变频器一拖二

合集下载

变频器一拖二设计

变频器一拖二设计

变频器一拖二必须具备仿真调试功能。

变频器应具备仿真调试功能选相,当外部电机不具备连接和安装条件时,可以将变频器设定到仿真调试功能,模拟出电机的转速、转向、电流、输出电压等,但同时保证变频器无动力电输出,实现安全预调试。

变频器调速范围:0-107%连续可调。

变频器加/减速时间:0.1-3600秒(根据负载情况可设定)。

变频器输出频率:0-75Hz(根据电机情况可设定)。

变频器的平均无故障时间MTBF要高于50000小时。

变频器可做为软启动器使用。

用户可调用数字表,可显示速度、电流、电压、功率等。

变频器能够报告参数、故障记录、故障分析。

变频器具有浪涌吸收保护电路。

变频器至少应配备以下设备l 输入侧的滤波器l 输出电抗器l 直流电抗器l 安装在开关柜面板上的操作面板及其连线整套变频控制装置等所有部件及内部连线一体化设计,用户只须连接输入/输出电缆,控制电源和控制信号线即可。

变频器应有过电压,过电流,欠电压,缺相,变频器过载,变频器过热,电机过载,输出接地,输出短路等保护功能,并能联跳输入侧开关。

变频器应设有标准的双RS485接口,内部要求可以配置多种标准通讯协议以便与电气监控管理系统(ECMS)进行通讯联系。

具体协议型式待定。

为便于用户现场维护,变频器的现场操作界面应为中文显示,能同时显示变频器母线电压值、电机电流、变频器输出频率、电机运行方向、变频器的速度给定方式(如自动/手动方式)、变频器当前状态(是否故障及故障时间),可以实现七行液晶显示。

变频器的控制单元采用32位或以上CPU。

控制面板可以安装在变频器本体上,也可以安装在变频器柜门上,而且控制面板可以在变频器运行时实现带电插拔并且不会引起变频器停机故障;变频器的操作面板可同时存储2套所有变频器参数和通讯卡参数,并可下载到新的变频器中。

要求变频器本体具有24V直流电源,开关量I/O端子具备多种组态功能。

变频器的频率输出信号应为4~20mA.变频器的指令接受信号(来自DCS)也应为4~20mA。

变频器一拖二水泵的控制原理

变频器一拖二水泵的控制原理

变频器一拖二水泵的控制原理一、变频器的基本原理变频器是一种能将电能转换为可调节频率和电压的设备。

变频器包括整流器、滤波器、逆变器和控制电路等主要部分。

其中,整流器将交流电源转换为直流电源,滤波器是为了减小电压的脉动,逆变器将直流电源转换为可调频率和电压的交流电源,控制电路根据输入的控制信号对变频器进行控制。

二、一拖二水泵的控制一拖二水泵是指一个变频器驱动两个水泵同时工作。

变频器通过调节水泵的转速来控制水泵的流量,实现对水泵的精确控制。

1.确定工作方式一拖二水泵通常有两种工作方式:主泵-备泵工作方式和主泵-辅泵工作方式。

主泵-备泵工作方式是指主泵和备泵在运行时刻交替工作,备泵在主泵故障时启动。

主泵-辅泵工作方式是指主泵在正常运行时,辅泵作为辅助泵,当流量过大时才启动。

2.设置变频器参数根据实际情况,设置变频器的工作频率、电压、最大转速、最小转速等参数。

这些参数会直接影响水泵的运行状态和工作性能。

3.控制水泵的转速通过调节变频器的输出频率和电压,可以调节水泵的转速。

当输出频率增加时,水泵的转速也会相应增加,进而提高水泵的流量;反之,当输出频率减小时,水泵的转速也会降低,从而减小水泵的流量。

4.设置保护功能为了保证水泵的安全运行,变频器还可以设置过流保护、过压保护、欠压保护、过载保护等功能。

当水泵出现异常运行状态时,变频器会自动检测并进行相应的保护措施,避免设备损坏。

5.实现一拖二控制在一拖二水泵系统中,通过一个变频器同时控制两个水泵的转速,可以实现两台水泵的同步运行。

在工作过程中,如果一台水泵发生故障,变频器可以自动切换到备用的水泵,保证系统的正常工作。

三、优点与应用1.精确控制:变频器可以根据实际需求精确调节水泵的转速和流量,提高水泵的工作效率。

2.节能降耗:变频器可以根据实时需求调整水泵的转速,最大程度地节约能源。

3.操作简便:通过变频器可以对整个系统进行集中控制,方便操作和管理。

4.应用广泛:一拖二水泵广泛应用于楼宇、工业、农业等领域,满足不同行业的多样化需求。

变频器可以实现一拖二甚至一拖多

变频器可以实现一拖二甚至一拖多

变频器可以实现一拖二甚至一拖多
变频器是一种电力调节设备,通过调节电源的频率,从而控制电动机
的速度和扭矩。

变频器可以实现一拖二甚至一拖多的功能,这是因为其具
备以下特点:
1.控制多个电动机:变频器可以同时连接多个电动机,通过设置不同
的参数,实现同时控制多个电动机的运行。

