2020年湖北省中考数学模拟试卷9解析版
2020年湖北省中考数学预测试题(含解析)
湖北省2020年中考数学真题预测试题含答案一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卷相应位置上)1.(3分)﹣8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3分)下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b23.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×1075.(3分)已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.46.(3分)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°7.(3分)64的立方根为()A.8 B.﹣8 C.4 D.﹣48.(3分)关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3 D.a≤39.(3分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5 B.6 C.7 D.810.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元11.(3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.1212.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)因式分解:8a3﹣2ab2= .14.(3分)函数y=的自变量x的取值范围是.15.(3分)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l 无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为.(结果不取近似值)16.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:•(1+)÷,其中x=2﹣1.18.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.19.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.20.(8分)如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)21.(8分)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E 两点,求△CDE的面积.22.(10分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?23.(10分)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD 于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.24.(12分)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卷相应位置上)1.(3分)﹣8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,﹣8×(﹣)=1,即可解答.【解答】解:根据倒数的定义得:﹣8×(﹣)=1,因此﹣8的倒数是﹣.故选:C.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2【分析】根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.【解答】解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、﹣2a(a+3)=﹣2a2﹣6a,故本选项错误;D、(2a﹣b)2=4a2﹣4ab+b2,故本选项错误;故选:B.【点评】本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.3.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×107【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000823=8.23×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.4【分析】先由平均数是3可得x的值,再结合方差公式计算.【解答】解:∵数据1、2、3、x、5的平均数是3,∴=3,解得:x=4,则数据为1、2、3、4、5,∴方差为×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2,故选:B.【点评】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.6.(3分)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°【分析】如图求出∠5即可解决问题.【解答】解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°﹣∠5=125°,故选:A.【点评】本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.7.(3分)64的立方根为()A.8 B.﹣8 C.4 D.﹣4【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故选:C.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.8.(3分)关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3 D.a≤3【分析】先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.【解答】解:解不等式2(x﹣1)>4,得:x>3,解不等式a﹣x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选:D.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.9.(3分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5 B.6 C.7 D.8【分析】直接利用左视图以及俯视图进而分析得出答案.【解答】解:由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.【点评】此题主要考查了由三视图判断几何体,正确想象出最少时几何体的形状是解题关键.10.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.11.(3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.12.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.【点评】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)因式分解:8a3﹣2ab2= 2a(2a+b)(2a﹣b).【分析】首先提取公因式2a,再利用平方差公式分解因式得出答案.【解答】解:8a3﹣2ab2=2a(4a2﹣b2)=2a(2a+b)(2a﹣b).故答案为:2a(2a+b)(2a﹣b).【点评】此题主要考查了提取公因式法分解因式以及公式法分解因式,正确应用公式是解题关键.14.(3分)函数y=的自变量x的取值范围是x≥﹣且x≠3 .【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得2x+1≥0,x﹣3≠0,解得x≥﹣且x≠3.故答案为:x≥﹣且x≠3.【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.15.(3分)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l 无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为π.(结果不取近似值)【分析】先得到∠ACB=30°,BC=,利用旋转的性质可得到点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长,然后根据扇形的面积公式计算点B所经过的路径与直线l所围成的封闭图形的面积.【解答】解:∵Rt△ABC中,∠A=60°,∠ABC=90°,∴∠ACB=30°,BC=,将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长;∴点B所经过的路径与直线l所围成的封闭图形的面积=+=.故答案为π.【点评】本题考查了轨迹:利用特殊几何图形描述点运动的轨迹,然后利用几何性质计算相应的几何量.16.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为1946 个.【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为2、0×6、3×6×6、2×6×6×6、1×6×6×6×6,然后把它们相加即可.【解答】解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1946,故答案为:1946.【点评】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:•(1+)÷,其中x=2﹣1.【分析】直接分解因式,再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••=,把x=2﹣1代入得,原式===.【点评】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.18.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.【分析】连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.【解答】证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.【点评】本题主要考查了平行四边形的判定与性质,解决问题的关键是依据全等三角形的对应边相等得出结论.19.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= 2 ,b= 45 ,c= 20 ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为72 度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.【分析】(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;(2)用360°乘以C等次百分比可得;(3)画出树状图,由概率公式即可得出答案.【解答】解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)==.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.20.(8分)如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)【分析】先根据题目给出的方向角.求出三角形各个内角的度数,过点B作BE⊥AC构造直角三角形.利用三角函数求出AE、BE,再求和即可.【解答】解:由题意知:∠WAC=30°,∠NBC=15°,∴∠BAC=60°,∠ABC=75°,∴∠C=45°过点B作BE⊥AC,垂足为E.在Rt△AEB中,∵∠BAC=60°,AB=100米∴AE=cos∠BAC×AB=×100=50(米)BE=sin∠BAC×AB=×100=50(米)在Rt△CEB中,∵∠C=45°,BE=50(米)∴CE=BE=50=86.5(米)∴AC=AE+CE=50+86.5=136.5(米)≈137米答:旗台与图书馆之间的距离约为137米.【点评】本题考查了方向角和解直角三角形.题目难度不大,过点B作AC的垂线构造直角三角形是解决本题的关键.21.(8分)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E 两点,求△CDE的面积.【分析】(1)令﹣2x+4=,则2x2﹣4x+k=0,依据直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,即可得到k的值,进而得出点C的坐标;(2)依据D(3,2),可得CD=2,依据直线l与直线y=﹣2x+4关于x轴对称,即可得到直线l为y=2x﹣4,再根据=2x﹣4,即可得到E(﹣1,﹣6),进而得出△CDE的面积=×2×(6+2)=8.【解答】解:(1)令﹣2x+4=,则2x2﹣4x+k=0,∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16﹣8k=0,解得k=2,∴2x2﹣4x+2=0,解得x=1,∴y=2,即C(1,2);(2)当y=2时,2=,即x=3,∴D(3,2),∴CD=3﹣1=2,∵直线l与直线y=﹣2x+4关于x轴对称,∴A(2,0),B'(0,﹣4),∴直线l为y=2x﹣4,令=2x﹣4,则x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴E(﹣1,﹣6),∴△CDE的面积=×2×(6+2)=8.【点评】此题属于反比例函数与一次函数的交点问题,主要考查了解一元二次方程,坐标与图形性质以及三角形面积公式的运用,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(10分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.【解答】解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.【点评】本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.23.(10分)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD 于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.【分析】(1)如图1,连接OD、BD,根据圆周角定理得:∠ADB=90°,则AD⊥BD,OE⊥BD,由垂径定理得:BM=DM,证明△BOE≌△DOE,则∠ODE=∠OBE=90°,可得结论;(2)设AP=a,根据三角函数得:AD=3a,由勾股定理得:PD=2a,在直角△OPD中,根据勾股定理列方程可得:32=(3﹣a)2+(2a)2,解出a的值可得AD的值;(3)先证明△APF∽△ABE,得,由△ADP∽△OEB,得,可得PD=2PF,可得结论.【解答】证明:(1)如图1,连接OD、BD,BD交OE于M,∵AB是⊙O的直径,∴∠ADB=90°,AD⊥BD,∵OE∥AD,∴OE⊥BD,∴BM=DM,∵OB=OD,∴∠BOM=∠DOM,∵OE=OE,∴△BOE≌△DOE(SAS),∴∠ODE=∠OBE=90°,∴DE为⊙O切线;(2)设AP=a,∵sin∠ADP==,∴AD=3a,∴PD===2a,∵OP=3﹣a,∴OD2=OP2+PD2,∴32=(3﹣a)2+(2a)2,9=9﹣6a+a2+8a2,a1=,a2=0(舍),当a=时,AD=3a=2,∴AD=2;(3)PF=FD,理由是:∵∠APD=∠ABE=90°,∠PAD=∠BAE,∴△APF∽△ABE,∴,∴PF=,∵OE∥AD,∴∠BOE=∠PAD,∵∠OBE=∠APD=90°,∴△ADP∽△OEB,∴,∴PD=,∵AB=2OB,∴PD=2PF,∴PF=FD.【点评】本题考查了圆的综合问题,熟练掌握切线的判定,锐角三角函数,圆周角定理,垂径定理等知识点的应用,难度适中,连接BD构造直角三角形是解题的关键.24.(12分)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.【分析】(1)由OC与OB的长,确定出B与C的坐标,再由A坐标,利用待定系数法确定出抛物线解析式即可;(2)分三种情况讨论:当四边形CBPD是平行四边形;当四边形BCPD是平行四边形;四边形BDCP是平行四边形时,利用平移规律确定出P坐标即可;(3)由B与C坐标确定出直线BC解析式,求出与直线BC平行且与抛物线只有一个交点时交点坐标,确定出交点与直线BC解析式,进而确定出另一条与直线BC平行且与BC距离相等的直线解析式,确定出所求M坐标,且求出定值S的值即可.【解答】解:(1)由OC=2,OB=3,得到B(3,0),C(0,2),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,2)代入得:2=﹣3a,即a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+2;(2)抛物线y=﹣(x+1)(x﹣3)=﹣x2+x+2=﹣(x﹣1)2+,∴D(1,),当四边形CBPD是平行四边形时,由B(3,0),C(0,2),得到P(4,);当四边形CDBP是平行四边形时,由B(3,0),C(0,2),得到P(2,﹣);当四边形BCPD是平行四边形时,由B(3,0),C(0,2),得到P(﹣2,);(3)设直线BC解析式为y=kx+b,把B(3,0),C(0,2)代入得:,解得:,∴y=﹣x+2,设与直线BC平行的解析式为y=﹣x+b,联立得:,消去y得:2x2﹣6x+3b﹣6=0,当直线与抛物线只有一个公共点时,△=36﹣8(3b﹣6)=0,解得:b=,即y=﹣x+,此时交点M1坐标为(,);可得出两平行线间的距离为,同理可得另一条与BC平行且平行线间的距离为的直线方程为y=﹣x+,联立解得:M2(,﹣),M3(,﹣﹣),此时S=1.【点评】此题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,一次函数的性质,利用了分类讨论的思想,熟练掌握待定系数法是解本题的关键.。
湖北省2020年中考数学模拟试题(含答案)【精品】
湖北省2020年中考数学模拟试题含答案考生注意:1.本试卷分试题卷(共4页)和答题卷;全卷24小题,满分120分;考试时间120分钟.2.考生答题前,请将自己的学校、姓名、考号填写在试题卷和答题卷指定的位置,同时认真阅读答题卷上的注意事项.考生答题时,请按题号顺序在答题卷上各题目的答题区域内作答,写在试题卷上无效.试 题 卷一、精心选一选(本大题共8小题,每小题3分,满分24分.每小题给出的4个选项中只有一个符合题意,请在答题卷上将正确答案的代号涂黑) 1.计算1-(-2)的正确结果是【 ▲ 】A .-2B .-1C .1D .32.钓鱼岛是中国的固有领土,面积约4400000平方米,数据4400000用科学记数法表示应为【 ▲ 】A. 44×105B. 0.44×107C. 4.4×106D. 4.4×1053.下列式子中,属于最简二次根式的是【 ▲ 】.A .7B . 9C .20D .134.下列运算正确的是【 ▲ 】A. (a 2)3= a 5B. a 3·a = a 4C. (3ab )2= 6a 2b 2D. a 6÷a 3= a 25.下列说法中,正确的是【 ▲ 】A.“打开电视,正在播放新闻联播节目”是必然事件B. 某种彩票中奖概率为10%是指买10张一定有一张中奖C. 了解某种节能灯的使用寿命应采用全面检查D. 一组数据3,5,4,6,7的中位数是5,方差是26.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM .若∠AOC =70°,则∠CON 的度数为【 ▲ 】A .65°B .55°C .45°D .35°BOANM CD(第6题)7.如图是某几何体的三视图,这个几何体的侧面积是【 ▲ 】A .6πB .210 πC .10 πD .3π8.如图,直线l :y =33x ,过点A (0,1)作y 轴的垂线交 直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…按此作法继续下去,则点A 2015的坐标为【 ▲ 】A .(0,42015) B .(0,42014)C .(0,32015) D .(0,32014)二、细心填一填(本大题共8小题,每小题3分,满分24分.请将答案填写在答题卷相应题号的横线上)9.分解因式ax 2-9ay 2的结果为 ▲ .10.如图,在△ABC 中,按以下步骤作图:①分别以点B ,C 为圆心,以大于12BC 的长为半径作弧,两弧交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .如果已知CD =AC ,∠B =25°,则∠ACB 的度数为 ▲ .11.已知关于x 的方程kx 2+(k +2) x +k4=0有两个不相等 的实数根,则k 的取值范围是 ▲ .12.如图,在△ABC 中,AB =AC =5,BC =6,将△ABC 绕点C 顺时针方向旋转一定角度后得到△A ′B ′C ,若点A ′恰好落在BC 的延长线上,则点B ′到BA ′的距离为 ▲ . 13.一辆汽车开往距离出发地180km 的目的地,出发后第一小时按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,结果比原计划提前40min 到达目的地.原计划的行驶速度是 ▲ km/h.14.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC =30°,弦EF ∥AB ,则EF 的长度为 ▲ . ABCMN(第10题)D OAA 1A 2y x BB 1l主视图俯视图 左视图(第7题)23 23 ABCB ′ D(第15题)E(第14题)O DE F AC (第12题)B ′A ′15.如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把△ABE 沿AE 折叠,使点B 落在点B ′处.当△CEB ′为直角三角形时,BE 的长为 ▲ . 16.