最新九年级数学高频考点核心考点 圆专题复习 (26)

合集下载

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

圆是数学中的一个基本几何概念,九年级数学中关于圆的知识点如下:一、圆的定义和要素:1.圆的定义:由平面上离一个确定点(圆心)的距离相等的点的全体,构成一个平面图形,称为圆。

2.圆的要素:圆心、半径、直径、弧、弦、切线、割线、扇形、弓形等。

二、圆的性质:1.圆的任意两点之间的距离相等。

2.圆的半径是圆上任意一点到圆心的距离。

3.圆的直径是通过圆心的一条线段,直径的长度等于半径的两倍。

4.圆的弧是圆上两点之间的一段曲线,圆的圆心角对应的弧长是圆的周长的一部分。

5.圆的弦是圆上的两点间的线段。

6.圆的切线是与圆只有一个交点的直线。

7.圆的割线是与圆有两个交点的直线。

8.圆的相似圆是指具有相同圆心,半径成比例的圆。

9.圆与其他几何图形的关系,如圆与直线、圆与多边形等。

三、圆的图形和公式:1.圆的标准方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

2.圆的一般方程:x²+y²+Dx+Ey+F=0,对应一般方程的圆心坐标为(-D/2,-E/2),半径为√((D²+E²)/4-F)。

3.圆的表示方法:各种符号和字母的含义及表示。

四、圆的计算题:1.圆的周长:C=2πr,其中C为周长,r为半径。

2.圆的面积:A=πr²,其中A为面积,r为半径。

3.圆的弧长公式:L=2πr(θ/360°),其中L为弧长,r为半径,θ为圆心角的度数。

4.扇形的面积公式:A=(θ/360°)πr²,其中A为扇形的面积,r为半径,θ为圆心角的度数。

5. 弓形的面积公式:A=(θ/360°)πr²-hr,其中A为弓形的面积,r为半径,θ为弧对应的圆心角的度数,h为弓形的高。

五、圆的证明题:1.圆上的弦垂直于直径。

2.圆上的垂直于弦的直径。

3.圆的半径与切线垂直。

六、圆的应用:1.圆的模拟应用,如钟表等。

九年级数学高频考点核心考点复习提纲完整版圆

九年级数学高频考点核心考点复习提纲完整版圆

最新九年级数学高频考点核心考点复习纲要完好版圆圆圆·连结圆上随意两点的线段叫做弦。

圆上随意两点之间的局部叫做圆弧,简称弧。

垂直于弦的直径·垂径定理:垂直于弦的直径均分弦且均分弦所对的两条弧。

推论:均分弦的直径垂直于弦且均分弦所对的两条弧。

弧、弦、圆心角1、极点在圆心的角叫做圆心角。

2、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

推论1:相等的弧所对的弦相等,所对的圆心角也相等。

推论2:相等的弦所对的弧相等,所对的圆心角也相等。

圆周角1、极点在圆上,且两边都与圆订交的角叫做圆周角。

2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,且都等于这条弧所对的圆心角的一半。

推论1:在同圆或等圆中,假如两个圆周角相等,那么它们所对的弧也必定相等。

推论2:半圆或直径所对的圆周角是直角,90°的圆周角所对的弦是直径。

3、假如一个多边形的全部极点都在同一个圆上,那么这个多边形就叫做圆内接多边形,这个圆就叫做多边形的外接圆。

4、圆内接四边形的对角互补。

点、直线、圆和圆的地点关系点和圆的地点关系1、假定⊙O的半径为r,点P到圆心的距离为d,那么有:点P在圆外d>r;点P在圆上d=r;点P在圆内d<r。

〔“〞读作“等价于〞,表示能够从符号“〞的一端获得另一端〕2、经过的两个点的圆的圆心在这两个点的连线段的垂直均分线上。

3、不在同向来线上的三个点确立一个圆,确立方法:作三点的连线段的此中两条的垂直均分线,交点即为圆心,以圆心到此中一点的距离作为半径画圆即可。

4、假定三角形的三个极点在同一个圆上,那么这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直均分线的交点,叫做三角形的外心。