这样可以节省成本,并且提高
系统的灵活性。

2.独立控制:变频器可以对每个电动机进行独立控制,可以根据不同
的工艺需求,对每个电动机的速度、扭矩进行个性化的调节,从而实现一
拖多的功能。

3.多电源供电:变频器可以通过多个电源供电接口,连接多个电源进
行供电,从而实现一拖多的功能。

这样可以提高系统的可靠性和稳定性。

4.网络通信:现代的变频器通常具备网络通信功能,可以通过网络连
接多个变频器,实现集中控制和监控。

通过网络通信,可以实现多个变频
器之间的数据交换和协同控制,从而实现一拖多的功能。

5.多种控制模式:变频器可以支持多种控制模式,包括速度闭环控制、扭矩闭环控制和位置闭环控制等。

这些控制模式可以根据具体需求进行选择,从而实现一拖多的功能。

总之,变频器可以通过控制多个电动机的速度和扭矩,实现一拖二甚
至一拖多的功能。

这种功能可以广泛应用于工业自动化领域,提高生产效
率和运行稳定性。

变频恒压供水一拖二

变频恒压供水一拖二

变频恒压供水一拖二
一、变频恒压供水系统主电路和控制线路图:
系统由变频器、PLC和两台水泵构成。

利用了变频器控制电路的PID等相关功能,和PLC配合实施变频一拖二自动恒压力供水。

具有自动/手动切换功能。

变频故障时,可切换到手动控制水泵运行。

控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达
到恒压供水的目的。

当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC控制停掉1#工频泵,由2#泵实施恒压供水。

至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒压供水。

如此循环不已。

(素材和资料部分来自网络,供参考。

可复制、编制,期待您的好评与关注)。

一拖二一般有两种情况

一拖二一般有两种情况

我们所说的一拖二一般有两种情况,
第一种情况是:一台大变频器拖动两台较小的电机,这两台电机的运行逻辑是同时启动和停止,这种控制方式比较简单,直接按照拖动一台来设计,只是在每台电机前加上相应的保护即可。

按汇川MD320系列变频器画的一次图如下:
需要注意的是,变频器的功率必须大于二台电机功率之和,而且电机保护要分别装置。

同样的原理可以实现一拖三甚至一拖多,在纺织厂曾经见过一拖一百的情况。

第二种情况是一台变频器在启动时拖动1#电机,当1#电机达到工频转速时,将负载投切到市电上;然后变频器停机投切到2#电机上再启动;一次原理如下:
其中,KM1和KM2机械电气互锁,KM3和KM4机械电气互锁。

二次图:。

变频一拖二恒压供水

变频一拖二恒压供水

变频一拖二恒压供水变频一拖二恒压供水产品特点1. 变频一拖二恒压供水按辅助供水方式可分为无辅助供水、小型水泵辅助供水、小型气压水罐辅助供水3种无辅助供水:同型号水泵互为备用,小流量供水时效率较低;小型水泵辅助供水:有两种以上规格的水泵(主泵和副泵),大流量条件下主泵运行,小流量条件下启用副泵,夜间流量接近零时仍然存在能量浪费;小型气压水罐辅助供水:小流量条件下切换到气压供水方式,避免能量浪费,隔膜式气压水罐可缓冲水锤压力波动。

2. 变频一拖二恒压供水按稳流罐构造可分为气水分离、气水接触2种气水分离:利用胶囊将水和空气隔离,空气与水无接触,卫生条件好,对水锤压力波动有缓冲作用;气水接触:消除负压时空气通过过滤器进入稳流罐,空气与水有接触,卫生条件取决于过滤器质量。

