正比例图象(新人教版)

合集下载

人教版《正比例函数》(上课)课件PPT1

人教版《正比例函数》(上课)课件PPT1

课堂练习
1.下列关系中的两个量,成正比例函数关系的是( C ) A.从甲地到乙地,所用的时间和速度 B.正方形的面积与边长 C.买同样的作业本所要的钱数和作业本的数量 D.人的体重与身高
2.如果 y=x+2a-1 是正比例函数,那么 a 的值是( A )
A.12
B.0 C.-12
D.-2
3.下列函数中,哪些是正比例函数?并指出正比例函数的比例系数. (1)y=-4x;(2)y=3x-1;(3)y=56x ;(4)y=9x ;(5)y=-0.9x;(6)y=( 5 -1)x.
巩固新知
1.下列函数中,是正比例函数的是( D ).
A.①②
B.②③
C.③④
D.②⑤
③ y=3x+9 不符合 y=kx(k≠0) 的形式;
所以①③④不是正比例函数,②⑤符合正比例函 数的定义,是正比例函数.
2.判断下列式子是否为正比例函数,是正比例函数的请写 出正比例系数. (1)y=-3x 是正比例函数,其中正比例系数是 -3.
m=7.9V
(3)每个练习本的厚度为 0.5 cm,一些练习本摞在一起 的总厚度 h(单位:cm)随练习本的本数 n 的变化而变化.
h=0.5n
(4)冷冻一个 0℃ 的物体,使它每分下降 2℃ ,物体
的温度 T(单位:℃)随冷冻时间 t(数解析式有什么共同特点? 这样的函数解析式怎么定义?
以上四个函数解析式都是常数与自变量的 积的形式,这样的函数叫做正比例函数.
概念 : 一般地,形如 y=kx(k是常数,k≠0)的函数, 叫做正比例函数,其中k叫做比例系数.
(1)正比例函数必须满足两个条件:①比例系数k 是常数,且k≠0;②两个变量x、y的次数都是1. (2)一般情况下,正比例函数自变量的取值范围 是全体实数,但在实际问题中,还要使实际问题有 意义.

六年级数学下册第4单元比例2正比例和反比例第1课时正比例课件新人教版7

六年级数学下册第4单元比例2正比例和反比例第1课时正比例课件新人教版7

a.4.5 %
aa..03aa6..a%..=aa..0a. .3
6
a.把百分数化成小数 , 只要把百分号去 掉 , 同时把小数点向左移动两位。
a.用百分数解决问题
a.学生的出勤率学出=生勤总人人数数 ×100% a.最多能达
b.产品的合格率合=产格品产总品数数
到100% ∶ ×100% 合格率 、
c.小麦的出粉率小面=麦粉的的质质量量
发芽率等。 ×100% b.达不到
d. 花生的出油率花=油生的的质质量量
100%∶出 ×100% 油率 、出水
e.学生的及格率=参加及考格试人人数数
率等。 ×100%c.可超过
aa.2.350%0x aa.4.408%0x aa.3.452%0x
a.35%
a.〔40%-35%〕x = 60 a.x = 1200
a.本单元综合训练
a.求一个数比另 一个数多〔或少〕
百分之几
a.求常见 的百分率
a.用百分
a.百分数的意 义和读写法
数解决问 题
a
a.求比一个数多 (或少)百分之几
a.问题 : 笑笑参加学校的冬季长跑活动 , 已经跑 了70% , 还剩下300 m , 笑笑一共要跑多少米 ?
a.? m a.先画图看
看。
a.70%
a.300m
a.你发现了什么等量关系 ?
a.总路程×〔1-70%〕=剩下的300 m
a.解 : 设笑笑一共要跑 x 米。 a.〔1-70%〕x = 300 a.0.3 x = 300 a.x = 1000
数量/m 1 2 3 4 5 6 7 8 ...
总价/元 3.5 7 10.5 14 17.5 21 24.5 28 ...

