《一元二次方程的解法》教学反思
一元二次方程的解法教学反思(精选20篇)
一元二次方程的解法教学反思(精选20篇)一元二次方程的解法教学反思 1(1)一元二次方程是研究现实世界数量关系和变化规律的重要模型,引课时从生活中常见的“梯子问题”出发,根据学生应用勾股定理时所列方程的不同,引导学生对所列方程的解法展开讨论,进而获得开平方法。
引课时力求体现“问题情境——建立数学模型——解释、应用与拓展”的模式,注重数学知识的形成与应用过程。
(2)如何配方是本节课的教学重点与难点,在进行这一块内容的'教学时,教师提出具有一定跨度的问题串引导学生进行自主探索;提供充分探索与交流的空间;在巩固、应用配方法时,从一元二次方程二次项系数为1讲到二次项系数不为1的情况,从方程的配方讲到代数式的配方与证明,呈现形式丰富多彩,教学内容的编排螺旋式上升。
这既提高了学生的学习兴趣,又加深了对所学知识的理解。
一元二次方程的解法教学反思 2一元二次方程是整个初中阶段所有方程的核心。
它与二次函数有密切的联系,在以后将应用于解分式方程、无理方程及有关应用性问题中。
一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的.基础上,因此我采取让学生带着问题自学课本,寻找因式分解法解一元二次方程的形式特征,即等号右边必须为零,左边必须为两个一次因式的乘积(不能是加减运算),利用零的特性,将求一元二次方程的解,通过因式分解法,转化为求两个一元一次方程的解,将未知领域转化为已知领域,渗透了化归数学思想,让班上中等偏下学生先上黑板解题,将暴露出来的问题,在全班及时纠正。
本节课较好地完成了教学目标,同时还培养了学生看书自学的能力,取得较好的教学效果。
老师提示:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.利用求根公式解一元二次方程的一般步骤:1、找出a,b,c的相应的数值2、验判别式是否大于等于03、当判别式的数值符合条件,可以利用公式求根、学生第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多、1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号2、求根公式本身就很难,形式复杂,代入数值后出错很多、其实在做题过程中检验一下判别式这一步单独提出来做并不麻烦,直接用公式求值也要进行,提前做这一步在到求根公式时可以把数值直接代入、在今后的教学中注意详略得当,不该省的地方一定不能省,力求达到更好的教学效果、通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,激发了学生思维的火花,具体有以下几个特点:本节课第一个例题,我在引导解决此题之后,总结了利用求根公式解一元二次方程的一般步骤,不仅关注结果更关注过程,让学生养成良好的解题习惯。
专业一元二次方程教学设计反思(汇总15篇)
专业一元二次方程教学设计反思(汇总15篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、党团范文、工作计划、演讲稿、活动总结、行政公文、文秘知识、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, Party and Youth League model essays, work plans, speeches, activity summaries, administrative documents, secretarial knowledge, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!专业一元二次方程教学设计反思(汇总15篇)教学反思有助于发现教学中的不足之处,从而更有针对性地调整教学方法和策略。
21.2解一元二次方程——直接开平方法教学反思
21.2解一元二次方程——直接开平方法教学反思第一篇:21.2解一元二次方程——直接开平方法教学反思21.2解一元二次方---直接开平方法的教学反思解一元二次方程是初中数学学习中非常重要的一部分,而直接开平方法则是解一元二次方程的基础方法,它看似简单,却不容忽视。
