九年级数学圆问题

合集下载

九年级数学上册第二十四章圆典型例题(带答案)

九年级数学上册第二十四章圆典型例题(带答案)

九年级数学上册第二十四章圆典型例题单选题1、如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.√2D.1答案:B分析:连接OA,如图,先根据垂径定理得到AE=BE=4,再利用勾股定理计算出OE=3,然后计算OC﹣OE即可.解:连接OA,如图,∵AB⊥CD,∴AE=BE=1AB=4,2在Rt△OAE中,OE=√OA2−AE2=√52−42=3,∴CE=OC﹣OE=5﹣3=2.故选:B.小提示:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理,掌握垂径定理是解题的关键.2、已知⊙O的半径为3,OA=5,则点A和⊙O的位置关系是()A.点A在圆上B.点A在圆外C.点A在圆内D.不确定答案:B分析:根据点与圆的位置关系的判定方法进行判断,OA小于半径则在圆内,OA等于半径则在圆上,OA大于半径则在圆外.解:∵⊙O的半径为3,OA=5,即A与点O的距离大于圆的半径,所以点A与⊙O外.故选:B.小提示:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD =DC =12AC =2√2 ∴OD 是△ABC 的中位线∴BC =2OD∵OA 2=OD 2+AD 2∴(4−x)2=x 2+(2√2)2,解得x =1∴BC =2OD =2x =2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD 的长是解题的关键.4、如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,则下列结论不一定成立的是( )A .AE =BEB .OE =DEC .AC⌢=BC ⌢D .AD ⌢=BD ⌢ 答案:B分析:根据垂径定理即可判断.解:∵CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∴AE =EB ,AC⌢=BC ⌢, AD ⌢=BD ⌢. 故选:B .小提示:本题主要考查垂径定理,掌握垂径定理是解题的关键.5、斐波那契螺旋线也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,…画出来的螺旋曲线.如图,在每个边长为1的小正方形组成的网格中,阴影部分是依次在以1,1,2,3,5的一个四分之一圆做圆锥的侧面,则该圆锥的底面半径为( )A .54B .2C .52D .4答案:A分析:根据斐波那契数的规律,求出下一个圆弧的底面半径和弧长,结合圆锥的侧面积性质进行求解即可. 解:有根据斐波那契数的规律可知,从第三项起,每一个数都是前面两个数之和,即半径为5的扇形对应的弧长l =2π×5×14=52π设圆锥底面半径为r ,则2πr =52π ∴r =54故选:A .小提示:本题考查圆锥侧面积的计算,结合斐波那契数的规律,及扇形的弧长公式进行转化是解题关键.6、如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM 的度数是( )A .36°B .45°C .48°D .60°答案:C分析:如图,连接AO .利用正多边形的性质求出∠AOM ,∠AOB ,可得结论.解:如图,连接AO.∵△AMN是等边三角形,∴∠ANM=60°,∴∠AOM=2∠ANM=120°,∵ABCDE是正五边形,=72°,∴∠AOB=360°5∴∠BOM=120°−72°=48°.故选:C.小提示:本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.7、如图,斗笠是一种遮挡阳光和蔽雨的编结帽,它可近似看成一个圆锥,已知该斗笠的侧面积为550πcm2,AB是斗笠的母线,长为25cm,AO为斗笠的高,BC为斗笠末端各点所在圆的直径,则OC的值为()A.22B.23C.24D.25答案:A分析:根据圆锥的侧面积和母线可得底面圆的周长,进而可得底面圆的半径.解:∵侧面积为550π cm2,母线长为25cm,∴1×l×25=550π解得l=44π,2∵2πr=44π,∴OC=r=22,故选:A.小提示:本题考查圆锥的计算,根据侧面积和母线得到底面圆的半径是解题关键.8、如图,正五边形ABCDE内接于⊙O,则正五边形中心角∠COD的度数是()A.76°B.72°C.60°D.36°答案:B计算即可.