5、假定命题的结论不建立,经过推理得出矛盾,那么假定不正确,故原命题建立,这类证明方法叫做反证法。

直线和圆的地点关系1、当直线与圆有两个公共点时,叫做这条直线与圆订交,这条直线叫做圆的割线。

九年级数学圆知识点大全

九年级数学圆知识点大全

九年级数学圆知识点大全数学中的圆是我们学习的重要几何概念之一,它具有独特的性质和应用。

在九年级数学中,我们将学习有关于圆的知识点,本文将为你详细介绍九年级数学中与圆相关的知识点,帮助你更好地理解和掌握这一部分内容。

一、圆的定义和基本性质1. 圆的定义:圆是由平面上距离一个点(圆心)相等的所有点构成的集合。

2. 圆的要素:圆心、半径、直径,这三个要素是圆的基本要素。

3. 圆的基本性质:圆上任意两点与圆心的距离相等;圆上任意一点到圆心的距离等于半径的长度;直径是圆上任意两点之间的最长线段。

二、圆的相关线段和角1. 弦:在圆上连接两点得到的线段叫做弦。

直径是一个特殊的弦,它通过圆心并且长度等于圆的直径。

2. 弧:在圆上连接两点得到的弧(简称弧段)。

弧由弦所确定,弧长是弧的长度,是弧上所有点按照圆周距离的累加。

3. 弦切角:在圆上,以弦的两端点为顶点,圆上一个点为腰的角叫做弦切角。

弦切角的大小等于它所对应的弧所对的角。

三、圆的重要定理1. 切线定理:一个切线垂直于半径。

垂直于半径的线段叫做切线,切线与半径的交点与圆心的连线垂直。

2. 弦弧定理:在圆上,等长的弦所对应的弧也等长。

3. 弧心角定理:在圆上,等长的弧所对应的弧心角也相等。

4. 切割线定理:如果有两条决定于一圆的割线相交成一点,那么从这个点到四个割线外割出的四条弦对应的两对点构成两组共轭点。

四、圆的计算1. 圆的周长:圆的周长等于圆周上任意一段弧长,可以通过直径或半径来计算。

周长公式:C = 2πr 或C = πd,其中C表示周长,r表示半径,d表示直径,π约等于3.14。

2. 圆的面积:圆的面积可以通过半径来计算。

面积公式:S =πr²,其中S表示面积,r表示半径,π约等于3.14。

五、圆与其他几何图形的关系1. 圆与直线的关系:在平面几何中,一条直线可以与圆有三种不同的位置关系,分别是相离、相切和相交。

2. 圆与多边形的关系:正多边形的外接圆和内切圆,以及正多边形与圆内接四边形的关系等。

九年级数学圆知识点归纳

九年级数学圆知识点归纳

一、圆的基本性质:1.定义:平面上离定点距离等于定长的点的轨迹叫做圆。

2.圆的要素:圆心、半径。

3.圆的元素之间的关系:a.半径相等的圆互相重合。

b.位于同一直线上且相交的两个圆的交点两两相互重合。

c.等圆的圆心位于同一直线上。

二、圆的方程与切线:1.圆的标准方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

2.切线的定义:与圆仅有一个公共点的直线叫做圆的切线。

切点为圆上的点,切线与半径垂直。

3.切点的判别条件:圆心到直线的距离等于半径,即直线与半径的垂直平分线重合。

4.切线方程的求解:a.公式法:将切点代入圆的方程求解。

b.几何法:通过圆心到切线的垂线求解。

三、圆的内接三角形:1.内接三角形定义:将一个圆放置在一个三角形内,使得三角形的每一边都与圆相切,则称这个三角形为内接三角形。

2.内接三角形的性质:a.每个内接角等于其对应的弧所对的圆心角的一半。

b.三条内角的和等于180°。

c.角平分线上的垂足连线到对边的垂线与切线垂直。

d.内接三角形与圆心连线的中点连线到对边的垂线等于半径。

e.内接三角形的面积等于半周长与半径的乘积。

除了上述知识点外,还可以探讨其他与圆相关的内容,如:1.圆的面积公式:S=πr²。

2.弧长公式:L=2πr(θ/360°),其中θ为圆心角度数。

3.扇形面积公式:S=a/360°*πr²,其中a为弧所对的圆心角度数。

4.球的表面积与体积公式:对于半径为r的球,其表面积为4πr²,体积为(4/3)πr³。

总结:九年级数学中关于圆的知识点主要涵盖了圆的基本性质、圆的方程与切线、圆的内接三角形等内容。

对这些知识点的掌握和理解对于学生的数学学习和解题能力具有重要的意义。

最新九年级数学高频考点核心考点圆专题复习 (6)

最新九年级数学高频考点核心考点圆专题复习 (6)

2、如图2,在以O为圆心的两个同心圆
中,大圆的弦AB是小圆的切线,P为切点, 设AB=12,则两圆构成圆环面积为_____;
A
P O
B
3、下列四个命题中正确的是(
).
①与圆有公共点的直线是该圆的切线 ; ②垂直于圆的半径的直 线是该圆的切线 ; ③到圆心的距离等于半径的直线是该圆的切 线 ;④过圆直径的端点,垂直于此直径的直线是该圆的切线.
最新九年级数学高频考点核心考点 圆专题复习
--点、直线与圆有关的位置关系
四、点和圆的位置关系
.o .p r
Op<r Op=r Op>r
.o
.p
.o .p

点p在⊙o内 点p在⊙o上 点p在⊙o外
1、⊙O的半径为R,圆心到点A的距离为d,且R、d分别 是方程x2-6x+8=0的两根,则点A与⊙O的位置关系是 ( D) A.点A在⊙O内部 C.点A在⊙O外部 B.点A在⊙O上 D.点A不在⊙O上
6.如图:AB是圆O的直径,BD是圆O的弦, BD到C,AC=AB,BD与CD的大小有什么关系?
为什么?
A
补充:
若∠B=70 °,则 40 ° ∠DOE=___.
E
O
C
D
B
7、如图,AB是圆O的直径,圆O过 AC的中点D,DE⊥BC于E. 证明:DE是圆O的切线.
C D E B
A
. O
2、M是⊙O内一点,已知过点M的⊙O最长的弦为10 cm, 最短的弦长为8 cm,则OM= _____ cm. 3
练:有两个同心圆,半径分别为R和r, P是圆环内一点,则OP的取值 r<OP<R . 范围是_____
O
P
五.直线与圆的位置关系

