1.2.1-2区间的概念
1.2.1-2区间的概念

思考4:一次函数y=kx+b(k≠0),二次函数 y=ax2+bx+c(a≠0),反比例函数 y
k x ( k 0)
的定义域、值域分别是什么?怎样用区间表示?
理论迁移
例0 将下列集合用区间表示出来:
(1){x | 2 x 1 0}; (2){x | x 4, 或 1 x 2}
..
例1 已知 f ( x 1) x 2 x ,求函数 f ( x) 的解析式.
函数的应用
已知 A 1, , ,k 2 3
பைடு நூலகம்
,B
4, ,a 7
4
,a
2
3 a 且 a ,
k N, x A, y B. f : x y 3 x 1
是A到B一个函数,求a,k?
问题提出
1.什么叫函数?用什么符号表示函数?
2. 什么是函数的定义域?值域?
3. 上述集合还有更简单的表示方法吗?
定义
名称
符号 [ a, b ]
( a, b )
数轴表示
a a a a b
b
{x|a≤x≤b} 闭区间
{x|a<x<b} 开区间
b
{x|a≤x<b} 半开半闭 [ a, b ) 区间
{x|a<x≤b} 半开半闭 ( a, b ] 区间
作业:
P25习题1.2A组:5,6,7,8.
b
这里的实数a与b都叫做相应区间的端点.
知识探究(二)
思考1:满足不等式 x a, x a, x a, x a 的实数x的集合也可以看成区间,那么这些集合 如何用区间符号表示? [a,+∞),(a,+∞), (-∞,a],(-∞,a). 思考2:将实数集R看成一个大区间,怎样用区间 表示实数集R? (-∞,+∞)
高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

A.11
B.12
C.13
D.10
【答案】C
【解析】f[f(1)]=f(3)=9+3+1=13.
4.下列各组函数中,表示同一个函数的是( )
A.y=x-1 和 y=xx2+-11
B.y=x0 和 y=1
C.f(x)=x2 和 g(x)=(x+1)2
D.f(x)=
xx2和 g(x)=
x x2
【答案】D
【答案】B 【解析】根据函数的存在性和唯一性(定义)可知,B不 正确.
2.函数 f(x)= xx--21的定义域为(
)
A.[1,2)∪(2,+∞) B.(1,+∞)
C.[1,2)
D.[1,+∞)
【答案】A 【解析】由题意可知,要使函数有意义,需满足xx--21≠≥00,,
即 x≥1 且 x≠2.
3.已知f(x)=x2+x+1,则f[f(1)]的值是( )
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对 哦~
2.(1)y=x+x+120; (2)y= 2x+3- 21-x+1x. 【解析】(1)由于 00 无意义,故 x+1≠0,即 x≠-1. 又 x+2>0,x>-2,所以 x>-2 且 x≠-1. 所以函数 y=x+x+120的定义域为{x|x>-2 且 x≠-1}.
求函数的定义域
【例 2】求下列函数的定义域: (1)y=2x+3;(2)f(x)=x+1 1; (3)y= x-1+ 1-x;(4)y=xx2+-11. 【解题探究】求函数的定义域,即是求使函数有意义的那 些自变量 x 的取值集合.
【解析】(1)函数 y=2x+3 的定义域为{x|x∈R}. (2)要使函数有意义,即分式有意义,则 x+1≠0,x≠-1. 故函数的定义域为{x|x≠-1}. (3)要使函数有意义,则1x--1x≥≥00,, 即xx≥≤11,, 所以 x=1, 从而函数的定义域为{x|x=1}. (4)因为当 x2-1≠0,即 x≠±1 时,xx2+-11有意义,所以原函 数的定义域是{x|x≠±1}.
人教版必修1数学课件1.2.1 函数的概念精选ppt课件

(1)判断一个集合 A 到集合 B 的对应关系是不是函数关系的 方法:①A,B 必须都是非空数集;②A 中任意一个数在 B 中 必须有并且是唯一的实数和它对应.
[注意] A 中元素无剩余,B 中元素允许有剩余. (2)函数的定义中“任意一个 x”与“有唯一确定的 y”说明函 数中两变量 x,y 的对应关系是“一对一”或者是“多对一”,而不 能是“一对多”.
