计算坐标与坐标方位角的基本公式

合集下载

角度、坐标测量计算公式细则

角度、坐标测量计算公式细则

计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα。

式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角。

2、方位角计算:1)、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数(±号判断象限)。

2)、方位角:arctan(y2-y1)/(x2-x1)。

加减180(大于180就减去180(还大于360就在减去360)、小于180就加180 如果x轴坐标增量为负数,则结果加180°。

如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°。

S=√(y2-y1)+(x2-x1),1)、当y2-y1>0,x2-x1>0时;α=arctan(y2-y1)/(x2-x1)。

2)、当y2-y1<0,x2-x1>0时;α=360°+arctan(y2-y1)/(x2-x1)。

3)、当x2-x1<0时;α=180°+arctan(y2-y1)/(x2-x1)。

再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加)。

拨角:arctan(y2-y1)/(x2-x1)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法(前视边方位角减后视边方位)在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”(+360°就可化为右偏,正值为右偏“顺时针”。

2、在图上标识方位的方法:就是导线边与Y轴的夹角。

3、高程计算:目标高程=测点高程+?h+仪器高—占标高。

4、直角坐标与极坐标的换算:(直角坐标用坐标增量表示;极坐标用方位角和边长表示) 1)、坐标正算(极坐标化为直角坐标)已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知A(Xa,Ya)、Sab、αab,求B(Xa,Ya)解:?Xab=Sab×COSαab 则有Xb=Xa+?Xab?Yab=Sab×SINαab Yb=Ya+?Yab2)、坐标反算,已知两点的坐标,求两点的距离(称反算边长)和方位角(称反算方位角)的方法已知A(Xa,Ya)、B(Xb,Yb),求αab、Sab。

已知两个坐标求坐标方位角的公式是

已知两个坐标求坐标方位角的公式是

已知两个坐标求坐标方位角的公式是在地理和导航领域中,坐标方位角是指从一个给定坐标点到另一个目标坐标点的方向角度。

在导航和定位系统中,方位角是非常重要的参数,可以用来确定目标位置相对于原点的方向。

计算坐标方位角的公式可以帮助我们快速准确地确定目标位置的方向。

坐标方位角的计算可以使用三角函数来实现。

下面是计算坐标方位角的公式:设已知坐标点A的经度为lon A,纬度为lat A,坐标点B的经度为lon B,纬度为lat B。

则坐标点A到坐标点B的方位角(以正北方向为0度,顺时针旋转)可以通过以下公式来计算:$$ \\Delta \\lambda = lon_B - lon_A $$$$ Y = \\sin(\\Delta \\lambda) \\cdot \\cos(lat_B) $$$$ X = \\cos(lat_A) \\cdot \\sin(lat_B) - \\sin(lat_A) \\cdot \\cos(lat_B) \\cdot \\cos(\\Delta \\lambda) $$$$ \\theta = \\arctan\\left(\\frac{Y}{X}\\right) $$其中,$\\Delta \\lambda$表示经度差值,X和Y是中间变量,$\\theta$表示方位角。

需要注意的是,上述公式中的经纬度均采用弧度制表示,因此在计算前需要将经纬度转换为弧度。

转换方法如下:$$ \\text{Radian} = \\text{Degree} \\times \\frac{\\pi}{180} $$在实际应用中,通常使用计算机编程语言的库函数来计算三角函数和角度转换。

以下是一个Python示例代码,展示了如何根据给定的坐标求得方位角:import mathdef calculate_bearing(lat_a, lon_a, lat_b, lon_b):# 将经纬度转换为弧度lat_a_rad = math.radians(lat_a)lon_a_rad = math.radians(lon_a)lat_b_rad = math.radians(lat_b)lon_b_rad = math.radians(lon_b)delta_lon = lon_b_rad - lon_a_rady = math.sin(delta_lon) * math.cos(lat_b_rad)x = math.cos(lat_a_rad) * math.sin(lat_b_rad) - math.sin(lat_a_rad)* math.cos(lat_b_rad) * math.cos(delta_lon)bearing = math.atan2(y, x)# 将弧度转换为角度bearing_deg = math.degrees(bearing)return bearing_deg上述代码中的calculate_bearing函数接受四个参数,分别为点A和点B的经度和纬度。

坐标方位角计算公式过程

坐标方位角计算公式过程

坐标方位角计算公式过程
一、坐标方位角的定义。

在平面直角坐标系中,从某点的坐标纵轴方向的北端起,顺时针量到目标方向线间的水平夹角,称为该点的坐标方位角,其取值范围是0° - 360°。

二、坐标方位角计算公式推导过程。

1. 已知两点坐标计算坐标方位角。

- 设A(x1,y1)、B(x2,y2)为平面直角坐标系中的两点。

- 首先计算Δx=x2 - x1,Δy=y2 - y1。

- 然后根据正切函数计算反正切值tanα=(Δ y)/(Δ x),这里得到的α是一个锐角(- 90^∘<α<90^∘)。

- 接下来需要根据Δ x和Δ y的正负来确定坐标方位角β:
- 当Δ x>0,Δ y≥slant0时,坐标方位角β=α。

- 当Δ x = 0,Δ y>0时,坐标方位角β = 90^∘。

- 当Δ x<0时,坐标方位角β=α + 180^∘。

- 当Δ x>0,Δ y<0时,坐标方位角β=α+360^∘(也可写成β = α - 360^∘,目的是将其转化到0° - 360°范围内)。

例如,已知A点坐标为(1,1),B点坐标为(3,3),则Δ x=3 - 1=2,Δ y=3 - 1 = 2,tanα=(2)/(2)=1,α = 45^∘,因为Δ x>0,Δ y≥slant0,所以坐标方位角β = 45^∘。

