考研数学知识点复习:导数中的计算及应用

合集下载

考研数学-专题5 导数的概念及应用

考研数学-专题5  导数的概念及应用

f (x), x 0;
F
(
x)
0, x 0;
f (x), x 0;
若 f (0) 1, 则
lim F(x) F(0) lim f (x) f (0) f (0) 1
x0
x
x0
x
lim F(x) F(0) lim f (x) f (0)
x0
x
x0
x
lim f (x) f (0) f (0) 1
x0
x0

lim ln[ f (x) ex ] ln 2
x0
x
从而 lim ln[ f (x) ex ] 0, lim f (x) f (0) 0,
x0
x0
当 x 0 时, ln[ f (x) ex ] ln[1 f (x) ex 1] ~ f (x) ex 1
则 lim ln[ f (x) ex ] lim f (x) ex 1 f (0) 1 ln 2
1
【例 2】已知 f (x) 在 x 0 处连续,且 lim[ f (x) ex ]x 2, 则 f (0) ( ) x0
(A)不存在
(B)等于 e2 ,
(C)等于 2,
(D)等于 1 ln 2
1
ln[ f ( x)e x ]
【解】 由于 lim[ f (x) ex ]x lim e x 2
3
f (x0 n ) f (x0 ) f (x0 )n n
(其中 lim 0 ) n
f
( x0
n ) f (x0 n n
n)
f
(
x0
)
n n
n n
n n n n
n n n n n n
0
则 lim n

常见的导数公式考研真题

常见的导数公式考研真题

常见的导数公式考研真题常见的导数公式是数学中的重要工具,用于计算函数的变化率。

在考研数学中,导数公式经常被考察,对于学习者来说是必须要掌握的知识点。

本文将介绍几个常见的导数公式,并分析其中的应用。

1. 常数函数的导数公式对于一个常数函数f(x) = C,其中C为常数,其导数等于零。

因为常数函数在任意点上的斜率都为零,即函数没有变化。

2. 幂函数的导数公式幂函数f(x) = x^n,其中n为正整数时,其导数等于n乘以x的n-1次方,即f'(x) = n*x^(n-1)。

这个公式可以通过求导法则进行推导。

3. 指数函数的导数公式指数函数f(x) = a^x,其中a为正数且不等于1,其导数等于a乘以ln(a)乘以a的x次方,即f'(x) = ln(a)*a^x。

这个公式可以通过换底公式和指数函数的性质进行推导。

4. 对数函数的导数公式对数函数f(x) = log_a(x),其中a为正数且不等于1,其导数等于1除以x的自然对数底数ln(a)乘以1除以x的对数,即f'(x) =(1/ln(a))*(1/x)。