分析:根据正多边形的中心角的计算公式:360°n解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为360°=72°,5故选:B.小提示:本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360°是解题的关键.n9、如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走()米.A .6π−6√3B .6π−9√3C .12π−9√3D .12π−18√3答案:D分析:作OC ⊥AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出∠A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB⌢的长,最后求它们的差即可. 解:作OC ⊥AB 于C ,如图,则AC =BC ,∵OA =OB ,∴∠A =∠B =12(180°-∠AOB )=30°, 在Rt △AOC 中,OC =12OA =9, AC =√182−92=9√3,∴AB =2AC =18√3,又∵AB ⌢=120×π×18180=12π,∴走便民路比走观赏路少走12π−18√3米,故选D .小提示:本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10、在锐角△ABC中,∠ACB=60°,∠BAC、∠ABC的角平分线AD、BE交于点M,则下列结论中错误的是()A.∠AMB=120°B.ME=MDC.AE+BD=AB D.点M关于AC的对称点一定在△ABC的外接圆上答案:D分析:利用三角形内角和定理以及角平分线的定义求出∠MAB+∠MBA=60°,推出∠AMB=120°,可判断A,证明C,E,M,D四点共圆,利用圆周角定理可判断B;在AB上取一点T,使得AT=AE,利用全等三角形的性质证明BD=BT,可判断C;无法判断∠M′与∠ABC互补,可判断D.解:如图,∵∠ACB=60°,∴∠CAB+∠CBA=120°,∵AD,BE分别是∠CAB,∠CBA的角平分线,∴∠MAB+∠MBA=1(∠CAB+∠CBA)=60°,2∴∠AMB=180°-(∠MAB+∠MBA)=120°,故A符合题意,∵∠EMD=∠AMB=120°,∴∠EMD+∠ECD=180°,∴C,E,M,D四点共圆,∵∠MCE=∠MCD,∴EM⌢=DM⌢,∴EM=DM,故B符合题意,∵四边形CEMD是⊙O的内接四边形,∴∠AME=∠ACB=60°=∠BMD,在AB上取一点T,使得AT=AE,在△AME和△AMT中,{AE=AT∠MAE=∠MATAM=AM,∴△AME≌△AMT(SAS),∴∠AME=∠AMT=60°,EM=MT,∴∠BMD=∠BMT=60°,MT=MD,在△BMD和△BMT中,{MD=MT∠BMD=∠BMTBM=BM,∴△BMD≌△BMT,∴BD=BT,∴AB=AT+TB=AE+BD,故C符合题意,∵M,M′关于AC对称,∴∠M′=∠AMC,∵∠AMC=180°−12(∠CAB+∠ACB)=180°−12(180°−∠ABC)=90°+12∠ABC,∴∠M′与∠ABC不一定互补,∴点M′不一定在△ABC的外接圆上,故D不符合题意,故选D.小提示:本题考查三角形的外接圆,四点共圆,圆周角定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.填空题11、如图,已知A为半径为3的⊙O上的一个定点,B为⊙O上的一个动点(点B与A不重合),连接AB,以AB为边作正三角形ABC.当点B运动时,点C也随之变化,则O、C两点之间的距离的最大值是______.答案:6分析:连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.证明△BAO≌△CAN(SAS),推出OB=CN=3,推出OC≤ON+CN=6,可得结论.解:如图,连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.∵OA=ON,OA=AN,∴AO=ON=AN,∴△OAN是等边三角形,∴∠OAN=60°,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠OAN=60°,∴∠BAO=∠CAN,∴△BAO≌△CAN(SAS),∴OB=CN=3,∵OC≤ON+CN=6,∴OC的最大值为6,所以答案是:6.