再如,已知A点坐标为(1,1),B点坐标为(-1,3),Δ x=-1 - 1=-2,Δ y=3 - 1=2,tanα=(2)/(-2)=- 1,α=-45^∘,由于Δ x<0,所以坐标方位角β=-45^∘+180^∘=135^∘。

两点方位角计算公式

两点方位角计算公式

两点方位角计算公式
两点方位角是指从一个点出发,经过直线路径到达另一个点的方向。

一般通过经纬度的坐标来计算两点方位角,以下是计算公式:
1. 根据起点和终点的经纬度计算它们之间的距离,可以使用以下公式:
a = sin(Δlat/2) + cos(lat1) * cos(lat2) * sin(Δlong/2)
c = 2 * atan2( √a, √(1a) )
d = R * c
其中,Δlat和Δlong分别表示起点和终点的纬度和经度之差,R为地球半径,d表示两点之间的距离。

2. 计算起点和终点的方位角,可以使用以下公式:
y = sin(Δlong) * cos(lat2)
x = cos(lat1) * sin(lat2) sin(lat1) * cos(lat2) * cos(Δlong)
θ = atan2(y, x)
其中,θ表示起点指向终点的方位角,正北方向为0°,顺时针方向为正。

以上就是计算两点方位角的公式,可以通过这些公式来快速计算出两点间的方位角。

- 1 -。

坐标,方位角计算公式

坐标,方位角计算公式

坐标,方位角计算公式坐标方位角=磁方位角+(±磁坐偏角)。

方位角是卫星接收天线,在水平面上转0°-360°。

设定方位角时,抛物面在水平面上左右移动。

方位角(方位角,缩写为Az)是用于测量平面中物体之间的角度差的方法之一。

它是从点的北方向顺时针方向和目标方向之间的水平角度。

一、计算方法1、按给定的坐标数据计算方位角αBA、αBPΔxBA=xA-xB=+123.461m;ΔyBA=yA-yB=+91.508m;由于ΔxBA>0,ΔyBA>0;可知αBA位于第Ⅰ象限,即αBA=arctg=36°32'43.64";ΔxBP=xP-xB=-37.819m;ΔyBP=yP-yB=+9.048m;由于ΔxBP<0,ΔyBP>0;公式计算出来的方位角,可知αBP位于第Ⅱ象限。

αBP=180o-α=180o-arctg=180o-13o27'17.33"=166°32'42.67";此外,当Δx<0,Δy<0;位于第Ⅲ象限,方位角=180°+arctg;当Δx>0,Δy<0;位于第Ⅳ象限,方位角=360°-arctg。

2、计算放样数据∠PBA、DBP∠PBA=αBP-αBA=129°59'59.03"。

3、测设时,把经纬仪安置在B点,瞄准A点,按顺时针方向测设∠PBA,得到BP方向,沿此方向测设水平距离DBP,就得到P点的平面位置。

当受地形限制不便于量距时,可采用角度交会法测设放样点平面位置上例中,当BP间量距受限时,通过计算测设∠PAB、∠PBA来定P点。

根据给定坐标计算∠PAB;ΔxAP=xP-xA=-161.28m;ΔyAP=yP-yA=-82.46m;αAP=180°+arctg=207°4'47.88";又αAB=180°+αBA=180°+36°32'43.64"=216°32'43.64";∠PAB=αAB-αAP=9°27'55.76"。

坐标方位角通用计算公式

坐标方位角通用计算公式

坐标方位角通用计算公式及编程方法1、坐标方位角通用计算公式:α=180°-90°sgn(ΔY)-arctan(ΔX/ΔY)坐标增量取值范围为:ΔY≠0,若ΔY=0则令ΔY等于一个无穷小量(可以用1E220作为无穷小量取代0),通式值域为[0°,360°])。

2、编程计算本程序在计算机上运行时应根据适当的语言进行改编。

If ΔY=0 then ΔY=1E-20I=pi-pi×sgn(ΔY)/2-tan-1(ΔX/ΔY)Endif3、相关转化常量表1弧度=206264.8062″1弧度=57.2957795130823°1度=1.74532925199433E-02弧度(0.0174532925199433弧度)π=3.141592653589794、取西安80坐标系的长半轴6378140m,以赤道为例:1(经)度=6378140*3.1415926/180=111319m=111.3km1(经)分=6378140*3.1415926/180/60=1855m=1.8km1(经)秒=6378140*3.1415926/180/3600=30.9m5、基础知识(1)我国位于东经135度02分至东经73度40分,经差61度22分。