人教版六年级下册正比例的图像

人教版六年级下册正比例的图像
②知道体积是225cm,可以从图像上找到体积是225的点,再找这个点对应的横轴上的数9,即体积是225cm时,对应的高度是9cm。
通过小组讨论、议一议等活动,使学生经历知识的汄知过程,对新知产生深刻的印象。
教材第41页“做一做”。
学生读题,理解题意。
独立思考,小组内相互交流、检査。
教师活动
学生活动
说明
突破方法:教师运用例题引导学生自主探究,发现正比例关系图像的特征。
难点:用图像表示正比例关系。
突破方法:结合例题引导学生观察发现、自主探究。
教学准备
方法
教法:例题引导,质疑启发。
学法:理解分析与合作交流相结合。
教学准备:投影仪。
教学过程设计
教师活动
学生活动
说明
(1)例1中水的体积和高度成什么比例?
(2)正比例关系还可以怎样表示呢?
教师结合学生的汇报,说明这就是体积与高度的正比例关系图像。
④教师根据学生的汇报,说明:因为小学阶段研究的数都是正数,所以表示的图像都限于平面直角坐标系的第一象限。
(2)出示例2的问题(2)。
引导学生利用图像,不计算,由一个量的值,直接找到对应的另一个量的值。
组织学生合作探究并指名汇报,汇报时,学生可能会说出:表中每一组数据都可以用一个点来表示。
1认识正比例关系的图像能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像会根据其中一个量在图像中找出或估计出另一个2渗透函数的思想使学生受到辩证唯物主义观点教育
科目
数学
年级

班级

时间
2012年3月15日
课题
正比例的图像
节次
第二节
教学目标来自知识与技能:(1)认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量。

人教版八年级数学上册正比例函数的图像和性质

人教版八年级数学上册正比例函数的图像和性质
当k<0时它的图象经过第二、四象限,y随x的增大而减少。
4、正比例函数y=kx在实际应用中、自变量、函数值受实际 条件的制约。
练习题
1,下列函数中,正比例函数是( )
A. y=-8x
B. y=-8x+1
C. y=8x² +1
D. y=-8/x
2, 已知正比例函数y=kx(k≠0)的图象经过第二,
四象限,那么( )
A,k>0
B,k<0
C k>2
D,k<-2
3, 函数y=(m-3)x³¯™是正比例函数,m为何值?
4.直线y=kx经过点(1,-4),那么k=___ 这条直线在第___象限内,直线上的点的纵坐标随 横坐标的增大而___。已知点A(a,1),B(-2,b)在这条
2
y
·
o1
y= 12x
小结:两图像都是经过原点的直线函数y=2x的图 像从左向右上升,经过第一,三象限;函数y=-2x 的图像从左向右下降,经过第二,四象限。
正比例函数性质:
对于正比例函数y=kx 1、图象都经过原点; 2、当k>0时,它的图象经过第一、三象限, y 随 x 的增大而增大; 3、当k<0时,它的图象经过第二、四象限, y 随 x 的增大而减少;
2.4
2.自变量x的取值范围0≤x≤35
1.8
3.蜡烛点燃35分钟后可燃烧完。
1.2
0.6
0 12
x
3 45 6
本章总结
1、正比例函数y=kx的图象是经过(0,0)(1,k)的一条直线, 我们把正比例函数y=kx的图象叫做直线y=kx;
2、正比例函数y=kx的图象的画法;
3、正比例函数的性质:

新人教版小学数学六年级下册课件:4.1正比例(共26张ppt)

新人教版小学数学六年级下册课件:4.1正比例(共26张ppt)
课后习题
(4)树高与对应影长成正比例关系吗?你是依据什么作出判断的?
成正比例关系,物体的长度和它影子长度比值一定,即物体的长 度和它的影子的长度的成正比例。
7.下表中x和y两个量成正比例,请把表格填写完整。
1.8
0.375
两倍。
教学新知
做一做:一辆汽车行驶的时间和路程如下表。
(1)写出几组路程与相对应的时 间的比,并比较比值的大小。(2)说一说这个比值表示什么。(3)汽车行驶的路程与时间成正比例关系吗?为什么?
80:1=80 160:2=80 比值相等
比值表示速度
成正比例关系。因为路程和时间是相关联的量,并且它们的比值速度是一定的量。
课后习题
(3)造纸吨数与造纸时间成正比例吗?为什么?(4)根据图表判断, 5小时造纸多少吨?
成正比例,因为它们的图像是一条直线,一个量随着另一具量的变化而变化。
7.5吨
6.测量小组几次经过测量不同高度的竹竿直立在地面上,测得它的影子。 其结果记录如下:
竹竿的高度(米)
1
2
3
4
5