小提示:本题考查了等边三角形的性质,圆的相关性质,垂径定理,利用两地之间线段最短是本题的解题关键.12、一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为__________.cm答案:132分析:连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),cm,所以圆形镜面的半径为132cm.所以答案是:132小提示:本题考查了圆周角定理,圆心角、弧、弦之间的关系和勾股定理等知识点,能根据圆周角定理得出AC 是圆形镜面的直径是解此题的关键.13、如图所示的网格中,每个小正方形的边长均为1,点A ,B ,D 均在小正方形的顶点上,且点B ,C 在AD⌢上,∠BAC =22.5°,则BC⌢的长为__________.答案:5π4 分析:先找到AD̂的圆心O ,得到∠BOC =45°,利用弧长公式即可求解. 解:连接AD ,作线段AB 、AD 的垂直平分线,交点即为AD̂的圆心O , 从图中可得:AD̂的半径为OB =5, 连接OC ,∵∠BAC =22.5°,∴∠BOC =2×22.5°=45°,BC ̂的长为45×π×5180=5π4. .所以答案是:5π4.小提示:本题考查了弧长公式,找到AD̂的圆心是解题的关键. 14、如图,正六边形ABCDEF 的边长为4,以A 为圆心,AC 的长为半径画弧,得EC⌢,连接AC 、AE ,用图中阴影部分作一个圆锥的侧面,则这个圆锥的底面半径为______.答案:2√33分析:由正六边形ABCDEF的边长为4,可得AB=BC=4,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH=12AC,BH=2.在Rt△ABH中,由勾股定理求得AH=2√3,得到AC=4√3.根据扇形的面积公式可得到阴影部分的面积,即是圆锥的侧面积,最后根据圆锥的侧面积公式求解底面半径即可.解:∵正六边形ABCDEF的边长为4,∴AB=BC=4,∠ABC=∠BAF=(6−2)×180°6=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=12(180°−∠ABC)=30°,如图,过B作BH⊥AC于H,∴AH=CH=12AC,BH=12AB=12×4=2,在Rt△ABH中,AH=√AB2−BH2=√42−22=2√3,∴AC=2AH=4√3,同理可求∠EAF=30°,∴∠CAE=∠BAF−∠BAC−∠EAF=120°−30°−30°=60°,∴S扇形CAE =60π⋅(4√3)2360=8π,∴S圆锥侧=S扇形CAE=8π,∵S 圆锥侧=πrl =πr ⋅AC =4√3πr ,∴4√3πr =8π,∴r =2√33, 所以答案是:2√33.小提示:本题考查的是正六边形的性质、扇形面积的计算、等腰三角形的性质、勾股定理、圆锥的侧面积,掌握扇形面积公式和圆锥侧面积公式是解题的关键.15、刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积S 1来近似估计⊙O 的面积S ,设⊙O 的半径为1,则S −S 1=__________.答案:π−3分析:如图,过点A 作AC ⊥OB ,垂足为C ,先求出圆的面积,再求出△ABC 面积,继而求得正十二边形的面积即可求得答案.如图,过点A 作AC ⊥OB ,垂足为C ,∵⊙O 的半径为1,∴⊙O 的面积S =π,OA=OB=1,∴圆的内接正十二边形的中心角为∠AOB=360°12=30°,∴AC=12OB=12,∴S △AOB =12OB•AC=14, ∴圆的内接正十二边形的面积S 1=12S △AOB =3,∴则S −S 1=π−3,故答案为π−3.小提示:本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.解答题16、如图,CD 与EF 是⊙O 的直径,连接CE 、CF ,延长CE 到A ,连接AD 并延长,交CF 的延长线于点B ,过点F 作⊙O 的切线交AB 于点G ,点D 是AB 的中点.(1)求证:EF ∥AB ;(2)若AC =3,CD =2.5,求FG 的长.答案:(1)见解析;(2)65分析:(1)连接DE ,根据CD 和EF 都是⊙O 的直径得到∠DEA =∠ECF =90°,根据直角三角形的性质得到CD =AD =BD ,利用等腰三角形三线合一的性质推出∠ADE =∠CDE ,进而得到∠ADE =∠OED ,即可得到EF ∥AB ;(2)根据直角三角形斜边上的中线求得AB=2CD=5,勾股定理求得BC=4,由(1)可得EF=12AB,根据切线的性质可得FG⊥AB,根据sinB=FGBF =ACAB,代入数值,即可得到FC.