这个公式可以通过换底公式和对数函数的性质进行推导。

5. 三角函数的导数公式常见三角函数的导数公式包括:- 正弦函数的导数:f(x) = sin(x),其导数等于余弦函数cos(x)。

- 余弦函数的导数:f(x) = cos(x),其导数等于负的正弦函数-sin(x)。

- 正切函数的导数:f(x) = tan(x),其导数等于sec^2(x)。

- 反正弦函数的导数:f(x) = arcsin(x),其导数等于1除以根号下(1-x^2)。

- 反余弦函数的导数:f(x) = arccos(x),其导数等于-1除以根号下(1-x^2)。

- 反正切函数的导数:f(x) = arctan(x),其导数等于1除以(1+x^2)。

6. 双曲函数的导数公式常见双曲函数的导数公式包括:- 双曲正弦函数的导数:f(x) = sinh(x),其导数等于双曲余弦函数cosh(x)。

考研数学导数题解题技巧

考研数学导数题解题技巧

考研数学导数题解题技巧导数在考研数学中占据着重要的地位,掌握好导数的解题技巧是考研数学成功的关键之一。

下面将介绍几种常见的导数题型及相应的解题技巧,希望对考研数学的学习和备考有所帮助。

一、基本函数的导数求解基本函数的导数求解是解决导数题的基础。

对于常见的基本函数,如幂函数、指数函数、对数函数、三角函数等,都有相应的求导公式。

掌握好这些求导公式并能熟练灵活地运用,能够快速求解导数。

以幂函数为例,对于函数y=x^n,其中n为常数,导数的求解公式为dy/dx=n*x^(n-1)。

在使用求导公式时,需要注意指数函数和对数函数的运算规则,掌握好它们的性质,能够更好地应用到求导题目中。

二、基本运算法则的应用在导数的求解过程中,经常需要运用到基本运算法则,如和差法则、积法则和商法则。

熟练运用这些法则可以简化复杂的导数计算过程,提高解题的效率。

以和差法则为例,对于由两个函数相加或相减而成的复合函数,可以利用和差法则将其求导分解为各个部分的导数之和或差。

这样可以简化计算过程,减少错误的可能性。

三、高阶导数求解高阶导数是指对一个函数进行多次求导得到的导数。

在考研数学中常常会涉及到高阶导数的求解,需要运用到求导的运算法则和综合运用各种基本函数的导数求解公式。

在计算高阶导数时,可以使用递推的方式进行求解。

即通过求解低阶导数的方式,逐步推导得到高阶导数的结果。

这种方法能够减少计算量和错误几率,提高解题效率。

四、隐函数求导在某些函数方程中,可能存在隐含的函数关系,即无法用常规的显式函数表示。

这时就需要用到隐函数求导的方法。

隐函数求导可以通过利用导数的定义和隐函数偏导数的概念来进行求解。

隐函数求导的关键是识别出隐含的函数关系,并利用已知信息进行求导。

这种方法在解决一些复杂的问题时非常有效,可以帮助我们深入理解函数的性质和规律。

五、应用题解题技巧考研数学中,导数的应用题是必不可少的一部分。

在解决应用题时,需要将导数技巧与具体问题相结合,通过分析问题和建立模型来解决。

考研数学重点考点导数的概念及运用

考研数学重点考点导数的概念及运用

2018考研数学重点考点导数的概念及运用2018考研数学重点考点导数的概念及运用【导数定义和求导要注意的】第一,理解并牢记导数定义。

导数定义是考研数学的出题点,大部分以选择题的形式出题,01年数一考一道选题,考查在一点处可导的充要条件,这个并不会直接教材上的导数充要条件,他是变换形式后的,这就需要同学们真正理解导数的定义,要记住几个关键点:1)在某点的领域范围内。

2)趋近于这一点时极限存在,极限存在就要保证左右极限都存在,这一点至关重要,也是01年数一考查的点,我们要从四个选项中找出表示左导数和右导数都存在且相等的选项。

3)导数定义中一定要出现这一点的函数值,如果已知告诉等于零,那极限表达式中就可以不出现,否就不能推出在这一点可导,请同学们记清楚了。

4)掌握导数定义的不同书写形式。

第二,导数定义相关计算。

这里有几种题型:1)已知某点处导数存在,计算极限,这需要掌握导数的广义化形式,还要注意是在这一点处导数存在的前提下,否则是不一定成立的。

第三,导数、可微与连续的关系。

函数在一点处可导与可微是等价的,可以推出在这一点处是连续的,反过来则是不成立的,相信这一点大家都很清楚,而我要提醒大家的是可导推连续的逆否命题:函数在一点处不连续,则在一点处不可导。

这也常常应用在做题中。

第四,导数的计算。

导数的计算可以说在每一年的考研数学中都会涉及到,而且形式不一,考查的方法也不同。

要能很好的掌握不同类型题,首先就需要我们把基本的导数计算弄明白:1)基本的求导公式。

指数函数、对数函数、幂函数、三角函数和反三角函数这些基本的初等函数导数都是需要记住的,这也告诉我们在对函数变形到什么形式的时候就可以直接代公式,也为后面学习不定积分和定积分打基础。

2)求导法则。

求导法则这里无非是四则运算,复合函数求导和反函数求导,要求四则运算记住求导公式;复合函数要会写出它的复合过程,按照复合函数的求导法则一次求导就可以了,也是通过这个复合函数求导法则,我们可求出很多函数的导数;反函数求导法则为我们开辟了一条新路,建立函数与其反函数之间的导数关系,从而也使我们得到反三角函数求导公式,这些公式都将要列为基本导数公式,也要很好的理解并掌握反函数的求导思路,在13年数二的考试中相应的考过,请同学们注意。

考研数学常见公式推导与应用

考研数学常见公式推导与应用

考研数学常见公式推导与应用在考研数学中,掌握常见公式的推导与应用是非常重要的。

这些公式不仅能够帮助我们解决各种数学问题,同时也是我们理解数学背后原理的基础。

本文将为大家介绍一些常见的数学公式,并对其推导和应用进行详细说明。

一、微积分公式1.导数的定义与公式导数是微积分中最基础也是最重要的概念之一。

其定义如下:设函数y=f(x),当x在x0处有定义时,若极限lim(h→0)[f(x0+h)-f(x0)]/h存在,则该极限称为函数f(x)在x0处的导数,记为f'(x0)。