3. 变频一拖二恒压供水按供水压力可分为恒压变量、变压变量2种恒压变量:供水量随用水量变化,但供水水压保持设定值的供水方式。

控制简单,但节能不充分;变压变量:供水量随用水量变化,供水水压按设定供水工作曲线或配水管网终端多点压力控制的供水方式。

节能充分,控制系统比较复杂,管网压力有波动。

无负压供水设备的主要功能●该设备具有过压、欠压、过流、过载,瞬间停电,电子热保护等保护功能。

●变频器有完善的自诊断功能,当故障出现时能显示出故障信息代码以便用户对照。

●设备设有液位传感器系统,可防止水池缺水时烧毁水泵、变频器。

●设备设有相序保护和断相保护功能,如设备在使用过程中出现断相,相序错换,设备能自保护停机。

●设备具有定时泵切换功能,而使各泵的运转时间均一化,从而提高了泵的使用寿命。

●具有自动和手动运行功能。

当自动部分出现问题时,可转换到手动档工作。

●设备有消防供水接口系统,可以与用户的火警传感系统连接,可达到遇火警时消防高压用水自动开启的目的。

即两种设定压力。

●内置实时钟。

可编程压力运行时间图,多达每日8 段定时高低压供水功能。

变频一拖二恒压供水工作原理:变频一拖二恒压供水投入使用,自来水管网的水进入供水罐,罐内空气从真空消除器排除,待水充满后,真空消除器自动关闭。

一拖二变频器操作流程

一拖二变频器操作流程

一拖二变变频器操作流程一、变频启动、停止、升降频运行步骤
二、变频器工频运行
6KV工作II段变频器操作流程
二、变频器工频运行
备注:一拖二互切流程
正常切换时:
如果电机一运行于变频状态,电机二处于工频备用状态,需要切换到电机二运行于变频状态,电机一处于工频备用状态,为了保证出水母管的压力,第一步将电机二工频启动,同时将电机一变频停止,第二步将电机一工频启动,同时将电机二工频停止,第三步将电机二变频启动,同时将电机一工频停止备用,完成切换过程;同理也可完成反相切换。

高压给水泵除具备变频运行功能外,同时也具有工频旁路运行方式,以防止变频器发生故障退出后,还可以保证整个系统运行的可靠性。

QS2与QS3、QS5与QS6之间有机械互锁,确保工频、变频同时输出造成输出短路。

QS1与QS4之间有逻辑机械锁,避免6KV两段电源有回流。

QS3和QS4,QS1和QS6之间有逻辑互锁,保证开关
柜输入、输出对应的一致性。

QS3和QS6之间有逻辑互锁,确保变频器输出不同时驱动两电机。

高压变频器手动一拖二旁路设计

高压变频器手动一拖二旁路设计

高压变频器手动一拖二旁路
变频改造方案为一拖二的方案,主要由两台刀闸柜、一台
变压器柜、一台功率单元柜和一台控制柜所组成。

高压变频器接入电气系统的方式如下图所示。

其中:QF1、QF2为高压开关,QS1、QS4为入口刀闸,QS2、QS5为出口刀闸,QS3、QS6为旁路刀闸。

高压母线段高压母线段
变频装置
电动机电动机
正常运行时:电机一运行于变频状态,电机二处于工频备用状态,此时QS1、QS3、QS5处于合闸状态,QS2、QS4、QS6处于分闸状态;同理如果电机二运行于变频状态,电机一处于工频状态,此时QS2、QS4、QS6处于合闸状态,QS1、QS3、QS5处于分闸状态。

正常切换时:如果电机一运行于变频状态,电机二处于工频备用状态,需要切换到电机二运行于变频状态,电机一处于工频备用状态,为了保证煤矿坑道的风量,第一步将电机二工频启动,同时将电机一变频停止,第二步将电机一工频启动,同时将电机二工频停止,第三步将电机二变频启动,同时将电机一工频停止备用,完成切换过程;同理也可完成反相切换。

电机除具备变频运行功能外,同时也具有工频旁路运行方式,以防止变频器发生故障退出后,还可以保证整个系统运行的可靠性。

QS2与QS3、QS5与QS6之间有机械互锁,以免工频、变频同时输出短路。

QS1与QS4之间有逻辑机械锁,以免KV两段电源有回流。

QS3和QS4,QS1和QS6之间有逻辑互锁,保证开关柜输入、输出对应的一致性。

QS3和QS6之间有逻辑互锁,确保变频器输出不同时驱动两电机。

如果检修高压变频器,两组风机都可以工频运行。

变频器一拖二控制要求

变频器一拖二控制要求

变频器一拖二控制要求变频器一拖二控制要求1、设备选型A.变频器选型在选型的时候,首先要考虑运行工况一;一;其中一台或多台电机是否要在变频器运行过程中随时启停。

如果在变频器的运行过程中,电机不需要随时启动,只是停止或者停止都不用,那么在变频器容量选型的时候只需要注意变频器的额定功率大于所有电机的总功率,然后再放大一级选型即可。