符号 (-∞,+∞) _[_a_,__+__∞__) (_a_,__+__∞_) (_-__∞_,__a_] (_-__∞_,__a_)
1.判断(正确的打“√”,错误的打“×”) (1) 函 数 值 域 中 的 每 一 个 数 都 有 定 义 域 中 的 数 与 之 对 应.(√ ) (2)函数的定义域和值域一定是无限集合.( × ) (3)定义域和对应关系确定后,函数值域也就确定了.( √ ) (4)若函数的定义域只有一个元素,则值域也只有一个元 素.( √ ) (5)区间表示数集,数集一定能用区间表示.( × ) (6)数集{x|x<-3},其区间表示为(-∞,-3).( √ )
2.函数 y= 1-x+ x的定义域为( D )
A.{x|x≤1}
B.{x|x≥0}
C.{x|x≥1,或 x≤0} D.{x|0≤x≤1}
3.已知 f(x)=x2+1,则 f(f(-1))=( D )
A.2
B.3
C.4
D.5
4.已知 f(x)=2x1+1,x∈{0,1,2},则函数 f(x)的值函数符号,f 表示对应关系,f(x)表示 x 对应的函 数值,绝对不能理解为 f 与 x 的乘积.在不同的函数中 f 的具 体含义不同,对应关系可以是解析式、图象、表格等(下节讲函 数这三种表示).函数除了可用符号 f(x)表示外,还可用 g(x), F(x)等表示.
函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
人教版高中数学必修一第一章知识点

第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O 一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
人教版高一数学必修1知识点归纳

(4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
(3)分数指数幂的运算性质
① ②
③
(4)指数函数
函数名称
指数函数
定义
函数 且 叫做指数函数
图象
定义域
值域
过定点
图象过定点 ,即当 时, .
奇偶性
非奇非偶
单调性
在 上是增函数
在 上是减函数
函数值的
变化情况
变化对图象的影响
在第一象限内, 越大图象越高;在第二象限内, 越大图象越低.
【2.2.1】对数与对数运算
(4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{ | 具有的性质},其中 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合.
(5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集( ).
②式子 叫做根式,这里 叫做根指数, 叫做被开方数.当 为奇数时, 为任意实数;当 为偶数时, .
③根式的性质: ;当 为奇数时, ;当 为偶数时, .
(2)分数指数幂的概念
①正数的正分数指数幂的意义是: 且 .0的正分数指数幂等于0.
②正数的负分数指数幂的意义是: 且 .0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.
区间的表示方法

区间的表示方法
区间表示方法如下:
通用的区间记号中,圆括号表示“排除”,方括号表示“包括”。
例如,区间(10, 20)表示所有在10和20之间的实数,但不包括10或20。
另一方面,[10, 20]表示所有在10和20之间的实数,以及10和20。
而当我们任意指一个区间时,一般以大写字母I 记之。
有的国家是用逗号来代表小数点,为免产生混淆,分隔两数的逗号要用分号来代替。
[1-2] 例如[1, 2.3]就要写成[1; 2,3]。
否则,若只把小数点写成逗号,之前的例子就会变成[1,2,3] 了。
这时就不能知道究竟是 1.2 与 3 之间,还是 1 与2.3 之间的区间了。
在数学里,区间通常是指这样的一类实数集合:如果x和y是两个在集合里的数,那么,任何x和y之间的数也属于该集合。
例如,由符合0 ≤x ≤1的实数所构成的集合,便是一个区间,它包含了0、1,还有0和1之间的全体实数。
其他例子包括:实数集,负实数组成的集合等。
区间在积分理论中起着重要作用,因为它们作为最"简单"的实数集合,可以轻易地给它们定义"长度"、或者说"测度"。
然后,"测度"的概念可以拓,引申出博雷尔测度,以及勒贝格测度。
区间也是区间算术的核心概念。
区间算术是一种数值分析方法,用于计算舍去误差。
区间的概念还可以推广到任何全序集T的子集S,使得若x和y均属于S,且x<z<y,则z亦属于S。
例如整数区间[-1...2]即是指{-1,0,1,2}这个集合。
创新设计高中数学必修一1.2.1