常见的导数公式如下:(1)常数函数:y=C,导数为0,即f'(x)=0。

(2)幂函数:y=x^n,其中n为任意实数,其导数为f'(x)=n*x^(n-1)。

(3)指数函数:y=a^x,其中a>0且a≠1,其导数为f'(x)=a^x*ln(a)。

(4)对数函数:y=log_a(x),其中a>0且a≠1,其导数为f'(x)=1/(x*ln(a))。

2.积分的定义与公式积分也是微积分的重要概念之一,其定义如下:设函数y=f(x),若存在函数F(x),使得对于所有[a,b]区间内任意x∈[a,b],有F'(x)=f(x),则称F(x)为函数f(x)在[a,b]区间上的一个原函数,记为∫f(x)dx=F(x)+C,其中C为常数。

常见的积分公式如下:(1)幂函数积分:∫x^n dx=x^(n+1)/(n+1)+C,其中n≠-1。

(2)指数函数积分:∫a^x dx=(a^x)/ln(a)+C。

(3)对数函数积分:∫1/x dx=ln|x|+C。

二、线性代数公式1.向量运算公式线性代数中,向量运算是非常重要的。

常见的向量运算公式如下:(1)向量点乘:若向量a=(a1,a2,...,an)和向量b=(b1,b2,...,bn),则向量a与向量b的点乘为a·b=a1*b1+a2*b2+...+an*bn。

考研高阶导数公式

考研高阶导数公式

考研高阶导数公式摘要:一、引言二、高阶导数概念介绍三、常见高阶导数公式1.n阶导数公式2.复合函数导数公式3.反函数导数公式4.隐函数导数公式5.参数方程导数公式6.微分中值定理与导数公式四、高阶导数在实际问题中的应用五、总结正文:一、引言在考研数学中,高阶导数是一个重要的知识点。

高阶导数是指函数在某一点处的导数的导数,即函数的二阶导数、三阶导数等。

掌握高阶导数的计算方法和公式,对于解决考研数学中的相关题目具有重要意义。

二、高阶导数概念介绍高阶导数是导数的推广,用于描述函数在某一点处的变化率。

设函数f(x)在点x_0处可导,则称f(x)在x_0处的一阶导数为f"(x_0),二阶导数为f""(x_0),三阶导数为f"""(x_0),以此类推。

三、常见高阶导数公式1.n阶导数公式对于幂函数f(x) = x^n,有:f"(x) = n * x^(n-1)f""(x) = n * (n-1) * x^(n-2)f"""(x) = n * (n-1) * (n-2) * x^(n-3)...f^(n)(x) = n! * x^(n-n)2.复合函数导数公式设g(x) = f(u(x)),其中u(x)可导,f(x)可导,则有:(g(x))" = f"(u(x)) * u"(x)(g(x))"" = f""(u(x)) * u"(x) + f"(u(x)) * u""(x)...3.反函数导数公式设f(x)在区间I上可导,且在I内单调,则f(x)在I上的反函数f^(-1)(x)在区间f(I)上可导,且有:(f^(-1)(x))" = 1 / (f"(f^(-1)(x)))(f^(-1)(x))"" = -1 / (f"(f^(-1)(x)))^24.隐函数导数公式设F(x, y) = 0,x = x(y),y = y(x),则有:(x"(y))" = -x""(y) / y"^2(y"(x))" = -y""(x) / x"^25.参数方程导数公式设x = x(t),y = y(t),则有:(x"(t))" = x""(t)(y"(t))" = y""(t)6.微分中值定理与导数公式根据微分中值定理,设函数f(x)在区间I上可导,且在I内单调,则对于任意x_0∈I,存在一个ξ∈(x_0, x),使得:f"(ξ) = (f(x) - f(x_0)) / (x - x_0)四、高阶导数在实际问题中的应用高阶导数在实际问题中的应用非常广泛,如在物理学、工程学、经济学等领域。