九年级数学圆形知识点归纳

九年级数学圆形知识点归纳

九年级数学圆形知识点归纳九年级数学学习中,我们接触到了许多有关圆形的知识。

本文将对这些知识进行归纳总结,以便更好地了解和掌握圆形的特性和运用。

一、圆的定义和性质圆是由平面上与一个固定点的距离相等的所有点组成的图形,这个固定点称为圆心,距离称为半径。

圆的性质有以下几个要点:1. 圆上的任意点与圆心的距离都相等。

2. 圆的直径是两个任意点在圆上连线的最长线段,它的长度是圆的半径的两倍。

3. 圆的弧是两个点在圆上连线所得到的曲线部分。

4. 圆心角是以圆心为顶点的角,它的度数等于所对的弧所在圆周的度数。

二、圆的计算公式在解决圆的相关问题时,我们需要运用一些计算公式。

以下是常见的圆的计算公式:1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径,π取近似值3.14。

2. 圆的面积公式:S = πr²,其中S表示圆的面积。

三、圆的相关定理1. 同圆弧所对的圆心角相等。

2. 等弧所对的圆心角相等。

3. 在同一个圆或等圆中,圆心角大的所对的弧也大,圆心角小的所对的弧也小。

4. 在同一个圆或等圆中,与同一弧相交的弦所对的圆心角相等。

四、切线和切点的性质1. 切线是与圆只有一个交点的直线。

2. 在切点处,切线垂直于半径。

3. 半径和切线之间的夹角是直角。

五、圆锥和圆柱体1. 圆锥是以一个圆为底面,上方以一个顶点为端点的三维图形。

2. 圆柱体是以一个圆为底面,上下底面平行且等大小的三维图形。

六、几何图形的应用在生活中,我们经常会遇到一些与圆相关的几何图形。

以下是一些常见的应用场景:1. 钟表:钟表的表盘就是一个圆形,指针所指的位置是圆上的点。

2. 气球:气球形状都是圆形,用圆的表面面积计算气球的充气量。

3. 轮胎:轮胎是车辆底盘的重要组成部分,轮胎的结构和运动都与圆形有关。

通过对九年级数学圆形知识点的归纳总结,我们对圆形的定义、性质、计算公式、相关定理,以及在几何图形应用中的实际场景有了更深入的理解。

九年级数学圆知识点

九年级数学圆知识点

九年级数学圆知识点圆是九年级数学中的一个重要内容,它具有丰富的性质和广泛的应用。

接下来,让我们一起深入学习圆的相关知识点。

一、圆的定义圆可以看作是平面内到定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为半径。

二、圆的相关概念1、弦:连接圆上任意两点的线段叫做弦。

2、直径:经过圆心的弦叫做直径,直径是圆中最长的弦。

3、弧:圆上任意两点间的部分叫做圆弧,简称弧。

弧分为优弧(大于半圆的弧)、劣弧(小于半圆的弧)。

4、半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

5、等圆:能够重合的两个圆叫做等圆。

6、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

三、圆的性质1、圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

2、圆也是中心对称图形,其对称中心是圆心。

四、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:1、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

2、弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

3、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

五、圆心角、弧、弦的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

推论:1、在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。

2、在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优弧和劣弧分别相等。

六、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论 1:同弧或等弧所对的圆周角相等。

推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

七、圆内接四边形如果一个四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。

圆内接四边形的对角互补。

八、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:1、点在圆外:d > r 。

2、点在圆上:d = r 。

3、点在圆内:d < r 。

九年级中考圆题型知识点

九年级中考圆题型知识点

九年级中考圆题型知识点九年级中考数学是学生们备考重点之一。

其中,圆是一个重要的几何概念,也是中考数学题目中经常出现的一个考点。

本文将为大家细致解析九年级中考圆题型知识点,希望能帮助同学们更好地应对考试。

一、圆的基本概念圆是平面上所有到圆心的距离都相等的点的集合。

其中,与圆有关的一些常用术语包括:1. 圆心(O):圆的中心点。

2. 半径(r):连接圆心和圆上任意一点的线段,它的长度称为圆的半径。

3. 直径(d):通过圆心的两个确定的点,其长度为圆的直径,直径是半径的两倍。

4. 弧(弧度):圆上的一段弧,可以用圆心角来度量,弧度是度量角度的单位。

二、圆的性质1. 圆的内切圆:一个正多边形的内接圆的半径与这个正多边形的边长之比保持不变。

2. 相交弧的性质:如果两条弦在某个圆上相交,那么这两个相交的弧的度数之和为360°。

3. 切线和切点:切线与半径垂直。

4. 弧与角:圆内每个弧所对的圆心角有唯一对应的。

三、圆的定理和推论1. 同弧度的圆周角相等。

2. 同弧中心角相等。

3. 对称圆周角相等。

4. 直径所对的圆周角为直角。

5. 互余弧余角相等。

6. 弦切定理:圆上的切线与切点所组成的锐角与切点所对的弦上的弧所对的圆心角相等。

四、圆的应用圆的应用在生活中随处可见。

以下是几个典型的示例:1. 汽车轮胎:汽车轮胎的主体即为圆形,保证轮胎的平衡性和牢固性。

2. 潮汐现象:地球与月球之间的引力相互作用所产生的潮汐现象正是由于圆形轨道的影响。

3. 时钟:时钟的表面多为圆形,所以我们通常以圆上点的运动方式来计时。

4. 路灯:路灯的灯罩大多采用圆形或者半圆形,能够同时照亮周围的区域。

总结:掌握圆的基本概念和性质是解决九年级中考圆题型的关键。

除了理论知识的掌握,同学们还应该加强实际应用的训练,这样才能在考试中灵活运用所学知识解题。

希望本文的知识点讲解和实例分析能为同学们的备考提供帮助,让大家能够在数学考试中更加出色。

最新九年级数学高频考点核心考点 圆专题复习 (28)

最新九年级数学高频考点核心考点 圆专题复习 (28)