1.2.1函数的概念[学习目标] 1.理解函数的概念,了解构成函数的三要素.2.能正确使用区间表示数集.3.会求一些简单函数的定义域、函数值.知识点一函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.知识点二函数的三要素函数的三个要素:定义域,对应关系,值域.(1)定义域定义域是自变量x的取值集合.有时函数的定义域可以省略,如果未加特殊说明,函数的定义域就是指能使这个式子有意义的所有实数x的集合.(2)对应关系对应关系f是核心,它是对自变量x进行“操作”的“程序”或者“方法”,是连接x与y 的纽带,按照这一“程序”,从定义域集合A中任取一个x,可得到值域{y|y=f(x)且x∈A}中唯一确定的y与之对应.(3)值域函数的值域是函数值的集合,通常一个函数的定义域和对应关系确定了,那么它的值域也会随之确定.思考(1)符号“y=f(x)”中“f”的意义是什么?(2)有人认为“y=f(x)”表示的是“y等于f与x的乘积”,这种看法对吗?(3)f(x)与f(a)有何区别与联系?答(1)符号“y=f(x)”中“f”表示对应关系,在不同的具体函数中,“f”的含义不一样.例如y=f(x)=x2中,“f”表示的对应关系为因变量y等于自变量x的平方,从而f(a)=a2,f(x+1)=(x+1)2,而函数y=f(x)=2x中,“f”表示的对应关系为因变量y等于自变量x的二倍,从而f(a)=2a,f(x+1)=2(x+1).(2)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变量值对应的函数值.y=f(x)仅仅是函数符号,不表示“y等于f与x的乘积”.在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.(3)f(x)与f(a)的区别与联系:f(a)表示当x=a时,函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值,如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一个常数.知识点三函数相等如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.思考函数y=x2+x与函数y=t2+t相等吗?答相等,这两个函数定义域相同,都是实数集R,而且这两个函数的对应关系也相同,因此这两个函数相等.函数相等与否与自变量用什么字母没有关系,只是习惯上自变量用x表示.知识点四区间概念区间的定义、名称、符号及数轴表示如下表:取遍数轴上所有的值思考(1)对于区间[a,b]而言,区间端点a,b应满足什么关系?(2)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(3)“∞”是数吗?如何正确使用“∞”?答(1)若a,b为区间的左右端点,则a<b.(2)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(3)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.题型一函数概念的应用例1设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有()A.0个B.1个C.2个D.3个答案 B解析①错,x=2时,在N中无元素与之对应,不满足任意性.②对,同时满足任意性与唯一性.③错,x=2时,对应元素y=3∉N,不满足任意性.④错,x=1时,在N中有两个元素与之对应,不满足唯一性.反思与感悟 1.判断一个对应关系是不是函数关系的方法:(1)A,B必须都是非空数集;(2)A 中任意一个数在B中必须有并且是唯一的实数和它对应.注意:A中元素无剩余,B中元素允许有剩余.2.函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.跟踪训练1下列对应关系式中是A到B的函数的是()A.A⊆R,B⊆R,x2+y2=1B.A={-1,0,1},B={1,2},f:x→y=|x|+1C.A =R ,B =R ,f :x →y =1x -2D.A =Z ,B =Z ,f :x →y =2x -1 答案 B解析 对于A ,x 2+y 2=1可化为y =±1-x 2,显然对任意x ∈A ,y 值不唯一,故不符合.对于B ,符合函数的定义.对于C,2∈A ,但在集合B 中找不到与之相对应的数,故不符合.对于D ,-1∈A ,但在集合B 中找不到与之相对应的数,故不符合. 题型二 判断是否为同一函数 例2 判断下列函数是否为同一函数:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0;(2)f (x )=x x +1与g (x )=x (x +1); (3)f (x )=x 2-2x -1与g (t )=t 2-2t -1; (4)f (x )=1与g (x )=x 0(x ≠0).