(1)证明:连接DE,∵CD和EF都是⊙O的直径,∴∠DEA=∠ECF=90°,∵D是AB的中点,∴CD=AD=BD,∴∠ADE=∠CDE,∵OD=OE,∴∠OED=∠CDE,∴∠ADE=∠OED,∴EF∥AB;(2)连接DF,∵CD是⊙O的直径,∴∠DFC=90°,∴∠DFC=∠FCE=∠CED=90°,∴四边形CEDF是矩形,∴FC=DE,DE∥BC,∴AEEC =ADDB=1,∴AE=CE,∴DE是△ABC的中位线,∴DE=12BC,∵AB=2CD=5,AC=3,∴BC=√AB2−AC2=√52−32=4,∴FC=2.∴BF=BC−FC=4−2=2∵FG是⊙O的切线,∴GF⊥EF∵EF∥AB∴FG⊥AB∴∠BGF=∠BCA=90°∴sinB=FGBF =ACAB∴FG2=35∴FG=65小提示:此题考查了圆周角定理,矩形的判定定理及性质定理,勾股定理,三角形中位线的性质,熟记圆周角定理是解题的关键.17、如图,D是△ABC的BC边上一点,连结AD,作△ABD的外接圆O,将△ADC沿直线AD折叠,点C的对应点E 落在⊙O 上.(1)若∠ABC =30°,如图1.①求∠ACB 的度数.②若AD =DE ,求∠EAB 的度数.(2)若AD⌢=BE ⌢,AC =4,CD =2,如图2.求BC 的长. 答案:(1)①30°,②60°;(2)BC =6分析:(1)①根据折叠的性质可得∠ACD =∠AED ,根据等弧所对的圆周角即可求解;②根据等边对等角可得∠DAE =∠DEA ,根据(1)的结论可得∠ACB =∠ABC ,进而根据折叠的性质求得∠CAE =60°,进而根据∠CAB −∠CAE 即可求得∠BAE ,(2)根据AD⌢+DE ⌢=BE ⌢+DE ⌢,可得AE ⌢=DB ⌢,AE =BE ,根据折叠的性质可得DB =AE =4,进而即可求解.(1)①∵AD⌢=AD ⌢,∠ABC =30°, ∴∠AED =∠ABD =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠ACB =∠AED =30° ;②∵ AD =DE ,∴∠DAE =∠DEA ,∵∠DEA =∠DBA ,∴∠DAE =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠DAE =∠DAC =30°,△ABC 中,∠ABC =∠ACB =30°,则∠CAB =180°−∠ABC −∠ACB =120°,∵∠CAE =∠CAD +∠EAD =60°,∴∠EAB =∠CAB −∠CAE =120°−60°=60°,∴∠EAB =60°,(2)∵ AD⌢=BE ⌢ ∴AD⌢+DE ⌢=BE ⌢+DE ⌢ ∴AE⌢=DB ⌢ ∴AE =BE∵折叠∴AC =AE∴DB =AE =4∵CD =2∴BC =CD +DB =4+2=6小提示:本题考查了折叠的性质,同弧或等弧所对的圆周角相等,弧与弦的关系,三角形内角和定理的应用,综合运用以上知识是解题的关键.18、如图,C ,D 是以AB 为直径的半圆上的两点,∠CAB =∠DBA ,连结BC ,CD .(1)求证:CD ∥AB .(2)若AB =4,∠ACD =30°,求阴影部分的面积.答案:(1)答案见解析(2)23π 分析:(1)根据同弧所对的圆周角相等得到∠ACD =∠DBA ,根据 ∠CAB =∠DBA 得到∠CAB =∠ACD ,进而得到结论;(2)连结OC ,OD ,证明所求的阴影部分面积与扇形COD 的面积相等,继而得到结论.(1)证明:∵AD ⌒=AD ⌒,∴∠ACD =∠DBA ,又∵∠CAB =∠DBA ,∴∠CAB =∠ACD ,∴CD ∥AB ;(2)解:如图,连结OC ,OD .∵∠ACD =30°,∴∠ACD =∠CAB =30°,∴∠AOD =∠COB =60°,∴∠COD =180°-∠AOD -∠COB =60°.∵CD ∥AB ,∴S △DOC =S △DBC ,∴S 阴影=S 弓形COD +S △DOC =S 弓形COD +S △DBC=S 扇形COD ,∵AB =4,∴OA =2,∴S 扇形COD=nπr 2360=60×π×22360=23π.∴S阴影=2π.3小提示:本题主要考查扇形的面积,同弧所对的圆周角相等,平行线的判定,掌握定理以及公式是解题的关键.。