最新九年级数学高频考点核心考点 圆专题复习第一讲 圆的有关性质【回顾与思考】【例题经典】有关弦、半径、圆心到弦的距离之间的计算例1 如图,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为3cm ,则弦AB 的长是( )A .4cmB .6cmC .8cmD .10cm圆心角、弧、弦和垂径定理的应用例2如图所示,AB 是⊙O 的弦,半径OC 、OD 分别交AB于点E 、F ,•且AE=BF ,请你找出弧AC 与弧BD 的数量关系,并给予证明.圆周角定理的应用例3、如图,A 、B 、C 、D 是⊙O 上的三点,∠BAC=30°,则∠BOC 的大小 是( ) A 、60° B 、45° C 、30° D 、15°例4 已知:如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D ,AE 是⊙O 的直径,若S △ABC =S ,⊙O 的半径为R .(1)求证:AB·AC=AD·AE;(2)求证:AB·AC·BC=4RS.第二讲与圆有关的位置关系与圆有关的位置关系d rd rd r ⎧<⎧⎪⎪>⎨⎪⎨⎪=⎩⎪⎪⎩相交直线与圆的位置关系相离相切圆与圆的位置关系【例题经典】直线与圆位置关系的判定例1 (1)已知⊙O的半径为r,圆心O到直线L的距离为d,•若直线L与⊙O 有交点,则下列结论中正确的是()A.d=r B.d≤r C.d≥r D.d>r (2)已知Rt△ABC的斜边AB=8cm,AC=4cm,以点C为圆心作圆,当半径R=•_____•时,AB与⊙O相切.第三讲圆的切线的性质和判定现实情境⎧⎪⎧⎪⎨⎨⎩⎪⎪⎩圆的切线的性质--三角形内切圆应用:d=r圆的切线的判定判定定理圆的切线性质与判定综合应用【例题经典】关于三角形内切圆的问题例1如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130°B.100°C.50°D.65°例2已知:如图,AB是⊙O的直径,PA是⊙O的切线,过点B•作BC•∥OP交⊙O于点C,连结AC.(1)求证:△ABC∽△POA;(2)若AB=2,求BC的长.(结果保留根号)圆的切线的判定例3已知:如图,AB是⊙O的直径,P是⊙O外一点,PA⊥AB,•弦BC∥OP,请判断PC是否为⊙O的切线,说明理由.第四讲圆与圆的位置关系知识点:圆和圆的位置关系、两圆的连心线的性质、两圆的公切线【例题经典】两圆位置关系的识别例1(1)已知两圆的半径分别为3和4,圆心距为8,•那么这两个圆的位置关系是()A.内切B.相交C.外离D.外切(2)如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是()A.相离B.外切C.内切D.相交(3)已知⊙O1和⊙O2的半径分别为2和5,圆心距O1O2=3,•则这两圆的位置关系是()A.相离B.外切C.相交D.内切(4)若⊙A和⊙B相切,它们的半径分别为8cm和2cm,•则圆心距AB为()A.10cm B.6cm C.10cm或6cm D.以上答案均不对例2 如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP 的长.第五讲 圆的有关计算【回顾与思考】【例题经典】有关弧长公式的应用例1 如图,Rt △ABC 的斜边AB=35,AC=21,点O 在AB 边上,OB=20,一个以O 为圆心的圆,分别切两直角边边BC 、AC 于D 、E 两点,求DE 的长度.有关阴影部分面积的求法例2 如图,以BC 为直径,在半径为2圆心角为90°的扇形内作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是( )A .π-1B .π-2C .12π-1 D .12π-2 求曲面上最短距离例3 如图,底面半径为1,母线长为4的圆锥,•一只小蚂蚁若从A 点出发,绕侧面一周又回到A 点,它爬行的最短路线长是( )A.2 B.C.D.5。

九年级圆知识点归纳

九年级圆知识点归纳

九年级圆知识点归纳在九年级数学学习中,圆是一个非常重要的知识点。

本文将对九年级圆的相关知识进行归纳,包括圆的定义、圆的性质、圆的元素以及圆的应用等内容。

一、圆的定义圆是由平面内和一个确定点距离相等的点的全体组成。

其中,确定点称为圆心,距离称为半径。

二、圆的性质1. 圆心角:圆心角是以圆心为顶点的角,其对应的弧长等于该角的大小。

2. 弦:圆上连接两点的线段称为弦,等长的弦对应的圆心角相等。

3. 切线:切线是与圆只有一点相切的直线,切线与半径垂直。

4. 弧:两个点间的圆弧是连接这两点且完全位于圆内的曲线部分。

5. 弧长:弧长是弧上的一段弧所对应的圆心角的大小乘以半径。

三、圆的元素1. 圆心:圆心是圆上任意一点到圆心的距离都相等。

2. 半径:半径是圆心到圆上任意一点的距离,用字母r表示。

3. 直径:直径是通过圆心的任意两点之间的线段,直径等于半径的两倍。

4. 弦:弦是圆上的线段,连接圆上任意两点,但不通过圆心。

5. 弧:弧是弦所对应的曲线部分,也可以用来求解弧长。

四、圆的应用1. 圆的面积:圆的面积可以通过半径或直径来计算,公式分别为πr²和π(d/2)²,其中π是一个常数,取近似值3.1415。

2. 弧长和扇形面积:根据圆的定义,可以推导出弧长和圆心角的关系,进而计算弧长和扇形面积。

3. 圆的切线与切点:通过圆心和切点的连线垂直于切线,可以利用圆的性质求解相关问题。

4. 圆的相交关系:两个圆相交时,可以根据相交的弧长、圆心角等来求解相应的问题。

总结:通过本文的归纳,我们对九年级圆的相关知识点有了一个整体的了解。

圆的定义、性质、元素以及应用都是我们在解题过程中需要掌握的重要内容。

希望同学们能够通过不断练习,熟练掌握圆的相关知识,提高数学解题能力。

最新九年级数学高频考点核心考点分类复习完整版

最新九年级数学高频考点核心考点分类复习完整版

最新九年级数学高频考点核心考点复习提纲完整版第一章 实数一、 重要概念1.数的分类及概念数系表:2.非负数:正实数与零的统称。

(表为:x ≥0)常见的非负数有:实数 无理数(无限不循环小数) 有理数 正分数负分数正整数0 负整数(有限或无限循环性整数 分数 正无理数负无理数0 实数 负数 整数分数无理数有理数正数 整数分数无理数有理数│a │ 2aa (a ≥0)(a 为一切实数)性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法②性质:A.a≠1/a (a≠±1);B.1/a 中,a≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法②性质:A.a≠0时,a≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种): 代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算a(a ≥0) -a(a<0) │a │=运算法则(加、减、乘、除、乘方、开方)运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ³5);C.(有括号时)由“小”到“中”到“大”。