影子的长度(米)
教学新知
(1)成正比例,因为路程与耗油量的比值一定;(2)成正比例的量的图像是一条直线;(3)7升多一点。
讨论:1.判断两种相关联的量成不成正比例的关键是什么?2.请你说说你对正比例的图像的理解。
教学新知
例一:根据下表填空。
时间(分钟)
1
6
8
……
做口算题数(道)
25
150
200
……
(1)上表中相关联和两具量是( )和( )。(2)写出做题数与时间的比,并求出比值。(3)给出的比值起个名字,再写出上表的文字关系式。

19.2.1正比例函数(课件)-2023—-2024学年人教版数学八年级下册

19.2.1正比例函数(课件)-2023—-2024学年人教版数学八年级下册




2

7.9
0.5
ቤተ መጻሕፍቲ ባይዱ

−2



= 7.9
ℎ = 0.5
= −2
这些函数
解析式有
什么共同
点?
常数与自变量的乘积的形式
函数=常数×自变量
=
·



一般地,形如 = (是常数, ≠ 0)的函数,叫做正比例函数,

其中叫做比例系数.
想一想,为什么 ≠ ?
=0·
=0

正比例函数解析式的一般式:
(是常数, ≠ 0)
=
是自变量且它的指数是1
正比例函数解析式 = ( ≠ 0)的结构特征:
①是常数, ≠ 0
②自变量的指数是1,取值范围是一切实数;
③与是乘积的形式;
④若 = ,则与成正比例;
若与成正比例,则 = .
正比例函数(1)
问题1:下列问题中,变量之间的对应关系可用怎样的函数表示?
(1)圆的周长随半径的变化而变化?
r
l
=
(2)铁的密度是7.9g/3 , 铁块的质量m(单位:g)随它的体
积 (单位: 3 )的变化而变化.
= .
(3)每个练习本的厚度为0.5,一些练习本摞在一起的总厚
1.已知与 − 3成正比例,且当 = 2时, = −5.
(1)求与之间的函数关系式;
(2)当 = 3时, 的值;
2
(3)当 = 时, 的值.
3
2.自编一道正比例函数的题目与同学们交流.




高斯(数学王子)说:“数学是科学之王”;

人教版小学六年级数学下册第四单元正比例图像精品课件

人教版小学六年级数学下册第四单元正比例图像精品课件
试一试: 用图像表示表
中的数据。?
数量/m 1 2 3 4 5 6 7 8 ... 总价/元 3.5 7 10.5 14 17.5 21 24.5 28 ...
根据图象回答下面的问题:
49
(1)从图中你发现了什么?
所有的点都在同 一条直线上。
(2)把数对(10,35)和(12,42)所在的点描出来, 并和上面的图象连起来再延长,你还能发现什么?
49
这两个点也在这 条直线上。
发现
49
正比例图象是一条从 ( 0,0 ) 出 发 的 无 限 延 伸 的射线。
(3)不计算,根据图象判断,如果买9m彩带,总价是 多少?49元能买多少米彩带?
(14,49)
49
买 9m 彩 带 总 价 是
31.5
(9,31.5)
31.5 元 ; 49 元 能 买 14m
2.用弹簧秤称各种物品时,物品的质量与弹簧的长度 变化情况如下图。
(1)弹簧本身的长度是( 10 ) cm。
(2)物品的质量每增加10g,弹簧长
度就会增加( 2 )cm。从图上看,物品 的质量和弹簧伸长长度成( 正 )比例关
系。 (3)用这个弹簧秤称80g的物品时,
弹簧的长度是( 26 ) cm。
耗油量/L
2
4
6
10
(1)该汽车的耗油量与行驶路程成正比例关系吗?
为什么?
15∶2=30∶4=45∶6=75∶10=
15 2
成正比例关系
1.下面是某种汽车行驶路程和耗油量的对应数值表。
行驶路程/km 15
30
45
75
耗油量/L
2
4
6
10
(2)下图是表示该汽车行驶路程与相应耗油量关