解 (1)f (x )的定义域中不含有元素0,而g (x )的定义域为R ,定义域不相同,所以二者不是同一函数.(2)f (x )的定义域为[0,+∞),而g (x )的定义域为(-∞,-1]∪[0,+∞),定义域不相同,所以二者不是同一函数.(3)尽管两个函数的自变量一个用x 表示,另一个用t 表示,但它们的定义域相同,对应关系相同,对定义域内同一个自变量,根据表达式,都能得到同一函数值,因此二者为同一函数. (4)f (x )的定义域为R ,g (x )的定义域为{x |x ≠0},因此二者不是同一函数.反思与感悟 判断两个函数是否相同,只需判断这两个函数的定义域与对应关系是否相同. (1)定义域和对应关系都相同,则两个函数相同; (2)定义域不同,则两个函数不同; (3)对应关系不同,则两个函数不同;(4)即使定义域和值域都分别相同的两个函数,也不一定相同,例如y =x 和y =2x -1的定义域和值域都是R ,但不是同一函数;(5)两个函数是否相同,与自变量用什么字母表示无关. 跟踪训练2 下列各组函数中,表示同一函数的是( ) A.y =x +1与y =x 2-1x -1B.y =x 2与y =(x +1)2C.y =(3x )3与y =x D.f (x )=(x )2与g (x )=x 2答案 C题型三 求函数的定义域 例3 求下列函数的定义域: (1)y =(x +1)2x +1-1-x ;(2)y =x +1|x |-x.解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧ x +1≠0,1-x ≥0,即⎩⎪⎨⎪⎧x ≠-1,x ≤1. 所以函数的定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,必须满足|x |-x ≠0,即|x |≠x , ∴x <0.∴函数的定义域为{x |x <0}.反思与感悟 1.当函数是由解析式给出时,求函数的定义域就是求使解析式有意义的自变量的取值集合,必须考虑下列各种情形:(1)负数不能开偶次方,所以偶次根号下的式子大于或等于零;(2)分式中分母不能为0;(3)零次幂的底数不为0;(4)如果f (x )由几部分构成,那么函数的定义域是使各部分都有意义的实数的集合;(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况.2.求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示. 跟踪训练3 求下列函数的定义域: (1)y =(x +1)0x +2;(2)y =2x +3-12-x +1x. 解 (1)由于00无意义,故x +1≠0,即x ≠-1. 又x +2>0,x >-2,所以x >-2且x ≠-1.所以函数y =(x +1)0x +2的定义域为{x |x >-2,且x ≠-1}.(2)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2,且x ≠0,所以函数y =2x +3-12-x+1x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪-32≤x <2,且x ≠0. 题型四 求函数值例4 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112.反思与感悟 求函数值时,首先要确定出函数的对应关系f 的具体含义,然后将变量代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别. 跟踪训练4 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f [f (1)].解 (1)∵f (x )=x +1x +2,∴f (2)=2+12+2=34.(2)f (1)=1+11+2=23,f [f (1)]=f ⎝⎛⎭⎫23=23+123+2=58.抽象函数定义域理解错误致误例5 已知函数f (3x +1)的定义域为[1,7],求函数f (x )的定义域. 错解 因为f (3x +1)的定义域为[1,7], 即1≤3x +1≤7,解得0≤x ≤2, 所以f (x )的定义域为[0,2].正解 令3x +1=t ,则4≤t ≤22, 即f (t )中,t ∈[4,22], 故f (x )的定义域为[4,22]. 易错警示跟踪训练5 若f (x )的定义域为[-3,5],求φ(x )=f (-x )+f (x )的定义域.