第二章 代数式1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

九年级常考的圆知识点总结

九年级常考的圆知识点总结

九年级常考的圆知识点总结圆是我们九年级数学中的一个重要知识点,也是经常出现在考试中的内容。

本文将对九年级常考的圆知识点进行总结和归纳,希望能够帮助同学们更好地理解和掌握这些知识。

一、圆的定义和性质圆是平面内所有与一个确定点距离相等的点构成的集合。

其中,确定的点称为圆心,相等的距离称为半径。

圆的性质有很多,包括以下几个重要的方面:1. 圆上任意两点与圆心的距离相等;2. 圆的直径是圆上任意两点的最大距离;3. 圆的半径垂直于切线;4. 圆的切线与半径的交角是直角;5. 圆的内接四边形的两对对边和相等。

二、圆的基本要素和计算1. 弧度制和度度量制弧度制是一种角度的计量单位,它是以圆的半径长的弧所对的圆心角来定义的。

与之相对的是度度量制,在度度量制中,一个圆被划分成360个度。

在解决圆的相关问题时,我们需要根据具体情况选择使用弧度制还是度度量制。

2. 圆的弧长和扇形面积当我们需要计算圆上两点之间的弧长时,可以使用下列公式进行计算:L = rθ,其中L表示弧长,r表示圆的半径,θ表示弧所对的圆心角的度数或弧度数。

而当我们需要计算一个扇形的面积时,可以使用下列公式:S = 0.5r²θ,其中S表示扇形的面积,r表示圆的半径,θ表示扇形所对的圆心角的度数或弧度数。

三、圆的位置关系和相交性质1. 相离和相切当两个圆没有任何交点时,我们称它们为相离的;当两个圆只有一个公共切点时,我们称它们为相切的。

2. 相交和内切当两个圆有两个交点时,我们称它们为相交的;当一个圆完全包含在另一个圆内部,并且两个圆的圆心重合时,我们称它们为内切的。

四、圆的切线和切点1. 切线的性质圆的切线与半径的交角是直角,这是一个重要的性质。

同时,切线与半径的长度相等。

2. 切点的坐标计算当我们知道切线的方程和圆的方程时,可以通过联立两个方程来求解切点的坐标。

五、圆的证明问题圆的证明问题是考察同学们对圆性质的理解和运用能力的重要环节。

初三数学圆知识点总结归纳

初三数学圆知识点总结归纳

初三数学圆知识点总结归纳数学是一门重要的学科,其中圆是初三阶段的重点内容之一。

为了帮助同学们更好地理解和掌握圆的知识,本文将对初三数学圆的知识点进行总结和归纳。

下面将从圆的基本性质、圆的相关定理以及圆的应用三个方面进行详细介绍。

一、圆的基本性质圆是我们生活中常见的几何形状之一,了解圆的基本性质对于理解和解题都非常重要。

1.圆的定义:圆是平面上一点到另一点距离保持不变的点的集合。

2.圆的要素:圆心、半径和直径是圆的基本要素。

圆心是圆上所有点到该点的距离相等的点,常用字母O表示;半径是从圆心到圆上任意一点的距离,用字母r表示;直径是通过圆心,且两个端点在圆上的线段,直径的长度等于半径的两倍。