在这节教材编写中还突出体现了换元、转化等重要的数学思想方法。
因此,这节课不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课。
本节课我以出示学习目标开场,让学生明确本节课的学习任务,抓住学习重点。
在复习近平方根的知识,为本节课的教学做好准备,符合学生的认知规律。
然后接着从实际问题切入向学生提出问题,激发学生的学习热情和问题探索的强烈欲望,然后通过一系列的问题让学生在合作与探究中逐步理解并掌握直接开平方法解一元二次方程,同时在问题的解决过程中让学生体会类比的学习方法和换元、转化的数学思想,从而培养学生良好的数学学习学习方法和数学思维方式。
其中教学问题的设计围绕目标环环相扣,同时注重层次性与启发性;在典例解析、巩固新知和达标检测环节中,注重突出重点,分层评价。
整节课学生的参与积极性较高,达到了预期的教学效果。
当然,这节课也存在不足之处,还有学生参与讨论的过程中个别学生参与程度不足,教师应关照这些边缘人员。
今后,我会更努力,多渠道向优秀老师学习,不断地提升自我、完善自我,使课堂教学更高效。
第二篇:配方法解一元二次方程教学反思在“一元二次方程”这一章里,《配方法》是作为解一元二次方程的第三种解法出现的,学生往往会把配方法和前面学过的直接开平方法以及因式分解法等同理解,所以在用配方法解题时只是简单模仿老师的解题步骤,对为什么要配方理解不到位,因此在需要用配方法证明一个代数式一定为正数或负数时往往不知所措。
而我认为配方法更多的是一种代数式变形的技巧,她可以为解一元二次方程服务,但不仅仅只是一种解方程的方法。
事实上,一个一元二次方程在配方后还是要结合直接开平方法才能解出方程的解。
因式分解法解一元二次方程教学反思
因式分解法解一元二次方程教学反思
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
因式分解法解一元二次方程教学反思
大布苏中学:杨慧敏
在学习了一元二次方程的四种基本解法后,由于在实际运用中十字相乘法解方程运用确实很广,而且用处之大不可忽视。
在解题过程中实际用起来带来很大的方便,也能提高解题效率,所以加上些节课。
在介绍十字相乘法时,先从一元二次方程一般式引入,使学生分清二次项系数、一次项系数、常数项,再进行十字相乘。
在对系数的处理上,学生搭配较简单的数时很快,但对系数较大的十字分解还缺乏经验。
所以介绍了小学学过的短除法,对常数项进行因式分解,再合理尝试十字交*相乘。
学生经过理解后,感觉十分好用,且在经过多个方程的十字相乘后,学生积累了一定的经验对符号的处理上能找到巧妙方法,通过先考虑合系数的绝对值,再确定符号所处位置。
最后出现的问题在交*相乘以后对分解式的书写,部分学生习惯前面的交*相乘从而导致了书写分解式时也交*书写造成错误。
正确的应是横向书写,所以要多强调、多指导、多个别指出学生的错误。
问题二出现在“历史”遗留问题上:一元一次方程的解法中的最后一个步骤。
所以还要用课外时间对这部份知识以前掌握不是很好的学生加以辅导。
2。
一元二次方程的解法教案人教版
- 一元二次方程的定义和解法(直接开方法、因式分解法、求根公式法)
- 一元二次方程的解法检验
- 一元二次方程的应用
在教学过程中,我们通过实例讲解、小组讨论等教学方法,使学生能够更好地理解和掌握一元二次方程的解法。同时,通过实践活动,学生能够运用所学知识解决实际问题。
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的基本概念。一元二次方程是……(详细解释概念)。它是……(解释其重要性或应用)。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了一元二次方程在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调直接开方法、因式分解法和求根公式法这三个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