对于二次函数y = x 2-2mx -3,有下列结论:①它的图象与x 轴有两个交点;②如果当x ≤-1时,y 随x 的增大而减小,则m =-1; ③如果将它的图象向左平移3个单位后过原点,则m =1; ④如果当x = 2时的函数值与x = 8时的函数值相等,则m =5.其中一定正确的结论是 ▲ .(把你认为正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤.请把解题过程写在答题卷相应题号的位置) 17.(本题满分8分)(1)计算:4sin60°-︱3-12 ︱+( 12 )-2;(2)解方程x 2- 3 x -14 = 0.18.(本题满分7分)如图,点B (3,3)在双曲线y = kx(x >0)上,点D 在双曲线y =-4x(x <0)上, 点A 和点C 分别在x 轴、y 轴的正半轴上,且点A ,B ,C ,D 构成的四边形为正方形. (1)求k 的值;(2)求点A 的坐标. 19. (本题满分8分)如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E , 使CE =12 BC ,连接DE ,CF .(1)求证:DE =CF ;(2)若AB =4,AD =6,∠B =60°,求DE 的长. 20. (本题满分8分)某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A .足球 B .乒乓球C .羽毛球 D .篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人,在扇形统计图中“D ”对应的圆心角的度数为 ; (2)请你将条形统计图补充完整; (3)在平时的乒乓球项目训练中, 甲、乙、丙、丁四人表现优秀,现B(第18题)C xO A Dy 36° AD BC2040 8060 100 人数(人) ABCD (第20题)(第19题)AEDF决定从这四名同学中任选两名参加 市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答). 21. (本题满分9分)如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F . (1)求证:EF 是⊙O 的切线.(2)如果⊙O 的半径为5,sin ∠ADE = 45 ,求BF 的长. 22. (本题满分10分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍.设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 与x 的关系式;②该商店购进A 型、B 型各多少台,才能使销售利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调m (0<m <100)元,且限定商店最多购进A 型电脑70台.若商店保持两种电脑的售价不变,请你根据以上信息及(2)中的条件,设计出使这100台电脑销售总利润最大的进货方案. 23.(本题满分10分)阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.... 如图1,在等腰△ABC 中,AB =AC , AC 边上的高为h ,点M 为底边BC 上的任意一点,点M 到腰AB 、AC 的距离分别为h 1、h 2,连接AM ,利用S△ABC=S △ABM +S △ACM ,可以得出结论:h = h 1+h 2.类比探究:在图1中,当点M 在BC 的延长线上时, 猜想h 、h 1、h 2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中, 有两条直线l 1:y = 34x +3,l 2:y =-3x +3,AD(第21题)CE(第23题图2) O B AC x y l 1l 2(第23题图1) E FAh D M h 1h 2若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.24. (本题满分12分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点A(-3,4)、B(-3,0)、C(-1,0) .以D为顶点的抛物线y = ax2+bx+c过点B. 动点P从点D出发,沿DC边向点C 运动,同时动点Q从点B出发,沿BA边向点A运动,点P、Q运动的速度均为每秒1个单位,运动的时间为t秒. 过点P作PE⊥CD交BD于点E,过点E作EF⊥AD于点F,交抛物线于点G.(1)求抛物线的解析式;(2)当t为何值时,四边形BDGQ的面积最大?最大值为多少?(3)动点P、Q运动过程中,在矩形ABCD内(包括其边界)是否存在点H,使以B,Q,E,H为顶点的四边形是菱形,若存在,请直接写出此时菱形的周长;若不存在,请说明理由.(第24题)OBA DC xyPQEFG参考答案及评分说明说明:1.如果考生的解答正确,思路与本参考答案不同,可参照本评分说明制定相应的评分细则评分.2.每题都要评阅完毕,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这道题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,解答题的解题步骤写得较为详细,但允许考生在解答过程中,合理地省略非关键性的步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 5.每题评分时只给整数分数.一、精心选一选(每小题3分,满分24分)题 号 1 2 3 4 5 6 7 8 答 案DCABDBCA二、9. a (x +3y ) (x -3y );10. 105°;11. k >-1且k ≠0;12. 245 ;13. 60;14. 2 3 ;15. 32 或3; 16. ①③④(多填、少填或错填均不给分).三、专心解一解(共8小题,满分72分)17. 解:(1)原式=23-23+3+4(3分) = 7(4分)(2)方法一:移项,得x 2- 3 x = 14,配方,得(x -32)2= 1. (6分)由此可得x -32=±1, x 1=1+32 ,x 2=-1+32. (8分) 方法二:a =1,b =-3,c =-14.△=b 2-4ac =(-3)2-4×1×(-14 ) =4>0. (6分)方程有两个不等的实数根x = -b ±b 2-4ac 2a = 3±42×1 = 32±1,x 1=1+32 ,x 2=-1+32. (8分)18. 解:(1)∵点B (3,3)在双曲线y = kx(x >0)上,∴k =3×3=9.(2分)(2)过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,∵四边形ABCD 是正方形,∴∠DAB =90°,AD =AB . ∴∠MDA +∠DAM =90°,∠DAM +∠BAN =90°,∴∠ADM =∠BAN .在Rt △ADM 和Rt △BAN 中,∠DMA =∠ANB =90°, ∴△ADM ≌△BAN (AAS ). (5分)∴AM =BN , AN =MD ,∵B 点坐标为(3,3),∴BN =ON =3. ∴AM = ON =3,即OM = AN = MD .设OM = MD =a ,∵点D 在双曲线y =-4x(x <0)上,∴-a 2=-4,∴a =2, ∴OA = AM -OM =3-2=1, 即点A 的坐标是(1,0).(7分)19. 解:(1)证明:∵四边形ABCD 是平行四边形,∴AD = BC ,AD ∥BC .又∵F 是AD 的中点,∴FD = 12 AD .∵CE = 12BC ,∴FD = CE .(第19题)BAEDFG方法一:又∵FD ∥CE ,∴四边形CEDF 是平行四边形. ∴DE =CF .(4分)方法二:∵FD ∥CE ,∴∠CDF =∠DCE .又CD = DC ,∴△DCE ≌△CDF (SAS ). ∴DE =CF .(4分)(2)过D 作DG ⊥CE 于点G .∵四边形ABCD 是平行四边形, ∴AB ∥CD ,CD = AB =4,BC =AD = 6.∴∠DCE =∠B =60°.在Rt △CDG 中,∠DGC =90°, ∴∠CDG =30°,∴CG = 12 CD =2.由勾股定理,得DG = CD 2-CG 2=2 3 . (6分)∵CE = 12 BC =3,∴GE = 1.在Rt △DEG 中,∠DGE =90°, ∴DE = DG 2+GE 2=13 .(8分)20. 解:(1) 300 , 72° ;(2分)(2)完整条形统计图(如右图所示); (4分) (3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的的结果有2种.20408060100人数(人) ABCD (第20题)甲乙 丙 丁 乙甲 丙 丁 丙甲 乙 丁 丁甲 乙 丙∴P (恰好选中甲、乙两位同学)= 212 = 16(8分)21. 解:(1)证明:∵连接OD ,∵AB 是⊙O 的直径. ∴AD ⊥BC .∵AB =AC ,∴BD =DC ,∠CAD =∠BAD .又OA =OB ,∴ OD ∥AC . ∵DE ⊥AC ,∴OD ⊥DE . ∵点D 在⊙O 上,∴EF 是⊙O 的切线. (4分) (2)∵∠CAD =∠BAD ,∠AED =∠ADB =90°.∴∠ADE =∠ABD . ∴sin ∠ABD = sin ∠ADE = 45∵AB =10,∴AD =8,AE = 325.∵OD ∥AC ,∴△ODF ∽△AEF .∴OD AE =OF AF ,即5 325= 5+BF 10+BF.解得BF = 907.(9分)22. 解:(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,则有 解得即每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元.(4分)(2)①根据题意得y =100x +150(100-x ),即y =-50x +15000.(5分) ②根据题意得100-x ≤2x ,解得x ≥3313, ∵y =-50x +15000,-50<0,∴y 随x 的增大而减小.∵x 为正整数,∴当x =34最小时,y 取最大值,此时100-x =66.即商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大.(7分)(3)根据题意得y =(100+m )x +150(100-x ),(第21题)10a +20b =4000, 20a +10b =3500. a =100,b =150.即y =(m -50)x +15000. (3313≤x ≤70). ①当0<m <50时,m -50<0,y 随x 的增大而减小. ∴当x =34时,y 取得最大值.即商店购进34台A 型电脑和66台B 型电脑时,才能获得最大利润; (8分) ②当m =50时,m -50=0,y =15000.即商店购进A 型电脑数最满足3313≤x ≤70的整数时, 均获得最大利润;(9分)③当50<m <100时,m -50>0,y 随x 的增大而增大.∴x =70时,y 取得最大值.即商店购进70台A 型电脑和30台B 型电脑时,才能获得最大利润.(10分)23. 解:(1)h = h 1-h 2.(1分) 证明:连接OA ,∵S △ABC = 12 AC ·BD = 12 AC ·h ,S △ABM = 12 AB ·ME = 12AB ·h 1,S △ACM = 12 AC ·MF = 12AC ·h 2,.又∵S △ABC =S △ABM -S △ACM ,∴12 AC ·h = 12 AB ·h 1-12 AC ·h 2. ∵AB =AC ,∴h = h 1-h 2.(4分)(2)在y = 34x +3中,令x =0得y =3;令y =0得x =-4,则:A (-4,0),B (0,3) , 同理求得C (1,), OA =4,OB =3, AC =5, AB =OA 2+OB 2=5,所以AB =AC ,即△ABC 为等腰三角形. (6分) 设点M 的坐标为(x ,y ),(第23题图1)E FA Bh C D M h 1h 2 (第23题图2)O B AC xy l 1l 2①当点M 在BC 边上时,由h 1+h 2=h 得:OB = 1+y ,y =3-1=2,把它代入y =-3x +3中求得:x = 13,∴M (13 ,2); (8分)②当点M 在CB 延长线上时,由h 1-h 2=h 得:OB = y -1,y =3+1=4,把它代入y =-3x +3中求得:x =-13,∴M (-13,4).综上所述点M 的坐标为(13 ,2)或(-13,4). (10分)24. 解:(1) 由题意得,顶点D 点的坐标为(-1,4). (1分)设抛物线的解析式为y =a (x +1) 2+4(a ≠0), ∵抛物线经过点B (-3,0),代入y =a (x +1) 2+4 可求得a =-1∴抛物线的解析式为y =- (x +1) 2+4 即y =-x 2-2x +3. (4分)(2)由题意知,DP =BQ = t ,∵PE ∥BC ,∴△DPE ∽△DBC .∴DP PE =DC BC =2,∴PE =12 DP = 12t . ∴点E 的横坐标为-1-12 t ,AF =2-12t .将x =-1-12 t 代入y =- (x +1) 2+4,得y =-14 t 2+4.∴点G 的纵坐标为-14 t 2+4,∴GE =-14 t 2+4-(4-t )=-14 t 2+t .连接BG ,S 四边形BDGQ = S △BQG +S △BEG +S △DEG , 即S 四边形BDGQ =12 BQ ·AF +12EG ·(AF +DF )= 12 t (2-12 t )-14 t 2+t . =-12 t 2+2t =-12(t -2)2+2.∴当t =2时,四边形BDGQ 的面积最大,最大值为2. (8分)(第24题)O BADCxyPQ EF G(3)存在,菱形BQEH 的周长为8013 或80-32 5 .(12分)(说明:写出一个给2分)。
湖北省随州市2020届九年级模拟联考数学试题(含答案)
六月五校联考数学试卷一、选择题(本题共10小题,每小题3分,共30分) 1. 20201-的相反数的倒数是( ▲ ) A.20201 B.2020- C.2020 D.20201-2.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为( ▲ ) A .5×10﹣4B .5×10﹣5C .2×10﹣4D .2×10﹣53.下列计算正确的是( ▲ )A .a 2+a 3=a 5B .(﹣a 3)2=a 6C .ab 2•3a 2b =3a 2b 2D .﹣2a 6÷a 2=﹣2a 34.数学老师布置10道选择题作为课堂练习,课代表将全班同学的答题情况绘制成条形统计图(如图),根据此图判断下列哪个结论正确的是( ▲ ) A.这组数据的众数是20 B. 这组数据的平均数是8 C. 这组数据的极差是4 D. 这组数据的中位数是9第4题图 第5题图 第6题图5. 如图,AB 是⊙O 的直径,C ,D ,E 在⊙O 上,若∠AED =20°,则∠BCD 的度数为( ▲ ) A. 110° B. 115° C. 100° D. 120°6.一个物体的三视图如图所示,根据图中的数据,可求这个物体的表面积为( ▲ )A .60πcm 2B .48πcm 2C .96πcm 2D .80πcm 27. 关于x 的分式方程112=++x ax 的解为负数,则a 的取值范围为( ▲ ) A .a >1 B .a <1 C .a <1且a ≠2 D .a >1且a ≠212cm8cm主视图左视图8.如图,在扇形 OAB 中,∠AOB =105°,OA =6,点C 在半径OB 上,沿 AC 折叠,圆心 O 落在上,则图中阴影部分的面积是( ▲ ) 第8题图A. 612-πB.99-πC.2189-π D.3816-π 9.如图,点 C 为 Rt △ACB 与 Rt △DCE 的公共点,∠ACB =∠DCE =90°,连 接 AD 、BE ,过点 C 作 CF ⊥AD 于点 F ,延长 FC 交 BE 于点 G .若 AC =BC =25,CE =15, DC =20,则BGEG的值为( ▲ )A.43 B. 34 C. 54 D. 53 10. 已知,二次函数y =ax 2+bx +c 的图象如图所示,下列结论:①abc >0;②a +b +c =2;③b 2-4ac >0;④a <21;⑤b >1,其中正确结论有( ▲ )A. 2个B. 3个C. 4个D. 5个 第10题图 二、填空题(本题共6小题,每小题3分,共18分)11.计算:=+-︒-⨯--0222020330tan 322)( ▲12.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”图1是由边长为10cm 的正方形薄板分为7块制作成“七巧板”,图2是用该“七巧板”拼成的一个“家”的图案,该“七巧板”中7块图形之一的正方形边长为 ▲ (结果保留根号) 图① 图② 13.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是31,则n = ▲14.矩形ABCD 中,AB =6,BC =8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为 ▲ 15.如图,在平面直角坐标系中,菱形ABCD 的顶点A , B 在反比例函数xky = 的图象上,横坐标分别为-1,-4,对角线 BD ∥x 轴.若菱形ABCD的面积为245,则k 的值为 ▲16.如图,正方形ABCD 的边长为2,P 为CD 的中点,连接AP ,过点B 作BE ⊥AP 于点E ,延长CE 交AD 于点F ,过点C 作CH ⊥BE 于点G ,交AB 于点H ,连接HF 。
【2020年】湖北省中考数学模拟试题(含答案)【精品】
2020年湖北省中考数学模拟试题含答案考生注意:1.本试卷分试题卷(共4页)和答题卷;全卷24小题,满分120分;考试时间120分钟.2.考生答题前,请将自己的学校、姓名、考号填写在试题卷和答题卷指定的位置,同时认真阅读答题卷上的注意事项.考生答题时,请按题号顺序在答题卷上各题目的答题区域内作答,写在试题卷上无效.试题卷一、精心选一选(本大题共8小题,每小题3分,满分24分.每小题给出的4个选项中只有一个符合题意,请在答题卷上将正确答案的代号涂黑)1.计算1-(-2)的正确结果是【▲】A.-2 B.-1 C.1 D.32.钓鱼岛是中国的固有领土,面积约4400000平方米,数据4400000用科学记数法表示应为【▲】A. 44×105B. 0.44×107C. 4.4×106D. 4.4×105 3.下列式子中,属于最简二次根式的是【▲】.A.7 B.9 C.20 D.1 34.下列运算正确的是【▲】A. (a2)3 = a5B. a3·a = a4C. (3ab)2 =6a2b2D. a6÷a3= a2 5.下列说法中,正确的是【▲】A.“打开电视,正在播放新闻联播节目”是必然事件B. 某种彩票中奖概率为10%是指买10张一定有一张中奖C. 了解某种节能灯的使用寿命应采用全面检查D. 一组数据3,5,4,6,7的中位数是5,方差是26.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOC=70°,则∠CON 的度数为【▲】A.65° B.55°C.45° D.35°7.如图是某几何体的三视图,这个几何体的侧面积是【▲】A.6π B.210 πBOANMCD(第6题)主视图俯视图左视图(第7题)2323C .10 πD .3π8.如图,直线l :y = 33 x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…按此作法继续下去,则点A 2015的坐标为【 ▲ 】A .(0,42015) B .(0,42014)C .(0,32015) D .(0,32014)二、细心填一填(本大题共8小题,每小题3分,满分24分.请将答案填写在答题卷相应题号的横线上)9.分解因式ax 2-9ay 2的结果为 ▲ .10.如图,在△ABC 中,按以下步骤作图:①分别以点B ,C 为圆心,以大于12BC 的长为半径作弧,两弧交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .如果已知CD =AC ,∠B =25°,则∠ACB 的度数为 ▲ .11.已知关于x 的方程kx 2+(k +2) x +k4=0有两个不相等 的实数根,则k 的取值范围是 ▲ .12.如图,在△ABC 中,AB =AC =5,BC =6,将△ABC 绕点C 顺时针方向旋转一定角度后得到△A ′B ′C ,若点A ′恰好落在BC 的延长线上,则点B ′到BA ′的距离为 ▲ . 13.一辆汽车开往距离出发地180km 的目的地,出发后第一小时按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,结果比原计划提前40min 到达目的地.原计划的行驶速度是 ▲ km/h.14.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC =30°,弦EF ∥AB ,则EF 的长度为 ▲ .15.如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把△ABE 沿AE 折叠,使点B 落在点B ′处.当△CEB ′为直角三角形时,BE 的长为 ▲ . ABCMN(第10题)D OAA 1A 2y x BB 1lABCB ′ D(第15题)E(第14题)O DE F ABC (第12题)B ′A ′16.对于二次函数y = x 2-2mx -3,有下列结论:①它的图象与x 轴有两个交点;②如果当x ≤-1时,y 随x 的增大而减小,则m =-1; ③如果将它的图象向左平移3个单位后过原点,则m =1; ④如果当x = 2时的函数值与x = 8时的函数值相等,则m =5.其中一定正确的结论是 ▲ .(把你认为正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤.请把解题过程写在答题卷相应题号的位置) 17.(本题满分8分)(1)计算:4sin60°-︱3-12 ︱+( 12 )-2;(2)解方程x 2- 3 x -14 = 0.18.(本题满分7分)如图,点B (3,3)在双曲线y = kx(x >0)上,点D 在双曲线y =-4x(x <0)上, 点A 和点C 分别在x 轴、y 轴的正半轴上,且点A ,B ,C ,D 构成的四边形为正方形. (1)求k 的值;(2)求点A 的坐标. 19. (本题满分8分)如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E , 使CE =12BC ,连接DE ,CF .