以6度带投影的话,位于第13号至23号带。

中央经线75度至135度。

以3度带投影的话,位于第25号至45号带。

中央经线75度至135度。

(2)我国位于北纬3度52分至北纬53度33分,纬差49度41分。

X北坐标的范围X北坐标最小值= 3度*111.3km + 52分* 1.8km =427.5km X北坐标最大值= 53度* 111.3km + 33分* 1.8km =5948.4km以米为单位的话,X北坐标有6至7位(3)以6度带计算的话,不加500km时,Y东坐标轴的正值和负值最大的绝对值=3度*111.3km=333.9km,Y东坐标加上500km后,Y最小值=500-333.9=166.1km,Y最大=500+333.9=833.9km(当然这是是位于赤道上的最大值和最小值,我国大陆位于赤道以北,相应要小于这两个极值)另外完整的Y东坐标还要以带号开头,所以以米为单位的话,Y坐标有8位。

测量学中坐标方位角计算公式

测量学中坐标方位角计算公式

测量学中坐标方位角计算公式在测量学中,坐标方位角是用于描述目标物体或点在水平坐标系中的方向的数值。

坐标方位角是指从北方向顺时针旋转到目标点所需的角度。

在实际的测量工作中,计算坐标方位角是非常重要的,它可以帮助测量员准确地确定目标点在地图上的位置。

计算公式计算坐标方位角的主要公式是使用三角函数来实现的。

具体的计算公式如下:方位角 = arctan((Y2 - Y1) / (X2 - X1))在上述公式中,X1和Y1表示起点的水平坐标值,X2和Y2表示终点的水平坐标值。

arctan表示反正切函数,它可以将斜率转化为角度值。

通过使用这个计算公式,我们可以得到起点和终点之间的坐标方位角。

需要注意的是,上述公式仅适用于计算水平平面上的坐标方位角。

如果需要在垂直平面上计算坐标方位角,我们还需要考虑高程的影响。

在这种情况下,计算公式会稍有不同,需要引入高程差的概念。

示例为了更好地理解坐标方位角的计算过程,我们可以通过一个示例来说明。

假设我们有两个点A和B,它们的水平坐标分别为:点A:(X1, Y1) = (100, 200)点B:(X2, Y2) = (150, 280)现在我们来计算点A和点B之间的坐标方位角。

首先,我们将点A和点B的坐标值代入计算公式中:方位角 = arctan((280 - 200) / (150 - 100))接下来,我们计算分子和分母的差值:方位角 = arctan(80 / 50)然后,我们计算这两个差值的比值:方位角 = arctan(1.6)最后,使用反正切函数来计算坐标方位角的数值:方位角≈ 56.31°所以,根据计算结果,点A和点B之间的坐标方位角约为56.31°。

结论测量学中的坐标方位角是用于描述目标物体或点在水平坐标系中方向的数值。

通过使用三角函数计算公式,我们可以准确地确定起点和终点之间的坐标方位角。

在计算时需要注意坐标值的顺序和差值的计算方法。

通过实际的计算示例,我们可以更好地理解和应用坐标方位角的计算公式。

坐标方位角

坐标方位角

坐标方位角1. 坐标方位角的定义坐标方位角是用来描述一个点相对于参考点的方位关系的数值。

在平面直角坐标系中,方位角通常用角度来表示,范围从0度到360度。

方位角是从参考点指向待确定点的线段与正x轴之间的夹角。

2. 坐标方位角的计算方法要计算坐标方位角,可以使用三角函数来辅助计算。

假设参考点的坐标为(x₀, y₀),待确定点的坐标为(x, y)。

1.首先,计算两点之间的水平距离dx和垂直距离dy。

dx = x - x₀,dy =y - y₀。

2.然后,计算方位角θ。

如果dx和dy都为0,则说明参考点和待确定点重合,此时方位角无意义。

否则,可以通过以下公式来计算方位角:θ = atan2(dy, dx)其中,atan2是一个数学函数,用于计算给定坐标的反正切值。

该函数的返回值范围为-π到π。

3.最后,将计算得到的方位角θ转换为度数形式,以得到最终的坐标方位角。

3. 坐标方位角的例子以下是一个使用坐标方位角计算两点之间方位关系的例子:假设参考点的坐标为(1, 1),待确定点的坐标为(3, 4)。

首先,计算dx和dy的值:dx = 3 - 1 = 2dy = 4 - 1 = 3然后,计算方位角θ:θ = atan2(3, 2) ≈ 56.31°因此,参考点到待确定点的方位角约为56.31°。

4. 坐标方位角的应用坐标方位角在很多领域中都有广泛的应用。

以下列举了几个常见的应用场景:•地理导航:通过计算两个地点之间的方位角,可以确定前往目的地所需的方向。

•天文学:在天文观测中,坐标方位角用于描述天体位置的方位关系。

•机器人及无人驾驶:在自动导航系统中,坐标方位角用于确定机器人或无人驾驶车辆与目标位置之间的关系。

•建筑与工程:在建筑设计和工程测量中,坐标方位角用于确定建筑物或结构物之间的位置关系。

5. 总结坐标方位角是描述一个点相对于参考点的方位关系的数值。

通过计算两个点之间的水平距离和垂直距离,然后使用三角函数进行计算,可以得到方位角的数值。

方位角及坐标计算

方位角及坐标计算

方位角及坐标计算1.方位角的定义方位角是指从固定参考方向(通常为正北方向)开始,逆时针旋转到目标点所需的角度。

方位角通常用度数表示,范围从0度到360度。

2.极坐标与直角坐标系方位角及坐标计算通常使用极坐标系和直角坐标系两种坐标系统。

极坐标系以起始点为极点,水平线为参考线,方位角为极角,距离为极径;直角坐标系以起始点为原点,在水平和垂直方向上建立坐标轴,利用x、y坐标表示目标点的位置。

3.方位角的计算计算方位角的基本公式如下:方位角 = atan2(y2 - y1, x2 - x1)其中,(x1,y1)为起始点的坐标,(x2,y2)为目标点的坐标。