考研数一归纳知识点

考研数一归纳知识点

考研数一归纳知识点考研数学一(高等数学)是考研数学中难度较大的科目,它涵盖了高等数学的多个重要领域。

以下是考研数学一的归纳知识点:1. 函数、极限与连续性:- 函数的概念、性质和分类。

- 极限的定义、性质和求法。

- 函数的连续性及其判断方法。

2. 导数与微分:- 导数的定义、几何意义和物理意义。

- 基本导数公式和导数的运算法则。

- 高阶导数的概念和求法。

- 微分的概念和微分中值定理。

3. 积分学:- 不定积分和定积分的概念、性质和计算方法。

- 换元积分法和分部积分法。

- 定积分的应用,如面积、体积和物理量的计算。

4. 级数:- 级数的概念、收敛性判断。

- 正项级数的收敛性判断方法,如比较判别法和比值判别法。

- 幂级数和泰勒级数。

5. 多元函数微分学:- 多元函数的概念、偏导数和全微分。

- 多元函数的极值问题和条件极值问题。

6. 重积分与曲线积分:- 二重积分和三重积分的概念和计算方法。

- 对坐标的曲线积分和曲面积分。

7. 常微分方程:- 一阶微分方程的解法,如可分离变量方程、线性微分方程等。

- 高阶微分方程的解法,如常系数线性微分方程。

8. 解析几何:- 空间直线和平面的方程。

- 空间曲线和曲面的方程。

9. 线性代数:- 矩阵的运算、行列式、特征值和特征向量。

- 线性空间和线性变换的概念。

- 线性方程组的解法。

10. 概率论与数理统计:- 随机事件的概率、条件概率和独立性。

- 随机变量及其分布,包括离散型和连续型随机变量。

- 数理统计中的参数估计和假设检验。

结束语:考研数学一的知识点广泛且深入,要求考生不仅要掌握基础概念和计算方法,还要能够灵活运用这些知识解决实际问题。

因此,考生在复习过程中需要注重理解、练习和总结,以提高解题能力和应试技巧。

希望以上的归纳能够帮助考生更好地准备考研数学一的考试。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是考研数学的一个重要组成部分,考研高数考察的内容涉及广泛,难度较大。

要想在考研高数中取得好成绩,必须深入了解各种知识点,并且掌握适当的解题方法。

下面就对考研高数的知识点进行总结,以供考生参考。

一、函数与极限1.1 函数的基本概念函数是一种特殊的关系,即每个自变量对应且只对应一个因变量。

1.2 极限的概念极限是函数在自变量趋于某个值时,相应因变量的趋势。

1.3 极限的性质极限具有唯一性、局部有界性等性质。

1.4 极限的计算利用夹逼定理、洛必达法则等方法来计算极限。

二、导数与微分2.1 导数的概念导数表示函数在某一点的瞬时变化率。

2.2 导数的计算利用极限定义、导数的四则运算等方法来计算导数。

2.3 导数的应用利用导数求函数的单调性、凹凸性、极值等。

2.4 微分的概念微分是导数的几何意义。

三、积分与定积分3.1 不定积分不定积分是积分的基本形式,可以求出函数的原函数。

3.2 定积分定积分可以表示函数在某一区间上的总变化量。

3.3 定积分的计算利用牛顿—莱布尼茨公式、换元积分法、分部积分法等方法来计算定积分。

四、级数4.1 级数的概念级数是无穷项数列部分和的极限。

4.2 级数收敛与发散讨论级数的收敛性是比较重要的知识点。

4.3 常见级数如调和级数、等比级数、幂级数等。

五、常微分方程5.1 常微分方程的基本概念包括常微分方程的解、初值问题等内容。

5.2 一阶常微分方程一阶微分方程的解法包括可分离变量法、齐次方程、一阶线性微分方程等。

5.3 高阶常微分方程高阶微分方程的解法包括常系数线性齐次微分方程、常系数线性非齐次微分方程等。

总结:考研高数是数学中一个重要的分支,需要考生深入理解各种知识点,并且熟练掌握解题方法。

希望以上内容能够帮助考生更好地备考考研高数。

考研数学一大纲导数与微分

考研数学一大纲导数与微分

考研数学一大纲导数与微分导数与微分是高等数学中重要的概念,也是考研数学一大纲的一部分。

理解和掌握导数与微分的相关知识对于考研数学的学习至关重要。

本文将从定义、性质和应用等方面进行论述,旨在帮助考生全面理解与应用导数与微分。

一、导数的定义与性质弄清楚导数的定义是理解该概念的第一步。

在微积分中,导数表示了函数在某一点处的变化率。

具体来说,对于函数f(x),在区间[a, b]内某一点x0上的导数可由以下定义给出:f'(x0) = lim (h→0) [f(x0+h) -f(x0)] / h。

导数的性质是导数理论中的重要部分。

其中,基本导数公式如下:1. 常数函数导数为0:d/dx (c) = 0;2. 幂函数导数:d/dx (x^n) = nx^(n-1);3. 指数函数导数:d/dx (e^x) = e^x;4. 对数函数导数:d/dx (lnx) = 1/x;5. 三角函数导数:d/dx (sinx) = cosx,d/dx (cosx) = -sinx。

二、微分的定义与性质微分是导数的一个重要应用。

在微积分中,微分表示了函数在某一点附近的局部线性近似。

定义中,对于函数f(x),在区间[a, b]内某一点x0上的微分可由以下公式给出:dy = f'(x0)dx。

微分的性质如下:1. 乘法法则:d(uv) = u dv + v du;2. 链式法则:设y=f(u),u=g(x),则dy=f'(u)g'(x)dx;3. 高阶导数:导数可以被多次求导,二阶导数记为f''(x),依此类推;4. 隐函数求导:对于含有隐函数的方程,可以采用隐函数求导法进行求导数。