3.弧与弦:圆上两点之间的线段叫做弦,圆上两点之间的弧是圆上除去弦包含的部分所剩下的弯曲部分。

4.圆周角:以圆心为顶点的角叫做圆周角,圆周角的度数是弧长所对应的圆心角的度数。

二、圆的相关定理熟练掌握圆的相关定理对于解题非常有帮助,下面将介绍常用的圆的定理。

1. 半径相等定理:同一个圆内,所有的半径相等。

2. 弦长定理:在同一个圆上,相等弧所对的弦相等,或者说弦相等所对的弧相等。

3. 切线定理:切线与半径垂直,半径与切线的交点恰好在切点上。

4. 弧度制与角度制转换:1 弧度=180°/π,1 度=π/180 弧度。

三、圆的应用圆的知识不仅仅用于理论中,还有很多实际应用场景。

下面将介绍几个常见的应用。

1. 圆的面积:圆的面积公式为S = πr^2,其中S表示面积,r表示半径。

2. 扇形面积:扇形是由圆心、弧和两条半径组成的区域,计算扇形的面积可以使用扇形面积公式S = (θ/360°) × πr^2。

3. 弧长公式:弧长公式为L = rθ,其中L表示弧长,r表示半径,θ表示圆心角的度数。

4. 圆与三角形的关系:在三角形中,圆的内切圆是三角形内接圆,三角形的外接圆是三角形外接圆。

通过以上对圆的基本性质、相关定理和应用的总结归纳,我们可以更好地理解和掌握圆的知识点。

九年级圆的常考知识点

九年级圆的常考知识点

九年级圆的常考知识点在九年级数学学习中,圆的相关知识点是重要的基础内容。

掌握了这些知识点,学生才能在解题过程中运用自如,为进一步学习更高级的几何知识打下坚实的基础。

本文将从圆的定义、圆的要素、圆的性质和圆的应用等几个方面,系统地介绍九年级圆的常考知识点。

一、圆的定义圆是平面上的一类特殊图形,它由平面内任意一点到另一点距离相等的所有点组成。

二、圆的要素1. 圆心:圆上的任意一点到圆上所有点的距离相等,这个点称为圆心。

2. 半径:连接圆心和圆上任意一点的线段,这段线段的长度称为圆的半径。

3. 直径:通过圆心的两个相对点,这个线段的长度称为圆的直径,直径是半径的两倍。

4. 弦:在圆上任意两点间的线段称为弦。

5. 弧:在圆上的两点间的一段弧称为弧。

弧的长度可以用它所对应的圆心角的度数来表示。

三、圆的性质1. 圆心角与弧的关系:圆心角是指以圆心为顶点的角,与圆上的弧所对应的圆心角的度数是相等的。

2. 弧长与圆周角的关系:以圆心为顶点的角,所对应的弧长与它所对应的圆心角度数成正比,即弧长等于圆周长的$\frac{1}{360}$倍乘以对应的圆心角的度数。

3. 弦长定理:如果两条弦在圆上的弦长相等,那么它们所对应的圆心角也相等。

4. 弦心定理:如果两条不等长的弦(或弦段)在圆上的两个弦心上对圆心的距离相等,那么它们与圆心的连线所夹的角(或角的对角)相等。

5. 切线和切点:通过圆外一点恰好有一条直线与圆相切,这条直线称为切线,切线与半径的夹角为直角,切点即为切线与圆的交点。

四、圆的应用圆是我们日常生活和工作中经常会遇到的几何图形,它的应用广泛而重要。

1. 圆的测量:在实际中,我们常常需要计算圆的直径、半径、周长和面积等。

这些计算需要借助圆的相关公式和性质,确保计算结果的准确性。

2. 圆的建模:在建筑、工程、艺术设计等领域,圆的概念和性质被广泛运用。

通过圆的建模,我们可以更好地解决和处理一些问题,实现更高的效益和价值。

九年级圆知识点与考点

九年级圆知识点与考点

九年级圆知识点与考点圆是高中数学中一个非常重要的知识点,同时也是考试中常常会出现的考点。

九年级是学习圆的基础阶段,掌握圆的相关知识和考点对于学生后续学习和应试都具有重要意义。

一、圆的基本概念在我们日常生活中,我们经常会看到、使用到圆。

所谓圆,是指平面上到一个定点的距离都相等的点的集合。

这个定点被称为圆心,距离为半径。

对于任意一个点,如果到圆心的距离等于半径的长度,那么这个点就在圆上。

二、圆的性质在学习圆的过程中,我们需要了解一些基本的性质。

1. 直径、弦和弧直径是通过圆心的一条线段,它的两个端点在圆上。

弦是圆上的任意两个点之间的线段(不过圆心)。

弧是圆上的两个点之间的一部分。

2. 圆心角和弧度制圆心角是以圆心为顶点的角,它的顶点、两条边分别是圆上的两个点。

圆心角的弧度数等于该角所对的弧对应于半径的长度。

弧度制是一种计量角度的方法,它是以圆的半径长度作为单位来度量的。

3. 切线和切点切线是与圆只有一个公共点的直线,这个公共点称为切点。

切线与半径的夹角是直角。

三、圆的重要定理学习圆的过程中,我们需要掌握一些重要的定理和公式。

1. 半径垂直于弦的定理半径垂直于弦的定理是指,如果一条半径垂直于一条弦,那么它一定平分这条弦。

2. 弧长公式弧长公式是指,在一个圆上的两个相等弧所对应的圆心角相等,它们所围的弧所对应的圆心角相等。

3. 切线定理切线定理是指,一条切线与半径所夹的角等于它所对的弧所对应的圆心角的一半。