(1)求证:DE =CF ;(2)若AB =4,AD =6,∠B =60°,求DE 的长. 20. (本题满分8分)某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A .足球 B .乒乓球C .羽毛球 D .篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人,在扇形统计图中“D ”对应的圆心角的度数为 ; (2)请你将条形统计图补充完整; (3)在平时的乒乓球项目训练中, 甲、乙、丙、丁四人表现优秀,现 决定从这四名同学中任选两名参加 市里组织的乒乓球比赛,求恰好选B(第18题)C xO A Dy 36° AD BC项目2040 8060 100 人数(人) A(第20题)(第19题)BADF中甲、乙两位同学的概率(用树状图或列表法解答). 21. (本题满分9分)如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F . (1)求证:EF 是⊙O 的切线.(2)如果⊙O 的半径为5,sin ∠ADE = 45 ,求BF 的长. 22. (本题满分10分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍.设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 与x 的关系式;②该商店购进A 型、B 型各多少台,才能使销售利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调m (0<m <100)元,且限定商店最多购进A 型电脑70台.若商店保持两种电脑的售价不变,请你根据以上信息及(2)中的条件,设计出使这100台电脑销售总利润最大的进货方案. 23.(本题满分10分)阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.... 如图1,在等腰△ABC 中,AB =AC , AC 边上的高为h ,点M 为底边BC 上的任意一点,点M 到腰AB 、AC 的距离分别为h 1、h 2,连接AM ,利用S△ABC=S △ABM +S △ACM ,可以得出结论:h = h 1+h 2.类比探究:在图1中,当点M 在BC 的延长线上时, 猜想h 、h 1、h 2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中, 有两条直线l 1:y = 34x +3,l 2:y =-3x +3,若l 2上一点M 到l 1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M 的坐标.AD(第21题)CE(第23题图2) O B AC x y l 1l 2(第23题图1) E FAhDM h 1 h 224. (本题满分12分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点A(-3,4)、B(-3,0)、C(-1,0) .以D为顶点的抛物线y = ax2+bx+c过点B. 动点P从点D出发,沿DC边向点C 运动,同时动点Q从点B出发,沿BA边向点A运动,点P、Q运动的速度均为每秒1个单位,运动的时间为t秒. 过点P作PE⊥CD交BD于点E,过点E作EF⊥AD于点F,交抛物线于点G.(1)求抛物线的解析式;(2)当t为何值时,四边形BDGQ的面积最大?最大值为多少?(3)动点P、Q运动过程中,在矩形ABCD内(包括其边界)是否存在点H,使以B,Q,E,H为顶点的四边形是菱形,若存在,请直接写出此时菱形的周长;若不存在,请说明理由.(第24题)OBA DC xyPQEFG参考答案及评分说明说明:1.如果考生的解答正确,思路与本参考答案不同,可参照本评分说明制定相应的评分细则评分.2.每题都要评阅完毕,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这道题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,解答题的解题步骤写得较为详细,但允许考生在解答过程中,合理地省略非关键性的步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 5.每题评分时只给整数分数.一、精心选一选(每小题3分,满分24分)题 号 1 2 3 4 5 6 7 8 答 案DCABDBCA二、9. a (x +3y ) (x -3y );10. 105°;11. k >-1且k ≠0;12. 245 ;13. 60;14. 2 3 ;15. 32 或3; 16. ①③④(多填、少填或错填均不给分).三、专心解一解(共8小题,满分72分)17. 解:(1)原式=23-23+3+4(3分) = 7(4分)(2)方法一:移项,得x 2- 3 x = 14,配方,得(x -32)2= 1. (6分)由此可得x -32=±1, x 1=1+32 ,x 2=-1+32. (8分) 方法二:a =1,b =-3,c =-14.△=b 2-4ac =(-3)2-4×1×(-14 ) =4>0. (6分)方程有两个不等的实数根x = -b ±b 2-4ac 2a = 3±42×1 = 32±1,x 1=1+32 ,x 2=-1+32. (8分)18. 解:(1)∵点B (3,3)在双曲线y = kx(x >0)上,∴k =3×3=9.(2分)(2)过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,∵四边形ABCD 是正方形,∴∠DAB =90°,AD =AB . ∴∠MDA +∠DAM =90°,∠DAM +∠BAN =90°,∴∠ADM =∠BAN .在Rt △ADM 和Rt △BAN 中,∠DMA =∠ANB =90°, ∴△ADM ≌△BAN (AAS ). (5分)∴AM =BN , AN =MD ,∵B 点坐标为(3,3),∴BN =ON =3. ∴AM = ON =3,即OM = AN = MD .设OM = MD =a ,∵点D 在双曲线y =-4x(x <0)上,∴-a 2=-4,∴a =2, ∴OA = AM -OM =3-2=1, 即点A 的坐标是(1,0).(7分)19. 解:(1)证明:∵四边形ABCD 是平行四边形,∴AD = BC ,AD ∥BC .又∵F 是AD 的中点,∴FD = 12 AD .∵CE = 12BC ,∴FD = CE .(第19题)BAEDFG方法一:又∵FD ∥CE ,∴四边形CEDF 是平行四边形. ∴DE =CF .(4分)方法二:∵FD ∥CE ,∴∠CDF =∠DCE .又CD = DC ,∴△DCE ≌△CDF (SAS ). ∴DE =CF .(4分)(2)过D 作DG ⊥CE 于点G .∵四边形ABCD 是平行四边形, ∴AB ∥CD ,CD = AB =4,BC =AD = 6.∴∠DCE =∠B =60°.在Rt △CDG 中,∠DGC =90°, ∴∠CDG =30°,∴CG = 12 CD =2.由勾股定理,得DG = CD 2-CG 2=2 3 . (6分)∵CE = 12 BC =3,∴GE = 1.在Rt △DEG 中,∠DGE =90°, ∴DE = DG 2+GE 2=13 .(8分)20. 解:(1) 300 , 72° ;(2分)(2)完整条形统计图(如右图所示); (4分) (3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的的结果有2种.20408060100人数(人) ABCD (第20题)甲乙 丙 丁 乙甲 丙 丁 丙甲 乙 丁 丁甲 乙 丙∴P (恰好选中甲、乙两位同学)= 212 = 16(8分)21. 解:(1)证明:∵连接OD ,∵AB 是⊙O 的直径. ∴AD ⊥BC .∵AB =AC ,∴BD =DC ,∠CAD =∠BAD .又OA =OB ,∴ OD ∥AC . ∵DE ⊥AC ,∴OD ⊥DE . ∵点D 在⊙O 上,∴EF 是⊙O 的切线. (4分) (2)∵∠CAD =∠BAD ,∠AED =∠ADB =90°.∴∠ADE =∠ABD . ∴sin ∠ABD = sin ∠ADE = 45∵AB =10,∴AD =8,AE = 325.∵OD ∥AC ,∴△ODF ∽△AEF .∴OD AE =OF AF ,即5 325= 5+BF 10+BF.解得BF = 907.(9分)22. 解:(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,则有 解得即每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元.(4分)(2)①根据题意得y =100x +150(100-x ),即y =-50x +15000.(5分) ②根据题意得100-x ≤2x ,解得x ≥3313, ∵y =-50x +15000,-50<0,∴y 随x 的增大而减小.∵x 为正整数,∴当x =34最小时,y 取最大值,此时100-x =66.即商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大.(7分)(3)根据题意得y =(100+m )x +150(100-x ),(第21题)10a +20b =4000, 20a +10b =3500. a =100,b =150.即y =(m -50)x +15000. (3313≤x ≤70). ①当0<m <50时,m -50<0,y 随x 的增大而减小. ∴当x =34时,y 取得最大值.即商店购进34台A 型电脑和66台B 型电脑时,才能获得最大利润; (8分) ②当m =50时,m -50=0,y =15000.即商店购进A 型电脑数最满足3313≤x ≤70的整数时, 均获得最大利润;(9分)③当50<m <100时,m -50>0,y 随x 的增大而增大.∴x =70时,y 取得最大值.即商店购进70台A 型电脑和30台B 型电脑时,才能获得最大利润.(10分)23. 解:(1)h = h 1-h 2.(1分) 证明:连接OA ,∵S △ABC = 12 AC ·BD = 12 AC ·h ,S △ABM = 12 AB ·ME = 12AB ·h 1,S △ACM = 12 AC ·MF = 12AC ·h 2,.又∵S △ABC =S △ABM -S △ACM ,∴12 AC ·h = 12 AB ·h 1-12 AC ·h 2. ∵AB =AC ,∴h = h 1-h 2.(4分)(2)在y = 34x +3中,令x =0得y =3;令y =0得x =-4,则:A (-4,0),B (0,3) , 同理求得C (1,), OA =4,OB =3, AC =5, AB =OA 2+OB 2=5,所以AB =AC ,即△ABC 为等腰三角形. (6分) 设点M 的坐标为(x ,y ),(第23题图1)E FA Bh C D M h 1h 2 (第23题图2)O B AC xy l 1l 2①当点M 在BC 边上时,由h 1+h 2=h 得:OB = 1+y ,y =3-1=2,把它代入y =-3x +3中求得:x = 13,∴M (13 ,2); (8分)②当点M 在CB 延长线上时,由h 1-h 2=h 得:OB = y -1,y =3+1=4,把它代入y =-3x +3中求得:x =-13,∴M (-13,4).综上所述点M 的坐标为(13 ,2)或(-13,4). (10分)24. 解:(1) 由题意得,顶点D 点的坐标为(-1,4). (1分)设抛物线的解析式为y =a (x +1) 2+4(a ≠0), ∵抛物线经过点B (-3,0),代入y =a (x +1) 2+4 可求得a =-1∴抛物线的解析式为y =- (x +1) 2+4 即y =-x 2-2x +3. (4分)(2)由题意知,DP =BQ = t ,∵PE ∥BC ,∴△DPE ∽△DBC .∴DP PE =DC BC =2,∴PE =12 DP = 12t . ∴点E 的横坐标为-1-12 t ,AF =2-12t .将x =-1-12 t 代入y =- (x +1) 2+4,得y =-14 t 2+4.∴点G 的纵坐标为-14 t 2+4,∴GE =-14 t 2+4-(4-t )=-14 t 2+t .连接BG ,S 四边形BDGQ = S △BQG +S △BEG +S △DEG , 即S 四边形BDGQ =12 BQ ·AF +12EG ·(AF +DF )= 12 t (2-12 t )-14 t 2+t . =-12 t 2+2t =-12(t -2)2+2.∴当t =2时,四边形BDGQ 的面积最大,最大值为2. (8分)(第24题)O BADCxyPQ EF G(3)存在,菱形BQEH 的周长为8013 或80-32 5 .(12分)(说明:写出一个给2分)。
【2020年】湖北省中考数学模拟试卷(解析版)(3)
在 Rt△OBD中, OD=
=1,
∵将弧 沿 BC折叠后刚好经过 AB 的中点 D.
∴弧 AC和弧 CD所在的圆为等圆,
∴ =,
∴ AC=DC, ∴ AE=DE=,1 易得四边形 ODEF为正方形, ∴ OF=EF=,1 在 Rt△OCF中, CF=
=2,
∴ CE=C+FEF=2+1=3, 而 BE=BD+DE=2+1=3, ∴ BC=3 . 故选: B.
∵ 673=84×8+1,
∴ 2019 不合题意,舍去; ∵ 672=84×8, ∴ 2016 不合题意,舍去; ∵ 671=83×7+7, ∴三个数之和为 2013. 故选: D.
10. 【解答】 解:连接 OD、AC、DC、OB、OC,作 CE⊥AB 于 E,OF⊥CE于 F,如图, ∵ D 为 AB 的中点, ∴ OD⊥ AB, ∴ AD=BD= AB=2,
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) 11. 【解答】 解:原式 = + ﹣ = 故答案为:
12. 【解答】 解:概率是大量重复实验的情况下, 频率的稳定值可以作为概率的估计 值,即次数越多的频率越接近于概率 ∴这种幼树移植成活率的概率约为 0.9. 故答案为: 0.9.
( 3)如图 3,D 是边 CA延长线上一点, AE=AB,∠DEB=9°0,sin∠ BAC= ,
,
直接写出 tan∠CEB的值.
24.( 12 分)抛物线 L:y=﹣x2+bx+c 经过点 A(0,1),与它的对称轴直线 x=1 交于点 B. ( 1)直接写出抛物线 L 的解析式; ( 2)如图 1,过定点的直线 y=kx﹣k+4( k< 0)与抛物线 L 交于点 M 、N.若△ BMN 的面积等于 1,求 k 的值; ( 3)如图 2,将抛物线 L 向上平移 m(m>0)个单位长度得到抛物线 L1,抛物 线 L1 与 y 轴交于点 C,过点 C 作 y 轴的垂线交抛物线 L1 于另一点 D.F 为抛物线 L1 的对称轴与 x 轴的交点, P 为线段 OC上一点. 若△ PCD与△ POF相似,并且符 合条件的点 P 恰有 2 个,求 m 的值及相应点 P 的坐标.
2020年湖北省中考数学全真模拟试卷解析版(5套)
2020年湖北省中考数学全真模拟试卷(一)一、选择题(共10小题,每小题3分,本大题满分30分,每一道小题有A、B、C、D的四个选项,其中有且只有一个选项最符合题目要求,把最符合题目要求的选项的代号直接填涂在答题卡内相应题号下的方框中,不涂、涂错或一个方框内涂写的代号超过一个,一律得0分.)1.在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.12.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2=()A.60°B.45°C.58°D.55°3.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④4.下列计算结果正确的是()A.﹣3x2y•5x2y=2x2y B.﹣2x2y3•2x3y=﹣2x5y4C.35x3y2÷5x2y=7xy D.(﹣2x﹣y)(2x+y)=4x2﹣y25.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.平均数是54 D.方差是296.如图,已知AD,BE分别是△ABC中线和高,且AB=AC,∠EBC=20°,则∠BAD的度数为()A.18°B.20°C.22.5°D.25°7.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.8.仔细观察下列数字排列规律,则a=()A.206 B.216 C.226 D.2369.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2D.2πm210.如图,反比例函数y=(k≠0)的图象经过A,B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为()A.﹣B.﹣C.﹣D.﹣二、填空题(将每小题的最后正确答案填在答题卡中对应题号的横线上.每小题3分,本大题满分18分,)11.阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调査结果绘制了如图所示的不完整的统计图表.请根据图表中的信息,表中的a=.12.函数y=中,自变量x的取值范围是.13.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为.14.对两个不相等的实数根a、b,我们规定符号max{a,b}表示a、b中较大的数,如:max{2,4}=4,按照这个规定:方程max{x,﹣x}=的解为.15.在一场足球赛中,一球员从球门正前方10米处将球踢起射向球门,当球飞行的水平距离是6米时,球到达最高点,此时球高3米,当球飞行至球门时的高度是米.16.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为.三、解答题(应写出文字说明、证明过程或推演步骤.如果你觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.本大题共9小题,满分72分.)17.(5分)计算:﹣()﹣1﹣(2019+)0.18.(5分)化简:(+1)÷.19.(6分)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图②).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1米,参考数据=1.73)20.(6分)有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.21.(8分)关于x的方程x2﹣(2k+1)x+k2=0.(1)如果方程有实数根,求k的取值范围;(2)设x1、x2是方程的两根,且x12+x22=6+x1x2,求k的值.22.(10分)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费)(1)根据图象分别求出l1,l2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.23.(10分)如图,AB是⊙O的直径,点C在⊙O上,∠B=∠DCA,AD∥BC,连结OD,AC,且OD与AC相交于点E.(1)求证:CD与⊙O相切;(2)若⊙O的半径为3,且=,求tan B的值.24.(10分)如图①,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)①将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;②若AB=2,CE=2,在图②的基础上将△CED绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度.25.(12分)如图,已知抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,且AO=2BO.(1)求此抛物线的解析式;(2)若点Q是抛物线上的一动点,连接CQ交AB于点P,过点P作PE∥AC,交BC于点E,①求△PCE面积的最大值及此时点P的坐标;②是否存在Q,使∠PEC=∠APC?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,本大题满分30分,每一道小题有A、B、C、D的四个选项,其中有且只有一个选项最符合题目要求,把最符合题目要求的选项的代号直接填涂在答题卡内相应题号下的方框中,不涂、涂错或一个方框内涂写的代号超过一个,一律得0分.)1.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<1,∴在﹣2,﹣1,0,1这四个数中,最小的数是﹣2.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.【分析】先根据直角求出∠3,再根据两直线平行,同位角相等解答即可.【解答】解:如图,∵∠1=32°,∴∠3=90°﹣∠1=90°﹣32°=58°,∵直尺的两边互相平行,∴∠2=∠3=58°.故选:C.【点评】本题考查了平行线的性质,是基础题,熟记性质并准确识图是解题的关键.3.【分析】根据题意得到原几何体的主视图,结合主视图选择.【解答】解:原几何体的主视图是:.故取走的正方体是①.故选:A.【点评】本题考查了简单组合体的三视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.【分析】A、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式利用单项式除以单项式法则计算得到结果,即可做出判断;D、原式利用完全平方公式展开得到结果,即可做出判断.【解答】解:A、﹣3x2y•5x2y=﹣15x4y2,故A选项错误;B、﹣2x2y3•2x3y=﹣4x5y4,故B选项错误;C、35x3y2÷5x2y=7xy,故C选项正确;D、(﹣2x﹣y)(2x+y)=﹣(2x+y)2=﹣4x2﹣4xy﹣y2,故D选项错误.故选:C.【点评】此题考查了整式的除法,单项式乘除单项式,以及平方差公式,熟练掌握运算法则是解本题的关键.5.【分析】根据众数、平均数、众数和方差的概念,求出该组数据的众数、平均数、众数和方差,然后选择错误选项.【解答】解:这组数据按照从小到大的顺序排列为:40,50,50,50,55,55,60,60,60,60,则众数为:60,中位数为:55,平均数为:=54,方差为:=39.故选:D.【点评】本题考查了众数、中位数、平均数和方差的知识,解答本题的关键是掌握各知识点的概念.6.