人教版九年级数学上册第24章《圆》单元练习题(含答案)

人教版九年级数学上册第24章《圆》单元练习题(含答案)

人教版九年级数学上册第24章《圆》单元练习题(含答案)一、单选题1.如图,一个油桶靠在直立的墙边,量得0.8m,BC =并且,AB BC ⊥则这个油桶的底面半径是( )A .1.6mB .1.2mC .0.8mD .0.4m 2.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( )A .1个B .2个C .3个D .4个3.如图,点A 、B 、C 在⊙O 上,且∠ACB=100o ,则∠α度数为( )A .160oB .120oC .100oD .80o4.如图,在⊙O 中,CD 是直径,AB 是弦,AB ⊥CD 于E ,AB =8,OD =5,则CE 的长为( )A .4B .2C 2D .15.如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )A .70°B .60°C .50°D .40°6.如图,AB 为⊙O 的直径,点 D 是弧 AC 的中点,过点 D 作 DE ⊥AB 于点 E ,延长 DE 交⊙O 于点 F ,若 AC =12,AE =3,则⊙O 的直径长为( )A .7.5B .15C .16D .187.如图,已知AB 、AD 是O 的弦,30B ∠=︒,点C 在弦AB 上,连接CO 并延长CO 交于O 于点D ,20D ∠=︒,则BAD ∠的度数是( )A .30°B .40°C .50°D .60°8.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为86°,30°,则∠ACB 的度数是( )A .28°B .30°C .36°D .56°9.如图,⊙O 是△ABC 的外接圆,将△ABC 绕点C 顺时针旋转至△EDC ,使点E 在⊙O 上,再将△EDC 沿CD 翻折,点E 恰好与点A 重合,已知∠BAC =36°,则∠DCE 的度数是( )A.24 B.27 C.30 D.3310.下列说法正确的是()①近似数2⨯精确到十分位;32.610--中,最小的是38-;②在2,2,38-,2③如图所示,在数轴上点P所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点.A.1 B.2 C.3 D.4二、填空题11.某圆的周长是12.56米,那么它的半径是______________,面积是__________.OA=,12.如图,A、B、C是O上的点,OC AB⊥,垂足为点D,且D为OC的中点,若7则BC的长为___________.13.如图,AB 、AC 是O 的弦,过点A 的切线交CB 的延长线于点D ,若35BAD ∠=︒,则C ∠=___________°.14.如图,在正五边形ABCDE 中,连结AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则∠FDC 的度数是 _____.15.如图,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于________度时,AC 才能成为⊙O 的切线.16.如图,ABC 是O 的内接三角形.若=45ABC ∠︒,2AC =,则O 的半径是______.三、解答题17.如图,在菱形ABCD 中,90BAD ∠>︒,P 为AC ,BD 的交点,O 经过A ,B ,P 三点.(1)求证:AB 为O 的直径.(2)请用无刻度的直尺在圆上找一点Q ,使得BP =PQ (不写作法,保留作图痕迹).18.请用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,Rt △ABC 中,∠C =90°.求作:一个⊙O ,使⊙O 与AB 、BC 所在直线都相切,且圆心O 在边AC 上.19.如图所示,AB 为⊙O 的直径,在△ABC 中,AB =BC ,AC 交⊙O 于点D ,过点D 作DE ⊥BC ,垂足为点E .(1)证明DE 是⊙O 的切线;(2)AD =8,P 为⊙O 上一点,P 到弦AD 的最大距离为8.①尺规作图作出此时的P 点,保留作图痕迹;②求DE 的长.20.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1)求证:EF 是O 的切线;(2)若9OC =,4AC =,8AE =,求BE 的长.21.如图,点A ,B ,C ,D 在⊙O 上,AB =CD .求证:AC =BD ;<),点E是线段OP的中点.在22.如图,点P是O的直径AB延长线上的一点(PB OB=.求证:PC是O的切线.直径AB上方的圆上作一点C,使得EC EP23.如图,四边形ABCD内接于120,,,求证:ABC是等边三角形.O AB AC ADC=∠=︒24.如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若3AP ,BF=1,求⊙O的半径.25.如图,⊙O是以△ABC的边AC为直径的外接圆,∠ACB=54°,如图所示,D为⊙O上与点B关于AC的对称点,F为劣弧BC上的一点,DF交AC于N点,BD交AC于M点.(1)求∠DBC的度数;(2)若F为弧BC的中点,求MN ON.26.已知P为⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若∠APQ=∠BPQ(1)如图1,当∠APQ=45°,AP=1,2⊙O的半径。

