角动量守恒定理及其应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角动量守恒定理及其应用
摘要:角动量这一概念是经典物理学里面的重要组成部分,角动量的研究主要是对于物体的转动方面,并且可以延伸到量子力学以、原子物理及天体物理等方面。角动量这一概念范畴系统的介绍的力矩、角速度、角加速度的概念,并且统筹的联系到质点系、质心系、对称性等概念。
关键词:角动量;力矩;角动量守恒;矢量;转动;应用
Angular momentum conservation theorems and their
application
Abstract:Angular momentum to the concept of classical physics there is an important component of angular momentum of research mainly for the rotation, and may extend to the quantum mechanics and physical and in the astrophysical. angular momentum in the categorical system of the present moment, the angular velocity, the concepts of angular acceleration and co-ordination of the particle, the quality of heart, symmetry, and concepts.
Key words:Angular momentum;Torque; Conservation of angular momentum; Vector; Turn; application.
引言
在研究物体运动时,人们经常可以遇到质点或质点系绕某一定点或轴线运动的情况。例如太阳系中行星绕太阳的公转、月球绕地球的运转、物体绕某一定轴的转动等,在这类运动中,运动物体速度的大小和方向都在不断变化,因而其动量也在不断变化。在行星绕日运动中,行星受指向太阳的向心力作用,其运动满足角动量守恒。我们很难用动量和动量守恒定律揭示这类运动的规律,但是引入角动量和角动量守恒定律后,则可较为简单地描述这类运动。
角动量可从另一侧面反映物体运动的规律。事实上,角动量不但能描述宏观物体的运动,而且在近代物理理论中,角动量对于表征状态也必不可少。角动量守恒定律在
经典物理学、运动生物学、航空航天技术等领域中的应用非常广泛。角动量在20世纪已成为继动量和能量之外的力学中的重要概念之一。
1.力矩
在物理学里,力矩可以被想象为一个旋转力或角力,导致出旋转运动的改变。这个力定义为线型力乘以径长。 依照国际单位制,力矩的单位是牛顿-米[1]。
1.1对定轴的力矩
如图1所示,一刚体绕定轴z 转动(只画出了刚体一部分),力F 作用在刚体上P 点,且力的方向在P 点的转动平面M 内。如果力不在转动平面内,可以把F 分解为沿轴z 方向的分力和在转动平面内的分
力。轴向分力是要改变轴的方向,在定轴
转动中会被定轴的支撑力矩抵消而不起作
用,所以我们可以只考虑在转动平面内分
力的作用,以后我们也只讨论力在转动平
面内的情况。设P 点的转心为O ,径矢为
r 。通常把力F 对定轴z 的力矩定义为一
个矢量
F r M ⨯= (1)
它的大小为
Fd Fr M ==ϕsin (2)
或
r F Fr M t ==ϕsin (3)
其中ϕsin r d =称为力F 对轴的力臂,ϕsin F F t =为力F 的切向分量。由(3)式可知,力矩矢量的方向是矢径r 和力F 矢积的方向。图中的力矩矢量的方向向上。 在刚体的定轴转动中,力矩矢量的方向只有沿着z 轴和逆着z 轴两个方向。我们把沿z 轴的力矩叫做正力矩,逆着z 轴的力矩叫做负力矩,这是力矩的标量表述。
可以证明,力对定轴z 的力矩不过是力对轴上任一定点的力矩在z 轴方向的分量,所以它们的讨论和表示方式才如此相似。 若作用在p 点的力不止一个,即是一个合力,则该点所受合力的力矩等于各分力力矩之和。简要证明如下:
按(1)式,合力的力矩
图1 刚体对轴的力矩
∑∑=⨯=⨯=i i M F r F r M (4)
其中i i F r M ⨯=为各分力的力矩,证毕[2]。
1.2作用力矩和反作用力矩
由于作用力和反作用力是成对出现的,所以它们的力矩也成对出现。由于作用力与反用力的大小相等,方向相反且在同一直线上因而有相同的力臂,见下图,所以作用力矩和反作用力矩也是大小相等,方向相反,其和为零。
0'=+M M (5)
2.角动量的概念
刚体的转动惯量和角速度的乘积叫做刚体转动的角动量,或动量矩,代号L ,SI 单位千克二次方米每秒,符号kgm2/s 。角动量是描述物体转动状态的物理量。
如果对于某一固定点,质点所受的合外力矩为零,则此 质点对该固定点的角动量矢量保持不变。(质点角动理守恒定律)
如果一个质点系所受的合外力矩等于该质点系的角动量对时间的变化率(力矩和角动量都相对于惯性系中同一定点)。(质点系的角动量守恒定理)
角动量是矢量。
角动量><⨯⨯=⨯=F r F r F r L ,sin
角动量在物理学中是与物体到原点的位移和动量相关的物理量, 角动量在经典力学中表示为到原点的位移和动量的叉乘,通常写做L 。
角动量在量子力学中与角度是一对共轭物理量。
3.角动量守恒定理
在不受外界作用时,角动量是守恒的。角动量守恒是跟空间各项同性有关系的,也就是说空间的各个方向是没有区别的,这叫做物理定律的旋转不变性,由这种不变性,在理论上,可以得到角动量守恒。动量守恒是跟空间均匀性相关的,也就是说物理定律在各个地方是一样的,地球上的物理定律跟月亮上的物理定律是一样的,这叫做空间平移不变性,由空间平移不变性,可以从理论上推导出动量守恒。另外,还有能量守恒是跟时间平移不变性相关的,也就是说,过去,现在和未来物理定律是一样的话,就有这么一个量,叫做能量是守恒的。所有这些,都是由一个叫做诺特定理的东西得出来的.
3.1 质点对参考点的角动量守恒定律