在这种情况下,进行电气设计的时候,就必须保证一个原则:变频器处于停止状态才能切换接触器,投入或者变频电机的运行状态;在变频器运行过程中,严禁单独启停某台设备或者多台设备。

如果在变频器的运行过程中,电机需要随时启动停止,那么在变频器容量选型的时候需要特别注意!首先统计可能要随时启停电机的总功率,然后把这个功率乘以5~7(在变频器运行过程中,随时启动的电机相当于直接启动,电机启动电流差不多为额定电流的5~7倍),最后把这个结果与不需要随时启停的电机总功率相加,得到的和就是所需变频器的理论功率。

如果需要启停的设备很多,那么这个功率就可以作为变频器的选型功率,不需要再放大一级了一;一;因为平常很难可能多个电机在同时启动。

如果需要启停的设备很少,那么这个功率需要再放大一级,才能作为变频器的选型功率。

B.交流接触器选型对于需要随时启停的电机,需要配置交流接触器。

对于交流接触器的选型,遵循一般选型原则即可一;一;电机的额定电流再放大一级选型即可。

C.热继电器或电动机保护器选型对于变频器一拖多的情况,为保护每个电机以及变频器的设备安全,原则上必须在电机主回路安装热过载继电器或电动机保护器。

对于热继电器的选型,遵循一般选型原则即可一;一;电机的额定电流在热继电器的整定范围以内。

2.其它注意事项在一台变频器驱动N台电机的情况下,如果线路过长,可能存在比较大的分布电容,造成较大的高频电流而导致变频器过流、漏电流增加、电流显示精度变低等。

如果线路过长,需要采用输出滤波器。

以下以富士变频器为例来进行说明。

变频恒压供水一拖二PLC程序解析

变频恒压供水一拖二PLC程序解析

变频恒压供水一拖二PLC程序解析变频恒压供水一拖二PLC程序解析此系统是2000年前后,由上海博源自动化有限公司制作的(很想念他们,多年未联系了)。

主电路结构为变频一拖二形式。

控制原理简述如下:系统由变频器、PLC和两台水泵构成。

利用了变频器控制电路的PID等相关功能,和PLC配合实施变频一拖二自动恒压力供水。

具有自动/手动切换功能。

变频故障时,可切换到手动控制水泵运行。

控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达到恒压供水的目的。

当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC控制停掉1#工频泵,由2#泵实施恒压供水。

至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒压供水。

如此循环不已。

需要说明一下的是:变频器必须设置好PID运行的相关参数,和配合PLC控制的相关工作状态触点输出。

详细调整,参见东元M7200的说明书。

在本例中,须大致调整以下几个参数。

1、设置变频器启/停控制为外部端子运行;2、设置为自由停车方式,以避免变频/工频切换时造成对变频器输出端的冲击;3、设置PID运行方式,压力设定值由AUX端子进入。

反馈信号由VIN端子进入;4、对变频器控制端子——输出端子的设置。

设定RA、RC为变频故障时,触点动作输出;定R2A、R2C为变频零速时,触点动作输出;设定DO1、DOG为变频器全速(频率到达)时,触点动作输出。

上图为PLC控制接线图。

水泵和变频器的故障信号未经PLC处理,而是汇总给继电器KA2。

其手动/自动的切换控制继电器KA1来切换。

变频/工频的运行由接触器触点来互锁,以提运行安全性。

可以看出,R2A和DO1是PLC的两个关键输入信号。

在PLC的控制动作输出中,对变频到工频的切换是通过DO1(变频器零速信号)来进行的;对工频到变频的切换是通过R2A(变频器频率到达信号)来进行的。

变频恒压供水一拖二PLC程序解析

变频恒压供水一拖二PLC程序解析

变频恒压供水一拖二PLC 程序解析——PLC 步进指令应用实例之一一、变频恒压供水系统主电路和控制线路图:PEL3L2L1源电压指示作电流指示泵变频运行泵变频运行泵工频运行泵工频运行制电源体散热风机此系统是2000年前后,由上海博源自动化有限公司制作的(很想念他们,多年未联系了)。