四、圆的应用圆不仅仅是高中数学中的一个知识点和考点,它在实际生活中也有广泛的应用。

1. 圆的周长和面积圆的周长是指圆上一周的长度,它等于圆的直径乘以π。

圆的面积是指圆内部区域的大小,它等于圆的半径的平方乘以π。

2. 圆的几何构造利用圆能够进行一些几何构造,如画圆、画切线等。

3. 圆的运动圆的运动在物理学中也有广泛的应用,如圆周运动、圆形轨道等。

总结:掌握圆的基本概念、性质、定理和应用是九年级数学学习的重要内容。

最新九年级数学高频考点核心考点 圆专题复习 (22)

最新九年级数学高频考点核心考点 圆专题复习 (22)

最新九年级数学高频考点核心考点圆专题复习一知识点(一)圆的有关概念和性质1.圆是的所有点组成的图形.2.圆是轴对称图形,它的的直线都是对称轴;又时中心对称图形,它的中心是.3.垂直于弦的直径弦,并且弦所对的弧.4.平分弦(不是直径)的直径弦,并且弦所对的弧.5.在中,相等的圆心角所对的相等,所对的弦;如果两个圆心角、两条弦、两条弧中有一组量相等,那么其余各组量都分别.6.顶点在,并且两边都和圆的角叫做圆周角.7.在同圆或等圆中,一条弧所的圆周角等于它所对圆心角的.8在同圆或等圆中,同弧或等弧所对的圆周角.90的圆周角所对的弦是.9 .所对的圆周角是直角;︒(二)与圆有关的位置关系10.的三点确定一个圆.11.设圆的半径为r,点到圆心的距离为d,则点在圆外⇔;点在圆上⇔;点在圆内⇔.12.如果的半径为,圆心到直线的距离为,那么(1)直线和相交⇔;(2)直线和相切⇔;(3)直线和相离⇔.13.经过半径的,并且于这条半径的直线是圆的切线14圆的切线于切点的.15.经过圆的外一点作圆的切线,的长叫做这点到圆的切线长.16.从圆外一点可以引圆的条切线,它们的切线长.17.三角形的三个顶点可以确定一个圆,这个圆叫做,外接圆的圆心叫做三角形的,它到三角形都相等,是的交点.18.和三角形三边都的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的;它到三角形都相等,是的交点.19.设两圆的半径分别为R和r,圆心距为d,那么(1)两圆外离⇔;(2)两圆外切⇔;(3)两圆相交⇔;(4)两圆内切⇔;(5)两圆内切⇔.(三)圆的有关算20.正边形的一个内角的都数是;中心角为.l,扇形的面21.扇形的半径为R,扇形的圆心角为︒n,那么扇形的弧长=S.积=S.22.如果扇形的弧长为l,半径为R,那么扇形的面积=23.圆锥的侧面展开图是一个,如果底面半径为R,母线长为l,则圆锥的高为,侧面积为.二圆易错点1.注意考虑点的位置在解决点与圆的有关问题时,应注意对点的位置进行分类,如点在圆内圆外、点在优弧劣弧等.例1.点P 到⊙O 上的最近距离为cm 3,最远距离为cm 5,则⊙O 的半径为 cm .例2.BC 是⊙O 的一条弦, ︒=∠120BOC ,点A 是⊙O 上的一点(不与B 、C 重合),则BAC ∠的度数为 .2.注意考虑弦的位置在解决与弦有关的问题时,应对两条的位置进行分类,即注意位于圆心同侧和异侧的分类.例3.在半径cm 5为的圆中,有两条平行的弦,一条为cm 8,另一条为cm 6,则这两条平行弦的距离是 .例4.AB 是⊙O 的直径,AC 、AD 是⊙O 的两条弦,且︒=∠30BAC ,︒=∠45BAD ,则CAD ∠的度数为 .3.注意公共点的个数在涉及直线与圆的位置关系时,应注意有公共点和有唯一公共点的区别.例5.⊙O 的半径为cm 3,点P 在直线l 上,且cm OP 3=,则⊙O 和直线l 的位置关系为 .4.注意两圆相切中的分类在解决两圆相切的有关问题时,应注意对内切、外切以及两圆大小进行分类,如下面的例题.例6.已知⊙O 1和⊙O 2相切,两圆的圆心距为9cm ,⊙O 1的半径为4cm ,则⊙O 2的半径为( ).A .cm 5B .cm 13C .cm 9或cm 13D .cm 5 或cm 13 例7.⊙O 1和⊙O 2相内切,圆心距为cm 2,其一个圆的半径为cm 5,则另一圆的半径为 cm . 三 考点考点1:基本概念和性质考查形式:主要考查圆的对称性、直径与弦的关系、等弧等有关命题,常以选择题的形式出现.例1.(2010兰州)有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ).A .4个B .3个C . 2个D . 1个 考点2:圆心角与圆周角的关系例2.(2010年连云港)如图,点A 、B 、C 在⊙O 上,AB ∥CD ,∠B =22°, 则∠A =________°.图1A图2AD图3图4考点3:垂径定理考查形式:主要考查借助垂径定理的解决半径、弧、弦、弦心距之间的计算和证明,填空题、选择题或解答题中都经常出现它的身影.解决是应注意作出垂直于弦的半径或弦心距,构造直角三角形进行解决.例3.(2010芜湖)如图,在⊙O 中,有折线OABC ,其中8=OA ,12=AB ,︒=∠=∠60B A ,则弦BC 的长为( )。