解 由f (x )的定义域为[-3,5],得φ(x )的定义域需满足⎩⎪⎨⎪⎧ -3≤-x ≤5-3≤x ≤5,即⎩⎪⎨⎪⎧-5≤x ≤3,-3≤x ≤5.解得-3≤x ≤3.所以函数φ(x )的定义域为[-3,3].1.下列图象中能表示函数y =f (x )图象的是( )答案 B解析 由函数的概念知答案为B.2.下列各组函数中表示同一函数的是( ) A.f (x )=x 与g (x )=(x )2 B.f (x )=|x |与g (x )=x (x >0)C.f (x )=2x -1与g (x )=2x +1(x ∈N *)D.f (x )=x 2-1x -1与g (x )=x +1(x ≠1)答案 D解析 选项A ,B ,C 中两个函数的定义域均不相同, 故选D.3.函数f (x )=x +1+12-x的定义域为________. 答案 {x |x ≥-1且x ≠2}解析 由⎩⎪⎨⎪⎧x +1≥02-x ≠0,得x ≥-1且x ≠2.4.函数f (x )对任意自然数x 满足f (x +1)=f (x )+1,f (0)=1,则f (5)=________. 答案 6解析 f (1)=f (0)+1=1+1=2,f (2)=f (1)+1=3, f (3)=f (2)+1=4,f (4)=f (3)+1=5,f (5)=f (4)+1=6.5.已知函数f (x )=x 2+x -1. (1)求f (2),f (1x );(2)若f (x )=5,求x 的值. 解 (1)f (2)=22+2-1=5, f (1x )=1x 2+1x -1=1+x -x 2x 2. (2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2,或x =-3.1.对函数相等的概念的理解:(1)函数有三个要素:定义域、值域、对应关系.函数的定义域和对应关系共同确定函数的值域,因此当且仅当两个函数的定义域和对应关系都分别相同时,这两个函数才是同一个函数. (2)定义域和值域都分别相同的两个函数,它们不一定是同一函数,因为函数对应关系不一定相同.如y =x 与y =3x 的定义域和值域都是R ,但它们的对应关系不同,所以是两个不同的函数.2.区间实质上是数轴上某一线段或射线上的所有点所对应的实数的取值集合,即用端点所对应的数、“+∞”(正无穷大)、“-∞”(负无穷大)、方括号(包含端点)、小圆括号(不包含端点)等来表示的部分实数组成的集合.如{x |a <x ≤b }=(a ,b ],{x |x ≤b }=(-∞,b ]是数集描述法的变式.一、选择题1.下列四个图象中,是函数图象的是( )A.①B.①③④C.①②③D.③④答案 B解析 由每一个自变量x 对应唯一一个f (x )可知②不是函数图象,①③④是函数图象.2.设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )答案 B解析 A 项中,当0<x ≤2时,每一个x 都没有y 与它对应,故不可能是函数的图象;B 项中,-2≤x ≤2时,每一个x 都有唯一的y 值与它对应,故它是函数的图象且是f (x )的图象;C 项中,-2≤x <2时,每一个x 都有两个不同的y 值与它对应,故它不是函数的图象;D 项中,-2≤x ≤2时,每一个x 都有唯一的y 值与它对应,故它是某个函数的图象,但函数的值域不是N ={y |0≤y ≤2},故它是某个函数的图象但不是f (x )的图象.3.已知函数y =f (x )的定义域为[-1,5],则在同一坐标系中,函数f (x )的图象与直线x =1的交点个数为( ) A.0B.1C.2D.0或1 答案 B解析 因为1在定义域[-1,5]上, 所以f (1)存在且唯一. 4.函数f (x )=xx -1的定义域为( ) A.(1,+∞) B.[0,+∞)C.(-∞,1)∪(1,+∞)D.[0,1)∪(1,+∞) 答案 D 解析 因为f (x )=xx -1,所以x ≥0且x ≠1,故可知定义域为[0,1)∪(1,+∞),故选D. 5.若函数y =x 2-3x 的定义域为{-1,0,2,3},则其值域为( ) A.{-2,0,4} B.{-2,0,2,4} C.{y |y ≤-94}D.{y |0≤y ≤3}答案 A解析 依题意,当x =-1时,y =4;当x =0时,y =0; 当x =2时,y =-2;当x =3时,y =0. 所以函数y =x 2-3x 的值域为{-2,0,4}.6.若函数f (x )=x -4mx 2+4x +3的定义域为R ,则实数m 的取值范围是( )A.(-∞,+∞)B.(0,43)C.(43,+∞) D.[0,43)答案 C解析 (1)当m =0时,分母为4x +3,此时定义域不为R , 故m =0不符合题意. (2)当m ≠0时,由题意,得⎩⎪⎨⎪⎧m ≠0,Δ=16-4×3m <0,解得m >43.由(1)(2),知实数m 的取值范围是(43,+∞).二、填空题7.