主电路结构为变频一拖二形式。

控制原理简述如下: 系统由变频器、PLC 和两台水泵构成。

利用了变频器控制电路的PID 等相关功能,和PLC 配合实施变频一拖二自动恒压力供水。

具有自动/手动切换功能。

变频故障时,可切换到手动控制水泵运行。

控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC 控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达到恒压供水的目的。

当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC 控制停掉1#工频泵,由2#泵实施恒压供水。

至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒压供水。

如此循环不已。

需要说明一下的是:变频器必须设置好PID 运行的相关参数,和配合PLC 控制的相关工作状态触点输出。

详细调整,参见东元M7200的说明书。

在本例中,须大致调整以下几个参数。

1、设置变频器启/停控制为外部端子运行;2、设置为自由停车方式,以避免变频/工频切换时造成对变频器输出端的冲击;3、设置PID 运行方式,压力设定值由AUX 端子进入。

反馈信号由VIN 端子进入;4、对变频器控制端子——输出端子的设置。

设定RA 、RC 为变频故障时,触点动作输出;设定R2A 、R2C 为变频零速时,触点动作输出;设定DO1、DOG 为变频器全速(频率到达)时,触点动作输出。

变频器零速信号变频器频率到达信手动/自动自动启动自动停止1#泵变频运行2#泵变频运行故障信号输入R200变频器故障信号1#泵工频故障2#泵工频故障变频器运转指令1#泵变频自动运行控制自动/手动控制1#泵工频手动运行控制2#泵变频自动运行控制2#泵工频手动运行控制1#泵变频自动运行2#泵变频自动运行1#泵变频自动运行2#泵变频自动运行1#泵工频运行指示2#泵工频运行指示故障指示上图为PLC 控制接线图。

高压变频调速系统一拖二方案

高压变频调速系统一拖二方案

高压变频调速系统一拖二方案介绍 KM11QF0KM123~M1L11母线KM21L11KM223~M2VVVFQS1QS2QS3L1L2方案介绍:QF0、M1、M2为现场已有设备.该系统由4个部分组成:L1:1#旁路柜,包含 真空接触器KM11、KM12和电抗器L11。

L2:2#旁路柜,包含 真空接触器KM21、KM22和电抗器L21 。

变频器柜:VVVF (包含控制柜、功率柜、变压器柜)。

切换柜:包含三个隔离刀闸QS1、QS2、QS3。

详细介绍:各开关器件的互锁逻辑:QF0与QS1电气互锁,要求QF0处于合闸状态时QS1不能操作;KM11、KM12和QF0与QS2电气互锁,要求KM11、KM12和QF0处于合闸状态时QS2不能操作,QS2合闸时KM11、KM12不能进行合闸操作;KM21、KM22和QF0与QS3电气互锁,要求KM21、KM22和QF0处于合闸状态时QS3不能操作,QS2合闸时KM21、KM22不能进行合闸操作;QS2和QS3机械互锁,保证不能同时合闸。

当电机M1需要变频运行时,首先确保1#旁路柜中的KM11和KM12以及变频器柜上口的开关柜QF0断开,然后手动闭合QS1和QS2.,再启动变频器,此时M1变频运行。

当电机M2需要变频运行时,首先确保2#旁路柜中的KM21和KM22以及变频器柜上口的开关柜QF0断开,然后手动闭合QS1和QS3.,再启动变频器,此时M2变频运行。