九年级下册数学《圆》专项练习题含答案解析

九年级下册数学《圆》专项练习题含答案解析

九年级下册数学《圆》专项练习题1、已知⊙O1的半径是3cm,⊙2的半径是2cm,O1O2=cm,则两圆的位置关系是A.相离B.外切C.相交D.内切2、如图所示,在⊙O中,,∠A=30°,则∠B=A.150°B.75°C.60°D.15°3、用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于A.3 B.C.2 D.4、在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=A.5 B.C.D.65、如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是A.AD=DC B.C.∠ADB=∠ACB D.∠DAB=∠CBA6、如图所示是某公园为迎接“中国﹣﹣南亚博览会”设置的一休闲区.∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是A.米2B.米2C.米2D.米27、如图,已知AB、CD是⊙O的两条直径,∠ABC=28°,那么∠BAD=A.28°B.42°C.56°D.84°8、已知⊙O1与⊙O2相交,它们的半径分别是4,7,则圆心距O1O2可能是A.2 B.3 C.6 D.129、如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为A.B.C.D.10、若圆锥的侧面展开图为半圆,则该圆锥的母线l与底面半径r的关系是A.l=2r B.l=3r C.l=r D.11、如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为A.B.C.D.12、下列说法错误的是A.若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心B.与互为倒数C.若a>|b|,则a>bD.梯形的面积等于梯形的中位线与高的乘积的一半13、如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为A.135°B.122.5°C.115.5°D.112.5°14、将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为A.B.C.D.15、如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为A.B.C.D.16、如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为A.B.C.D.17、如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是A.35° B.140° C.70°D.70°或140°18、已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是A.30cm2B.30πcm2C.15cm2D.15πcm219、如图,Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是的中点,CD与AB的交点为E,则等于A.4 B.3.5 C.3 D.2.520、用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4 cm,底面周长是6π cm,则扇形的半径为A.3cm B.5cm C.6cm D.8cm21、如图,在△ABC中,AB=4,AC=6,∠BAC=60º,∠BAC的角平分线交△ABC的外接圆⊙O 于点E,则AE的长为 .22、如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为厘米.23、如图,AB是半圆O的直径,点P在AB的延长线上,PC切半圆O于点C,连接AC.若∠CPA=20°,则∠A=°.24、已知正方体的棱长为3,以它的下底面的外接圆为底、上底面对角线的交点为顶点构造一个圆锥体,那么这个圆锥体的体积是(π=3.14).25、已知扇形的半径是30cm,圆心角是60°,则该扇形的弧长为cm(结果保留π).26、如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s 的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)27、高为4,底面半径为3的圆锥,它的侧面展开图的面积是.28、如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是.29、如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为.30、如图是李大妈跳舞用的扇子,这个扇形AOB的圆心角∠O=120°,半径OA=3,则弧AB 的长度为(结果保留π).31、如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN= .32、如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为.33、如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.34、如图,将⊙O沿弦AB折叠,使经过圆心O,则∠OAB= °.35、如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)36、已知圆锥的底面周长是10π,其侧面展开后所得扇形的圆心角为90°,则该圆锥的母线长是.37、已知⊙O1与⊙O2相切,两圆半径分别为3和5,则圆心距O1O2的值是.38、点O在直线AB上,点A1,A2,A3,……在射线OA上,点B1,B2,B3,……在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,速度为每秒1个单位长度.按此规律,则动点M到达A101点处所需时间为秒.39、如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB= º.40、如图,已知⊙O是△ABC的外接圆,若∠BOC=100°,则∠BAC=.41、如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.(1)求证:直线DE是⊙O的切线;(2)当AB=5,AC=8时,求cosE的值.42、如图,OA=OB,AB交⊙O于点C、D,AC与BD是否相等?为什么?43、如图,AB是⊙O的直径,C是⊙O上一点,AC平分∠BAD;AD⊥ CD,垂足为D.(1)求证:CD是⊙O的切线(2)若⊙O的直径为5,CD=2.求AC的长.44、(本题满分12分)如图,I是△ABC的内心,∠BAC的平分线与△ABC的外接圆相交于点D。

人教版九年级数学上册第24章《圆》选择专项练习题(含答案)

人教版九年级数学上册第24章《圆》选择专项练习题(含答案)