学生可以通过阅读《数学年鉴》了解一元二次方程的历史背景和发展,对数学有更深的认识。
学生可以通过阅读《数学思维训练》和《一元二次方程的奇妙世界》提高自己的数学思维能力和对一元二次方程的理解。
学生可以观看与一元二次方程相关的视频资源,如数学讲座、教学视频等,从不同角度理解和掌握一元二次方程的解法。
鼓励学生积极参与课后拓展,通过阅读、思考和实践,进一步提高自己的数学素养和解决问题的能力。
针对这些问题和不足,我计划在今后的教学中进行改进。例如,在讲解重点难点部分时,我可以通过更多实例和比较来帮助学生理解,或者通过分组教学,让学生有更多的机会进行实践操作。在实验操作环节,我可以在课堂上安排更多时间,让学生有更多的机会进行实验操作,提高他们对一元二次方程的理解。
课堂小结,当堂检测
1.课堂小结
2.拓展要求
鼓励学生在课后自主学习和拓展,可以结合课堂所学的知识点进行深入阅读和思考。学生在阅读过程中遇到疑问可以随时向老师提问,老师会提供必要的指导和帮助。
《一元二次方程》教学反思范文(通用9篇)
《一元二次方程》教学反思《一元二次方程》教学反思范文(通用9篇)在发展不断提速的社会中,我们需要很强的课堂教学能力,反思指回头、反过来思考的意思。
我们该怎么去写反思呢?以下是小编为大家收集的《一元二次方程》教学反思范文(通用9篇),仅供参考,希望能够帮助到大家。
《一元二次方程》教学反思1今天上了《一元二次方程的解法》一课,课后根据听课老师的反馈意见及自己对上课的一些情况的了解进行了反思:一、本节课采用了“先学后教、合作探究、当堂达标”的课堂教学模式,先由学生课外自学,了解用因式分解法解一元二次方程的解法,并会求一些简单的一元二次方程的解;其次,在课堂中通过合作探究、小组交流、学生展示、教师点评进一步掌握一元二次方程的解法;第三,通过当堂练习、讲评,进一步巩固解一元二次方程的解题方法与技巧。
通过本课的授课情况及听、评课教师的反馈来看,基本上达到了课前设计的教学目的。
二、一些问题与想法:1、不管是自己外出听类似的公开教学,还是自己在实际操作中都会遇到同样的一个问题:学生数学语言运用得不好!很多时候,上台来展示的学生讲完后,我往下看看台下的学生,都是是一脸的茫然,不知道台上的同学在说什么。
特别是在讲解一些问题、解题技巧时,上面讲解的同学常常会采用一些自创的语言来描述。
好吧,能让下面的同学听懂也行。
只是大多时候都是让台下的同学听得云里雾里,摸不着头脑。
2、新的课堂教学要求体现学生的主体地位,教师只起到引导作用。
在本课的教学过程中,因要用到因式分解的方法来解一元二次方程,在实际教学环节中,我花了一些时间对初二的因式分解进行了复习。
课后的教师评课中,有老师讲到这一环节处理得不是很理想,我个人感觉也是如此,因式分解作为初二学习过的旧知识,完全可以让学生利用课余时间自己完成,教师在授课过程中可以直接检查学生完成的情况,视情况进行点评即可。
节省下来的时间用在后面的课堂小结和当堂达标上会让本节课的时间安排更加合理、充分。
沪教版八年级数学上册《一元二次方程的解法》教案及教学反思
沪教版八年级数学上册《一元二次方程的解法》教案及教学反思教学目标•学会使用四则运算和平方公式推导一元二次方程式•理解一元二次方程解的概念,掌握运用公式法解一元二次方程的方法•能够通过例题的计算、实例的解答及练习中的综合运用,掌握一元二次方程解法教学内容课程背景•学科:数学•年级:八年级上册•课程名称:一元二次方程的解法•课标要求:熟练掌握公式法解一元二次方程的解题方法,能综合运用所学知识解决实际问题教学过程第一节课•导入:通过提出一个生活案例引发学生思考和探讨•讲授:教师介绍使用平方公式推导一元二次方程式的方法,并针对性地讲解平方公式的概念和作用•练习:学生通过课堂练习巩固平方公式的掌握,并且掌握运用平方公式推导一元二次方程式的方法第二节课•导入:通过一个有趣的题目引发学生注意力,同时奠定一元二次方程解法的基础•讲授:教师详细讲解一元二次方程解的概念和解题方法,并介绍运用公式法解一元二次方程的思想和方法•练习:学生通过一些例题的练习,掌握运用公式法解一元二次方程的技巧第三节课•导入:通过举实际应用的例子,让学生了解一元二次方程的实际应用场景•讲授:教师进一步深入讲解运用公式法解一元二次方程的技巧和注意点,并提供不同难度的实例,让学生综合运用所学知识解决实际问题•练习:学生通过练习不同的实例,巩固所学知识,提升解决问题的能力教学反思教学策略在教学过程中,我采用了导入、讲授、练习的教学策略。