当电机M1需要工频运行时,首先确保QF0断开,再断开QS1和QS2 。

然后再合闸KM11,带电抗工频启动电机后,合闸KM12,最后断开KM11。

当电机M2需要工频运行时,首先确保QF0断开,再断开QS1和QS3 。

然后再合闸KM21,带电抗工频启动电机后,合闸KM22,最后断开KM21。

变频器一拖二原理图

变频器一拖二原理图

变频器一拖二原理图变频器是一种用于调节电机转速的设备,它通过改变电源频率来控制电机的转速,广泛应用于工业生产中。

在一些特定的场合,我们需要将一个变频器控制两台电机,这就需要使用一拖二的原理图。

下面我们将详细介绍变频器一拖二原理图的相关知识。

首先,我们需要了解一拖二原理图的基本组成。

一拖二原理图主要包括变频器、接触器、断路器、电机等组件。

其中,变频器是核心部件,用于控制电机的转速;接触器用于控制电路的通断;断路器用于保护电路安全;电机则是被控制的对象。

在一拖二原理图中,变频器起着至关重要的作用。

它通过改变电源的频率,来控制电机的转速。

在一拖二的情况下,变频器需要能够同时控制两台电机,因此在选择变频器时需要注意其输出功率和控制能力。

另外,变频器的参数设置也需要根据实际情况进行调整,以确保两台电机的运行稳定。

接触器是一拖二原理图中的另一个重要组成部分。

它通过控制电路的通断,来实现对电机的启停控制。

在一拖二的情况下,接触器需要能够同时控制两台电机的启停,因此在选择接触器时需要考虑其承载能力和可靠性。

断路器则是用于保护电路安全的设备。

在一拖二原理图中,断路器需要能够适应两台电机的工作电流,以确保在电路发生故障时能够及时切断电源,保护设备和人员的安全。

除了上述组成部分外,一拖二原理图中还需要考虑电路的布线和接线方式。

合理的布线和接线可以减少电路的干扰和损耗,提高电路的稳定性和可靠性。

因此,在设计一拖二原理图时,需要注意电路的布局和接线方式,以确保电路的正常运行。

总的来说,变频器一拖二原理图是一种常见的电气控制方案,它能够实现对两台电机的精准控制,广泛应用于工业生产中。

在设计和应用一拖二原理图时,需要充分考虑各个组成部分的选型和参数设置,以确保整个电路的稳定性和可靠性。

希望本文能够对您有所帮助,谢谢阅读!。

一拖二恒压供水控制系统中的PLC与变频器

一拖二恒压供水控制系统中的PLC与变频器

一拖二恒压供水控制系统中的PLC与变频器一拖二恒压供水控制系统1引言变频变频技术就是将近十几年来快速发展出来的比以往任何变频方法更加优越的新技术,因其具有节能效果明显、调速曲线平滑、调速过程简单、安全可靠、保护功能齐全、起动性能优越、自动化程度高等特点而受到越来越多的企业的青睐,被应用到工业生产控制过程中的任何场合,显著的节能效果给众多的企业带来了巨大的经济效益。

特别是近几年来随着igbt功率元件和dsp微处理系统在变频器中的应用,变频器本身已非常成熟,使得变频调速技术的优越性更加突出,传动效率越来越高,使用越来越方便,可靠性也得到了进一步的提高。

2系统形成及掌控方案2.1系统形成一拖二(一台变频器控制两台电机)变频恒压供水控制系统由变频器、信号采集及处理系统和控制系统3部分组成。

(1)变频器此系统对变频器的建议不低,现有国内外各品牌变频器基本都能够满足用户技术建议,在此我们以深圳蓝海华腾e5-p-4t18.5变频器为基准。

此变频器经过几番更新换代,质量更加可信、性能更加平衡,与国内其他品牌较之性价比较低。

再加之恒压供水专用扩展卡ex-dt03,并使控制系统更直观便利。

(2)信号收集及处置系统该系统主要由压力变送器,信号隔离器及pid调节器等组成,对就地采集的信号进行处理和转换,为控制系统提供一个准确可利用的信号。

(3)控制系统该控制系统由按钮、继电器、接触器、触摸屏等电子电气元件共同组成。

该系统做为变频变频掌控主体,可以掌控水泵的电控、提失速运转以及泵间的相互转换等。

主要电气元件均使用国内领先产品。

tpc7062ks就是北京昆仑通态旗下产品。

直观易学的组态的软件,并使它组态便利轻便,益于操作方式。

2.2控制系统方案为了同时实现恒压力供水的目的,系统使用闭环控制,同时考量系统的安全性,额外开环掌控,做为水泵。

开环、闭环之间可以便利的展开切换。

压力传感器展开实时检测,并将检测至的管道水压信号经过切换后传输给变频pid调节器,pid调节器将此信号与取值值展开比较后,经过一系列的运算将输入一个标准的掌控信号给本系统的执行器-变频器,变频器根据调节器输入信号的变化去发生改变其输入频率,进而发生改变水泵电机的输出功率,以此去掌控出水量的大小。

(完整版)变频恒压供水一拖二PLC程序解析

(完整版)变频恒压供水一拖二PLC程序解析

变频恒压供水一拖二PLC 程序解析——PLC 步进指令应用实例之一一、变频恒压供水系统主电路和控制线路图:PEL3L2L1源电压指示作电流指示泵变频运行泵变频运行泵工频运行泵工频运行制电源体散热风机此系统是2000年前后,由上海博源自动化有限公司制作的(很想念他们,多年未联系了)。

主电路结构为变频一拖二形式。

控制原理简述如下: 系统由变频器、PLC 和两台水泵构成。

利用了变频器控制电路的PID 等相关功能,和PLC 配合实施变频一拖二自动恒压力供水。

具有自动/手动切换功能。

变频故障时,可切换到手动控制水泵运行。

控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC 控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达到恒压供水的目的。