《正比例函数的图像和性质》 人教版 八年级下册 (示范课课件)

《正比例函数的图像和性质》 人教版 八年级下册 (示范课课件)
用数形结合的思想方法,通过画图观察,概括 正比 例函数的图象特征及性质.
y =2x
6
4
y= 1 x
2
3
-5
O
-2
5
x
三.类比学习
当k<0 时,正比例函数的图象特征及 性质又怎样呢?
请各小组画出函数y =-3x 和y =-1.5x 的 图象,进行小组合作研究.
总结提升
y=kx (k是常数,k≠0)的图象是一条经过 原点的直线
函数 大致图象 经过的象限 从左 y随x的 向右 增大而
y=kx k>0
第三、一象限 上升 增大
y=kx k<0
第二、四象限 下降 减小
现在,我们有画正比例函数图象的简便 画法了吗?
四.正比例函数的性质
正比例函数的图象都是经过原点的一条直线 (1)当k>0时,函数y=kx的图象经过三、一象限
从左到右上升,即函数y随x的增大而增大 (2)当k<0时,函数y=kx的图象经过二、四象限,
点(0, 0 )与点( 1,-3 ), y随x的增大 而 减小 。 3.下列图象哪个可能是函数y=-1.2x的图象( B)
A
B
C
D
你一定行!
4.请用两点画出直线 y 4x 的图象。
5.若点 (-1,m),(2,n)都在直线y=-4x上, 试比较m,n的大小
你一定行!
五、知识回顾 谈谈本节课你的收获。
六、分层作业
必做题:P120第一、二题。 选做题:若点 (-1,a),(2,b)都在 直线y=kx上,试比较a,b的大小
课件说明
本课是在上一节课学习正比例函数概念的基础上,进 一步研究其图象及其性质.
学习目标: 1.会画正比例函数的图象; 2.能根据正比例函数的图象和表达式 y =k(k≠0)

人教版六年级下册数学《正比例 》课件

人教版六年级下册数学《正比例 》课件

新知 探究
用字母y和x表示两种相关联的量
用k表示它们的比值(一定)
正比例关系可以用下面的式子表示:
k表示一个固定不变的数 路程 = 速度=90 k
时间
小 组 合作
仿照例子,将公式变为正比例 例: 根h一据定S侧时=,c—hc,—=h(一定),
S侧 所以S侧和c是一对正比例关系
小 组 合作
用字母y和x表示两种相关联的量 用k表示它们的比值(一定)
1.下面是小林家去年上 半年每月用电量情况。
(1)分别写出各月电费与用电量的比, 比较比值的大小。
60∶120=65∶130=55∶110=60∶120=65∶130=75∶150= (02.)5 说明这个比值所表示的意义。比值表示每千瓦时的电费。 (3)电费与相应的用电量成正比例关系吗? 为什么?
例:
根据

______一定时,——=
(一定),
所以____和____(__是)一(对正)比例关系
()
数形 结合 正比例图像,找到正比例图像的特点
公式不好记,有没有 直观的办法判断正比
例呢?
数形 结合
正比例图像特点 1.(0,0)出发 2.无限延伸 3.一条射线
巩 固 练 习 [教材第49页练习九 第1题]
课后 作业 练习九 1---7题
成正比例关系,因为电费∶用电量=每千瓦时的电费(一定),比值 一定。
[教材第49页练习九 第4题] 巩 固 练 习
2.已知y与x成正比例关系,在下表中的空格中填写合适的。
x和y两个量成这正比例 关系,则正比例关系式
y÷x=k,再求出k=2.5。
随堂 作业
课时练:课后练习1,2,3,4 数学书:练习九2题