4.坐标的计算利用已知的方位角及距离,可以计算出目标点的坐标。

计算公式如下:x2 = x1 + D * cos(θ)y2 = y1 + D * sin(θ)其中,(x1,y1)为起始点的坐标,(x2,y2)为目标点的坐标,D为距离,θ为方位角。

5.示例假设起始点坐标为(0,0),距离为10,方位角为45度,计算目标点的坐标。

首先,将方位角转化为弧度,45度=45*π/180=0.7854弧度。

然后,代入公式计算:x2 = 0 + 10 * cos(0.7854) ≈ 7.07y2 = 0 + 10 * sin(0.7854) ≈ 7.07所以,目标点的坐标为(7.07,7.07)。

6.扩展应用总结:方位角及坐标计算是一种通过已知的方位角、距离和起始点的坐标来计算目标点的坐标的方法。

通过利用极坐标和直角坐标系的转换,可以快速计算出目标点的位置。

方位角及坐标计算在航海、地理测量学以及航空航天等领域有广泛的应用。

坐标反算正算计算公式

坐标反算正算计算公式

坐标反算正算计算公式一、坐标正算 根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角αAB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为: X B=X A + ΔX AB Y B=X A + ΔY AB (1-18)二式中,ΔX AB与ΔY AB分别称为A~B的纵、横坐标增量,其计算公式为: ΔX AB=X B-X A=D AB · cosαAB ΔY AB=Y B-Y A=D AB · sinαAB (1-19) 注意,ΔX AB和ΔY AB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。

二、坐标反算 根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角αAB,为坐标反算。

其计算公式为: (1-20) (1-21)注意,由(1-20)式计算αAB时往往得到的是象限角的数值,必须先根据ΔX AB、ΔY AB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。

三角函数内容规律 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

而掌握三角函数的内部规律及本质也是学好三角函数的关键所在. 1、三角函数本质: 三角函数的本质来源于定义,如右图: 根据右图,有 sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y。

深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。

角AOD为α,BO D为β,旋转AOB使OB与OD重合,形成新A'OD。

A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β)) OA'=OA=OB=OD=1,D(1,0) ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)[1] 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)[编辑本段]倍角公式 Sin2A=2SinA•CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=2tanA/(1-tanA^2) (注:SinA^2 是sinA的平方sin2(A))[编辑本段]三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a)[编辑本段]三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina =2sina(1-sin&sup2;a)+(1-2sin&sup2;a)sina =3sina-4sin&sup3;a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos&sup2;a-1)cosa-2(1-sin&sup2;a)cosa =4cos&sup3;a-3cosa sin3a=3sina-4sin&sup3;a =4sina(3/4-sin&sup2;a) =4sina[(√3/2)&sup2;-sin&sup2;a] =4sina(sin&sup2;60°-sin&sup2;a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos&sup3;a-3cosa =4cosa(cos&sup2;a-3/4) =4cosa[cos&sup2;a-(√3/2)&sup2;] =4cosa(cos&sup2;a-cos&sup2;30°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a)[编辑本段]半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.[编辑本段]和差化积 sinθ+sinφ= 2sin[(θ+φ)/2]cos[(θ-φ)/2] sinθ-sinφ= 2cos[(θ+φ)/2]sin[(θ-φ)/2] cosθ+cosφ= 2cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ= -2sin[(θ+φ)/2]sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) [编辑本段]积化和差 sinαsinβ= -1/2*[cos(α+β)-cos(α-β)] cosαcosβ= 1/2*[cos(α+β)+cos(α-β)] sinαcosβ= 1/2*[sin(α+β)+sin(α-β)] cosαsinβ= 1/2*[sin(α+β)-sin(α-β)][编辑本段]诱导公式 sin(-α) = -sinα cos(-α) = cosα sin(π/2-α) = -cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα[编辑本段]万能公式[编辑本段]其它公式(sinα)^2+(cosα)^2=1 1+(tanα)^2=(secα)^2 1+(cotα)^2=(cscα)^2 证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可 对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立[编辑本段]其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)[编辑本段]双曲函数 sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tg h(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα cot(kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) 这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容。

角度坐标测量计算公式细则

角度坐标测量计算公式细则

角度坐标测量计算公式细则文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα。

式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角。

2、方位角计算:1)、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数(±号判断象限)。

2)、方位角:arctan(y2-y1)/(x2-x1)。

加减180(大于180就减去180(还大于360就在减去360)、小于180就加180如果x轴坐标增量为负数,则结果加180°。

如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°。

S=√(y2-y1)+(x2-x1),1)、当y2-y1>0,x2-x1>0时;α=arctan(y2-y1)/(x2-x1)。

2)、当y2-y1<0,x2-x1>0时;α=360°+arctan(y2-y1)/(x2-x1)。

3)、当x2-x1<0时;α=180°+arctan(y2-y1)/(x2-x1)。

再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加)。

拨角:arctan(y2-y1)/(x2-x1)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法(前视边方位角减后视边方位)在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”(+360°就可化为右偏,正值为右偏“顺时针”。