【分析】根据AD,BE分别是△ABC中线和高,且AB=AC,即可得到AD⊥BC,∠BAD=∠CAD,再根据同角的余角相等,即可得到∠EBC=∠CAD=20°.【解答】解:∵AD,BE分别是△ABC中线和高,且AB=AC,∴AD⊥BC,∠BAD=∠CAD,∴∠CAD+∠C=90°,∠CBE+∠C=90°,∴∠EBC=∠CAD=20°,∴∠BAD=20°,故选:B.【点评】本题主要考查了等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.7.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.【分析】仔细观察每个数的关系,找到规律,利用规律求解即可.【解答】解:观察发现:2=1×2﹣0;10=3×4﹣2;26=5×6﹣4;50=7×8﹣6;…a=15×16﹣14=226,故选:C.【点评】考查了数字的变化类问题,解题的关键是找到各个图形中数字规律,难度不大.9.【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.【解答】解:连接AC,∵从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC(扇形的半径相等),∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2),故选:A.【点评】本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解此题的关键.10.【分析】先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.【解答】解:设点B坐标为(a,b),则DO=﹣a,BD=b∵AC⊥x轴,BD⊥x轴∴BD∥AC∵OC=CD∴CE=BD=b,CD=DO=a∵四边形BDCE的面积为2∴(BD+CE)×CD=2,即(b+b)×(﹣a)=2∴ab=﹣将B(a,b)代入反比例函数y=(k≠0),得k=ab=﹣故选:C.【点评】本题主要考查了反比例函数系数k的几何意义,解决问题的关键是运用数形结合的思想方法进行求解.本题也可以根据△OCE与△ODB相似比为1:2求得△BOD的面积,进而得到k 的值.二、填空题(将每小题的最后正确答案填在答题卡中对应题号的横线上.每小题3分,本大题满分18分,)11.【分析】先根据A组的频数及其频率求出总人数,再用总人数乘以B组的频率计算可得.【解答】解:∵被调查的总人数为6÷0.15=40(人),∴B组的人数为40×0.3=12(人),即a=12.故答案为:12.【点评】本题主要考查频数(率)分布表,解题的关键是掌握频率=频数÷总数.12.【分析】根据二次根式被开放数大于等于0和分式的分母不为0回答即可.【解答】解:由题意得:x﹣1≥0,且x﹣1≠0.解得:x>1.故答案为:x>1.【点评】本题主要考查的函数自变量的取值范围问题,明确二次根式被开放数大于等于0和分式的分母不为0是解题的关键.13.【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案是:12.【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.14.【分析】根据题中的新定义化简方程,求出解即可得到x的值.【解答】解:当x>﹣x,即x>0时,方程变形为x=,去分母得:x2﹣2x﹣1=0,解得:x==1±,此时x=1+,经检验x=1+是分式方程的解;当x<﹣x,即x<0,方程变形为﹣x=,去分母得:x2+2x+1=0,解得:x1=x2=﹣1,经检验x=﹣1是分式方程的解,综上,x的值为﹣1或1+,故答案为:﹣1或1+【点评】此题考查了解分式方程,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.15.【分析】根据题意得出顶点为(6,3),起点为(0,0),设抛物线的解析式为y=a(x﹣6)2+3,求出a的值,再代入x的值后易求出y的值.【解答】解:球飞行的路线为抛物线,顶点(6,3),起点(0,0),设抛物线的解析式为y=a(x﹣6)2+3,∴0=a(0﹣6)2+3.解得a=﹣.∴抛物线的解析式为y=﹣(x﹣6)2+3,当x=10时,y=,故球飞行至球门时的高度是:m.故答案为:.【点评】本题考查了点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.16.【分析】作点E关于直线CD的对称点E′,连接AE′交CD于点F,再根据△CEF∽△BEA 即可求出CF的长,进而得出DF的长.【解答】解:作点E关于直线CD的对称点E′,连接AE′交CD于点F,∵在矩形ABCD中,AB=6,BC=8,点E是BC中点,∴BE=CE=CE′=4,∵AB⊥BC,CD⊥BC,∴=,即=,解得CF=2,∴DF=CD﹣CF=6﹣2=4.故答案为:4.【点评】本题考查的是轴对称﹣最短路线问题及相似三角形的判定与性质,根据题意作出E点关于直线CD的对称点,再根据轴对称的性质求出CE′的长,利用相似三角形的对应边成比例即可得出结论.三、解答题(应写出文字说明、证明过程或推演步骤.如果你觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.本大题共9小题,满分72分.)17.【分析】直接利用零指数幂的性质以及二次根式的性质、负整数指数幂的性质分别化简得出答案.【解答】解:原式=3﹣2﹣1=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=•=a﹣2【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.【解答】解:过点C作CE⊥AB于E.∵∠ADC=90°﹣60°=30°,∠ACD=90°﹣30°=60°,∴∠CAD=90°.∵CD=10,∴AC=CD=5.在Rt△ACE中,∵∠AEC=90°,∠ACE=30°,∴AE=AC=,CE=AC•cos∠ACE=5•cos30°=.在Rt△BCE中,∵∠BCE=45°,∴BE=CE=,∴AB=AE+BE=≈6.8(米).故雕塑AB的高度约为6.8米.【点评】本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.20.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这三条线段能组成三角形的情况,再利用概率公式求解即可求得答案;(2)首先由树状图求得这三条线段能组成直角三角形的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:∵共有12种等可能的结果,这三条线段能组成三角形的有7种情况,∴这三条线段能组成三角形的概率为:;(2)∵这三条线段能组成直角三角形的只有:3cm,4cm,5cm;∴这三条线段能组成直角三角形的概率为:.【点评】此题考查了树状图法与列表法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)根据判别式的意义得到△=(2k+1)2﹣4k2≥0,然后解关于k的不等式即可;(2)利用根与系数的关系得到x1+x2=2k+1,x1x2=k2,再变形x12+x22=6+x1x2得到(x1+x2)2=6+3x1x2,所以(2k+1)2=6+3k2,然后解关于k的方程后利用k的范围确定满足条件的k的值.【解答】解:(1)根据题意得△=(2k+1)2﹣4k2≥0,解得k≥﹣,即k的范围为k≥﹣;(2)根据题意得x1+x2=2k+1,x1x2=k2,∵x12+x22=6+x1x2,∴(x1+x2)2=6+3x1x2,∴(2k+1)2=6+3k2,整理得k2+4k﹣5=0,解得k1=1,k2=﹣5,∵k≥﹣,∴k的值为1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了判别式的意义.22.【分析】(1)根据l1经过点(0,2)、(500,17),得方程组解之可求出解析式,同理l2过(0,20)、(500,26),易求解析式;(2)费用相等即y1=y2,解方程求出时间;(3)求出交点坐标,结合函数图象回答问题.【解答】解:(1)设L1的解析式为y1=k1x+b1,L2的解析式为y2=k2x+b2,由图可知L1过点(0,2),(500,17),∴∴k1=0.03,b1=2,∴y1=0.03x+2(0≤x≤2000),由图可知L2过点(0,20),(500,26),同理y2=0.012x+20(0≤x≤2000);(2)若两种费用相等,即y1=y2,则0.03x+2=0.012x+20,解得x=1000,∴当x=1000时,两种灯的费用相等;(3)时间超过1000小时,故前2000h用节能灯,剩下的500h,用白炽灯.【点评】此题旨在检测一次函数解析式的待定系数法及其与方程、不等式的关系.结合函数图象解不等式更具直观性,对方案决策很有帮助,这就是数形结合的优越性.23.【分析】(1)连接OC,易证∠DCA=∠OCB,由于∠ACO+∠OCB=90°,所以∠ACO+∠DCA =90°,即∠DCO=90°,从而可证CD与⊙O相切;(2)过点O作OF∥BC,交CD于点F,交AC于点G,由于△AED∽△GEO,所以,即,设AD=5x,OG=2x,易证△ADC∽△CAB,所以AC2=AD•BC,所以AC=2x,根据锐角三角函数即可求出tan B的值.【解答】解:(1)连接OC,∵OC=OB,∴∠OCB=∠B,∵∠B=∠DCA,∴∠DCA=∠OCB,∵∠ACO+∠OCB=90°,∴∠ACO+∠DCA=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)过点O作OF∥BC,交CD于点F,交AC于点G,∵AD∥BC,∴AD∥OG,∴△AED∽△GEO,∴,即,设AD=5x,OG=2x,∵∠ACB=90°,∴由垂径定理可知:点G为AC的中点,∴OG是△ACB的中位线,∴BC=2OG=4x,∵∠B=∠DCA,∠DAC=∠ACB=90°,∴△ADC∽△CAB∴,∴AC2=AD•BC,∴AC=2x∴tan B===【点评】本题考查圆的综合问题,涉及相似三角形的判定与性质,圆的切线判定与性质,平行线的性质,以及锐角三角函数等知识,综合程度较高,需要学生灵活运用所学知识.24.【分析】(1)如图①中,结论:AF=AE,只要证明△AEF是等腰直角三角形即可;(2)①如图②中,结论:AF=AE,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可;②分两种情形a、如图③中,当AD=AC时,四边形ABFD是菱形.b、如图④中当AD=AC时,四边形ABFD是菱形.分别求解即可;【解答】解:(1)如图①中,结论:AF=AE.理由:∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=AE.故答案为AF=AE.(2)①如图②中,结论:AF=AE.理由:连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.②如图③中,当AD=AC时,四边形ABFD是菱形,设AE交CD于H,易知EH=DH=CH=,AH==3,AE=AH+EH=4,如图④中当AD=AC时,四边形ABFD是菱形,易知AE=AH﹣EH=3﹣=2,综上所述,满足条件的AE的长为4或2.【点评】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.25.【分析】(1)根据A,B,C三点的坐标,用待定系数法求出抛物线的解析式;(2)①本题要通过求△CPE的面积与P点横坐标的函数关系式而后根据函数的性质来求△CPE 的面积的最大值以及对应的P的坐标.△CPE的面积无法直接表示出,可用△CPB和△BEP的面积差来求,设出P点的坐标,即可表示出BP的长,可通过相似三角形△BEP和△BAC求出,然后根据二次函数最值即可求出所求的值;②根据题意易得△BAC∽△BCP,然后根据相似比例求出BP的值,进而求出P的坐标和PQ解析式,再与二次函数解析式联立求出Q的坐标.【解答】解:(1)∵B(2,0),AO=2BO,∴AO=4,A(﹣4,0),将A(﹣4,0)、B(2,0)代入y=ax2+bx﹣4,解这个方程组,得,∴此抛物线的解析式:;(2)①设P(m,0),则BP=2﹣m,AB=6,S△ABC=12∵PE∥AC,∴△BPE∽BAC,∴,∴,∵,∴S△PCE =S△BPC﹣S△BPE==∴当m=﹣1时,△PCE面积的最大值为3,此时P(﹣1,0);②存在,Q(﹣8,20).理由如下:∵PE∥AC,∴∠EPC=∠ACP,∵∠PEC=∠APC,∴∠PAC=∠PCB,∴△BAC∽△BCP,∴,B(2,0),A(﹣4,0),C(0,﹣4),∴,∴,∴,,∴CQ解析式为y=﹣3x﹣4,联立解得x1=0(不合题意,舍去),x2=﹣8,∴y=20,∴Q(﹣8,20).【点评】本题是一道函数综合题,主要考查了二次函数图象的性质,熟练掌握二次函数相关知识是解题的关键.2020年湖北省中考数学全真模拟试卷(二)一.选择题(共10小题,满分30分,每小题3分)1.3的相反数是()A.﹣3 B.3 C.D.﹣2.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人3.下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1C.(3m2)3=9m6D.2a3•a4=2a74.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.845.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9 D.96.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.B.πC.2πD.3π7.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根8.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为()A.相离B.相切C.相交D.相切、相交均有可能9.某蓄水池的横断面示意图如图,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A.B.C.D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.abc<0 B.2a+b<0 C.b2﹣4ac<0 D.a+b+c<0二.填空题(共6小题,满分18分,每小题3分)11.分解因式:4m2﹣16n2=.12.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.13.如图,已知函数y=x+2的图象与函数y=(k≠0)的图象交于A、B两点,连接BO并延长交函数y=(k≠0)的图象于点C,连接AC,若△ABC的面积为8.则k的值为.14.某校初三(一)班课外活动小组为了测得学校旗杆的高度,他们在离旗杆6米的A处,用高为1.5米的仪器测得旗杆顶部B处的仰角为60°,如图所示,则旗杆的高度为米.(已知≈1.732结果精确到0.1米)15.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.16.如图,已知四边形ABCD是梯形,AB∥CD,AB=BC=DA=1,CD=2,按图中所示的规律,用2009个这样的梯形镶嵌而成的四边形的周长是.三.解答题(共9小题,满分72分)17.先化简再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.18.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围.(2)是否存在实数k,使得x1x2﹣x12﹣x22=﹣16成立?若存在,请求出k的值;若不存在,请说明理由.19.如图,线段AC交BD于O,点E,F在线段AC上,△DFO≌△BEO,且AF=CE,连接AB、CD,求证:AB=CD.20.随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在20﹣40万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:(1)调查样本人数为,样本中B类人数百分比是,其所在扇形统计图中的圆心角度数是;(2)把条形统计图补充完整;(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从这5个人中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.21.如图,点A的坐标为(3,0),点C的坐标为(0,4),OABC为矩形,反比例函数的图象过AB的中点D,且和BC相交于点E,F为第一象限的点,AF=12,CF=13.(1)求反比例函数和直线OE的函数解析式;(2)求四边形OAFC的面积?22.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.23.近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:设当单价从40元/千克下调了x元时,销售量为y千克;(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元时,当天的销售利润W最大?利润最大是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于32元/千克,问一次进货最多只能是多少千克?(4)若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?24.如图,四边形ABCD为矩形,AC为对角线,AB=6,BC=8,点M是AD的中点,P、Q两点同时从点M出发,点P沿射线MA向右运动;点Q沿线段MD先向左运动至点D后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度均为每秒1个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与△ABC重叠部分的面积为S.(1)当点R在线段AC上时,求出t的值.(2)求出S与t之间的函数关系式,并直接写出取值范围.(求函数关系式时,只须写出重叠部分为三角形时的详细过程,其余情况直接写出函数关系式.)(3)在点P、点Q运动的同时,有一点E以每秒1个单位的速度从C向B运动,当t为何值时,△LRE是等腰三角形.请直接写出t的值或取值范围.25.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】依据相反数的定义回答即可.【解答】解:3的相反数是﹣3.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.3.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选:D.【点评】此题考查了整式的混合运算,熟练掌握公式及法则是解本题的关键.4.【分析】由三视图可知该几何体是一个三棱柱,先根据勾股定理得到主视图三角形等边的长,再根据三棱柱的全面积=2个底面积+3个侧面积,列式计算即可求解.【解答】解:如图:由勾股定理=3,3×2=6,6×4÷2×2+5×7×2+6×7。
湖北省2020年中考数学暨初中学业水平考试模拟卷(中考真题汇编)(学生答题版)