三、导数与微分的应用导数与微分在自然科学和社会科学中有广泛应用。

在数学上,导数与微分有助于解决极值问题、函数图像的绘制以及函数的近似计算等。

在实际应用中,导数与微分被广泛用于物理学的运动学、经济学的边际效应分析、生物学的模型建立等领域。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结引言随着我国研究生教育水平的提高,考研成为越来越多学子追求的目标。

高数是考研数学的重要组成部分,掌握高数知识不仅对考研学子而言至关重要,也是提高数学素养的关键。

本文将从高数的基本概念、常见定理、解题技巧等方面进行总结,帮助考研学子系统地了解高数知识点。

一、导数与微分1.1 基本概念导数是函数在某点处的瞬时变化率,可以用极限的概念来定义。

微分是导数概念的一种应用,代表函数在某点处的局部线性化。

在考研高数中,导数与微分是非常重要的概念,常被用于函数的研究和问题的解决。

1.2 常见导数公式常见的导数公式包括:幂函数的导数、指数函数的导数、对数函数的导数、三角函数的导数等。

考研学子需要掌握这些导数公式,并能熟练地进行推导和运用。

1.3 微分的应用微分在几何、物理等领域都有广泛的应用,如切线方程的求解、极值问题的研究、函数图像的描绘等。

在考研高数中,学子需理解微分的应用,掌握相关的解题技巧。

二、定积分2.1 定积分的概念定积分是对函数在一定区间上的积分,可以看作是曲线下面积的一种衡量。

在考研高数中,定积分是解决面积、体积、物理问题等的重要工具,学子需要深刻理解定积分的概念和性质。

2.2 定积分的计算定积分的计算方法包括:牛顿-莱布尼茨公式、定积分的性质、换元积分法、分部积分法等。

通过对这些计算方法的掌握,考研学子能够灵活地解决各种定积分计算题目。

2.3 定积分的应用定积分在几何、物理、经济等领域都有广泛的应用,如求曲线下面积、求旋转体的体积、求物体的质量和重心等。

考研学子需要理解定积分的应用,并掌握相关的解题技巧。

三、无穷级数3.1 级数的概念与性质级数是指一列数的和,无穷级数是指该列数的和在n趋于无穷时的性质。

在考研高数中,学子需要理解级数的概念、收敛与发散性质,以及级数收敛的判别法则等。

3.2 常见级数常见的级数包括:等比级数、调和级数、幂级数、泰勒级数等。

考研学子需要掌握这些常见级数的性质和收敛条件,以便能够快速判断级数的收敛性。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。

下面是对高等数学知识点的总结,希望对考研学生有所帮助。

一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。

考研数学:利用导数求极限

考研数学:利用导数求极限

版权所有翻印必究/考研数学:利用导数求极限极限是研究变量变化趋势的基本工具,在高等数学中许多基本概念和研究问题的方法都和极限密切相关,如函数的连续、导数、定积分等都是建立在极限的基础之上的,因此考试往往把求极限问题作为考核的一个重点,而在不同的函数类型下所采用的求极限的技巧是各不相同的,因此大家要学会判断极限的类型,熟练而又灵活的掌握各种技巧的应用。

本文主要介绍了利用导数求极限与已知极限求导数的基本应用。

旨在让大家达到能灵活运用导数方法去求解一些极限问题从而达到使问题简单化的目的。

一、导数定义法求极限这种极限求法主要针对所给的极限不易求,但是所求函数满足导数定义的形式,此时可以用导数定义法比较方便的求出极限。

定义设函数()f x 在0x 的某领域内有定义,给自变量0x 在0x 处加上增量x ∆,相应的得到因变量0x 的增量00()()y f x x f x ∆=+∆-.如果极限0000()()limlim x x f x x f x y x x ∆→∆→+∆-∆=∆∆存在,则称函数在0x 处可导,将该极限值称为函数在0x 处的导数。

记作()0f x '.例1、设函数()f x ,其中()10f =,()11f '=,求极限lim ()2x x xf x →∞+.解:根据函数()f x 在1x =处的导数的定义:()0(1)(1)1lim x f x f f x∆→+∆-'=∆所以2(1(1)222lim (lim (1lim 2(1)22222x x x f f x x x xf xf f x x x x →∞→∞→∞---+'=-=⋅=-⋅=-+++-+ 版权所有翻印必究二、已知极限求导数求导的本质是求极限,在求极限的过程中,力求使已知极限的结构形式转换为所求极限的形式是顺利求导的关键。