用区间表示下列集合: (1){x |-12≤x <5}=________;(2){x |x <1或2<x ≤3}=________. 答案 (1)[-12,5);(2)(-∞,1)∪(2,3]解析 (1)注意到包括不包括区间的端点与不等式含不含等号对应,则{x |-12≤x <5}=[-12,5).(2)注意到集合中的“或”对应区间中的“∪”,则{x |x <1或2<x ≤3}=(-∞,1)∪(2,3]. 8.已知函数f (x )的定义域为(-1,1),则函数g (x )=f ⎝⎛⎭⎫x 2+f (x -1)的定义域是________. 答案 (0,2)解析 由题意知⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,即⎩⎪⎨⎪⎧-2<x <2,0<x <2. ∴0<x <2.9.设f (x )=2x 2+2,g (x )=1x +2,则g [f (2)]=________.答案112解析 ∵f (2)=2×22+2=10,∴g [f (2)]=g (10)=110+2=112. 10.已知f (x )=x 2+2x +4(x ∈[-2,2]),则f (x )的值域为________.答案 [3,12]解析 函数f (x )的图象对称轴为x =-1,开口向上,而-1在区间[-2,2]上,所以f (x )的最小值为f (-1)=3,最大值为f (2)=12,所以f (x )在[-2,2]上的值域为[3,12].三、解答题11.已知函数f (x )=x +3+1x +2. (1)求函数的定义域;(2)求f (-3),f (23)的值; (3)当a >0时,求f (a ),f (a -1)的值.解 (1)由⎩⎪⎨⎪⎧x +3≥0,x +2≠0,得函数的定义域为[-3,-2)∪(-2,+∞). (2)f (-3)=-1,f (23)=38+333. (3)当a >0时,f (a )=a +3+1a +2, a -1∈(-1,+∞),f (a -1)=a +2+1a +1. 12.求下列函数的值域.(1)y =x -1(x ≥4);(2)y =2x +1,x ∈{1,2,3,4,5};(3)y =x +2x -1;(4)y =x 2-2x -3(x ∈[-1,2]).解 (1)∵x ≥4,∴x ≥2,∴x -1≥1,∴y ∈[1,+∞).(2)y ={3,5,7,9,11}.(3)方法一 函数y =x +2x -1的定义域为[12,+∞),易知在定义域内y 随x 的增大而增大,故函数在x =12时取最小值,无最大值,故值域为[12,+∞). 方法二 设u =2x -1,则u ≥0,且x =1+u 22, 于是,y =1+u 22+u =12(u +1)2≥12, ∴y =x +2x -1的值域为[12,+∞).(4)y =x 2-2x -3=(x -1)2-4, 作出其图象可得值域为[-4,0].13.已知函数f (x )=x 21+x 2. (1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值; (2)求证f (x )+f ⎝⎛⎭⎫1x 是定值.(1)解 ∵f (x )=x 21+x 2, ∴f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1. f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明 f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 须使-1≤2x -2≤4,∴- 3≤x≤- 或 ≤x≤ 3. 2 2
2
函数 f(2x
2
-2)的定义域为x|-
2 2 . 3≤x≤- 或 ≤x≤ 3 2 2
填一填·知识要点、记下疑难点
区间 (1)设 a,b 是两个实数,且 a<b,规定: ①满足不等式 a≤x≤b 为 [a,b] ; ②满足不等式 a<x<b 的实数 x 的集合叫做开区间,表示为 的实数 x 的集合叫做闭区间,表示
(a,b) ; ③满足不等式 a≤x<b 或 a<x≤b 的实数 x 的集合叫做半 开半闭区间,分别表示为 [a,b),(a,b] . (2)实数集 R 可以用区间表示为 (-∞,+∞) ,“∞”读作
上述知识内容总结成下表:
定义 名称 符号 [ a, b ]
( a, b ) a a a
数轴表示
a b
b
{x|a≤x≤b} 闭区间
{x|a<x<b} 开区间
b
{x|a≤x<b} 半开半闭 [ a, b ) 区间
{x|a<x≤b} 半开半闭 ( a, b ] 区间
b
这里的实数a与b都叫做相应区间的端点.
区间的概念
设 a,b 是两个实数,而且 a<b,我们规定:
(1)满足不等式 a≤x≤b 的实数 x 的集合叫做闭区间, 表示为[a,b].