2、在图上标识方位的方法:就是导线边与Y轴的夹角。

3、高程计算:目标高程=测点高程+h+仪器高—占标高。

4、直角坐标与极坐标的换算:(直角坐标用坐标增量表示;极坐标用方位角和边长表示)1)、坐标正算(极坐标化为直角坐标)已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知A(Xa,Ya)、Sab、αab,求B(Xa,Ya)解:Xab=Sab×COSαab 则有Xb=Xa+XabYab=Sab×SINαab Yb=Ya+Yab2)、坐标反算,已知两点的坐标,求两点的距离(称反算边长)和方位角(称反算方位角)的方法已知A(Xa,Ya)、B(Xb,Yb),求αab、Sab。

方位角计算坐标公式

方位角计算坐标公式

方位角计算坐标公式方位角是指从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角。

在数学、地理、工程等领域中,方位角的计算坐标公式可是相当重要的工具。

咱先来说说方位角的基本概念。

想象一下,你站在一个空旷的地方,面前有一个目标点,你要知道从你所在的位置看向那个目标点的方向角度,这就是方位角。

比如说,你正对着北方,然后顺时针转动到目标点的角度就是方位角啦。

那方位角计算坐标公式到底是啥呢?其实就是通过已知点的坐标和目标点的坐标来算出方位角。

具体的公式是:$tan\alpha = \frac{y_2 - y_1}{x_2 - x_1}$然后通过反正切函数就能得到方位角$\alpha$啦。

这里的$(x_1,y_1)$是已知点的坐标,$(x_2, y_2)$是目标点的坐标。

给大家举个例子哈。

比如说有两个点,A 点的坐标是(3, 4),B 点的坐标是(7, 8)。

咱们来算算从 A 点看向 B 点的方位角。

首先,按照公式,$x_1 = 3$,$y_1 = 4$,$x_2 = 7$,$y_2 = 8$。

那么,$tan\alpha = \frac{8 - 4}{7 - 3} = \frac{4}{4} = 1$。

然后通过反正切函数,就知道$\alpha = 45°$。

这就意味着从 A 点看向 B 点的方位角是 45°。

在实际生活中,方位角的计算坐标公式用处可大了。

就拿建筑施工来说吧,工程师们要确定建筑物的朝向、道路的走向,就得靠这个公式来准确计算方位角。

我之前就碰到过这么个事儿,有一次去一个建筑工地,当时工人们正在打地基,但是因为方位角没算对,导致一开始的基础部分就有点偏差。

后来发现问题后,赶紧重新计算方位角,调整施工方案,这才避免了更大的错误。

你瞧,就这么一个小小的方位角计算,如果出错了,那带来的麻烦可不小。

在地理测量中,方位角也很关键。

比如测量山峰的位置、河流的走向等等。

还有导航系统,也是依靠方位角来为我们指引方向的。

方位角及坐标计算

方位角及坐标计算

方位角及坐标计算公路工程各点方位角及坐标计算公式(一)各点方位角计算:1、第一直线段(k0~zh):f=arctgδy/δx备注:直线方位角必须考量象限角就可以厘定恰当线路迈向2、第一缓解曲线段(kzh~khy):δ1=(k0-kzh)2/(2rlh)×180/π3、圆曲线段(khy~kyh):δ2=[2(k0-kzh)-lh]/2r×180/πδ2=(khy-kzh)/2r×180/π+(k0-khy)/r×180/π无缓和曲线时:δ2=(k0-khy)/r×180/π(即圆曲线圆心角)4、第二缓和曲线段(kyh~khz):δ3=(khz-k0)2/(2rlh)×180/π5、第二直线段(khz~kzh):f±α(左偏时f-α,右偏时f+α)备注:k0――排序点的程α――曲线交点偏角lh――缓和曲线长(注意有时第一和第二缓和曲线长不一样)(二)各点坐标计算xzh=xjd-t?cosfxhz=xjd+t?cos(f±α)yzh=yjd-t?sinfyhz=yjd+t?sin(f±α)1、第一直线段:x=xzh+(k0-kzh)?cosf中桩y=yzh+(k0-kzh)?sinfx边=x中±b?cos(f-δ)边桩y边=y中±b?sin(f-δ)备注:b――中桩至所求点的距离(左幅时为+b,右幅时为-b,当设计轴线与线路不横向时b取斜短,即b/sinδ)设计轴线线路方向。