湖北省2020年中考数学暨初中学业水平考试模拟卷(中考真题汇编)(满分120分,考试时间120分钟)班级:________ 姓名:________ 得分:________一、选择题(本大题共10小题,每小题3分,共30分)1.(2019·攀枝花)在0,-1,2,-3这四个数中,绝对值最小的数是( )A.0 B.-1 C.2 D.-32.(2019·凉山州)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为( )A.135°B.125°C.115°D.105°3.(2019·广元)我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体的两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )4.(2019·雅安)下列计算中,正确的是( )A.a4+a4=a8B.a4·a4=2a4C.(x3)4·x2=x14D.(2x2y)3÷6x3y2=x3y5.(2019·攀枝花)下列判断错误的是( )A.平行四边形的对边相等B.对角线相等的四边形是矩形C .对角线互相垂直的平行四边形是菱形D .正方形既是轴对称图形,又是中心对称图形6.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动,为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数 0 1 2 3 4 人数41216171关于这组数据,下列说法正确的是( ) A .中位数是2B .众数是17C .平均数是2D .方差是27.(2018·临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5 000万元,今年1—5月份,每辆车的销售价格比去年降低1万元,销售数量与去年一整年的相同,销售总额比去年一整年的少20%,今年1—5月份每辆车的销售价格是多少万元?设今年1—5月份每辆车的销售价格为x 万元.根据题意,下列方程正确的是( )A.5 000x +1=5 000(1-20%)xB.5 000x +1=5 000(1+20%)x C.5 000x -1=5 000(1-20%)xD.5 000x -1=5 000(1+20%)x8.(2019·雅安)如图,已知⊙O 的内接正六边形ABCDEF 的边心距OM =2,则该圆的内接正三角形ACE 的面积为( )A .2B .4C .63D .439.(2018·绵阳)将全体正奇数排成一个三角形数阵:按照以上排列规律,数阵中第25行的第20个数是( ) A .639B .637C .635D .63310.如图,在Rt △AOB 中,两直角边OA ,OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B ,若反比例函数y =k x的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k的值为( )A .3B .4C .6D .8二、填空题(本大题共6小题,每小题3分,共18分)11.(2019·广元)因式分解:a 3-4a = .12.(2019·潍坊)如图,在矩形ABCD 中,AD =2.将∠A 向内翻折,点A 落在BC 上,记为A ′,折痕为DE.若将∠B 沿EA ′向内翻折,点B 恰好落在DE 上,记为B ′,则AB = .第12题图 第13题图 第15题图13.(2018·温州)如图,直线y =-33x +4与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为 .14.定义运算:a ☆b =a -ab ,若a =x +1,b =x ,a ☆b =-3,则x 的值为 .15.(2019·内江)如图,在平行四边形ABCD 中,AB <AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为 .16.(2019·甘孜州)如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,将△ABC 绕顶点C 逆时针旋转得到△A ′B ′C ,AC 与A ′B ′相交于点P ,则CP 的最小值为 .三、解答题(本大题共9小题,共72分)17.(本小题满分5分)(2019·山西)计算:27+⎝ ⎛⎭⎪⎫-12-2-3tan 60°+(π-2)0-38.18.(本小题满分6分)(2019·荆州)先化简再求值⎝ ⎛⎭⎪⎫a a -1-1÷2a 2-a ,然后从-2≤a <2中选出一个合适的整数作为a 的值代入求值.19.(本小题满分7分)(2019岳阳 中考)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD 为1.7米,他站在D 处测得塔顶的仰角∠ACG 为45°,小琴的目高EF 为1.5米,她站在距离塔底中心B 点a 米远的F 处,测得塔顶的仰角∠AEH 为62.3°.(点D 、B 、F 在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD ;(用含a 的式子表示) (2)若小亮与小琴相距52米,求慈氏塔的高度AB .20.(本小题满分7分)(2019·常德)为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶贫、养老托管和异地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为A,B,C,D类贫困户.为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:,图1) ,图2)请根据图中信息回答下面的问题:(1) 本次抽样调查了多少贫困户?(2) 抽查了多少户C类贫困户?并补全统计图;(3) 若该地共有13 000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?(4) 为更好的做好精准扶贫工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中甲和丁的概率.21.(本小题满分7分)已知关于x的一元二次方程x2-6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1、x2,且2x1x2+x1+x2≥20,求m的取值范围.22.(本小题满分8分)(2019十堰中考)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C 延长线上一点,且∠CDE =∠BAC . (1)求证:DE 是⊙O 的切线;(2)若AB =3BD ,CE =2,求⊙O 的半径.23.(本小题满分10分)(2019·荆门)为落实“精准扶贫”精神,市农科院专家指导李大爷利用坡前空地种植优质草莓,根据市场调查,在草莓上市销售的30天中,其销售价格m(元/公斤)与第x 天之间满足m =⎩⎪⎨⎪⎧3x +15(1≤x ≤15),-x +75(15<x ≤30).(x 为正整数),销售量n(公斤)与第x 天之间的函数关系如图所示:如果李大爷的草莓在上市销售期间每天的维护费用为80元. (1)求销售量n 与第x 天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y 与第x 天之间的函数关系式;(日销售利润=日销售额-日维护费)(3)求日销售利润y 的最大值及相应的x.24.(本小题满分10分)如图,△CAB 与△CDE 均是等腰直角三角形,并且∠ACB =∠DCE =90°.连接BE ,AD ,AD 的延长线与BC ,BE 的交点分别是点G ,F.(1)求证:AF ⊥BE ;(2)将△CDE 绕点C 旋转至CD ∥BE 时,探究线段DA ,DE ,DG 之间的数量关系,并证明; (3)在(2)的条件下,若DA =4.5,DG =2,求BF 的值.25.(本小题满分12分)(2019·自贡)如图,已知直线AB 与抛物线C :y =ax 2+2x +c 相交于点A(-1,0)和点B(2,3)两点.(1)求抛物线C 的函数表达式;(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA ,MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M 的坐标;(3)在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线y =174的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.。
2020年湖北孝感中考数学试卷(解析版)
2020年湖北孝感中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)1.如果温度上升,记作,那么温度下降记作( ).A. B. C. D.2.如图,直线,相交于点,,垂足为点,若,则的度数为( ).A. B. C. D.3.下列计算正确的是( ).A. B. C. D.4.如图是由个相同的正方体组成的几何体,则它的左视图是( ).主视方向A.B.C.D.5.某公司有名员工,每人年收入数据如下表:年收入/万元人数/人则他们年收入数据的众数与中位数分别为( ).A.,B.,C.,D.,6.已知,,那么代数式的值是( ).A.B.C.D.7.已知蓄电池的电压为定值,使用蓄电池时,电流(单位:)与电阻(单位: )是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为( ).A.C.D.8.将抛物线:向左平移个单位长度,得到抛物线,抛物线与抛物线关于轴对称,则抛物线的解析式为( ).A.B.C.D.9.如图,在四边形中,,,,,.动点沿路径从点出发,以每秒个单位长度的速度向点运动.过点作,垂足为.设点运动的时间为(单位:),的面积为,则关于的函数图象大致是( ).A.B.C.D.10.如图,点在正方形的边上,将绕点顺时针旋转到的位置,连接,过点作的垂线,垂足为点,与交于点.若,,则的长为().A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到万年以上误差不超过秒.数据万用科学记数法表示为 .12.有一列数,按一定的规律排列成,,,,,,.若其中某三个相邻数的和是,则这三个数中第一个数是 .13.某型号飞机的机翼形状如图所示,根据图中数据计算的长为 .(结果保留根号)14.在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(类:总时长分钟;类:分钟总时长分钟;类:分钟总时长分钟;类:总时长分钟),将调查所得数据整理并绘制成如下两幅不完整的统计图.人数类别该校共有名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过分钟且不超过分钟的学生约有 人.图图15.如图,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,在此图形中连接四条线段得到如图的图案,记阴影部分的面积为,空白部分的面积为,大正方形的边长为,小正方形的边长为,若,则的值为 .16.如图,已知菱形的对角线相交于坐标原点,四个顶点分别在双曲线和上,.平行于轴的直线与两双曲线分别交于点,,连接,,则的面积为 .xyO三、解答题(本大题共8小题,共72分)17.计算:.18.如图,在平行四边形中,点在的延长线上,点在的延长线上,满足.连接,分别与,交于点,.求证:.(1)(2)19.有张看上去无差别的卡片,上面分别写有数,,,.随机抽取一张卡片,则抽取到的数是偶数的概率为 .随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于的概率.(1)(2)(3)20.如图,在平面直角坐标系中,已知点,和,请按下列要求画图并填空.x–6–5–4–3–2–11234567y7–6–5–4–3–2–1123456平移线段,使点平移到点,画出平移后所得的线段,并写出点的坐标为 .将线段绕点逆时针旋转,画出旋转后所得的线段,并直接写出的值为 .在轴上找出点,使的周长最小,并直接写出点的坐标为 .(1)(2)21.已知关于的一元二次方程.求证:无论为何实数,方程总有两个不相等的实数根.若方程的两个实数根,,满足,求的值.(1)(2)22.某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品.已知乙产品的售价比甲产品的售价多元,丙产品的售价是甲产品售价的倍,用元购买丙产品的数量是用元购买乙产品数量的倍.求甲、乙、丙三种农产品每千克的售价分别是多少元?电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共,其中乙产品的数量是丙产品数量的倍,且甲、丙两种产品数量之和不超过乙产品数量的倍.请你帮忙计算,按此方案购买农产品最少要花费多少元?12(1)(2)23.已知内接于⊙,,的平分线与⊙交于点,与交于点,连接并延长与⊙过点的切线交于点,记.如图,若.图直接写出的值为 .当⊙的半径为时,直接写出图中阴影部分的面积为 .如图,若,且,,求的长.图(1)(2)1(3)24.在平面直角坐标系中,已知抛物线与轴交于,两点(点在点的左侧),与轴交于点,顶点为点.当时,直接写出点,,,的坐标: , ,,.如图,直线交轴于点,若,求的值和的长.图如图,在()的条件下,若点为的中点,动点在第三象限的抛物线上,过点作轴的垂线,垂足为,交于点;过点作,垂足为.设点的横坐标为,记.图用含的代数式表示.【答案】解析:温度上升为“”,温度下降为“”,故温度下降为.故选.解析:∵,∴,∵,,∴.故选.解析:左视图指从左侧所看到的视图,故第列有个,第列有个小正方形,故选.2设,求的最大值.A1.B2.C3.C4.B5.数据从小到大排序为:、、、、、、、、,∴众数为:,中位数为:.解析:原式,∵,,∴原式,故选:.解析:设反比例函数解析式为,由图象可得点在反比例函数图象上,将,代入解析式,得,解得,故反比例函数解析式为.故选.解析:由题知,∵与关于轴对称,∴,即.故选.、D 6.C 7.A 8.解析:①当点在上时,即时,在中,,,∴,,∴,即,且当时,.②当点在上时,即时,如图,过点作于,在中,,,∴,∴,,∵,∴,∴,∴,∴,即,且当时,.③当点在上时,即时,点和点重合,∴,∵,∴,∴,∴,即,且当时,.故选.解析:连接,由旋转性质可知≌,∴,,∵,∴垂直平分,∴,∵,,∴,∵四边形是正方形,∴,,设,则,∴,在中,,∴解得,∴.故选.解析:万用科学记数法表示为:.B10.11.12.解析:设这三个数中第一个数是,则第二个数是,第三个数是,∴.故答案为:.13.解析:如下图所示,延长作交延长线于点,作交延长线于点,、交于点.则,∵,,∴为等腰直角三角形,∴,又∵,,∴为等腰直角三角形,∴,又∵,,∴为等腰直角三角形,则,∴,,∴.14.解析:抽样调查中,类的人数为人,占比为,∴抽样调查的总人数为:人,∴类占比:,∴类占比:,∴样本估量总体,全校做眼保健操总时长超过分钟且不超过分钟的学生约有人.解析:由题意得,,设,,∴,,∴,∴,∴..∵,∴,,,15.正方形,∴,,∴.16.解析:过点作轴于点,过点作轴于点,设于轴相交于点,yxO∵四边形是菱形,∴菱形的对角线与垂直且互相平分,即,是、的中点,∴,,∴,∵,,∴,∴,∴,∵,∴,而,∴,∵,即,∵平行于轴,∴与都是直角三角形,∴(1)(2).故的面积为.解析:.解析:∵四边形为平行四边形,∴,,∴,.在和中,,∴≌.∴.解析:随机抽取张卡片,有四种等可能的结果,其中是偶数的结果有两种,所以抽取到的数是偶数的概率.列表如下:.17.证明见解析.18.(1)(2).19.(1)(2)第次第次∵差的绝对值有种可能,绝对值大于的有种可能,∴差的绝对值大于的概率.解析:由、两点位置可知:点向右平移了五个单位,再向下平移了五个单位得到点,故点也需向右平移个单位,再向下平移个单位得到点,然后连结即可,故,,即.x –6–5–4–3–2–1123456y –6–5–4–3–2–1123456将绕点逆时针旋转可得,如图所示,连结,,因为,,所以,又因为,(1)画图见解析,.(2)画图见解析,.(3)画图见解析,.20.(3)(1),故可得,所以为直角三角形,故.x –6–5–4–3–2–1123456y –6–5–4–3–2–1123456O 作点(或点)关于轴的对称点(或),然后连接(或), (或)与轴的交点即为点,观察可得,,此时的周长最小.x –6–5–4–3–2–11234567y –6–5–4–3–2–1123456O 解析:,∵无论为何实数,,∴,∴无论为何实数,方程总有两个不相等的实数根.(1)证明见解析.(2)或.21.(2)(1)(2)由一元二次方程根与系数的关系得:,,∵,∴,∴,∴,化简得:,解得或.解析:设甲产品的售价为元,则乙产品的售价为元,丙产品的售价为元,由题意有:.解得:.经检验,既符合方程,也符合题意.∴,.故:甲、乙、丙三种农产品每千克的售价分别是元、元、元.设的甲、乙、丙三种农产品搭配中丙种农产品有,则乙种农产品有,甲种农产品有,∴,∴.设按此销售方案购买农产品所需费用元,则.∵随的增大而增大,∴当时,取最小值,且.故:按此方案购买农产品最少要花费元.(1)元、元、元.(2)元.22.最小12(1)(2).23.12(1)解析:如图,连接,,∵平分,∴,∵,,∴是等边三角形,∴,∵是直径,∴,∴,∴,∵是⊙的切线,∴,又∵,∴,∴,∴.又∵,∴.连接,∵点是的中点,∴,∵,,∴,(2)∴,又∵,∴四边形是平行四边形,∴,∴,∴,,,,,.如图,连接,连接并延长交⊙于点,连接,则,∴.∵与⊙相切,∴.∴.∵平分,∴.∴,∴.∵,.∵四边形内接于⊙,∴.又∵,∴.又∵,扇形扇形阴扇形扇形阴(1)(2)∴.又∵公共,∴≌,∴.∵,∴.∵,公共,∴.∴,即,∴.∴.解析:当时,,令,解得,,∴,,当时,,∴,∴,∴.如图,作轴于点.图(1); ; ; (2),.12(3)..24.1(3)在和中,∵,,∴,,,,∴,∴,∴.如图,作与的延长线交于点.图∵,∴,∴,,∴,∵,,∴,∵,∴,∴,∵,,∴,∴,∴,∵,轴,∴,.∴,∴,2∴,∴,∴.∵,,∴当时,,当时,.最大最大。
2020年湖北省武汉市中考数学试卷及答案解析
2020年湖北省武汉市中考数学试卷及答案解析2020年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数-2的相反数是()。
A。
2B。
-2C。
1/2D。
-1/22.式子√x-2在实数范围内有意义,则x的取值范围是()。
A。
x≥2B。
x≤2C。
x≥-2D。
x≥43.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()。
A。
两个小球的标号之和等于1B。
两个小球的标号之和等于6C。
两个小球的标号之和大于1D。
两个小球的标号之和大于64.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性。
下列汉字是轴对称图形的是()。
A。
B。
C。
D。
5.如图是由4个相同的正方体组成的立体图形,它的左视图是()。
A。
B。
C。
D。
6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()。
A。
3/1B。
4/1C。
6/1D。
8/17.若点A(a-1,y1),B(a+1,y2)在反比例函数y=k/x 的图象上,且y1>y2,则a的取值范围是()。
A。
a<-1B。
-1<a<1C。
a>1D。
a<-1或a>18.一个有进水管和出水管,每分钟的进水量和出水量是两个常数。
从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()。
A。
32B。
34C。
36D。
389.如图,在半径为3的⊙O中,AB是直径,AC是弦,D 是AC的中点,AC与BD交于点E。
若E是BD的中点,则AC的长是()。
A。
5/2√3B。
3√3C。
3√2D。
4√210.下列图中所有小正方形都是全等的。
图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片。
2020年湖北省中考数学一模试卷(含答案解析)
2020年湖北省中考数学一模试卷一、选择题(本大题共9小题,共27.0分)1.在−6,0,2.5,|−3|这四个数中,最大的数是().A. −6B. 0C. 2.5D. |−3|2.如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.3.我国自主研发的“天宫二号”对接成功,标志着我国航天事业又上了一个新台阶,“天宫二号”火箭的飞行速度约为每秒8千米,也就是28800千米/时,“28800”用科学记数法表示为()A. 2.88×102B. 28.8×103C. 2.88×104D. 0.288×1054.如图,在△ABC中,∠C=90°,点D在AC上,DE//AB,若∠CDE=165°,则∠B的度数为()A. 15°B. 55°C. 65°D. 75°5.下列说法中,正确的是()A. 对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B. 某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C. 第一枚硬币,正面朝上的概率为12D. 若甲组数据的方差S甲2=0.1,乙组数据的方差S乙2=0.01,则甲组数据比乙组数据稳定6.下列计算中,正确的是()A. 2−1=−2B. a+a=a2C. √9=±√3D. (a3)2=a67.关于函数y=−x−2的图象,有如下说法:①图象过点(0,−2);②图象与x轴的交点是(−2,0);③由图象可知y随x的增大而增大;④图象不经过第一象限;其中正确说法有()A. 5个B. 4个C. 3个D. 2个8.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是()A. 90°B. 100°C. 120°D. 60°9.如图,在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD、DE、BE,则下列结论:①∠ECA=165°,②BE=BC;③AD=BE;④CD=BD.其中正确的是()A. ①②③B. ①②④C. ①③④D.①②③④二、填空题(本大题共6小题,共18.0分)10.正n边形的一个内角为135°,则n=__________________.11.某校进行篮球联赛,每场比赛都要分出胜负,每胜1场得2分,负1场得1分.如果某队在10场比赛中得到16分,那么这个队胜负场数可以是______.(写出一种情况即可)12.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行20海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为______海里.13.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是______.14. 某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,为使每天所获销售利润最大,销售单价应定为______元.15. 正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 6的坐标是______.三、解答题(本大题共8小题,共72.0分)16. 解不等式组{x−23+1<0x−12≥2x−16,并把它的解集在数轴上表示出来:17. 在平行四边形ABCD 中,点E 在AD 上,DE =CD ,请仅用无刻度的直尺,按要求作图(保留作图痕迹,不写作法).(1)在图①中,画出∠C的平分线;(2)在图②中,画出∠A的平分线.18.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/ℎ 1.52 2.53 3.54人数/人26610m4(1)本次共调查的学生人数为______,在表格中,m=______;(2)统计的这组数据中,每天听空中黔课时间的中位数是______,众数是______;(3)请就疫情期间如何学习的问题写出一条你的看法.19.若抛物线y=ax2+k的图象经过点A(0,−2),B(1,−1),(1)试确定这个二次函数的解析式;(2)若点C(−3,m)也在该函数的图像上,则m的值是__________;(3)如何将该抛物线平移过点D(1,5)?请计算说明.20.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)求证:FG是⊙O的切线;(2)若AB=10,BC=12,求△DFC的面积;21.如图,反比例函数y=kx 的图像与一次函数y=14x的图像交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图像上的动点,且在直线AB的上方.⑴若点P的坐标是(1,4),直接写出k的值和△PAB的面积;⑴设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;⑴设点Q是反比例函数图像上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.22.如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.23.某天早晨,张强从家跑步去体育场锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走)。
精品解析:湖北省鄂州市2020年中考数学试题(解析版)
【答案】C
【解析】
【分析】
先用含x的代数式表示出2020年底、2021年底 用户的数量,然后根据2019年底到2021年底这三年的 用户数量之和=8.72万户即得关于x的方程,解方程即得答案.