当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC 控制停掉1#工频泵,由2#泵实施恒压供水。

至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒压供水。

如此循环不已。

需要说明一下的是:变频器必须设置好PID 运行的相关参数,和配合PLC 控制的相关工作状态触点输出。

详细调整,参见东元M7200的说明书。

在本例中,须大致调整以下几个参数。

1、设置变频器启/停控制为外部端子运行;2、设置为自由停车方式,以避免变频/工频切换时造成对变频器输出端的冲击;3、设置PID 运行方式,压力设定值由AUX 端子进入。

反馈信号由VIN 端子进入;4、对变频器控制端子——输出端子的设置。

设定RA 、RC 为变频故障时,触点动作输出;设定R2A 、R2C 为变频零速时,触点动作输出;设定DO1、DOG 为变频器全速(频率到达)时,触点动作输出。

变频器零速信号变频器频率到达信手动/自动自动启动自动停止1#泵变频运行2#泵变频运行故障信号输入R200变频器故障信号1#泵工频故障2#泵工频故障变频器运转指令1#泵变频自动运行控制自动/手动控制1#泵工频手动运行控制2#泵变频自动运行控制2#泵工频手动运行控制1#泵变频自动运行2#泵变频自动运行1#泵变频自动运行2#泵变频自动运行1#泵工频运行指示2#泵工频运行指示故障指示上图为PLC 控制接线图。

工、变频转换一拖二拖动电路设计

工、变频转换一拖二拖动电路设计

工、变频转换一拖二拖动电路设计本文介绍了一种由一台变频器切换拖动两台电动机的控制电路,有效提升了油田矿区现场变频器的利用率,减少大功率电动机工频启动时对电网的冲击,提高了电源功率因数,实现节能降耗。

标签:变频器;拖动电路引言变频器作为三相异步电动机主要调速装置,凭借其优良的启动特性和平滑调速能力在油田矿区被大量推广使用,但其昂贵的造价和较高的运行环境要求也给前期投入和后期维护保养带来了很多不便,因此,合理、高效的使用变频器成为油田矿区电工一项新的工作目标。

1 存在问题分析1.1 油田矿区现场机泵运行方式油田矿区为保证生产的平稳运行,防止运行机泵发生故障时,介质长时间无法输送而产生停输、冻堵、冒罐等事故,多数专用机泵皆采用一备一用的设计方式。

随着变频器的大量投入使用,基本上实现了一台变频器控制运行,另一台工频备用。

有的甚至实现了两台均安装变频器。

1.2 存在问题变频器的大量投入使用,有效提升了机泵功率因数,还增强了操作人员对生产调节的准确性和可靠性,但也存在部分弊端,具体分析如下:1、一备一用两台机泵都安装变频器。