因此,导数与极限的考查可以是已知导数求极限,也可以通过极限去求导数。

例2、已知()f x 在2x =处可导,22()lim 24x f x x →=-,求()2f 及()2f '。

考研数学二必背公式及知识点

考研数学二必背公式及知识点

考研数学二必背公式及知识点考研数学二对于很多考生来说是具有一定挑战性的科目,其中掌握必背的公式和知识点是取得好成绩的关键。

下面就为大家详细梳理一下考研数学二中那些必须牢记的公式和重要知识点。

一、函数、极限、连续1、函数的性质奇偶性:若 f(x) = f(x),则函数 f(x) 为偶函数;若 f(x) = f(x),则函数 f(x) 为奇函数。

周期性:若存在非零常数 T,使得对于任意 x,都有 f(x + T) =f(x),则函数 f(x) 为周期函数,T 为其周期。

2、极限的计算四则运算法则:若 lim f(x) = A,lim g(x) = B,则 lim f(x) ± g(x)= A ± B;lim f(x) × g(x) = A × B;lim f(x) / g(x) = A / B (B ≠ 0)。

两个重要极限:lim (1 + 1/x)^x = e (x → ∞);lim sin x / x= 1 (x → 0)。

3、连续的定义函数 f(x) 在点 x₀处连续,当且仅当 lim f(x) = f(x₀) (x → x₀)。

二、一元函数微分学1、导数的定义函数 y = f(x) 在点 x₀处的导数 f'(x₀) = lim f(x₀+Δx) f(x₀) /Δx (Δx → 0)。

2、基本导数公式(x^n)'= nx^(n 1)(sin x)'= cos x(cos x)'= sin x(e^x)'= e^x(ln x)'= 1 / x3、导数的四则运算f(x) ± g(x)'= f'(x) ± g'(x)f(x) × g(x)'= f'(x)g(x) + f(x)g'(x)f(x) / g(x)'= f'(x)g(x) f(x)g'(x) / g(x)²(g(x) ≠ 0)4、复合函数求导法则若 y = f(u),u = g(x),则 dy/dx = dy/du × du/dx5、微分的定义dy = f'(x)dx6、罗尔定理、拉格朗日中值定理、柯西中值定理罗尔定理:若函数 f(x) 满足在闭区间 a, b 上连续,在开区间(a, b) 内可导,且 f(a) = f(b),则在(a, b) 内至少存在一点ξ,使得 f'(ξ) =0。

考研数学备考:数一的7个常考知识点

考研数学备考:数一的7个常考知识点

考研数学备考:数一的7个常考知识点1500字数学一是考研数学科目中的一部分,也是很多考生备考的重点。

在备考数学一时,有一些常考知识点是必须要掌握的,下面我将列举七个常考知识点,并详细介绍它们的相关内容。

1. 极限与连续:极限与连续是数学分析的基础,也是数学一考试中的重要内容。

要理解极限和连续的概念,并掌握基本定理和方法。

其中包括函数的极限存在性、无穷小与无穷大的比较、函数的连续性、连续函数的运算等。

2. 导数与微分:导数与微分是微积分研究的核心内容,考生需要熟悉导数的定义、导数的计算方法、高阶导数的概念和计算、隐函数求导、参数方程的导数等。

此外,还需要掌握微分的概念、微分中值定理、泰勒公式等重要内容。

3. 级数:级数是数学分析中的重要内容,也是考研数学一中的考察点。

要掌握级数的概念、级数的敛散性判别法、级数收敛的性质、级数的运算等。

此外,还需要会应用级数判断函数的连续性、可导性等。

4. 微分方程:微分方程是数学分析与实际问题联系的重要桥梁,也是考研数学一的考察内容。

要熟悉常微分方程的基本概念、常微分方程的解法、变量可分离方程、一阶线性微分方程、二阶线性常系数齐次与非齐次微分方程等。

5. 多元函数微分学:多元函数微分学是微积分的重要内容,也是考研数学一中的考察点。

要掌握多元函数的极限、偏导数、全微分、多元函数的极值、条件极值、隐函数与显函数的求导等。

同时,还需要会应用多元函数微分学解决实际问题。

6. 多元函数积分学:多元函数积分学是微积分的另一个重要内容,也是考研数学一中的考察点。

要熟悉多元函数的重积分、重积分的计算方法、曲线、曲面积分的概念和计算方法、格林公式、高斯公式等。

7. 线性代数:线性代数是考研数学一中的一部分,要掌握矩阵的基本概念、矩阵的运算、矩阵的特征值和特征向量、线性方程组及其解法、线性空间与子空间等。

此外,还需要会应用线性代数解决实际问题。

以上是数学一备考中的常考知识点,考生在备考过程中要注重理论知识的学习与掌握,并结合大量的练习题进行巩固和提高。

考研高阶导数公式

考研高阶导数公式

考研高阶导数公式一、导数的基本概念与意义导数是微积分学中的一个基本概念,表示函数在某一点的变化率。

对于函数f(x),其在x点的导数f"(x)可以用以下公式表示:f"(x) = lim(Δx→0) [f(x+Δx) - f(x)] / Δx二、考研高阶导数公式概述在考研数学中,高阶导数是指二阶及以上的导数。

