离
称为细光束弧矢场曲,用符号xs’表示
xs' ls' l'
主光线 Z O1 O2
lt’

光学系统中的像差有哪些类型

光学系统中的像差有哪些类型

光学系统中的像差有哪些类型关键信息项:1、像差的定义:____________________________2、球差:____________________________定义:____________________________影响因素:____________________________校正方法:____________________________3、彗差:____________________________定义:____________________________影响因素:____________________________校正方法:____________________________4、像散:____________________________定义:____________________________影响因素:____________________________校正方法:____________________________5、场曲:____________________________定义:____________________________影响因素:____________________________校正方法:____________________________ 6、畸变:____________________________定义:____________________________影响因素:____________________________校正方法:____________________________ 7、色差:____________________________定义:____________________________轴向色差:定义:____________________________影响因素:____________________________校正方法:____________________________倍率色差:定义:____________________________影响因素:____________________________校正方法:____________________________像差是指实际光学系统中,由非理想光学元件或光学系统的不完善性导致的成像与理想成像之间的偏差。

第五章电子透镜的像差

第五章电子透镜的像差
(3)旋转对称条件的不满足。 由于电极加工和装配的不对称破坏了旋转对称条件;
(4)初始条件能量和加速能量一致性的不满足。
由于初始速度分散和电源的不稳定破坏了能量的一致性等。
这些条件都破坏了旁轴轨迹方程的假设条件,由于与理想成像条件不一致, 因此都可能引起图像的模糊,发生像的误差,这种相对于旁轴离子的理想 成像的误差称为像差。
方向的 作用力与
r 和 r 的关系就不是线性关系,而出现高次项,
如三次 方项、五次方项等。
此时,电子的作用力与近轴情况下的作用力表示式不同,即此时作用力 不相等,如仍采用近轴条件表示,产生的误差太大,此时,电子不能会 聚在一个点上,实际像与理想像之间产生了偏差、放大或改变成其它形 状的像,既产生了几何像差。
1 4
eB 2m
f 40
1 128
( (4)
2
)
f 04
1 8
f 22
16
1 m4 16
eB 2m
引入旋转坐标 X x cos y sin Y x sin y cos
旋转角为
(z) (z0 )
8
zz
B(z
)dz
在新坐标下
0 2N
2 N(X 2 Y2) M1(X 2 Y 2)
我们已得到,电子光学的最小作用原理可以表示如下:
zz0i dz 0
式中折射率可以表示为
U 1 x2 y2 ( Ax x Ay y Az )
在旋转对称磁场中,磁矢位只有方向角方向分量,即 A A
故有磁矢位的两个分量式分别表示为:
Ax Asin A
y x2 y2
Ay Acos A
(4)带电粒子的相互库仑作用力,造成电子束的发散,也可能造成像差,这种 像差称为空间电荷像差;

像差

像差

像差像差(全称色像差, aberration)是指实际光学系统中,由非近轴光线追迹所得的结果和近轴光线追迹所得的结果不一致,与高斯光学(一级近似理论或近轴光线)的理想状况的偏差。