bδ图s-12、第一缓和曲线段:xx=xzh-y′?sinθ+x′?cosθxx′x′中桩′y=yzh+y′?cosθ+x′?sinθyzhyθhzx边=x中±b?cos(f+μδ1-δ)hyyh边桩y边=y中±b?sin(f+μδ1-δ)jdy′注:(本公式只适用与图s-2线形)图s-2μ――曲线左转为-1,右转为+1θ――线路方位角与y轴所缠的锐角,见到图s-2y′=l-l5/(40r2lh2);x′=l3/(6rlh)-l7/(336r3lh3);(r―圆曲线半径,l―缓解曲线就任一点至曲线起点长度)3、圆曲线段:x=xhy+2r?sinφ?cos(f+μ(ξ+φ))中桩y=yhy+2r?sinφ?s in(f+μ(ξ+φ))x边=x中±b?cos(f+μδ2-δ)边桩y边=y中±b?sin(f+μδ2-δ)备注:φ=(k0-khy)/2r×180/π;ξ=(khy-kzh)/2r×180/π4、第二缓解曲线段:x=xhz-y′?sinθ+x′?cosθ中桩y=yhz-y′?cosθ-x′?sinθx边=x中±b?cos(f+μδ1-δ)边桩y边=y中±b?sin(f+μδ1-δ)注:1、本公式只适用于与图s-2线形,其他线形可以根据本线形公式转换2、式中符号与第一缓解曲线意义相同3、注意有时第一缓和曲线长和第二缓和曲线长不一样4、第二直线段:x=xhz+(k0-khz)?cos(f±α)中桩y=yhz+(k0-khz)?sin(f±α)x边=x中±b?cos(f±α-δ)边桩y边=y中±b?sin(f±α-δ)备注:f――第一直线段的方位角(三)用casiofx-4500p计算已知坐标点在线路上的里程和距中线距离1、直线段(已知坐标x、y)pol(x-xhz,y-yhz):k=v?cos(f-w)+khzb=v?sin(f-w)备注:1、在fx-4500p中计算结果取走变量储存区v和w,必须表明储存区内容时按rclv、w键。

坐标方位角计算实验报告

坐标方位角计算实验报告

一、实验目的1. 理解坐标方位角的概念和计算方法。

2. 掌握坐标方位角的计算步骤和注意事项。

3. 通过实际操作,提高测量精度和计算能力。

二、实验原理坐标方位角是指在平面直角坐标系中,从起点出发,沿着直线的方向所形成与正北方向之间的夹角。

坐标方位角的计算公式为:方位角 = arctan((y2 - y1) / (x2 - x1))其中,(x1, y1)和(x2, y2)分别为直线上两点的坐标。

三、实验仪器与材料1. 测量仪器:经纬仪、水准仪、钢尺等。

2. 实验材料:坐标纸、记录本、计算器等。

四、实验步骤1. 选择实验场地,搭建测量控制网。

2. 在控制网上选取两个已知坐标点A和B。

3. 利用经纬仪和水准仪,测量点A和B的坐标和高程。

4. 根据测得的坐标和高程,计算A、B两点的坐标方位角。

5. 利用坐标方位角,绘制直线的方向。

6. 对比理论计算结果和实际测量结果,分析误差来源。

五、实验数据1. 点A坐标:x1 = 100.0m,y1 = 200.0m2. 点B坐标:x2 = 150.0m,y2 = 250.0m六、实验结果与分析1. 计算A、B两点的坐标方位角:方位角 = arctan((y2 - y1) / (x2 - x1))= arctan((250.0 - 200.0) / (150.0 - 100.0))≈ arctan(1.0)≈ 45°2. 绘制直线的方向,实际测量结果与理论计算结果基本一致。

3. 误差分析:(1)测量误差:在实验过程中,由于仪器精度、人为操作等因素,导致测量结果存在一定的误差。

(2)计算误差:在计算过程中,由于计算方法、计算器精度等因素,导致计算结果存在一定的误差。

(3)绘图误差:在绘制直线方向时,由于绘图工具和人为操作等因素,导致绘图结果存在一定的误差。

七、实验总结1. 通过本次实验,我们掌握了坐标方位角的计算方法和步骤,提高了测量精度和计算能力。

2. 在实际操作过程中,要注意仪器的使用、数据的记录和计算过程的准确性,以减小误差。

计算坐标与坐标方位角地基本公式

计算坐标与坐标方位角地基本公式

计算坐标与坐标方位角的基本公式在地理信息系统 (GIS) 中,坐标和坐标方位角是必不可少的概念。

坐标是指一个点在地球表面上的位置,通常用经度和纬度表示。

坐标方位角则是指起点到终点方向的角度,通常以真北为基准点。

在本文中,我们将探讨计算坐标和坐标方位角的基本公式。

坐标的基本公式地球的形状首先,要理解地球的形状对坐标计算的影响。

地球并不是一个完美的球形,而是略带扁平的椭球体。

因此,我们需要使用椭球体的参数来计算坐标。

经纬度坐标转换经纬度是通常用来表示地球上一个点位置的方法。

经度是指一个点距离本初子午线的角度,通常用东经和西经表示。

而纬度则是指一个点距离赤道的角度,通常用北纬和南纬表示。

当需要进行坐标转换时,我们需要将经纬度坐标转换为特定椭球体上的三维坐标。

这个过程是通过将经纬度转换为弧度来实现的。

转换公式如下:x = (N+h) \\cos \\phi \\cos \\lambday = (N+h) \\cos \\phi \\sin \\lambdaz = \\biggl(\\frac{b^2}{a^2} N + h \\biggr) \\sin \\phi其中,a是椭球体的长轴半径,b是短轴半径。