高阶导数在求解函数的极值、曲率、拐点等问题中具有重要意义。

以下为一些常见的高阶导数公式:1.二阶导数:f""(x) = lim(Δx→0) [(f"(x+Δx) - f"(x)) / Δx]2.三阶导数:f"""(x) = lim(Δx→0) [(f""(x+Δx) - f""(x)) / Δx]三、一阶导数的求解方法1.求导法则:对于基本初等函数及其复合函数,可以使用求导法则进行求解。

2.隐函数求导:对于隐函数y = f(x),可以先求出显函数,然后对显函数求导。

3.参数方程求导:对于参数方程x = x(t),y = y(t),可以先将参数方程转化为普通方程,然后对普通方程求导。

四、二阶导数的求解方法1.求导法则:对一阶导数再求一次导数。

2.隐函数求导:对隐函数的一阶导数求导。

3.参数方程求导:对参数方程的一阶导数求导。

五、高阶导数的求解方法1.求导法则:对一阶导数、二阶导数再求导。

2.利用导数的性质:如和差、积、商的导数公式。

六、导数在实际问题中的应用1.极值问题:求函数的极值点、极值、最值。

2.曲率问题:求曲线的曲率、曲率半径。

3.拐点问题:求函数的拐点。

4.实际问题:求质点运动的瞬时速度、加速度等。

七、总结与建议导数是考研数学中的重要知识点,掌握导数的求解方法及实际应用对于解题具有重要意义。

在学习过程中,要注重理论知识与实际例题的结合,加强运算能力的培养。

考研数学高数第二章导数与微分的知识点总结

考研数学高数第二章导数与微分的知识点总结

考研数学高数第二章导数与微分的知识点总结来源:文都教育导数与微分是考研数学的基础,占据至关重要的地位。

基本概念、基本公式一定要掌握牢固,常规方法和做题思路要非常熟练。

下面文都考研数学老师给出该章的知识点总结,供广大考生参考。

第一节 导数1.基本概念(1)定义0000000000()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==∆→∆→→+∆--∆====∆∆-或 注:可导必连续,连续不一定可导.注:分段函数分界点处的导数一定要用导数的定义求.(2)左、右导数0'000000()()()()()lim lim x x x f x x f x f x f x f x x x x ---∆→→+∆--==∆-. 0'000000()()()()()lim lim x x x f x x f x f x f x f x x x x +++∆→→+∆--==∆-. 0'()f x 存在''00()()f x f x -+⇔=.(3)导数的几何应用曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-.法线方程:0001()()'()y f x x x f x -=--. 2.基本公式(1)'0C = (2)'1()a a x ax -=(3)()'ln x x a a a =(特例()'x x e e =)(4)1(log )'(0,1)ln a x a a x a=>≠ (5)(sin )'cos x x = (6)(cos )'sin x x =-(7)2(tan )'sec x x = (8)2(cot )'csc x x =-(9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =- (11)21(arcsin )'1x x =- (12)21(arccos )'1x x =--(13)21(arctan )'1x x =+ (14)21(arccot )'1x x =-+ (1522221[ln()]'x x a x a ++=+3.函数的求导法则(1)四则运算的求导法则()'''u v u v ±=± ()'''uv u v uv =+ 2''()'u u v uv v v-= (2)复合函数求导法则--链式法则设(),()y f u u x ϕ==,则(())y f x ϕ=的导数为:[(())]''(())'()f x f x x ϕϕϕ=.例5 求函数21sin x y e =的导数.(3)反函数的求导法则设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则11'()'()'(())g y f x f g y ==. (4)隐函数求导设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法'''x yF y F =-. (5)对数求导法:适用于若干因子连乘及幂指函数4.高阶导数二阶以上的导数为高阶导数.常用的高阶求导公式:(1)()()ln (0)x n x n a a a a => 特别地,(n)()x x e e =(2) ()(sin )sin()2n n kx k kx n π=+ (3)()(cos )cos()2n n kx k kx n π=+ (4)()1(1)![ln(1)](1)(1)n n n n x x --+=-+ (5)()()(1)(2)(1)k n k n x k k k k n x -=---+(6)莱布尼茨公式:()()()0()n n k n k k n k uv C u v -==∑,其中(0)(0),u u v v ==第二节 微分1.定义背景:函数的增量()()y f x x f x ∆=+∆-.定义:如果函数的增量y ∆可表示为()y A x o x ∆=∆+∆,其中A 是与x ∆无关的常数,则称函数()y f x =在点0x 可微,并且称A x ∆为x ∆的微分,记作dy ,则dy A x =∆.注:,y dy x dx ∆≠∆=2.可导与可微的关系一元函数()f x 在点0x 可微,微分为dy A x =∆⇔函数()f x 在0x 可导,且0'()A f x =.3.微分的几何意义4.微分的计算(1)基本微分公式'()dy f x dx =.(2)微分运算法则②四则运算法则()d u v du dv ±=± duv vdu udv =+ 2()u vdu udv d v v-= ②一阶微分形式不变若u 为自变量,(),'()'()y f u dy f u u f u du ==∆=;若u 为中间变量,()y f u =,()u x ϕ=,'()'()'()dy f u x dx f u du ϕ==.。