通过用一个有趣生动的问题或实际案例来导入课堂,引发学生热情和积极性。
然后就相关知识进行讲解,并通过适当的方式引导学生掌握解题的技巧和方法。
最后结合不同层次的练习巩固所学知识和技能。
教学方法在教学方法上,我采用了多种不同的教学方法。
比如在讲授平方公式的时候,我注重理解掌握,并采用小组互动的方式让学生巩固掌握;在解释解法的过程中,讲解方法详尽,重点归纳,强化练习题目,让学生独立思考满足课程的要求;而在综合练习环节,我注重让学生运用所学知识,并在训练中适当加强训练,提高学生思考和解题能力。
初中数学【一元二次方程的解法】 教学反思
初中数学【一元二次方程的解法】教学反思一元二次方程的解法较多,针对不同形式的方程灵活选用不同的解法,熟练准确的求出方程的解,是我们的教学目标。
为此,应对各种不同的解法进行对比、归纳。
一、一元二次方程的解法:
1.直接开平方法应用简单,但受形式限制;
2.配方法较麻烦,用公式法更方便,故一般不采用。
但配方法是一种较重要的数学方法,公式法就是由它推导出来的,而且在后面的函数中还要用到配方法,所以要掌握好。
配方时,要注意二次项系数应先化为1,然后把方程两边都加上一次项系数一半的平方;
3.公式法是一元二次方程的基本解法,对所有的一元二次方程都适用;4.因式分解法使用方便,是解一元二次方程最常用的方法,但不是所有的二次三项式都能很方便地进行因式分解。
应用时要注意,等号的右边一定要为0,然后再把方程的左边进行因式分解。
三、解法选用:
1.先观察能否用直接开平方法,能用就优先采用;
2.再观察能否用因式分解法;
3.用公式法。
用分解因式法解一元二次方程教学反思
篇一:因式分解法解一元二次方程教学反思因式分解法解一元二次方程教学反思大布苏中学:杨慧敏在学习了一元二次方程的四种基本解法后,由于在实际运用中十字相乘法解方程运用确实很广,而且用处之大不可忽视。
在解题过程中实际用起来带来很大的方便,也能提高解题效率,所以加上些节课。
在介绍十字相乘法时,先从一元二次方程一般式引入,使学生分清二次项系数、一次项系数、常数项,再进行十字相乘。
在对系数的处理上,学生搭配较简单的数时很快,但对系数较大的十字分解还缺乏经验。
所以介绍了小学学过的短除法,对常数项进行因式分解,再合理尝试十字交*相乘。
学生经过理解后,感觉十分好用,且在经过多个方程的十字相乘后,学生积累了一定的经验对符号的处理上能找到巧妙方法,通过先考虑合系数的绝对值,再确定符号所处位置。
最后出现的问题在交*相乘以后对分解式的书写,部分学生习惯前面的交*相乘从而导致了书写分解式时也交*书写造成错误。
正确的应是横向书写,所以要多强调、多指导、多个别指出学生的错误。
问题二出现在“历史”遗留问题上:一元一次方程的解法中的最后一个步骤。
所以还要用课外时间对这部份知识以前掌握不是很好的学生加以辅导。
篇二:因式分解法解一元二次方程反思《因式分解法解一元二次方程》的教学反思本节课采用了“先学后教、合作探究、当堂达标”的课堂教学模式,教学注重学生的基础,调动了学生学习的积极性、主动性,并激发了学生学习的兴趣,提高了课堂效率。
先由学生课外自学,了解用因式分解法解一元二次方程的解法,并会求一些简单的一元二次方程的解;其次,在课堂中通过合作探究、小组交流、学生展示、教师点评进一步掌握一元二次方程的解法;第三,通过当堂练习、讲评,进一步巩固解一元二次方程的解题方法与技巧。
通过本课的授课情况及听、评课教师的反馈来看,基本上达到了课前设计的教学目的。
结合这些,在上这节课时,我注意了以下方面:1、突出重点,合理设计在教学中,各个环节均围绕着利用分解因式解一元二次方程这一重点内容展开,我根据学生的实际情况进行大量的课前预习,把学生在解题过程中容易出现的各种问题及时展现出来,有利于学生迅速掌握基本的解题技能。
《一元二次方程的解法——直接开平方法》教学反思
《一元二次方程的解法——直接开平方法》的教学反思