N是法向半径,表示在给定经度和纬度下,一个地球表面上点到地球中心的距离。

h是该点离椭球体层面的高度。

当h为0时,这些公式计算的是大地坐标系中的点。

当h非0时,这些公式计算的是地球表面上任意点的三维坐标。

大地坐标系大地坐标系是一种椭球体坐标系,用于在地球表面上描述点的位置。

大地坐标系的坐标可以表示为一个点处于一个正常椭球体上的高度,加上该点的经纬度。

当我们知道两个点的坐标时,可以使用以下公式计算它们之间的距离:d = \\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}其中,(x1, y1, z1)和(x2, y2, z2)是两个点的坐标。

d是两个点之间的距离。

计算坐标与坐标方位角的基本公式

计算坐标与坐标方位角的基本公式

计算坐标与坐标方位角的基本公式在二维坐标系中,我们可以使用坐标表示一个点的位置。

一个点的坐标通常由一个有序的数对(x,y)表示,其中x表示点在x轴上的位置,y 表示点在y轴上的位置。

除了坐标,我们还可以使用方位角来表示点的位置。

方位角是一个极坐标系中的概念,通过一个长度和一个角度来确定一个点的位置。

在二维平面坐标系中,我们可以使用以下公式将坐标转换为方位角:1.计算长度(r):r=√(x²+y²)2.计算角度(θ):θ = arctan(y / x)其中,arctan(y / x)代表 y/x 的反正切值,θ表示点与 x 轴的夹角(逆时针方向为正)。

这样,我们就可以通过坐标计算得到点的方位角。

同样地,我们也可以使用方位角计算将方位角转换为坐标的公式:1.计算x坐标:x = r * cos(θ)2.计算y坐标:y = r * sin(θ)其中,cos(θ)代表角度θ 的余弦值,sin(θ)代表角度θ 的正弦值。

这样,我们就可以通过方位角计算得到点的坐标。

需要注意的是,上述公式中的θ是以弧度制表示的。

如果我们要将角度以度数制表示,可以用以下公式进行转换:角度(以度数制表示)=角度(以弧度制表示)*180/π除了上述基本公式,我们还可以通过方位角进行一些其他计算:1.两点之间的距离:d=√[(x₂-x₁)²+(y₂-y₁)²]其中,(x₁,y₁)和(x₂,y₂)是两个点的坐标。

2.两点之间的方位角:θ = arctan((y₂ - y₁) / (x₂ - x₁))这个公式可以用于计算两点之间的方位角,其中(x₁,y₁)和(x₂,y₂)是两个点的坐标。

在三维空间中,我们可以使用类似的方式计算坐标与方位角。

在三维空间中,一个点的坐标通常由一个有序的数三元组(x,y,z)表示,而方位角也变成了一个有序的数三元组(r,θ,φ)表示,其中r仍然表示长度,θ表示与x轴的夹角,φ表示与z轴的夹角。

方位角的计算公式

方位角的计算公式

方位角的计算公式方位角是指从其中一点出发,顺时针方向到另一个点的位置角度。

它通常用度数来表示,以正北方向为基准,逆时针方向为正方向。

方位角的计算公式主要有两种,一种使用正弦和余弦函数,另一种使用向量运算。

1.使用正弦和余弦函数的计算公式:假设点A的坐标为(Ax, Ay),点B的坐标为(Bx, By)。

首先需要计算两点之间的水平距离和垂直距离,即dx = Bx - Ax和dy = By - Ay。

然后可以计算方位角θ = arctan(dy/dx)。

但是由于arctan函数的值域是(-π/2, π/2),只能表示-90°到90°之间的角度,为了得到完整的方位角计算结果,还需要根据点的位置进行调整。

- 如果dx > 0且dy > 0,即点B位于点A的右上方,此时方位角为θ。

- 如果dx > 0且dy < 0,即点B位于点A的右下方,此时方位角为360° + θ。

- 如果dx < 0,即点B位于点A的左侧,此时方位角为180° + θ。

- 如果dx = 0且dy > 0,即点B位于点A的正北方向,此时方位角为90°。

- 如果dx = 0且dy < 0,即点B位于点A的正南方向,此时方位角为270°。

这样就可以得到点A到点B的方位角。

2.使用向量运算的计算公式:向量的加减可以表示方向的改变,因此方位角的计算也可以通过向量运算来实现。

假设点A的坐标为(Ax,Ay),点B的坐标为(Bx,By)。

首先构造向量AB,即将点B的坐标减去点A的坐标得到(ABx,ABy)。

然后可以计算该向量的方位角θ = arctan(ABy/ABx),同样需要根据点的位置进行调整。

-如果ABx>0且ABy>0,即点B位于点A的右上方,此时方位角为θ。

-如果ABx>0且ABy<0,即点B位于点A的右下方,此时方位角为360°+θ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二 计算坐标与坐标方位角的基本公式 控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。

下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。

一、坐标正算和坐标反算公式 1.坐标正算
根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。

如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为
AB
A B AB A B y y y x x x ∆+=∆+= }
(5—1) 式中
AB x ∆ 、AB y ∆——坐标增量。

由图5—5可知
AB
AB AB AB AB AB S y S x ααsin cos =∆=∆ }
(5—2) 式中
AB S ——水平边长;
AB α——坐标方位角。

将式(5-2)代入式(5-1),则有
AB
AB A B AB AB A B S y y S x x ααsin cos +=+= }
(5—3)
当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。

式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。

从图5—5可以看出AB x ∆是边长AB S 在x 轴上的投影长度,
AB y ∆是边长AB S 在
y 轴上的投影长度,边长是有向线段,是在
实地由A 量到B 得到的正值。

而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种
情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。