人教版八年级下册第十九章19.2.1正比例函数性质和图像(共25张PPT)

人教版八年级下册第十九章19.2.1正比例函数性质和图像(共25张PPT)
x增大时,y的值也增大; y随x的增大而增大 当k<0时,直线y=kx经过二,四象限,图象从左到右 下降 x增大时,y的值反而减小。 y随x的增大而减小 3x y = y y 2
y = 3x
6
6 3
3
0 1 2
x
-4 -2 0
x
正比例函数 y kx k 0 k 0 时, 图像从左向右逐渐上升 y随 x 的增大而增大
例1(1)画出正比例函数 y
(2)画出正比例函数
2 x的图象 y 2x的图象
x 图象 例 1( 2 1)画出正比例函数的 )画出正比例函数 y y 的图象 2 x2 x 列 … -2 -1 0 1 1 22 … y 2 x 2 x … -4 表 y 4 -2 2 0 -2 2 -4 4 …
比较两个函数的图象,有什么相同点与不同点? 相同点: y 2 x y 2 x 直线 y 0, 0 点的_____ 都是过_____
y kxk 0 的图像 是一条过原点的直线,称为直线 y kx
正比例函数
结 论(正比例函数图象的变化规律)
k 0 时,图像过第一、三象限 k 0 时,图像过第二、四象限
达成共识


k 0 时, 图像从左向右逐渐下降 y随 x 的增大而减小
y 0
y kx
k 0
x
y kx
y 0 x
k 0
函数图像的变化规律和函数值的 变化规律合起来就是正比例函数的 性质. 正比例函数有哪些性质呢?
归纳:正比例函数y=kx(k≠0)图像是经过 原点(0,0)和点(1,k)的一条直线
y
y kx
y kx
y x
k 0

四.2(2)最新人教版六年级下册第四单元第2课时正比例图像的教学设计

四.2(2)最新人教版六年级下册第四单元第2课时正比例图像的教学设计

第2课时正比例图像的教学设计【教学内容】正比例图象。

(最新人教版六年级下册第四单元教材第46页、第49页)【教材分析】本节教材是在比和比例的基础上进行教学,着重使学生理解正比例的意义。

正比例与反比例是比较重要的两种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它们解决一些含正、反比例关系的实际问题。

同时通过这部分内容的教学,可以进一步渗透函数思想,为学生今后的学习打下基础。

【教学目标】1、知识与技能目标:帮助学生理解正比例的意义。

用表示变量之间的关系,初步体会正比例图像的特点和作用,加深对正比例的认识。

2、过程与方法目标:通过观察、比较、判断、归纳等方法,培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。

3、情感目标:学生在自主探索,合作交流中获得积极的数学情感体验,得到必要的数学思维训练。

【重点难点】能根据数量关系式或图象判断两种量是否成正比例。

【教学准备】投影仪。

【新课讲授】教学第46页内容。

教师出示表格(见书),依据表中的数据描点。

(见书)师:从图中你发现了什么?生:这些点都在同一条直线上。

看图回答问题:①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4.0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?你还能提出什么问题?有什么体会?组织学生分小组汇报,学生汇报时可能会说出:①正比例关系的图象是一条经过原点的直线。