《一元二次方程的解法——直接开平方法》是九年制义务教育新课程标准九年级第二十一章第二节第一课时的内容。
在学习平方根的意义时,学生已经见识过直接开平方法,本节是正式以定义的方式学习,另外它是配方法的基础,为后续学习解一元二次方程打下坚实的基础。
首先复习平方根的概念,使用辩证法理解“x是a的平方根”和“a的平方根之一是x”这两句话。
我安排学生辨别b为零的一元二次方程,并且引导学生将其与《二次根式》联系起来,通过回忆早在二次根式一章就已经求解过一元二次方程,从而引出直接开平方法的概念。
坚持概念教学的基本步骤,确认使用该方法的条件b为零,强调结果的个数为两个(零除外),教师板演做示范,规范使用直接开平方法做题的流程。
然后在巩固练习和当堂检测环节,提问学生上讲台板书,暴露问题,归纳讲解。
遗憾的是,有学生将一元二次方程的一般形式记忆深刻,对于变成直接开平方法的形式有疑惑,另外本节课没有涉及与实际有关的问题,无法舍去不满足条件的一个解。
一元二次方程的解法教学反思10篇
一元二次方程的解法教学反思10篇精华一元二次方程的解法教学反思10篇作为一名优秀的人民教师,我们要在教学中快速成长,在写教学反思的时候可以反思自己的教学失误,那么写教学反思需要注意哪些问题呢?以下是小编为大家整理的一元二次方程的解法教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
一元二次方程的解法教学反思1一元二次方程是九年级上册第二单元内容,是今后学习二次函数的基础,是初中数学教材的一个重要内容。
一、课前思考。
1、学生基础。
在七八年级学生已经学习过一元一次方程、二元一次方程组、分式方程的知识,有着很好的解题基础。
2、教学重点应放在解题方法上,让学生通过观察发现每一种解法的特征,是学生能够根据特征选择合适的解题方法。
3、应注意培养学生的解题技能,解题速度、解题的准确率,特别是利用配方法界一元二次方程时,必须让学生区分方程的配方与式子配方的不同。
4、每节课必须实行小测验,可根据题的难易水准不同,将题量控制在3——5道之间。
二、教学过程中学生出现的主要问题。
1、学生不善于观测,特别是在将四种方法全部学习完之后,学生不能很好的选择合适的方法。
例如:能用直接开平方的题,确将其展开再配方;能利用十字相乘法分解因式的,却选择公式法等。
2、对符号处理的不准确,贴别是一个负的无理分数和一个分数相加时,总是将负号放在分数线的前面。
3、十字相乘法中,常数项分解为两个数相乘时,出现符号错误。
4、用配方法计算时错误率较高。
5、用公式法计算时,没有将b2——4ac的.结果放在根号下。
三、教后反思1、今后在将四种方法讲完之后,要用两节课的时间实行综合练习,第一节课能够采用让学生练习解题的方式,第二节课能够采用让学生说解法、让学生找解题错误之处方法实行。
2、增加小测验的力度,能够将题量减小,次数增加。
这样不但能够增加学生的信心,也能够通过持续的重复,增强学生的熟练水准。
3、为了让学生学会选择合适的方法解题,能够采用同桌互相按要求出题的方法,达到学生对各种解法特征的目的。
北师大版九年级下用公式法解一元二次方程的教学反思
北师大版九年级下用公式法解一元二次方程的教学反思教学反思:用公式法解一元二次方程一、引言在北师大版九年级下的数学教学中,一元二次方程的解法是重点之一。
其中,公式法是一种常用的解法,对于学生掌握一元二次方程的解法至关重要。
在这篇教学反思中,我将探讨我在教授这一部分内容时的方法、效果和改进策略。
二、教学内容和方法在教授用公式法解一元二次方程时,我首先回顾了一元二次方程的一般形式和相关概念,如二次项系数、一次项系数和常数项。
接着,我详细介绍了如何使用公式法求解一元二次方程,包括推导公式、公式应用和注意事项。
为了使学生更好地理解和掌握公式法,我通过实例进行了解释和演示,并布置了相应的练习题。
三、教学效果在教学过程中,我发现大部分学生能够理解并掌握公式法的基本原理和应用。
他们在课堂上表现积极,能够主动参与讨论和思考。
通过练习题的完成情况来看,大多数学生能够正确地使用公式法求解一元二次方程。
然而,我也注意到一些学生在应用公式法时容易出错,尤其是在系数取值范围和符号判断方面。