【详解】解:设全市 用户数年平均增长率为 ,根据题意,得:
,
解这个方程,得: , (不合题意,舍去).
∴不等式组 的解集是 ,
故答案为: .
【点睛】本题考查了解不等式组,熟练掌握不等式组的解法是解题的关键.
13.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.
【答案】
【解析】
试题分析: ,解得r= .
考点:弧长的计算.
14.如图,点A是双曲线 上一动点,连接 ,作 ,且使 ,当点A在双曲线 上运动时,点B在双曲线 上移动,则k的值为___________.
【详解】解:∵4,5, ,7,9的平均数为6,
∴ ,
解得:x=5,
∴这组数据为:4,5,5,7,9,
∴这组数据的众数为5.
故选:B.
【点睛】本题考查平均数及众数,熟练掌握平均数、众数的意义是解题的关键.
7.目前以 等为代表的战略性新兴产业蓬勃发展.某市2019年底有 用户2万户,计划到2021年底全市 用户数累计达到8.72万户.设全市 用户数年平均增长率为 ,则 值为()
则∠OGC=∠OHD=90°,
在△OCG和△ODH中,
,
∴△OCG≌△ODH(AAS),
∴OG=OH,
∴ 平分 ,④正确;
∵∠AOB=∠COD,
∴当∠DOM=∠AOM时,OM才平分∠BOC,
假设∠DOM=∠AOM
2020年湖北省中考数学模拟试卷解析版
绝密★启用前2020年湖北省中考数学模拟试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、单选题1.武汉地区冬季日均最高气温5℃,最低﹣3℃,日均最高气温比最低气温高()A.2℃B.15℃C.8℃D.7℃2.下列运算正确的是()A.3a﹣a=3B.a6÷a2=a3C.﹣a(1﹣a)=﹣a+a2D.212 2-⎛⎫=- ⎪⎝⎭3.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A.24π cm2B.48π cm2C.60π cm2D.80π cm2 4.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°5.在2017年的初中数学竞赛中,我校有5位同学获奖,他们的成绩分别是88,86,91,88,92.则由这组数据得到的以下结论,错误的是( )A.极差为6B.平均数为89C.众数为88D.中位数为91 6.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×108C.5.1×109D.51×1077.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③13<a<23;④b>c.其中含所有正确结论的选项是()A.①②③B.①③④C.②③④D.①②④8.某医疗器械公司接到400件医疗器械的订单,由于生产线系统升级,实际每月生产能力比原计划提高了30%,结果比原计划提前4个月完成交货.设每月原计划生产的医疗器械有x件,则下列方程正确的是()A.400400(130%)x x-+=4B.400400(130%)x x-+=4C.400400(130%)x x--=4D.4004004(130%)x x-=-9.如图,PA、PB分别与⊙O相切于A、B两点,若∠C=59°,则∠P的度数为()A.59°B.62°C.118°D.124°10.下列方程中,有两个不相等的实数根的是()A.5x2﹣4x=﹣2B.(x﹣1)(5x﹣1)=5x2C.4x2﹣5x+1=0D.(x﹣4)2=011.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC 的度数是( )A.90°B.30°C.45°D.60°12.如图,正方形ABCD的边长为4,动点M、N同时从A点出发,点M沿AB以每秒1个单位长度的速度向中点B运动,点N沿折现ADC以每秒2个单位长度的速度向终点C运动,设运动时间为t秒,则△CMN的面积为S关于t函数的图象大致是()A.B.C.D.第II卷(非选择题)二、填空题13_____.14.如图,直线l1:y=x+1与直线l2:y=kx+b相交于点P(a,2),则关于x的不等式x+1<kx+b的解集为_____.15.如图,∠MAN=90°,点C在边AM上,AC=2,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在的直线对称,点D,E分别为AB,BC的中点,连接DE 并延长交A′C所在直线于点F,连接A′E,当△A′EF为直角三角形时,AB的长为_____.16.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____,17.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此类推,则a2020的值为___.18.已知在Rt△ABC中,∠C=90º,AC=3,BC=4,⊙C与斜边AB相切,那么⊙C的半径为______.三、解答题19.先化简,再求值(1﹣31x+)÷22441x xx-+-,其中x=4.20.今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B 种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.(1)求购进A,B两种树苗的单价;(2)若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.21.某中学为推进素质教育,在初一年级设立了六个课外兴趣小组,如图是六个兴趣小组的频数分布直方图和扇形统计图,请根据图中提供的信息回答下列问题:(1)初一年级共有多少人?(2)补全频数分布直方图.(3)求“从该年级中任选一名学生,是参加音乐、科技两个小组学生”的概率.22.如图,在平面直角坐标系xOy中,一次函数y=ax﹣a(a为常数)的图象与y轴相交于点A,与函数2yx=(x>0)的图象相交于点B(t,1).(1)求点B的坐标及一次函数的解析式;(2)点P的坐标为(m,m)(m>0),过P作PE∥x轴,交直线AB于点E,作PF∥y轴,交函数2yx=(x>0)的图象于点F.①若m=2,比较线段PE,PF的大小;②直接写出使PE≤PF的m的取值范围.23.如图,射线AN上有一点B,AB=5,tan∠MAN=43,点C从点A出发以每秒3个单位长度的速度沿射线AN运动,过点C作CD⊥AN交射线AM于点D,在射线CD上取点F,使得CF=CB,连结AF.设点C的运动时间是t(秒)(t>0).(1)当点C在点B右侧时,求AD、DF的长.(用含t的代数式表示)(2)连结BD,设△BCD的面积为S平方单位,求S与t之间的函数关系式.(3)当△AFD是轴对称图形时,直接写出t的值.24.如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN =45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN 之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.25.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.,用含m的代数式表示线段PD的长.,连接PB,PC,求△PBC的面积最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.参考答案1.C【解析】【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】解:5﹣(﹣3)=5+3=8(℃).故选:C.【点睛】本题考查了有理数的减法,熟记运算法则是解题的关键.2.C【解析】【分析】根据负整数指数幂、同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法等知识点进行作答.【详解】解:A.3a=a=2a,故A错误;B.a6÷a2=a4,故B错误;C.﹣a(1﹣a)=﹣a+a2,故C正确;D.212-⎛⎫⎪⎝⎭=4,故D错误.故选:C.【点睛】本题考查了合并同类项,同底数幂的除法,负整数指数幂,积的乘方等多个运算性质,需同学们熟练掌握.3.A【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为8÷2=4cm,故侧面积=πrl=π×6×4=24πcm2.故选:A.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.5.D【解析】【分析】根据极差、中位数、众数和平均数的概念分别进行求解,即可得出答案.A、这组数据的极差是92866-=,正确;B、这组数据的平均数是8886918892895++++=,正确;C、这组数据的众数是88,正确;D、这组数据的中位数是88,错误.故选D.【点睛】本题考查了极差、中位数、众数和平均数的知识,掌握各知识点的概念是解题的关键. 6.B【解析】试题分析:510 000 000=5.1×108.故选C.考点:科学记数法—表示较大的数.7.B【解析】【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称性得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a、b、c之间的关系,从而对④作判断;从图象与y轴的交点B在(0,-2)和(0,-1)之间可以判断c的大小得出③的正误.【详解】①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x 轴交于点A (-1,0),对称轴为直线x=1,∴图象与x 轴的另一个交点为(3,0),∴当x=2时,y <0,∴4a+2b+c <0,故②错误;③∵图象与y 轴的交点B 在(0,-2)和(0,-1)之间,∴-2<c <-1∵-12b a, ∴b=-2a ,∵函数图象经过(-1,0),∴a -b+c=0,∴c=-3a ,∴-2<-3a <-1, ∴13<a <23;故③正确 ④∵函数图象经过(-1,0),∴a -b+c=0,∴b -c=a ,∵a >0,∴b -c >0,即b >c ;故④正确;故选B .【点睛】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用. 8.A【解析】【分析】根据“原计划所用时间-实际所用时间=4”可得方程.【详解】设每月原计划生产的医疗器械有x 件,根据题意,得:()4004004130%x x -=+ 故选A .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.B【解析】【分析】连接OA 、OB ,先证明∠P=180°-∠AOB ,根据圆周角定理得出∠AOB=2∠ACB ,求出∠AOB的度数,即可得出结果.【详解】连接OA 、OB ,如图所示:∵PA 、PB 是⊙O 切线,∴PA ⊥OA ,PB ⊥OB ,∴∠PAO=∠PBO=90°,∵∠P+∠PAO+∠AOB+∠PBO=360°,∴∠P=180°-∠AOB ,∵∠ACB=59°,∴∠AOB=2∠ACB=118°,∴∠P=180°-118°=62°,故选:B .【点睛】本题考查了切线的性质、四边形内角和定理、圆周角定理等知识,熟练掌握切线的性质和四边形内角和定理是解题的关键.10.C【分析】A 、将方程变形为一般式,由根的判别式△=﹣24<0,可得出方程5x 2﹣4x =﹣2无实数根;B 、将方程变形为一般式,由一元一次方程只有一个实数根,可得出方程(x ﹣1)(5x ﹣1)=5x 2只有一个实数根;C 、根据根的判别式△=9>0,可得出方程4x 2﹣5x +1=0有两个不相等的实数根;D 、通过解方程可得出x 1=x 2=4,即方程(x ﹣4)2=0有两个相等的实数根.综上即可得出结论.【详解】A 、原方程可变形为5x 2﹣4x +2=0,∵△=(﹣4)2﹣4×5×2=﹣24<0,∴方程5x 2﹣4x =﹣2无实数根;B 、原方程可变形为6x ﹣1=0,∴方程(x ﹣1)(5x ﹣1)=5x 2只有一个实数根;C 、∵△=(﹣5)2﹣4×4×1=9>0,∴方程4x 2﹣5x +1=0有两个不相等的实数根;D 、∵(x ﹣4)2=0,∴x 1=x 2=4,∴方程(x ﹣4)2=0有两个相等的实数根.故选:C .【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 11.C【解析】由题意得:EC=FC ,90BCD ECF ∠=∠=︒ ,则CEF ∆ 为等腰直角三角形,得∠EFC =45°.故选C.【方法点睛】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故CEF ∆ 为等腰直角三角形.12.D【解析】当0≤t≤2时,AM=t,AN=2t,利用S=S正方形ABCD﹣S△AMN﹣S△BCM﹣S△CDN可得到S=﹣t2+6t;当2<t≤4时,CN=8﹣2t,利用三角形面积公式可得S=﹣4t+16,于是可判断当0≤t≤2时,S关于t函数的图象为开口向上的抛物线的一部分,当2<t≤4时,S关于t函数的图象为一次函数图象的一部分,然后利用此特征对四个选项进行判断.【详解】当0≤t≤2时,AM=t,AN=2t,所以S=S正方形ABCD﹣S△AMN﹣S△BCM﹣S△CDN=4×4−12×t×2t−12×4×(4−t)−12×4×(4−2t)=﹣t2+6t;当2<t≤4时,CN=8﹣2t,S=12(8﹣2t)×4=﹣4t+16,即当0≤t≤2时,S关于t函数的图象为开口向下的抛物线的一部分,当2<t≤4时,S关于t 函数的图象为一次函数图象的一部分.故选D.【点睛】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出S与t的函数关系式.13.2.【解析】【分析】根据二次根式的性质及特殊的三角函数值求解即可.【详解】【点睛】本题考查的是二次根式的化简及特殊的三角函数值,熟记各特殊角的三角函数值是关键. 14.x<1.【解析】【分析】根据y=x+1确定a的值,进而可得P点坐标,由图象可得在直线x=1的左边x+1<kx+b,进而可得不等式解集.【详解】∵直线l1:y=x+1过点P(a,2),∴2=a+1,解得:a=1,则不等式x+1<kx+b的解集为x<1,故答案为:x<1.【点睛】此题主要考查了一次函数与一元一次不等式,关键是正确确定a的值.15.或2.3【解析】【分析】当△A′EF为直角三角形时,存在两种情况:,当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=2,根据直角三角形斜边中线的性质得:BC=2A'B=4,最后利用勾股定理可得AB的长;,当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=2.【详解】解:当△A′EF为直角三角形时,存在两种情况:,当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=2,∠ACB=∠A'CB,∵点D,E分别为AB,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠BDE=∠MAN=90°,∴∠BDE=∠A'EF,∴AB∥A'E,∴∠ABC=∠A'EB,∴∠A'BC=∠A'EB,∴A'B=A'E,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E,由勾股定理得:AB2=BC2﹣AC2,∴AE∴AB;,当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFC=90°,∴∠ACF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=2;综上所述,AB2;故答案为:或2.3【点睛】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.16.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴△ACD 的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为18.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.17.﹣1010.【解析】【分析】先求出前6个值,从而得出221||2n n a a n n -=-+=-,据此可得答案.【详解】当a 1=0时,a 2=﹣|a 1+1|=﹣1,a 3=﹣|a 2+2|=﹣1,a 4=﹣|a 3+3|=﹣2,a 5=﹣|a 4+4|=﹣2,a 6=﹣|a 5+5|=﹣3,…∴a 2n =﹣|a 2n ﹣1+2n |=﹣n ,则a 2020的值为﹣1010,故答案为:﹣1010.【点睛】本题主要考查数字的变化规律,解题的关键是计算出前几个数值,从而得出221||2n n a a n n -=-+=-的规律.18.125【解析】【分析】首先根据勾股定理求出AB ,然后根据圆相切的性质得出CD ⊥AB ,CD 即为⊙C 的半径,然后根据三角形面积列出等式,即可解得CD.设切点为D ,连接CD ,如图所示∵∠C=90º,AC=3,BC=4,∴AB 5===又∵⊙C 与斜边AB 相切,∴CD ⊥AB ,CD 即为⊙C 的半径 ∴1122ABC S BC AC AB CD =⋅=⋅△ ∴125CD =故答案为125. 【点睛】此题主要考查圆相切的性质以及勾股定理的运用,熟练掌握,即可解题.19.原式=1322x x --, 【解析】【分析】先对括号里进行通分,再利用分式的乘除法法则进行计算,化简后代入数值计算即可.【详解】 原式=(13-11+++x x x )÷22441x x x -+- =22(1)(1)1(2)-+-+-g x x x x x =12x x --,当x =4时,原式=4142--=32. 【点睛】 本题考查的是分式的化简求值,熟练的掌握分式的各运算法则是关键.20.(1)A 种树苗的单价为200元,B 种树苗的单价为300元;(2)10棵【解析】试题分析:(1)设B 种树苗的单价为x 元,则A 种树苗的单价为y 元.则由等量关系列出方程组解答即可;(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.试题解析:(1)设B 种树苗的单价为x 元,则A 种树苗的单价为y 元,可得:{3y +5x =21004y +10x =3800, 解得:{x =300y =200, 答:A 种树苗的单价为200元,B 种树苗的单价为300元.(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,可得:200a+300(30﹣a )≤8000,解得:a≥10,答:A 种树苗至少需购进10棵.考点:1.一元一次不等式的应用;2.二元一次方程组的应用21.(1)初一年级共有320人;(2)画频数分布直方图见解析;(3)“从该年级中任选一名学生,是参加音乐、科技两个小组学生”的概率为14. 【解析】【分析】(1)用科技小组的频数除以它所占的百分比即可得到总人数;(2)先计算出体育小组的人数,然后补全频数分布直方图.(3)根据概率的计算方法,用参加音乐、科技两个小组学生数除以总人数计算即可解答.【详解】(1)32÷10%=320,所以初一年级共有320人;(2)体育小组的人数=320﹣48﹣64﹣32﹣64﹣16=96(人),频数分布直方图为:(3)“从该年级中任选一名学生,是参加音乐、科技两个小组学生”的概率=4832320+=14.【点睛】本题主要考查条形统计图与扇形统计图的综合运用,用到的知识点为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.总体数目=部分数目÷相应百分比.22.(1)y=x﹣1;(2)①PE=PF;②0<m≤1或m≥2.【解析】【分析】(1)把B(t,1)代入反比例函数解析式即可求得B的坐标,进而把B的坐标代入y=ax﹣a根据待定系数法即可求得一次函数的解析式;(2),依据PE,x轴,交直线AB于点E,PF,y轴,交函数2yx=(x>0)的图象于点F,即可得到PE=PF;,当m=2,PE=PF;当m=1,PE=PF;依据PE≤PF,即可由图象得到0<m≤1或m≥2.【详解】(1),函数2yx=(x>0)的图象经过点B(t,1),,t=2,,B(2,1),代入y=ax﹣a得,1=2a﹣a,,a=1,,一次函数的解析式为y=x﹣1;(2),当m=2时,点P的坐标为(2,2),又,PE,x轴,交直线AB于点E,PF,y轴,交函数2yx=(x>0)的图象于点F,,当y=2时,2=x﹣1,即x=3,,PE=3﹣2=1,当x=2时,22y==1,,PF=2﹣1=1,,PE=PF;,由,可得,当m=2,PE=PF;,PE=m+1﹣m=1,令2m﹣m=1,则m=1或m=﹣2(舍去),,当m=1,PE=PF;,PE≤PF,,由图象可得,0<m≤1或m≥2.