从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。

图5—5 坐标计算图5—6 坐标增量符号
表5—3 坐标增量符号表
坐标方位角
(°)所在象限坐标增量的正
负号
⊿x ⊿y
0~90
90~180
180~270 Ⅰ











例1 已知A 点坐标A x =100.00m ,A y =300.10m ;边长
AB s =100m ,方位角AB α=330°。


B 点的坐标B x 、B y 。

解:根据公式(5—3)有
m
s y y m s x x AB AB A B AB AB A B 6.249330sin 1001.300sin 1.186330cos 100100cos =︒⋅+=+==︒⋅+=+=αα
2、坐标反算
由两个已知点的坐标计算出这两个点连线的坐标方位角和边长,这种计算称为坐标反算。

由式(5—1)有 A
B AB A B AB y y y x x x -=∆-=∆ }
(5—4)
该式说明坐标增量就是两点的坐标之差。

在图5—5中AB x ∆ 表示由A 点到达B 点的纵坐标之差称纵坐标增量;
AB y ∆表
示由A 点到B 点的横坐标之差称横坐标增量。

坐标增量也有正负两种情况,它们决定于起点和终点坐标值的大小。

在图5—5中如果A 点到B 点的坐标已知,需要计算AB 边的坐标方位角AB α和边长时AB S , 则有
AB
AB
A B A B AB x y x x y y ∆∆=--=
αtan AB
AB
AB AB AB y x S ααsin cos ∆=
∆=

(5—5)

()()22AB AB AB y x S ∆+∆=
公式(5—5)称为坐标反算公式。

应当指出,使用公式(5—5)中第一式计算的角是象限角R ,应根据⊿x 、⊿y 的正负号,确定所在象限,再将象限角换算为方位角。

因此公式(5—5)中的第一式还可表示为: AB
AB
A B A B AB
x y x x y y R ∆∆=--=arctan
arctan
例2.已知A x =300m,
A y =500m,
B x =500m,B y =300m,
求A 、B 二点连线的坐标方位角AB α和边长AB S 。

解:由公式(5-5)有
)1arctan(300
500500
300arctan arctan
-=--=--=A B A B AB x x y y R 因为AB x ∆为正 、AB y ∆为负,直线AB 位于第四象限。

所以
︒=45NW R AB
根据第四象限的坐标方位角与象限角的关系得:
︒=︒-︒=31545360AB α
AB 边长为:
m y y x x S A B A B AB 8.282)500300()300500()()(2222=-+-=-+-=
坐标正算公式和坐标反算公式都是矿山测量中最基本的公式,应用十分广泛。

在测量计算时,由于公式中各元素的数字较多,测量规对数字取位及计算成果作了规定。

例如图根控制点要求边长计算取至毫米;角度计算取至秒;坐标计算取至厘米。

二、坐标方位角的推算公式
由公式(5-2)知,计算坐标增量需要边长和该边的坐标方位角两个要素,其中边长是
在野外直接测量或通过三角学的公式计算得到的,坐标方位角则是根据已知坐标方位角和水平角推算出来的。

下面介绍坐标方位角的推算公式。

如图5-7所示,箭头所指的方向为“前进”方向,位于前进方向左侧的观测角称为左观测角,简称左角;位于前进方向右侧的角称为右观测角,简称右角。

1.观测左角时的坐标方位角计算公式
在图5—7与5—8中,已知AB 边的方位角为AB α,
左β为左观测角,需要求得BC 边的方位角BC α。

左β是外业观测得到的水平角,从图上可以看出已知方位角AB α与左观测角左β之和有两种情况:即大于180°或小于180°。

图5—7中为大于180°的情况,图5—8中为小于180°的情况。

图5—7坐标方位角推算 图5—8坐标方位角推算
从图5—7可知,BC 边的坐标方位角为
ο180-+=左βααAB BC
从图5—8可知,BC 边的坐标方位角为
ο180++=左βααAB BC
综上所述两式则有
ο180±+=左后前βαα (5—6)
式(5-6)是按照边的前进方向,根据后一条边的已知方位角计算前一条边方位角的基本公式。

公式说明:导线前一条边的坐标方位角等于后一条边的坐标方位角加上左观测角,其和大于180°时应减去180°,小于180°时应加上180°。

2.观测右角时的坐标方位角计算公式
从图5-7 或图5-8可以看出 右左ββ-=ο360 将该式代入式(5- 6),得
οο360)180(+±-=右后前βαα
当方位角大于360°时,应减去360°,方向不变。

所以上式变为
ο
180±-=右后前βαα
(5—7)
上式说明:导线中,前一条边的坐标方位角等于后一条边的坐标方位角减去右观测角,
其差大于180°时应减去180°,小于180°时应加上180°。

使用式(5-6)与(5-7)时,还应注意相应两条边的前进方向必须一致,计算结果大于360°时,则应减去360°,方向不变。

例3 图5-9 为一条支导线,已知A 点的坐标方位角BA α =101°28´,导线A 点的左观测角左β =108°32´,M 点的右观测角
右β =75°。

试推算坐标方位角 AM α、MN α。

图5—9 支导线
解 :由式(5-6)得
ο180±+=左βααBA AM 则有 οοοο30180'32108'28101=-+=AM α
由式(5-7)得
ο180±-=右βααAM MN
则有 οοοο1351807530=+-=MN α。

相关文档
最新文档