为了解决这些问题,我在课堂上加强了对这些易错点的讲解和练习,并鼓励学生在解题时仔细审题和检查。
四、改进策略为了进一步提高教学效果,我计划在今后的教学中采取以下改进策略:1. 加强课堂互动:鼓励学生提问和发表自己的见解,通过讨论和交流加深学生对公式法的理解。
2. 多样化教学方法:结合实例、图像和表格等多种形式进行讲解,帮助学生更好地理解和记忆。
3. 强化练习:布置更多有针对性的练习题,让学生充分熟悉和掌握公式法的应用。
4. 个性化辅导:对于学习有困难的学生,提供个性化的辅导和指导,帮助他们克服学习障碍。
五、结论通过这次教学反思,我认识到了自己在教授用公式法解一元二次方程中的优点和不足。
在今后的教学中,我将不断改进教学方法和策略,以提高学生的学习效果和兴趣。
同时,我也将关注学生的反馈和表现,及时调整教学计划和内容,以更好地满足学生的学习需求。
实际问题与一元二次方程教学反思
实际问题与一元二次方程教学反思(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、合同协议、条据书信、规章制度、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, contract agreements, document letters, rules and regulations, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!实际问题与一元二次方程教学反思实际问题与一元二次方程教学反思(精选6篇)下面是本店铺整理的实际问题与一元二次方程教学反思(精选6篇)以供参阅。
一元二次方程的解法教学反思
一元二次方程的解法教学反思
每届学生学习一元二次方程的解法都会有很多问题,不会选择方法、不会解过程、不会计算等等。
本学期在讲解一元二次方程的解法之前,根据以往的教学经验,我做了大量的设想,预想了学生做题时出现的问题及学习中的困惑,总体来说结果较令我满意,也为我今后的教学增添了信心。
学生对一元二次方程的解法总是容易混淆,不知道用什么方法解决最简便,特别是用配方法和分解因式法解一元二次方程时,出现的问题就更多了。
在讲每一种方法时,我都会和学生一起反复强调一无二次方程的一般式及方法步骤,并给学生板演讲解,再由学生板演反复练习,强化注意事项,最后由独立解题。
方法都讲完后,精选了5道习题让学生巩固训练,体验一题多解,强化解题步骤,发现问题及时解决,让学生了解每一步骤的意义和方法。
解练完后还会有些同学会感觉容易混,我又给了学生一些必要的方法技巧。
如:1.公式法、因式分解法必化一般式;2.当方程无常数项时,化一般式后直接提取公因式;3.配方法要二次项系数为1时移常数项,构成完全平方式,后用直接开平方;4.有完全平方式先考虑直接开平方法;5. 十字相乘法的形式像完全平方公式;6.实在不会选,就化一般式后用求根公式解。
7.会找到各项的系数、常数。
归纳后,我又让学生进行练习,效果良好,但是还有一部分学生只会用公式法,各项系数常数容易带错,计算开方不正确,符号代错,忘记根的判别式对结果的作用等等。
每届的数学教学活动总能让我有全新的感受,我乐于去体验、去改变,让师生能在教学中相长。
九年级数学一元二次方程教学反思
九年级数学一元二次方程教学反思身为一位优秀的老师,教学是我们的任务之一,写教学反思能总结教学过程中的很多讲课技巧,那么你有了解过教学反思吗?以下是店铺精心整理的九年级数学一元二次方程教学反思(通用8篇),欢迎大家分享。
九年级数学一元二次方程教学反思篇1方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。
这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:本节课的整体过程是这样的,通过三个例题让学生掌握一元二次方程根的判别式及根与系数关系的应用,总的来说,虽然课堂上同学们总结错误不少,总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了。
学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。