【点睛】本题考查了反比例函数与一次函数的交点问题,涉及了待定系数法,函数图象上的点的坐标满足函数关系式等知识,熟练掌握相关知识是解题的关键.注意数形结合思想的应用.23.(1)AD=5t,DF=t+5.(2)当0<t<53时,S=﹣6t2+10t.当t>53时,S=6t2﹣10t.(3)t的值为512或4031或4017.【解析】【分析】(1)利用勾股定理算出AD,表示出CB,即可表示出DF.(2)分别讨论0<t<53时和t>53时,利用面积公式计算即可.(3)分别讨论当DF=AD时的一种情况、当AF=DF时的两种情况. 【详解】解:(1)在Rt△ACD中,AC=3t,tan∠MAN=43,∴CD=4t.∴AD5t==,当点C在点B右侧时,CB=3t﹣5,∴CF=CB.∴DF=4t﹣(3t﹣5)=t+5.(2)当0<t<53时,S=12•(5﹣3t)•4t=﹣6t2+10t.当t>53时,S=12•(3t﹣5)•4t=6t2﹣10t.(3)①如图1中,当DF=AD时,△ADF是轴对称图形.则有5﹣3t﹣4t=5t,解得t=5 12,②如图2中,当AF=DF时,△ADF是轴对称图形.作FH⊥AD.∵F A=DF,∴AH=DH=52t,由cos∠FDH=45,可得()5424535tt t=--,解得t=4031.③如图3中,当AF=DF时,△ADF是轴对称图形.作FH⊥AD.∵F A=DF,∴AH=DH=52t,由cos∠FDH=45,可得()5424355tt t=--,解得t=4017.综上所述,满足条件的t的值为512或4031或4017.【点睛】本题考查二次函数动点问题,关键在于分类讨论,明确分界条件.24.(1)BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由见解析;(3)AP=AM+PM=.【解析】【分析】(1)在MB的延长线上,截取BE=DN,连接AE,则可证明△ABE≌△ADN,得到AE=AN,进一步证明△AEM≌△ANM,得出ME=MN,得出BM+DN=MN;(2)在DC上截取DF=BM,连接AF,可先证明△ABM≌△ADF,得出AM=AF,进一步证明△MAN≌△FAN,可得到MN=NF,从而可得到DN-BM=MN;(3)由已知得出DN=12,由勾股定理得出AN,由平行线得出△ABQ∽△NDQ,得出BQDQ=AQNQ=ABDN=612=12,∴AQAN=13,求出AQ=2;由(2)得出DN-BM=MN.设BM=x,则MN=12-x,CM=6+x,在Rt△CMN中,由勾股定理得出方程,解方程得出BM=2,由勾股定理得出AM线得出△PBM∽△PDA,得出PMPA=BMDA=13,,求出PM= PM=12AM,得出AP=AM+PM=.【详解】(1)BM+DN=MN,理由如下:如图1,在MB的延长线上,截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,AB ADABE D BE DN=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,AE ANEAM NAI AI All=⎧⎪∠=∠⎨⎪=⎩,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM=90°=∠D,在△ABM和△ADF中,AB ADABM D BM DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△AD F(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BA D=90°,∵∠MAN=45°,∴∠MAN=∠FAN=45°,在△MAN和△FAN中,AM AFMAN FAN AN AN=⎧⎪∠=∠⎨⎪=⎩,∴△MAN≌△FAN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四边形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN,∵AB∥CD,∴△ABQ∽△NDQ,∴BQDQ=AQNQ=ABDN=612=12,∴AQAN=13,∴AQ=12AN=;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM,∵BC∥AD,∴△PBM∽△PDA,∴PMPA=BMDA=26=13,∴PM=12AM,∴AP=AM+PM=.【点睛】本题是四边形的综合题目,考查了正方形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定与性质等知识;本题综合性强,证明三角形全等和三角形相似是解题的关键.25.(1)y=x2﹣4x+3;(2),PD的长为﹣m2+3m;,(32,﹣34);(3)存在,点M的坐标为M1(2,3),M2(2,1﹣),M3(2,).【解析】【分析】(1)把A、B两点坐标代入y=ax2+bx+3(a≠0),解方程组求出a、b的值,即可得答案;(2)①设P(m,m2﹣4m+3),根据抛物线解析式可得C点坐标,将点B(3,0)、C(0,3)代入得直线BC解析式为y BC=﹣x+3,根据PD//y轴可得点D坐标为(m,-m+3),即可得出PD的长;②根据S△PBC=S△CPD+S△BPD可求出S△PBC的解析式,配方即可得S△PBC最大时m的值,进而可得P点坐标;(3)根据抛物线解析式求出对称轴方程,代入直线BC解析式可求出点E坐标,即可求出CE的长,分CE为边和CE为对角线两种情况讨论,根据菱形四条边都相等的性质求出ME 的长即可得点M的坐标.【详解】(1)∵抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C,∴30 9330 a ba b++=⎧⎨++=⎩,解得14 ab=⎧⎨=-⎩,∴抛物线解析式为y=x2﹣4x+3;(2)如图:①设P(m,m2﹣4m+3),∵抛物线y=x2﹣4x+3与y轴交于点C,∴点C坐标为(0,3)将点B(3,0)、C(0,3)代入得直线BC解析式为y BC=﹣x+3.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+3),∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.答:用含m的代数式表示线段PD的长为﹣m2+3m.②S△PBC=S△CPD+S△BPD=12OB•PD=﹣32m2+92m=﹣32(m﹣32)2+278.∴当m=32时,S有最大值.当m=32时,m2﹣4m+3=﹣34.∴P(32,﹣34).答:△PBC的面积最大时点P的坐标为(32,﹣34).(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.∵抛物线解析式为y=x2﹣4x+3,∴对称轴为x=421--⨯=2,∵点E在直线BC上,∴x=2时,y=-2+3=1,∴点E(2,1),∴EC=,当CE为边时,ME=EC=,∵点M在抛物线对称轴上,∴M(2,1﹣)或(2,)当CE为对角线时,CN=NE,设N(0,n),∴(n-3)2=22+(n-1)2,解得:n=1,∴CN=EM=2,∴点M坐标为(2,3),综上所述:存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形,点M的坐标为M1(2,3),M2(2,1﹣),M3(2,).【点睛】本题考查待定系数法求二次函数解析式、二次函数的最值求法及菱形的性质,注意分类讨论思想的应用,避免漏解.。
2020年湖北省九年级数学中考模拟试卷(含答案)
2020湖北省九年级数学中考模拟试题含答案一、选择题(每题3分,共30分)1、在实数-2,0,-1.5,1中,最小的数是()A.-2B.0 C.-1.5 D.12、下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3、今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105 B.1.81×106 C.1.81×107 D.181×1044、下列运算正确的是()A.a2+a2=a4 B.(﹣b2)3=﹣b6 C.2x•2x2=2x3 D.(m﹣n)2=m2﹣n25、下列几何体的三视图相同的是()A.圆柱 B.球 C.圆锥 D.长方体6、下列命题是真命题的是()A.必然事件发生的概率等于0.5B.5名同学的数学成绩是92,95,95,98,110,则他们的平均分是98,众数是95C.射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定D.要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法7、如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD8、如图,从一张腰长为60 cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大扇形OCD,用剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10 cm B.15 cm C.10 3 cm D.20 2 cm第7题图 第8题图 第9题图 9、已知二次函数的图象如图,则下列结论中正确的有( ) ①a +b +c >0;②a-b +c <0;③b>0;④b=2a ;⑤abc<0. A .5个 B .4个 C .3个 D .2个10、如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( )A .B .C .D .二、填空题(每题3分,共18分)11、分解因式:2a 2+4a +2= 。
2024年湖北省新中考G9联盟第一次模拟考试数学试题(原卷版)
湖北省2024年新中考G9联盟第一次模拟考试九年级数学试题考试范围:第1章--第29章;考试时间:120分钟;满分:120分学校:___________姓名:___________班级:___________考号:___________一、单选题1.若a 与1互为相反数,则( )A .-1B .0C .2D .12.下列图形中,是中心对称图形的是( )A .B .C .D .3.下列计算正确的是( )A .B .C .D .4.如图,将一副三角板叠放在一起,使直角顶点重合于O 点,则∠AOC+∠DOB=( )A .180°B .90°C .270°D .150°5.五一期间,某商场设计了一个“玩转盘,享优惠”活动:如图所示的转盘盘面被分成四个相等的扇形区域,并分别标有文字满江红、红旗渠、殷墟、大峡谷.若转动转盘两次,每次转盘停止后指针所指区域都是“满江红”,将获得一张优惠券(当指针恰好指在分界线上时重转).小王转动转盘两次,获得优惠券的概率为( )A.B .C .D .1a +=2242(2)4x y x y =33x x x ÷=235x y xy +=222()x y x y +=+1418112116— 2 —6.如图所示四个立体图形,从正面看到的平面图形是四边形的个数是( )A .1个B .2个C .3个D .4个7.已知实数,满足,,则以,为根的一元二次方程是( )A .B .C .D .8.如图,是的切线,A ,B 是切点.若,则的度数为( )A .B .C .D .9.如图,坐标平面内一点,O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( )A .2B .3C .4D .110.如图,二次函数的图像的顶点在第一象限,且过点和,下列结论:①;②;③;④当时,.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.分解因式:.1x 2x 127x x +=1212x x =1x 2x 27120x x -+=27120x x ++=27120x x +-=27120x x --=PA PB ,O 50P ∠=︒AOB ∠120︒130︒135︒150︒()3,2A -2(0)y ax bx c a =++≠()0,1()1,0-1c =0ab <0a b c -+=1x >-0y >()()224m n m n m n -+-=12.若一组数据的平均数为4,则的平均数为 .13.已知不等式组,在同一条数轴上表示不等式①,②的解集如图所示,则b ﹣a 的值为 .14.在矩形中,,,点N 是线段的中点,点E ,G 分别为射线,线段上的动点,交以为直径的圆于点M ,则的最小值为 .15.请观察:、1、、1、、……则第100个数是 .三、解答题16.计算:(1);(2).17.先化简,再求值;,其中x 、y 满足018.如图,在矩形ABCD 中,E 是AB 的中点,连接DE 、CE .求证:△ADE ≌△BCE .12345,,,,x x x x x 123452,2,2,2,2x x x x x +++++1x a x b ≥--⎧⎨-≥-⎩①②ABCD 10AB =8AD =BC DA AB CE DE GM GN +12-98-2532-()()3824----⨯-(4211[33)2⎤--⨯--⎦222222x xy y x xy x x y x x y-+-÷--+2(2)x +— 4 —19.某校在一次大课间活动中,采用了四种活动形式:A 、跑步,B 、跳绳,C 、做操,D 、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)本次调查学生共_____人,a =_____,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校让每班在A 、B 、C 、D 四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.20.一次函数与x 轴交于C 点,与y 轴交于B 点,点在直线上,反比例函数过点A .(1)求a 与k 的值;(2)在x 轴上是否存在点D ,使得,若存在,请直接写出点D 坐标;若不存在,请说明理由.22y x =+(2,)A a BC k y x=BOA OAD ∠=∠21.如图,在三角形中,,以为直径的圆经过点,过点作圆的切线交延长线于点,点是圆上一点,点是劣弧的中点,弦的延长线交切线于点,(1)判断于的数量关系并证明;(2)若,求圆的半径.22.崇阳县“众望科工贸有限公司”生产的“众望小麻花”色香味美,老少皆宜,深受消费者青睐,“青嬣超市”从该公司购进“众望小麻花”进行销售,每箱进价30元,超市将销售价定为每箱40元时,每月可以卖出100箱,销售一段时间后发现,销售价每箱提高5元,每月就会少卖10箱.(1)直接写出每月的销售量y (箱)与销售价格x (元/箱)之间的关系式;(2)“青嬣超市”计划涨价销售,请你帮助超市计算一下,每箱销售价格为多少时,每月的销售利润最大,最大月销售利润为多少?(3)疫情期间,相关部门严格督查稳定物价,要求超市的利润不得超过平时的,可由于防控交通不便等原因,“众望科工贸有限公司”的生产成本提高,“青嬣超市”的每箱麻花进价上涨了a 元,该期间月销售量与销售价格仍然满足(1)中的函数关系,结果当月超市获得最大销售利润元,求a的值.ABC 30BAC ∠=︒AB O C C O AB P D C BD AB PC E OB BP 3AE =O 100%1500— 6 —23.【问题初探】(1)数学课上,李老师出示了这样一个问题:如图1,在中,,点F 是上一点,点E 是延长线上的一点,连接,交于点D ,若,求证:.①如图2,小乐同学从中点的角度,给出了如下解题思路:在线段上截取,使,连接,利用两个三角形全等和已知条件,得出结论;②如图3,小亮同学从平行线的角度给出了另一种解题思路:过点E 作交的延长线于点M ,利用两个三角形全等和已知条件,得出了结论;请你选择一位同学的解题思路,写出证明过程;【类比分析】(2)李老师发现两位同学的做法非常巧妙,为了让同学们更好的理解这种转化的思想方法,李老师提出了新的问题,请你解答,如图4,在中,点E 在线段上,D 是的中点,连接,,与相交于点N ,若,求证:;【学以致用】(3)如图5,在中,,,平分,点E 在线段的延长线上运动,过点E 作,交于点N ,交于点D ,且,请直接写出线段,和之间的数量关系.ABC AB AC =AC AB EF BC ED DF =BE CF =DC DM DM BD =FM EM AC ∥CB ABC AB BC CE AD CE AD 180EAD ANC ∠+∠=︒AB CN =Rt ABC △90BAC ∠=︒30C ∠=︒AF BAC ∠BA ED AF ∥AC BC BD CD =AE CN BC24.如图,已知抛物线交x 轴于点A 和点B ,交y 轴于点C ,对称轴为直线,.(1)求抛物线的解析式和B 点的坐标;(2)点P 为抛物线在线段上方的一个动点,点P 的横坐标为m .①若,求m 的值;②过点P 作x 轴的垂线,交线段于点D ,线段的长记为d ,求出d 关于m 的函数解析式,并计算d的最大值.=1x -()()1,00,3A C ,BC 7ABP S =△BC PD— 8 —参考答案1.B2.B3.A4.A5.D6.B7.A8.B9.C10.C11.12.613.214.815.16.(1);(2)17.;3.18.证明:∵四边形ABCD 是矩形,∴AD =BC ,∠A =∠B =90°.∵E 是AB 的中点,∴AE =BE .在△ADE 与△BCE 中,()(2)(2)m n m n m n --+1001000023-21xx y -+,∴△ADE ≌△BCE (SAS ).19.(1)300,10;补图见解析;(2)有800人;(3).20.(1),;(2)存在, 点D 坐标为或21.(1),略;(2)的半径为222.(1)(2)每箱销售价格为元时,每月的销售利润最大,最大月销售利润为元.(3)当月超市获得最大销售利润元,进价上涨了元.23.(1)①选择小乐同学的做法:证明见解析;②选择小亮同学的做法:证明见解析;(2)证明见解析;(3)24.(1),;(2)①m;②;d 的最大值为AD BC A B AE BE =⎧⎪∠=∠⎨⎪=⎩166a =12k =(2,0)5,02⎛⎫- ⎪⎝⎭OB PB =O 2180y x =-+6018001500512CN AE BC -=223y x x =--+()3,0B -23d m m =--94。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年湖北省中考数学模拟试卷9解析版一.选择题(共10小题,满分30分,每小题3分)1.关于x的方程x2+3x+a=0有一个根为﹣1,则a的值为()A.1B.﹣1C.2D.﹣22.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.不透明袋子中有2个红球、3个绿球,这些球除颜色外其它无差别.从袋子中随机取出1个球,则()A.能够事先确定取出球的颜色B.取到红球的可能性更大C.取到红球和取到绿球的可能性一样大D.取到绿球的可能性更大4.如图,弦AB和CD相交于点P,∠B=30°,∠APD=80°,则∠A等于()A.30°B.50°C.70°D.100°5.关于二次函数y=(x+1)2的图象,下列说法正确的是()A.开口向下B.经过原点C.对称轴右侧的部分是下降的D.顶点坐标是(﹣1,0)6.一元二次方程x2﹣x+1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.有两个不相等的实数根,且两实数根和为17.把抛物线y=2(x﹣3)2+k向下平移1个单位长度后经过点(2,3),则k的值是()A.2B.1C.0D.﹣18.Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,以点C为圆心5cm为半径的圆与直线AB的位置关系是()A.相交B.相切C.相离D.无法确定9.抛物线y=x2+2x﹣3的最小值是()A.3B.﹣3C.4D.﹣410.如图,在正方形ABCD中,AB=4,点O在AB上,且OB=1,点P是BC上一动点,连接OP,将线段OP绕点O逆时针旋转90°得到线段OQ.要使点Q恰好落在AD上,则BP的长是()A.1B.2C.3D.4二.填空题(共6小题,满分18分,每小题3分)11.在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣4,3),C(﹣1,1).写出各点关于原点的对称点的坐标,,.12.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是.13.