(2)满足不等式 a<x<b 的实数 x 的集合叫做开区间,表示为 (a,b).
(3)满足不等式 a≤x<b 或 a<x≤b 的实数 x 的集合叫做半开 半闭区间,表示为[a,b)或(a,b].
知识探究(二)
思考1:变量x相对于常数a有哪几种大小关系?用 不等式怎样表示?
思考2:满足不等式 x a, x a, x a, x a 的实数x的集合也可以看成区间,那么这些集合 如何用区间符号表示?
[a,+∞),(a,+∞), (-∞,a],(-∞,a). 思考3:将实数集R看成一个大区间,怎样用区间 表示实数集R? (-∞,+∞)
小结 由于函数的定义域和值域都是一个集合, 在求函数定 义域和值域的时候,要把定义域和值域写成集合的形式,所 以常用两种方法表示:集合、区间.
跟踪训练 4 已知函数 f(x+1)的定义域为[-2,3],求 f(2x2 -2)的定义域.
解 ∵f(x+1)的定义域为[-2,3],
∴-1≤x+1≤4.令 t=x+1,∴-1≤t≤4,
x 1 . x 1
(4) f ( x)
(3) y 2 x 2 4 x ,
二,已知函数的定义域,求另一函数的定义域
例4
解
(1)已知函数 f(x)的定义域为(0,1),求 f(x2)的定义域.
(1)∵f(x) 的定义域为 (0,1) , ∴ 要使 f(x2) 有意义,须使
(2)已知函数 f(2x+1)的定义域为(0,1),求 f(x)的定义域.
高一年级
第一章 1.2.1
数学
函数的概念
课题: 区间的概念
问题提出
1.什么叫函数?用什么符号表示函数?
2. 什么是函数的定义域?值域? 3.函数 f ( x) 1 | x |的定义域、值域如何? 分别怎样表示? 4. 上述集合还有更简单的表示方法吗?
知识探究(一)
思考1:设a,b是两个实数,且a<b,介于这两个 数之间的实数x用不等式表示有哪几种可能情况?
解析 函数的值域不可能为空集,故 A 错;
当两函数的定义域和值域分别相同时,但两函数的对应关系 可以不同,故 B 错;
由于整数集没法用区间表示,故 C 错.所以选 D.
理论迁移
例1 将下列集合用区间表示出来:
(1){x | 2 x 1 0}; (2){x | x 4, 或 1 x 2}
例3 求下列函数的值域,用 2 区间表示: (1) y x 4 x 6, x [1, 5)
(2) y
5 4x x ,
2
(3) y 2 (4) f ( x)
x 4x ,
(1) y x 2 4 x 6,
2
x [1,5)
(2) y 5 4 x x 2 , x 1 x 1
思考4:一次函数y=kx+b(k≠0),二次函数
k y=ax2+bx+c(a≠0),反比例函数 y (k 0) x
的定义域、值域分别是什么?怎样用区间表示?
下列关于函数与区间的说法正确的是
( D )
A.函数定义域必不是空集,但值域可以是空集 B.函数定义域和值域确定后,其对应关系也就确定了 C.数集都能用区间表示 D.函数中一个函数值可以有多个自变量值与之对应
0<x2<1,即-1<x<0 或 0<x<1,∴函数 f(x2)的定义域为{x| -1<x<0 或 0<x<1}. (2)∵f(2x+1)的定义域为(0,1),即其中的函数自变量 x 的取
值范围是 0<x<1,令 t=2x+1,∴1<t<3,∴f(t)的定义域为 {t|1<t<3},∴函数 f(x)的定义域为{x|1<x<3}.
a x b, a x b, a x b, a x b
思考2:满足上述每个不等式的实数x的集合可看 成一个区间,为了区分,它们分别叫什么名称? 思考3:如果把满足不等式的实数x的集合用符号 [a,b)表示,那么满足其它三个不等式的实数x 的集合可分别用什么符号表示?
思考四:
“无穷大”,“+∞”读作“ 正无穷大 ”,“-∞”读作 “ 负无穷大 ”. 我们把满足 x≥a,x>a,x≤b,x<b 的实数 x 的集合分别表 示为 [a,+∞) , (a,+∞) , (-∞,b], (-∞,b)..