在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。
另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。
九年级数学一元二次方程教学反思篇21.注重知识的发生过程与思想方法的应用《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。
探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。
这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。
一元二次不等式解法教学反思
《一元二次不等式的解法》教学反思
一元二次不等式的解法是研究函数的定义域、值域等问题的最严重工具,它可渗透到中学数学的几乎所有领域中,对今后的学习起着十分严重的作用。
一元二次不等式的解法这节课刚刚讲完,听完几位老师的建议和自己的反思,现将这节课体会书写如下:
胜利之处:
(1)能够充分体现这节课的重点、难点。
对于一元二次不等式,一元二次方程以及二次函数之间的关系强调到位。
(2)能够培养学生数形结合的思想。
对于一元二次不等式的解法,先画出草图,从图像中观察不等式的解集。
(3)教态自然,语言流利。
课堂上和学生的语言亲密,激励性较好。
(4)整个课堂安排合理,协调。
(5)讲解完例题,让学生总结,抽象出结论,培养学生抽象概括的能力。
(6)能够利用多媒体教学,对于函数的图像给出形象详尽,学生易于理解。
(7)能够给学生提供活动时间,体现新课改的思想。
不足之处:
(1)课前提出问题时,出现了一个不等式,后面应该解出此不等式,做到前呼后应。
(2)对于引例,应在强调图像的作用,让学生明确这节课的主要内容数形结合思想,从图像写出解集。
(3)给学生的活动时间略显紧,可以考虑多给学生留有余地,充分发挥学生的主观能动性。
这些是我上完这节课的体会和感受,对于做的好的方面,在以后的教学中继续发扬,对于不足之处,在今后的教学中,多向其他有经验的老教师学习,力求改正,注意,做到更好,使自己的教学尽善尽美!。
初中数学_用公式法求解一元二次方程教学设计学情分析教材分析课后反思
九年级上第二章一元二次方程3.用公式法求解一元二次方程(一)教学活动教学步骤师生活动设计意图活动一:创设情境导入新课【课堂引入】多媒体出示问题:1、我们把__ax2+bx+c=0 (a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中ax2称为二次项,bx称为一次项,c称为常数项,a称为二次项系数,b称为一次项系数.2、把下列方程化为一般形式,并填表方程 a b c处理方式:教师用多媒体出示问题,引导学生阅读后填空,然后让学生说一说用配方法解方程的步骤.针对学生的基本学情,从一元二次方程的基本概念引入,复习abc的取值,并回忆归纳总结配方法解一元二次方程的一般步骤,为下面的学习做好铺垫.活动二:实践探究交流新知活动内容2:(多媒体出示)教师:提出问题:用配方法一元二次方程ax2+bx+c=0(a≠0).学生在演算纸上自主推导,并针对自己推导过程中遇见的问题在小范围内自由研讨.最后由师生共同归纳、总结,得出求根公式.解:移项,得ax2+bx=-c.二次项系数化为1,得x2+ba x=-ca.配方,得x2+ba x+⎝⎛⎭⎫b2a2=-ca+⎝⎛⎭⎫b2a2,即⎝⎛⎭⎫x+b2a2=b2-4ac4a2.(提示:这时能不能开方解方程?为什么?进而引导学生讨论b2-4ac的值对解方程的影响)当b2-4ac>0时,直接开平方,得x+b2a=±b2-4ac2a,即x=-b±b2-4ac2a,∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.当b2-4ac=0时,方程有两个相等的实数根.当b2-4ac<0时,方程没有实数根.处理方式:由学生在练习本上独立完成,对于个别有困难的学生教师指导点拨.然后教师点评并在黑板上展示推导把握求根公式的关键是掌握公式的推导过程,掌握推导过程的关键是掌握配方法.