考研必看考研数学基础知识点梳理(高数篇)

考研必看考研数学基础知识点梳理(高数篇)

考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

高数考研知识点归纳

高数考研知识点归纳

高数考研知识点归纳高等数学是考研数学的重要组成部分,其知识点广泛且深入,以下是对高数考研知识点的归纳总结:一、极限与连续性- 极限的定义与性质- 无穷小的比较- 函数的连续性与间断点- 连续函数的性质二、导数与微分- 导数的定义与几何意义- 基本导数公式- 高阶导数- 隐函数与参数方程的导数- 微分的概念与应用三、中值定理与导数的应用- 罗尔定理- 拉格朗日中值定理- 柯西中值定理- 泰勒公式- 导数在几何、物理等领域的应用四、不定积分与定积分- 不定积分的概念与性质- 基本积分公式- 换元积分法- 分部积分法- 定积分的定义与性质- 定积分的计算方法五、级数- 级数的概念与性质- 正项级数的收敛性判别- 幂级数与泰勒级数- 函数项级数的一致收敛性六、多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 方向导数与梯度- 多元函数的泰勒展开七、重积分与曲线积分、曲面积分- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 格林公式、高斯公式与斯托克斯定理八、常微分方程- 一阶微分方程的解法- 高阶微分方程- 线性微分方程的解法- 微分方程的应用结束语:考研高等数学的知识点繁多,要求考生不仅要掌握基本的概念和公式,还要能够灵活运用这些知识点解决实际问题。

通过系统地复习和大量的练习,可以提高解题速度和准确率,为考研数学取得高分打下坚实的基础。

希望以上的知识点归纳能够帮助考生更好地复习和准备考研高等数学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学知识点复习:导数中的计算及
应用
导数的计算中要先掌握四则运算,反函数和复合函数的求导运算。

有了这些就可以将导数的大部分计算题搞定,除此之外,还需要掌握几个特殊函数的导数计算:幂指函数,隐函数,参数方程,抽象函数,我们一一介绍。

幂指函数:什么是幂指函数?一般的,将形如y=f(x)g(x)的函数称为幂指函数。

也就是说,它既像幂函数,又像指数函数,二者的特点兼而有之。

作为幂函数,其幂指数确定不变,而幂底数为自变量;相反地,指数函数却是底数确定不变,而指数为自变量。

简单的说就是
底数和指数都是关于自变量的函数,像这样的就称为幂指函数,例如:y=(sinx)x2,y=xx。

对它求导有两种方法,第一:对数恒等变换,y=f(x)g(x)=eg(x)lnf(x),再按照复合函数求导计算就可以了,即。

第二:取对数,两边同时取对数,再关于自变量求导,把因变量看成是自变量的函数,即
隐函数:设F(x,y)是某个定义域上的函数。

如果存在定义域上的子集D,使得对每个x属于D,存在相应的y满足
F(x,y)=0,则称方程确定了一个隐函数。

记为y=y(x)。

显函数是用y=f(x)来表示的函数,显函数是相对于隐函数来说的。

对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。

在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有
y'的一个方程,然后化简得到y'的表达式。

参数方程:在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数;且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。

类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。

参数方程求导方法:
一阶导数:
二阶导数:
其中二阶导数不需要记公式,只需要掌握二阶求导过程,做题目时直接计算就可以了。

抽象函数:把没有给出具体解析式的函数称为抽象函数。

抽象函数的求导跟隐函数求导类似,直接求导,把因变量看成自变量的函数,求导即为y'。

以上就是导数计算中几种特殊函数导数计算,在考研中会跟其他知识点和章节结合出题,结合最多的就是导数应用,如何结合,怎么处理,佟老师下次继续为大家讲解。

相关文档
最新文档