像差主要分为球差、彗差、场曲、像散、畸变、色差以及波像差。

词条对上述像差进行了详细的介绍。

1像差简介像差一般分两大类:色像差和单色像差。

色像差简称色差,是由于透镜材料的折射率是波长的函数,由此而产生的像差。

它可分为位置色差和放大率色差两种。

单色像差是指即使在高度单色光时也会产生的像差,按产生的效果,又分成使像模糊和使像变形两类。

前一类有球面像差、彗形像差和像散。

后一类有像场弯曲和畸变。

实际工作中光学系统所成的像与近轴光学(Paraxial Optics,高斯光学)所获得的结果不同,有一定的偏离,光学成像相对近轴成像的偏离称像差。

由于像差使成像与原物形状产生差异。

复色光引起的色像差简称色差;非近轴单色光则引起单色像差。

初级像差又分为五种,分别为:球面像差、彗形像差、像散、像场弯曲和畸变五种。

摄影影头因制作不精密,或人为的损害,不能将一点所发出的所有光线聚焦于底片感光膜上的同一位置,使影像变形,或失焦模糊不清。

实际的光学系统存在着各种像差。

一个物点所成的像是综合各种像差的结果;此外实际光学系统完全可以不调焦在理想像平面处,这时像差(指在这个实像面上的像斑)当然也要变化。

在天文上常用光线追迹的点列图来表示实际像差;也可用波像差来表示像差,由一个物点发出的光波是球面波,经过光学系统后,波面一般就不再是球面的。

它与某一个基准点为中心的球面的偏离量,乘以该处介质的折射率值,称为波像差。

赛德尔的五像差[1]1856年德国的赛德尔,分析出五种镜头像差源之于单一色(单一波长)。

此称为赛德尔五像差。

2球差在共轴球面系统中,轴上点和轴外点有不同的像差,轴上点因处于轴对称位置,具有最简单的像差形式。

当轴上物点的物距L确定,并以宽光束孔径成像时,其像方截距随孔径角U(或孔径高度h)的变化而变化,因此轴上物点发出的具有一定孔径的同心光束,经光学系统成像后不复为同心光束。

几何光学的七种像差

几何光学的七种像差

几何光学中的七种像差包括球差、彗差、像散、场曲、畸变、位置色差和倍率色差。

下面是对这些像差的简要介绍:
球差:是轴上点发出的宽光束经过透镜后,在像面上形成的弥散斑的形状。

它是由于透镜的球形表面造成的。

彗差:轴外物点发出宽光束,经过光学系统后,在像面上呈彗星状的光斑,这样的像差称为彗差。

像散:由于透镜的折射面不是平面,造成轴上点发出的宽光束经过透镜后,子午细光束与会聚细光束的交点不重合的像差称为像散。

场曲:垂直于光轴的平面物体经光学系统后所结成的清晰影像,若不在一垂直于光轴的平面内,而在一以光轴为对称的弯曲表面上,即最佳像面为一曲面,则此种像差称为场曲。

畸变:被摄物平面内的主轴外形在结像平面上变为曲线,则此曲线的畸变即为像差的一种,称为畸变。

位置色差:由于不同色光通过透镜时的折射率不同,在同一物距的同一物点经同一透镜所形成的两个像点在像方主光线方向上的分离。

倍率色差:由于不同色光通过透镜时的折射率不同,在同一物距的同一物点经同一透镜所形成的两个像点在垂直主光线方向上的分离。

请注意,这些像差会对成像质量产生不同程度的影响,需要在光学系统设计中进行考虑和控制。

第六章像差计算

第六章像差计算

第六章像差计算第六章像差计算6.1 光学系统的像差这⾥将提供像差的数值计算。

掌握各种像差的基本概念.特别是初级像差。

以及各种表⾯和薄透镜的三级像差贡献。

光学计算通常要求6位有效数字的精度,这取决于光学系统的复杂程度、仪器精度和应⽤的领域。

三⾓函数应在⼩数点后⾯取6位数,这相当于0.2弧秒。

这样的精度基本上满⾜了绝⼤多数使⽤要求。

当然,结构尺⼨较⼤的衍射极限光学系统要求的精度⽐这还要向些。

光学计算所花费的时间明显地取决于设计者的技巧和所使⽤的计算设备的先进程度。

计算技术发展到今天,就是使⽤普通的个⼈计算机,光学计算所需的时间也已经很少了。

但要对⼀个复杂的系统进⾏优化设计,特别是全局优化设计时.还是要花费⼀定的时间的。

关于如何进⾏光学设计,⼀直有两种观点。

⼀种观点主张以像差理论为基础,根据对光学系统的质量要求,⽤像差表达式,特别是⽤三级像差表达式来求解光学系统的初始结构,然后计算光线并求出像差,对其结果进⾏分析。

如果不尽⼈意,那么就要在像差理论的指导下,利⽤校正像差的⼿段(弯曲半径,更换玻璃、改变光焦度分配等),进⾏像差平衡,直到获得满意的结果。

如果最后得不到满意的结果,那么就要重新利⽤像差理论求解初始结构,⽽后再重复上述的过程,直到取得满意的结果。

另⼀种观点是从现存的光学系统的结构中找寻适合于使⽤要求的结构,这可从专利或⽂献中查找,然后计算光线,分析像差,采⽤弯曲半径,增加或减少透镜个数等校正像差的⼿段,消除和平衡像差,直到获得满意的结果。