让学生自主探索一元二次方程的求根公式,一方面可以巩固配方法,另一方面对配方后开方需要满足的条件先由学生独立判断,再经过教师引导,学生将会印象深刻,有助于理解求根公式.只有亲身经历公式的推导过程,才能发现问题、汲取教训、总结经验,形成自己的认识.才能在集体交流的时候,有感而发.通过例题的练习和讲解,使学生在使用公式法解一【直击中考】1、(2016•昆明)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定2、(2016•丽水)下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2+x+2=0C.x2﹣1=0D.x2﹣2x﹣1=03、(2016•营口)若关于x的一元二次方程kx2+2x﹣1=0有实数根,则实数k的取值范围是()A.k≥﹣1B.k>﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.拓展提升,最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,实现教学目标.活动四:课堂总结反思通过这节课的学习,你有哪些收获?1.一元二次方程的求根公式是什么?2.如何判断一元二次方程根的情况3.公式法求解一元二次方程的一般步骤有哪些?学生畅谈自己的收获!师生共同总结公式法求解一元二次方程的一般步骤:(1)把方程化为一般形式,进而确定a,b,c的值;(注意符号)(2)求出b2-4ac的值;(先判别方程是否有根)(3)在b2-4ac≥0的前提下,把a,b,c的值代入求根公式,求出-b±b2-4ac2a的值,最后写出方程的根.当b2-4ac<0时,方程没有实数根.【当堂检测】1.不解方程,判断方程根的情况2.用公式法解方程课堂总结是知识沉淀的过程,使学生对本节课所学知识进行梳理,养成反思与总结的习惯,培养自我反馈、自主发展的意识.当堂检测,及时反馈学习效果.【知识网络】提纲挈领,重点突出.学情分析:1、学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a ≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.利用配方法解方程时,有不少题计算起来非常麻烦,已经有学生迫切的想学习更为简洁的解方程的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元二次方程的解法》教学反思
《一元二次方程的解法》教学反思一元二次方程是九年级上册第二单元内容,是今后学习二次函数的基础,是初中数学教材的一个重要内容。
一、课前思考。
1、学生基础。
在七八年级学生已经学习过一元一次方程、二元一次方程组、分式方程的知识,有着很好的解题基础。
2、教学重点应放在解题方法上,让学生通过观察发现每一种解法的特征,是学生能够根据特征选择合适的解题方法。
3、应注意培养学生的解题技能,解题速度、解题的正确率,特别是利用配方法界一元二次方程时,必须让学生区分方程的配方与式子配方的不同。
4、每节课必须进行小测验,可根据题的难易程度不同,将题量控制在3——5道之间。
二、教学过程中学生出现的主要问题。
1、学生不善于观测,特别是在将四种方法全部学习完之后,学生不能很好的选择合适的方法。
例如:能用直接开平方的题,确将其展开再配方;能利用十字相乘法分解因式的,却选择公式法等。
2、对符号处理的不正确,贴别是一个负的无理分数和一个分数相加时,总是将负号放在分数线的前面。
3、十字相乘法中,常数项分解为两个数相乘时,出现符号错误。
4、用配方法计算时错误率较高。
5、用公式法计算时,没有将b2--4ac的结果放在根号下。
三、教后反思1、今后在将四种方法讲完之后,要用两节课的时间进行综合练习,第一节课可以采用让学生练习解题的方式,第二节课可以采用让学生说解法、让学生找解题错误之处方法进行。
2、增加小测验的力度,可以将题量减小,次数增加。
这样不仅可以增加学生的信心,也可以通过不断的重复,增强学生的熟练程度。
3、为了让学生学会选择合适的方法解题,可以采用同桌互相按要求出题的方法,达到学生对各种解法特征的目的。