如果备用泵长时间不运行,势必造成该机泵所带变频器闲置,增加前期成本。

由于变频器内部电容不能长时间处于溃电状态,因此,此备用变频器必须长时间热备用,或定期通电维护,不仅增加了维护工作量还浪费了电能。

2、一备一用两台机泵只安装一台变频器。

这种设计是较为常见的一种设计思路,有效节省了前期投入,但也给生产调节带来不便。

由于变频器的优越性,会让岗位操作人员更青睐于使用安装变频器的机泵,势必造成该机泵的故障率上升,使用寿命明显降低。

当变频机泵维修时,另一台泵只能工频使用,又造成工频启动时对电网的冲击,运行中单机能耗上升,生产调节不便等不利因素。

3、变频器一拖二使用。

这种设计思路有效提升了变频器的利用率,但当变频器发生故障时,必须由专业电工进行快速抢修或更换,鉴于变频器维修、更换的难度,此方案的可行性大打折扣。

变频器一拖二水泵的控制原理

变频器一拖二水泵的控制原理

变频器一拖二水泵的控制原理
本系统涉及到一台变频器和两台水泵,主要通过变频器对水泵的控制来实现一拖二的
工作方式。

以下为该系统的控制原理:
1. 水泵选择:首先通过变频器的控制面板进行选择,确定要工作的水泵数量和模
式。

2. 电源连接:将变频器与电源连接,确保供电正常。

3. 传感器安装:根据需要安装液位传感器和压力传感器,以获取水泵工作状态和水
流情况的反馈信号。

4. 信号输入:将传感器输出信号连接至变频器的对应输入端口,以便变频器实时获
取水泵状态信息。

5. 参数设置:通过变频器的控制面板,设置所需的水泵运行参数,包括启动频率、
运行频率范围、运行时间和停止时间等。

6. 水泵控制:根据变频器接收到的传感器信号和参数设置,自动控制水泵的启动和
停止。

当水位低于或高于设定值,或者压力达到设定范围,变频器将相应地控制水泵的启
动或停止。

7. 保护功能:变频器还具有多种保护功能,包括过载保护、短路保护、过温保护等。

当检测到异常情况时,变频器将发送警报信号,并采取相应的保护措施,确保系统安全稳
定运行。

通过上述原理,变频器一拖二水泵控制系统可以实现对两台水泵的自动控制,根据实
际需要进行启停,并实时监测水泵运行状态,保障水流量和水压的稳定运行。

变频恒压供水一拖二PLC解析.doc(可编辑修改word版)

变频恒压供水一拖二PLC解析.doc(可编辑修改word版)

FU1 FU2S1S230AQF1QF2QF3QF4450VL31R S TKM1 Y00 1 令 令 令 令COMSCVIN RA RC R2A R2C D01 DOG令令X00 令KM2令 令 令令 令 380V 令令220V令令 令 令令P T300R+15V AUS GNDX01 令COM令令 令 FR1FR2u1k令令 令M02.2kKM3 KM4R200 S200M1 M2变频恒压供水一拖二 PLC 程序解析——PLC 步进指令应用实例之一一、变频恒压供水系统主电路和控制线路图:QF0L1 L2 L3 PETA1令令此系统是 2000 年前后,由上海博源自动化有限公司制作的(很想念他们,多年未联系了)。

主电路结构为变频一拖二形式。

控制原理简述如下:系统由变频器、PLC 和两台水泵构成。

利用了变频器控制电路的 PID 等相关功能,和 PLC 配合实施变频一拖二自动恒压力供水。

具有自动/手动切换功能。

变频故障时,可切换到手动控制水泵运行。

控制过程:水路管网压力低时,变频器启动 1#泵,至全速运行一段时间后, 由远传压力表来的压力信号仍未到达设定值时,PLC 控制 1#泵由变频切换到工运行,然后变频启动 2#泵运行,据管网压力情况随机调整 2#泵的转速,来达到恒压供水的目的。

当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则 PLC 控制停掉 1#工频泵,由 2#泵实施恒压供水。

至管网压力又低时, 将 2#泵由变频切为工频运行,变频器启动 1#泵,调整 1#泵的转速,维修恒压供令令 令令 令 令 令 令令 令2#令 令 令 令 令1#令 令 令 令 令2#令 令 令 令 令1#令 令 令 令 令令令 令 令 令 令令 令 令 令水。

如此循环不已。

需要说明一下的是:变频器必须设置好 PID 运行的相关参数,和配合 PLC 控制的相关工作状态触点输出。

详细调整,参见东元 M7200 的说明书。

ABB变频器说明书附电路图的参数设置一拖二 恒压

ABB变频器说明书附电路图的参数设置一拖二 恒压

ABB变频器说明书附电路图的参数设置(一拖二)
9902=7 PFC应用宏
1002=6 DI6启停/ 1002=1 DI1启停
1102=1 (DI1为EXT1/EXT2选择)/ 1102=6 (DI6为EXT1/EXT2选择)
1401=31 (继电器1)
1402=31 (继电器2)
1403=0 继电器3不启用
4010=19 (内部给定目标值)
4011=(目标压力/远程表量程)×100%
8117=1 (辅泵台数)
8118=12 (自动切换间隔时间)
8119=100%
8120=4 (DI4——第一个继电器使能,DI5——第二个继电器使能)
8127=2(2台电机,两个PFC继电器)
8112= (#1减泵频率)
8113= (#2减泵频率)
8115= 25~60 S (延时加泵时间)
8116= 5~15 S (延时减泵时间)
2605=1(线性曲线,恒转矩负载)/ 2605=2(平方型曲线)
2606= (开关频率/载波频率,调节电机声音)
1601=0 (运行允许功能取消)
如选择AI1反馈输入,4016=1 (AI1为ACT1反馈输入)
休眠功能设置:
4022=7
4023= (休眠频率,一般比正常运行频率低1~3HZ左右)
4024= (休眠延时,30~60S)
4025=5~10% (唤醒偏差)
4026= (唤醒延时,10~30S)
辅助参数:
2113= (启动延时)
2102=1(自由停车)/ 2(减速停车)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档