若一人患了流感,经过两轮传染后共有121人感染了流感.按照这样的传染速度,若2人患了流感,第一轮传染后患流感的人数共有人.14.一个正n边形的中心角等于18°,那么n=.15.如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.当点P在半圆上从点B运动到点A时,内心M所经过的路径长为.16.如图,已知直线AB:y=kx+2k+2与抛物线y=x2交于点A、B,当∠AOB>90°,则k的取值范围为.三.解答题(共8小题,满分72分)17.(8分)用公式法解方程:x2﹣x﹣2=0.18.(8分)如图,BC是⊙O的直径,AB是⊙O的弦,半径OF∥AC交AB于点E.(1)求证:=;(2)若AB=6,EF=3.求半径OB的长.19.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.20.(8分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF 的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.21.(8分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C =2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.22.(10分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天)(1)设存放x天后销售,则这批产品出售的数量为千克,这批产品出售价为元;(2)商家想获得利润22500元,需将这批产品存放多少天后出售?(3)商家将这批产品存放多少天后出售可获得最大利润?最大利润是多少?23.(10分)如图,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8,点A的坐标(﹣8,0),点C在线段AO上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A 作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点D.(1)用t表示点D的坐标;(2)如图1,连接CF,当t=2时,求证:∠FCO=∠BCA;(3)如图2,当BC平分∠ABO时,求t的值.24.(12分)在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】直接把x=﹣1代入方程x2+3x+a=0得到关于a的方程,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程得1﹣3+a=0,解得a=2.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.【分析】根据中心对称图形,轴对称图形的定义进行判断.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.3.【分析】根据不同颜色的球的数量确定摸到哪种球的可能性的大小后即可确定正确的选项.【解答】解:∵不透明袋子中有2个红球、3个绿球,这些球除颜色外其它无差别,∴绿球数量大于红球数量,其摸球具有随机性,∴摸到绿球的可能性大于摸到红球的可能性,故选:D.【点评】此题考查了可能性的大小的知识,哪种球的数量大,摸到这种球的可能性就大.4.【分析】根据对顶角相等可得∠BPC=∠APD=80°,而∠B=30,再结合三角形内角和定理可求∠C,根据同弧所对的圆周角相等易求∠C.【解答】解:如右图,∵∠BPC=∠APD=80°,∠B=30,∴∠C=180°﹣80°﹣30°=70°,∴∠A=∠C=70°.故选:C.【点评】本题考查了圆周角定理、对顶角相等、三角形内角和定理,解题的关键是求出∠C.5.【分析】由二次函数y=(x+1)2,可得其对称轴、顶点坐标;由二次项系数,可知图象开口向上;对每个选项分析、判断即可;【解答】解:A、由二次函数二次函数y=(x+1)2中a=>0,则抛物线开口向上;故本项错误;B、当x=0时,y=,则抛物线不过原点;故本项错误;C、由二次函数y=(x+1)2得,开口向上,对称轴为直线x=﹣1,对称轴右侧的图象上升;故本项错误;D、由二次函数y=(x+1)2得,顶点为(﹣1,0);故本项正确;故选:D.【点评】本题主要考查了二次函数的性质,应熟练掌握二次函数的性质:顶点、对称轴的求法及图象的特点.6.【分析】求出△的值即可判断.【解答】解:一元二次方程x2﹣x+1=0中,△=(﹣1)2﹣4×1×1<0,∴原方程无解.故选:B.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.【分析】把点坐标代入y=2(x﹣3)2+k﹣1解方程即可得到结论.【解答】解:设抛物线y=2(x﹣3)2+k向下平移1个单位长度后的解析式为y=2(x﹣3)2+k ﹣1,把点(2,3)代入y=2(x﹣3)2+k﹣1得,3=2(2﹣3)2+k﹣1,∴k=2,故选:A.【点评】此题主要考查了二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.8.【分析】判断圆与直线AB边的位置关系,关键是比较点C到直线AB的距离与半径的大小关系.【解答】解:过C点作CD⊥AB,垂足为D,∵∠C=90°,BC=6,AC=8,由勾股定理,得AB==10,根据三角形计算面积的方法可知,BC×AC=AB×CD,∴CD==4.8<5,∴⊙C与直线AB相交.故选:A.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.9.【分析】利用配方法或顶点坐标公式即可解决问题;【解答】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),∵a=1>0,∴开口向上,有最低点,有最小值为﹣4.故选:D.【点评】本题考查二次函数的最值,解题的关键是熟练掌握配方法或公式法确定顶点坐标,属于中考常考题型.10.【分析】当点Q在AD上时,由OP⊥OQ,利用互余关系可证△OBP≌△QAO,可得BP=AO =AB﹣OB,可求BP的长.【解答】解:根据旋转的性质可知,OP=OQ,∠POQ=90°,∴∠BOP+∠AOQ=90°,又∠BOP+∠BPO=90°,∴∠BPO=∠AOQ,而∠B=∠A=90°,∴△OBP≌△QAO,∴BP=AO=AB﹣OB=4﹣1=3.故选:C.【点评】本题考查了旋转的性质.关键是根据线段的旋转证明全等三角形,利用线段相等将问题进行转化.二.填空题(共6小题,满分18分,每小题3分)11.【分析】两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y),从而可得出各点关于原点的对称点的坐标.【解答】解:∵两个点关于原点对称时,它们的坐标符号相反,∴A(﹣3,5)关于原点对称的点的坐标为:(3,﹣5);B(﹣4,3)关于原点对称的点的坐标为(4,﹣3),C(﹣1,1)关于原点对称的点的坐标为(1,﹣1).故答案为:(3,﹣5)、(4,﹣3)、(1,﹣1).【点评】此题考查了关于原点对称的点的坐标,属于基础题,解答本题的关键是掌握两个点关于原点对称时,它们的坐标符号相反,难度一般.12.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是,故答案为:.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.13.【分析】设每轮传染中1人传染给x人,则第一轮传染后共(1+x)人患流感,第二轮传染后共[1+x+x(x+1)]人患流感,根据经过两轮传染后共有121人感染了流感,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设每轮传染中1人传染给x人,则第一轮传染后共(1+x)人患流感,第二轮传染后共[1+x+x(x+1)]人患流感,根据题意得:1+x+x(x+1)=121,解得:x1=10,x2=﹣12(舍去),∴2(1+x)=22.故答案为:22.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.【分析】根据正多边形的中心角和为360°计算即可.【解答】解:n==20,故答案为:20.【点评】本题考查的是正多边形和圆,熟知正多边形的中心角和为360°是解答此题的关键.15.【分析】分两种情况,当点M在扇形BOC和扇形AOC内,先求出∠CMO=135°,进而判断出点M的轨迹,再求出∠OO'C=90°,最后用弧长公式即可得出结论.【解答】解:∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣(∠EOP+∠OPE),∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°﹣(∠EOP+∠OPE)=180°﹣(180°﹣90°)=135°,如图,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM(SAS),∴∠CMO=∠PMO=135°,所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(和);点M在扇形BOC内时,过C、M、O三点作⊙O′,连O′C,O′O,在优弧CO取点D,连DA,DO,∵∠CMO=135°,∴∠CDO=180°﹣135°=45°,∴∠CO′O=90°,而OA=2cm,∴O′O=OC=×2=,∴弧OMC的长==π(cm),同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为πcm,所以内心M所经过的路径长为2×π=πcm.故答案为:πcm.【点评】本题考查了弧长的计算公式:l=,其中l表示弧长,n表示弧所对的圆心角的度数.同时考查了三角形内心的性质、三角形全等的判定与性质、圆周角定理和圆的内接四边形的性质,解题的关键是正确寻找点M的运动轨迹,属于中考选择题中的压轴题.16.【分析】将y=kx+2k+2代入y=x2,得x2﹣kx﹣2k﹣2=0,根据二次函数图象上点的坐标特征以及根与系数的关系得出y1=x12,y2=x22,x1•x2=﹣2k﹣2,那么y1•y2=4k2+8k+4当∠AOB=90°时,如图1,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.证明△AOM∽△OBN,根据相似三角形对应边成比例得出y1•y2=﹣x1•x2,依此列出关于k的方程,求出k的值,进而得出当∠AOB>90°时,k的取值范围.【解答】解:将y=kx+2k+2代入y=x2,得x2﹣kx﹣2k﹣2=0,∵y=kx+2k+2与抛物线y=x2相交于A(x1,y1),B(x2,y2)两点,∴y1=x12,y2=x22,x1•x2=﹣2k﹣2,∴y1•y2=(x12)•(x22)=(﹣2k﹣2)2=4k2+8k+4当∠AOB=90°时,如图:,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.在△AOM与△OBN中,,∴△AOM∽△OBN,∴=,即=,∴y1•y2=﹣x1•x2,∴4k2+8k+4=2k+2,∵k<0,∴k=﹣,∴当∠AOB>90°时,k<﹣.故答案为:k<﹣.【点评】本题考查了二次函数图象上点的坐标特征,利用相似三角形的性质得出y1•y2=﹣x1•x2是解题关键.三.解答题(共8小题,满分72分)17.【分析】套用求根公式计算可得.【解答】解:∵a=1、b=﹣1、c=﹣2,∴△=1﹣4×1×(﹣2)=9>0,∴x==,即x=﹣1或x=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键18.【分析】(1)利用平行线的性质证明OF⊥AB即可;(2)在Rt△OBE中,利用勾股定理,构建方程即可解决问题;【解答】(1)证明:∵AB是直径,∴∠A=90°,∵OF∥AC,∴∠OEB=∠A=90°,∴OF⊥AB,∴=.(2)解:设OB=r,∵OF⊥AB,∴,在Rt△OBE中,∵OB2=OE2+EB2,∴r2=(r﹣3)2+(3)2,∴r=6,即OB=6.【点评】本题考查圆周角定理,勾股定理,垂径定理,圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.【解答】解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.【分析】(1)证明∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,即可推出∠AHC =∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题;【解答】解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,∴AC==4,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,=,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S=•AH•AG=AC2=×(4)2=16.△AGH∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴==,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5°.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5°,∴CM=EM,设BM=BE=x,则CM=EM=x,∴x+x=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,综上所述,满足条件的m的值为或2或8﹣4.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.【分析】(1)连结AD,如图,根据圆周角定理,由E是的中点得到∠EAB=∠EAD,由于∠ACB=2∠EAB,则∠ACB=∠DAB,再利用圆周角定理得到∠ADB=90°,则∠DAC+∠ACB =90°,所以∠DAC+∠DAB=90°,于是根据切线的判定定理得到AC是⊙O的切线;(2)①在Rt△ABC中,根据cos C===,可得AC=6;②作FH⊥AB于H,由BD=BC﹣CD=5,∠EAB=∠EAD,FD⊥AD,FH⊥AB,推出FD=FH,设FB=x,则DF=FH=5﹣x,根据cos∠BFH=cos∠C==,构建方程即可解决问题;【解答】(1)证明:连结AD,如图,∵E是的中点,∴==,∴∠EAB=∠EAD,∵∠ACB=2∠EAB,∴∠ACB=∠DAB,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAC+∠ACB=90°,∴∠DAC+∠DAB=90°,即∠BAC=90°,∴AC⊥AB,∴AC是⊙O的切线;(2)①在Rt△ACB中,∵cos C===,AC=6,∴BC=9.②作FH⊥AB于H,∵BD=BC﹣CD=5,∠EAB=∠EAD,FD⊥AD,FH⊥AB,∴FD=FH,设FB=x,则DF=FH=5﹣x,∵FH∥AC,∴∠HFB=∠C,在Rt△BFH中,∵cos∠BFH=cos∠C==,∴=,解得x=3,即BF的长为3,∴DF=2【点评】本题考查了切线的判定:经过半径的外端且垂直于条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了解直角三角形.22.【分析】(1)根据“销售价格=市场价格+0.5×存放天数,销售数量=原购入量﹣6×存放天数”列出代数式即可;(2)按照等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数方程求解即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【解答】解:(1)存放x天后销售价格为:10+0.5x;销售数量为:1800﹣6x;故答案为:(10+0.5x),(1800﹣6x);(2)由题意y与x之间的函数关系式为y=(10+0.5x)(1800﹣6x)=﹣3x2+840x+18000(1≤x ≤90,且x为整数);﹣3x2+840x+18000﹣10×1800﹣240x=22500解方程得:x1=50,x2=150(不合题意,舍去)故需将这批产品存放50天后出售;(3)设利润为w,由题意得w=﹣3x2+840x+18000﹣10×1800﹣240x=﹣3(x﹣100)2+30000∵a=﹣3<0,∴抛物线开口方向向下,=29700,∴x=90时,w最大∴商家将这批产品存放90天后出售可获得最大利润,最大利润是29700元.【点评】此题主要考查了二次函数的应用以及二次函数的最值求法,根据函数关系式求出以及最值公式求出是解题关键.23.【分析】(1)根据ASA证明△ABC≌△OAD即可解决问题;(2)由△FOD≌△FOC(SAS),推出∠FCO=∠FDC,由△ABC≌△OAD,推出∠ACB=∠ADO,可得∠FCO=∠ACB;(3)如图2中,在AB上取一点K,使得AK=AC,连接CK.设AK=KC=m,则CK=m.构建方程求出m的值即可解决问题;【解答】解:(1)∵AD⊥BC,∴∠AEB=90°=∠BAC=∠AOD,∴∠ABC+∠BAE=90°,∠BAE+∠OAD=90°,∴∠ABC=∠OAD,∴∠ABC=∠OAD,∵AB=OA,∴△ABC≌△OAD(ASA),∴OD=AC=2t,∴D(0,2t).故答案为(0,2t)(2)如图1中,∵AB=AO,∠BAO=90°,OB=8,∴AB=AO=8,∵t=2,∴AC=OD=4,∴OC=OD=4,∵OF=OF,∠FOD=∠FOC,∴△FOD≌△FOC(SAS),∴∠FCO=∠FDC,∵△ABC≌△OAD,∴∠ACB=∠ADO,∴∠FCO=∠ACB.(3)如图2中,在AB上取一点K,使得AK=AC,连接CK.设AK=AC=m,则CK=m.∵CB 平分∠ABO ,∴∠ABC =22.5°,∵∠AKC =45°=∠ABC +∠KCB ,∴∠KBC =∠KCB =22.5°,∴KB =KC =m , ∴m +m =8,∴m =8(﹣1),∴t ==4(﹣1). 【点评】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题.24.【分析】(1)由y =﹣x 2+bx +c 经过点A 、B 、C ,A (﹣1,0),C (0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令﹣x 2+2x +3=0,求得点B 的坐标,然后设直线BC 的解析式为y =kx +b ′,由待定系数法即可求得直线BC 的解析式,再设P (a ,3﹣a ),即可得D (a ,﹣a 2+2a +3),即可求得PD 的长,由S △BDC =S △PDC +S △PDB ,即可得S △BDC =﹣(a ﹣)2+,利用二次函数的性质,即可求得当△BDC 的面积最大时,求点P 的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m =(n ﹣)2﹣,然后根据n 的取值得到最小值.【解答】解:(1)由题意得:, 解得:, ∴抛物线解析式为y =﹣x 2+2x +3;(2)令﹣x 2+2x +3=0,∴x 1=﹣1,x 2=3,即B (3,0),设直线BC 的解析式为y =kx +b ′,∴, 解得:,∴直线BC 的解析式为y =﹣x +3,设P (a ,3﹣a ),则D (a ,﹣a 2+2a +3),∴PD =(﹣a 2+2a +3)﹣(3﹣a )=﹣a 2+3a ,∴S △BDC =S △PDC +S △PDB=PD •a +PD •(3﹣a )=PD •3=(﹣a 2+3a )=﹣(a ﹣)2+,∴当a =时,△BDC 的面积最大,此时P (,);(3)由(1),y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴E (1,4),设N (1,n ),则0≤n ≤4,取CM 的中点Q (,),∵∠MNC =90°,∴NQ =CM ,∴4NQ 2=CM 2,∵NQ 2=(1﹣)2+(n ﹣)2,∴4[=(1﹣)2+(n ﹣)2]=m 2+9,整理得,m=n2﹣3n+1,即m=(n﹣)2﹣,∵0≤n≤4,当n=上,M最小值=﹣,n=4时,M最小值=5,综上,m的取值范围为:﹣≤m≤5.【点评】此题考查了待定系数法求函数的解析式、相似三角形的判定与性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.。