对于常规物镜,如Cooke三⽚,双⾼斯、匹兹⽡尔物镜等.常采⽤这种⽅法。

这种⽅法需要计算⼤量的光线(计算机发展到今天。

这已不成问题),同时需要光学设计者有较丰富的设计经历和经验.以便对设计结果进⾏评价。

通常我们可以把⼆者结合起来,以像差理论为指导,进⾏像差平衡。

特别是计算机发展到今天,光学计算已经不是⼲扰光学设计者的问题了。

对于常规镜头,通常不再需要像以前那样从求解初始结构开始,⽽是根据技术指标和使⽤要求、从光学系统数据库或专利⽬录中找出合适的结构,然后进⾏计算和分析。

工程光学讲稿像差

工程光学讲稿像差

i lru r
i' n i n'
u' u i i'
l' r(1 i' ) u'
sin I h r
sin I' n sin I n'
U' U I I'
L' r(1 sin I ' ) sinU '
以上二组公式最大的区别是对于近轴光:是用弧度值取代正弦值而得到的。 即sinI≈I,但实际上这一取代并不是完全精确的,它存在着一定的误差 量值,因为它们仅仅是近似相等,从而导致实际与理想之间存在差异。这就 是像差产生的原因。
谢谢大家!
中应用较多的并不是绝对畸变,而是相对畸变——它是指像高之差相对于
理想像高之比。公式表示为:
_
y'
q' 10% 0 10% 0
y'
式中,β——某视场实际垂轴放大率;β——理想垂轴放大率。
畸变是垂轴像差,它只是改变轴外点在理想像面上的成像位置,使像的
形状产生失真,但不影响像的清晰度。
二、畸变的种类
枕形畸变――正畸变,实际像高>理想像高; 桶形畸变――负畸变,实际像高<理想像高;
(sinI (L-r)sinU r)
故可得: L
(n
Ln') nr
n /nn
'
r
同 I '理 U,由sinI sUinU' '可得出
L ' 0A'
L' (n n')r / n'
I
-U AC
n
-I' n'( <n)
由上式确定得共轭点,不管孔径角U多大,均不产生球差。由上式也可 得出,nL=n’L’ ,则垂轴放大率β=nL’/n’L=(n/n’)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

像差
1.光学中,实际像与根据单透镜理论确定的理想像的偏离。

这些偏离是折射作用造成的。

像差是由透镜对色光的不同弯曲能力所致,并造成带有色晕的像。

与色无关的像差(单色像差)包括使像变形的像差(畸变、像场弯曲)和使像模糊的像差(面像、形像、散光)。

像差在照相机、望远镜和其他光学仪器中可以通过透镜的组合减小到最低限度。

镜面也有与透镜一样的单色像差,但没有像差。

2.光学中由透镜或曲面镜所形成的像上的缺陷。

在彩色像差情况下,由透镜(非平面镜)形成的图像有彩色边缘,这是由于玻璃对不同彩色光的折射程度不同的结果。

这种像差可由消色差透镜(achromatic lens) 来纠正。

在球面像差情况下,则是由于透镜或镜面屈曲,使来自物体的所有光线聚焦位置稍有不同的结果。

如果是用平面镜接收光,且光严格平行于光轴的情况下,可用抛物面而不是用球面来纠正。

可让两个面对光线等量偏离来减小透镜组的球面像差,还可使用光阑让光线只通过透镜的中心部分来减小像差(这样像的亮度略有降低)。

3.在天文学中由于地球绕太阳运转的结果,星体位置出现视偏移,称为光行差。

光线看来像是来自微微偏向地球运动方向的一点。

这一角偏移a=v/c,式中v 是地球的轨道运动速度,c 为光速。

相关文档
最新文档