九年级下册数学圆的必考知识点

九年级下册数学圆的必考知识点

九年级下册数学圆的必考知识点九年级下学期的数学学习内容中,圆是一个非常重要的知识点。

它是几何学中的基础概念之一,涉及到面积、周长、弧长等概念的计算。

下面,就让我们来一起回顾和学习九年级下册数学圆的必考知识点。

一、圆的定义和基本性质圆是平面上一组离定点等距离的点的集合,这个定点叫作圆心,等距离的长度叫作半径。

圆的基本性质包括:圆上任意两点与圆心的距离相等;圆心到圆上任意一点的距离等于半径长度;圆的直径是通过圆心的两点,等于半径长度的两倍。

二、圆的面积和周长公式圆的面积公式是S=πr²,其中S表示圆的面积,π是一个常数,约等于3.14,r表示圆的半径。

该公式的推导可以通过剖分圆形成扇形,并利用扇形的面积计算公式得到。

圆的周长公式是C=2πr,其中C表示圆的周长。

周长的计算可以通过将圆的周长等分为N个小的弧段,然后用近似的方法计算每个弧段的长度并相加得到。

三、圆和圆心角圆心角是以圆心为顶点的角,在圆的周上取两个点作为角的两边。

根据圆心角所对的弧长长度,圆心角可以分为180°(半圆)、90°(四分之一圆)等等。

根据圆心角所在的位置,圆弧可以分为大弧和小弧。

圆心角的度数与所在弧的弧长成正比。

四、弧长和弦长的计算弧长是圆上两点之间的弧段的长度,弦长是圆上两点的直线段的长度。

弧长的计算可以根据圆上两点的圆心角度数和半径长度进行计算,公式为L=2πr(θ/360°),其中L表示弧长,r表示半径,θ表示圆心角的度数。

弦长的计算可以通过勾股定理计算,公式为C=2rsin(θ/2),其中C表示弦长,r表示半径,θ表示圆心角的度数。

五、切线和切点切线是与圆相切且与圆心的连线垂直的直线。

切线与圆的相交点称为切点。

切线的斜率和圆的半径垂直,可以通过斜率为-1来计算切线的方程。

切线的长度可以通过勾股定理计算。

通过对九年级下册数学中圆的必考知识点的学习和回顾,我们可以更好地理解和运用圆的概念和性质。

九年级圆的所有知识点

九年级圆的所有知识点

九年级圆的所有知识点圆是几何学中的重要概念,它在我们的日常生活中无处不在。

在九年级的数学学习中,我们将学习关于圆的各种知识点。

本文将全面介绍九年级圆的所有知识点,包括圆的定义、性质、常见公式以及应用等内容。

一、圆的定义及性质圆是由平面上所有到定点的距离都相等的点构成的集合。

圆由圆心和半径来确定,圆心是圆上任何一点到定点的距离都相等,半径则是圆心到圆上任何一点的距离。

圆的性质包括:1. 圆上任意两点之间的线段都是弦,而直径是一条通过圆心且两端点在圆上的弦,它将圆分为两个相等的半圆。

2. 圆上任意一条弦都可作为直径,且直径的长度是半圆周长的两倍。

3. 圆上每个点到圆心的距离都相等,这个距离就是半径,圆周上所有点到圆心的距离都等于半径的长度。

4. 圆周上的一个角,其对应的弧所对应的圆心角相等,即圆心角的度数等于弧度数。

5. 切线与半径的垂直性质:一条切线与通过切点的半径垂直相交。

二、圆的周长和面积公式1. 周长公式:圆的周长等于直径的长度乘以π(圆周率)。

周长 = 直径× π 或者周长 = 2 ×半径× π。

2. 面积公式:圆的面积等于半径的平方乘以π。

面积 = 半径² × π 或者面积 = (直径/2)² × π。

三、圆的应用圆不仅仅在数学中有着重要的地位,它也广泛应用于生活和其他学科中。

以下是圆的一些常见应用:1. 几何设计:圆形是设计中最基本的形状之一,它常常被用来表达和传达各种美学和构图原则。

2. 圆形建筑:许多建筑物采用圆形设计,如剧院、圆形体育场等,这样可以使观众坐在任何位置上都能获得更好的视觉体验。

3. 圆形运动:许多体育运动中都有圆形运动的要素,例如足球、篮球等球类运动,球场也常常是圆形或半圆形的。

4. 圆的应用于物理学中的轨迹:圆形轨迹出现在一些著名的物理学定律中,如牛顿的万有引力定律中行星的椭圆轨道。

综上所述,九年级圆的知识点包括了圆的定义、性质、周长和面积公式以及常见应用等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新九年级数学高频考点核心考点圆专题复习
一、基础知识和基本图形
1.确定圆的条件:
不在同一直线上的三个点确定一个圆.
2.圆的有关性质:
(1)垂径定理及推论:落实,,构成的直角三角形.
(2)圆心角、圆周角、弧、弦及弦心距之间的关系:
3.直线与圆:
(1)直线与圆的位置关系:设圆的半径为r,圆心到直线的距离为d,则:
①直线和圆相交d<r;
②直线和圆相切 d =r;知交点,连半径,证垂直;不知交点,作垂直,证半径。

③直线和圆相离 d >r.
(2)切线的性质定理及判定定理、切线长定理.(轴对称)
4.圆和圆的位置关系:
设圆的半径分别为R和r (R >r ) 、圆心距为d,则:
两圆外离d>R+r;两圆外切d = R+r;
两圆相交R–r<d<R+r;两圆内切d = R–r;
两圆内含d<R一r (同心圆d = 0 ).
5.有关圆的计算
(1)扇形弧长和扇形面积.
(2)三角形的内切圆.
(3)圆锥的侧面展开.
(4)有关阴影面积.(割补法)
二、例题
1.如图,⊙O是△ABC的外接圆,⊙O的半径R=2,sin B=,则弦AC 的长为______________.
分析:如何利用好圆的半径,如何把角B放到一个直角三角形中去运用三角函数值,这就需要作直径,并构造直径所对的圆周角,这样就把角B转化到直角三角形中了。

解答:作直径AO,交圆O于D,连CD
利用勾股定理求得:AC=3
2.如图,分别是的切线,为切点,是⊙O的直径,
已知,的度数为().
A.B.C.D.
分析:本题利用圆心角与圆周角的关系,以及切线长定理解决
解答:D
3.如图,梯形中,,,,,以为圆心在梯形内画出一个最大的扇形(图中阴影部分)的面积是_____________.
分析:要求扇形面积,关键是确定半径和圆心角
解答:过A作AE⊥BC于E,可求得∠B为60度,AE=,所以最大扇形面积为4。

4.在中,,.如果圆的半径为,且经
过点,那么线
段的长等于______________.
分析:此题应分类讨论,考虑圆心O在BC上和在BC下两种情况
解答:5或3
5.如图,已知:△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=,则⊙O的直径等于______________.
分析:先解三角形,求得∠B为45度,再构造直径AO
解答:作直径AO,交圆O于E,连CE
可求得∠E=∠B=45度,所以直径AE=
6.如图,已知大半圆⊙与小半圆⊙相内切于点B,大半圆的弦MN
切小半圆于点D,若
MN∥AB,当MN=4时,则此图中的阴影部分的面积是_____________.
分析:此题需用到垂径定理和整体带入
解答:连接,过作⊥MN于E
阴影面积为2
7.已知:如图,△OBC内接于圆,圆与直角坐标系的x、y轴交于B、A
两点,若∠BOC=45°,
∠OBC=75°,A点坐标为(0,2).则点B点的坐标为___________;BC的长=__________.
解答:连AB、AC,可求得
B(),BC=
8.如图,⊙O的半径为3cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,
动点P从点A出发,以cm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为_______s时,BP与⊙O相切.
解答:要考虑到两种情况,5或1
9.已知:点F在线段AB上,BF为⊙O的直径,点D在⊙O上,BC AD
于点C,BD平分.
(1)求证:AC是⊙O的切线;
(2)若AD=,AF=,求CD的长.
解答:(1)连OD,证明OD//BC
(2)利用方程和相似,求得CD=
10.如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD.已
知AD=BD=4,PC=6,求CD的长.
解答:连AC,利用∽,求得CD=8
11.如图,点I是△ABC的内心,线段A I的延长线交△ABC的外接圆于
点D,交BC边于点E.
(1)求证:ID=BD;
(2)设△ABC的外接圆的半径为5,I D=6,,,当点A在优弧
上运动时,求与的
函数关系式,并指出自变量的取值范围.
解答:
(1)提示:证∠IBD=∠BID
(2)(6)
12.如图,点是半圆的半径上的动点,作于.点是
半圆上位于左侧的点,连结交线段于,且.
(1)求证:是⊙O的切线.
(2)若⊙O的半径为,,设.
①求关于的函数关系式.
②当时,求的值.
解答:
(1)连DO,证OD⊥DP;
(2)①连PO,;
②,提示:在三角形EBC中求
13.二次函数的图象与轴相交于点A、B两点(点A在
点B的左边),与轴交于点C,点M是它的顶点.
(1)求证:以A为圆心,直径为5的圆与直线CM相离;
(2)将(1)中的⊙A的圆心在轴上移动,平移多少个单位,使⊙A与直线CM相切.
解答:
(1),
(2)个单位.。

相关文档
最新文档