②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。

【练习讲授】1.基本练习。

(1)投影出示教材第49页第1题。

教师引导学生回顾正比例的意义及判断是否成正比例的方法。

学生独立完成练习。

教师要求学生从两个方面说明为什么成正比例。

a.电是随着用电量的增加而增加;b.电费与用电量的比值总是相等的。

师生共同订正。

(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……①出示下表,填表。

人教版八年级下册19.2.1正比例函数第2课时正比例函数的图象和性质课件

人教版八年级下册19.2.1正比例函数第2课时正比例函数的图象和性质课件

∴ y与∵x之当间x=函8时数,关y系=6式是∴:7yk==676 (∴x-1k ) 76
当x=4时,y=
6 7
×(4-1)= 18
7
当x=-3时,y=
6 7
×(-3-1)=
24 7
的图象?
y=-2x
y
2
y1x 2
5
4 -2小却更陡,说明
3 2 1
是k的绝对值越大, 函数图像越陡!
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4
-5
练一练
1. 正比例函数y=(m-1)x的图象经过一、三象限, 则m的取值范围是( B ) A. m=1 B. m>1 C. m<1 D. m≥1
当k >0时,直线y=kx经过第一、三象限,从左向右上升, 即随着x的增大y也增大;
当k <0时,直线y=kx经过第二、四象限,从左向右下降, 即随着x的增大y反而减小. 我们称它为直线y=kx.
随堂练习 画出正比例函数 y 2x , y 1 x
的图象?
y
2
这两个正比例函 比较上面两个函数的图象的相同点与不同点,考虑
的图象从左向右下降,经过第二、四象限.
么影响? ∴ y与x之间函数关系式是:y= (x-1)
当k>0时,图象(除原点外)在一,三象限, 就是函数y= x 的图象
2 1
K代表一次函数的斜率即倾斜程度,k的值越大函数图像越陡!
则m的取值范围是( )
-5 -4 x增大时,y的值也增大;
-3 -2 -1 0
x
-1
-2
-3
-4
-5
y 2x
y y=2x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回顾正比例的意义及判断是否成正比例的方 法。请同学们独立完成练习。
请同学们从两个方面说明为什么成正比例。 a.电是随着用电量的增加而增加;
b.电费与用电量的比值总是相等的。
一列火车1小时行驶90km,2小时行驶 180km,3小时行驶270km,4小时行驶 360km,5小时行驶450km,6小时行驶 540km,7小时行驶630km,8小时行驶 720km…… 一列火车行驶的时间和路程
3 8 5 7.5 12.5 20
10 15 20 25 37.5 50
观察表中的数据。请同学们以小组为单位完 成下面的任务。 a.动手画一画,谈谈图象的特点。 b. 说一说,相互交流。
课堂作业
1.根据x和y成正比例关系,填写表中的空格。
3.5 4.8 8 8
看图回答问题。
(1)在这一过程中,哪个量没变? (2)路程和时间有什么关系? (3)不计算,从图中看出4小时行驶多少 千米? (4)7小时行驶多少千米?
第2课时 正比例图象
R· 六年级下册
新课导入
某人造地球卫星在空中绕地球的周数和所用 的时间的关系如下表: 周数 时间 2 3.6 4 7.2 6 8 10 10.8 14.4 18.0
依据表中的数据描点
从图中你发现了什么?
这些点都在同一条直 线上。
推进新课
描出这一对应的点,它们是否在同一直线上? 你还能提出什么问题?有什么体会?请同学 们以小组为单位汇报。
①正比例关系的图象是一条经过原点的直线。
②利用正比例图象不用计算,可以由一个量 的值,直接找到对应的另一个量的值。
随堂演练
1.下面是小林家去年上半年每月用电量情况。 月份 1 2 3 4 5 6
ቤተ መጻሕፍቲ ባይዱ
用电量/千瓦时 120 130 110
120 130 150
电费/元
60
65
55
60
65
75
(1)分别写出各月电费与用电量的比,比 较比值的大小。 (2)说明这个比值所表示的意义。 (3)电费与相应的用电量成正比例关系吗? 为什么?
填表并思考发现了什么?
随着时间的变化,路程也在变化,我们就说 时间和路程是两种相关联的量。
根据计算你们发现了什么?
相对应的两个数的比值固 定不变,在数学上叫做一 定。
用式子表示它们的关系:
路程 速度(一定) 时间
上节课,我们学习了成正比例的量,下面我 们继续学习和练习。
已知y与x成正比例关系,在下表的空格中填 写合适的数。 x y 1 2.5 2 5
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
人的天才只是火花,要想使它成熊熊 火焰,哪就只有学习!学习。 —— 高尔基
相关文档
最新文档