人教版九年级数学上册第24章《圆》选择专项练习题 1.若⊙A 的半径为5,圆心A 与点P 的距离是25,则点P 与⊙A 的位置关系是( ) A .P 在⊙A 上 B .P 在⊙A 外 C .P 在⊙A 内 D .不确定 2.扇形的半径为20cm ,扇形的面积2100cm π,则该扇形的圆心角为( ) A .120︒ B .100︒ C .90︒ D .60︒ 3.在下列命题中,正确的是( )A .长度相等的弧是等弧B .直径所对的圆周角是直角C .三点确定一个圆D .三角形的外心到三角形各边的距离相等 4.如图,点A 、B 、C 是⊙O 上的三个点,若∠AOB =82°,则∠C 的度数为( )A .82°B .38°C .24°D .41° 5.如图,AB 是O 的直径,点E ,C 在O 上,点A 是EC 的中点,过点A 画O 的切线,交BC 的延长线于点D ,连接EC .若58.5ADB ∠=︒,则ACE ∠的度数为( )A .29.5︒B .31.5︒C . 58.5︒D .63︒ 6.如图,在⊙O 中,半径r =5,弦AB =8,P 是弦AB 上的动点(不含端点A ,B ),若线段OP 长为正整数,则点P 的个数有( )A .2个B .5个C .4个D .3个 7.已知⊙O 的直径为12,直线l 上有一点P ,OP =6,则直线l 与⊙O 的位置关系是( )A.相交B.相切C.相离D.相切或相交8.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16cm,则球的半径为()A.103cm B.10cm C.102cm D.83cm9.一个圆锥体底面半径为3cm,高为4cm,则这个圆锥体的侧面积为()A.12πcm²B.28πcm²C.15πcm²D.20πcm²10.如图,A,B,C是⊙O上的三个点,若∠B=32°,则∠AOC=()A.64°B.58°C.68°D.55°11.如图,BD是⊙O的直径,点A、C在圆上,且CD=OB,则∠BAC=()A.120°B.90°C.60°D.30°12.下列命题:①平⾏四边形是中⾏对称图形,也是轴对称图形;②直径是最长的弦,半径是最短的弦;③过切点的直线是圆的切线;④三角形的外⾏是三条边垂直平分线的交点;⑤三角形的内⾏是三条内角平分线的交点;其中正确的有()A.1个B.2个C.3个D.4个13.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10 B.18 C.20 D.2214.下列关于圆的说法,正确的是()A.在同圆或等圆中,相等的弦所对的圆周角相等B.平分弦的直径垂直于弦C.圆的每一条直径所在的直线都是它的对称轴D.过三点可以作一个圆15.一个适当大的正六边形,它的一个顶点与一个边长为定值的小正六边形ABCDEF的中心O重合,且与边AB、CD相交于G、H(如图).图中阴影部分的面积记为S,三条线段GB、BC、CH的长度之和记为l,大正六边形在绕点O旋转过程中,下列说法正确的是()A.S变化,l不变B.S不变,l变化C.S变化,l变化D.S与l均不变16.下列四个命题:①直角三角形斜边上的中线等于斜边的一半;②对角线相等的平行四边形是菱形;③一组邻边相等的矩形是正方形;④三角形三条角平分线的交点是三角形的外心.其中真命题共有()A.1个B.2个C.3个D.4个17.下列说法正确的是()A.三角形三条中线的交点是三角形重心B.等弦所对的圆周角相等C.长度相等的两条弧是等弧D.三角形的外心到三边的距离相等18.如图,四边形ABCD内接于⊙O,若∠C=100°,则∠A的度数是()A .80°B .100°C .110°D .120°19.下列说法正确的是( )A .等弧所对的圆心角相等B .同弦所对的圆周角相等C .经过三点可以作一个圆D .相等的圆心角所对的弧相等20.如图,P 是O 外一点,PA 、PB 切O 于点A 、B ,点C 在优弧AB 上,若68P ∠=︒,则ACB ∠等于( )A .22︒B .34︒C .56︒D .68︒21.有四个命题:①直径相等的两个圆是等圆 ②长度相等的两条弧是等弧;③圆中最大的弦是过圆心的弦;④圆周角是圆心角的一半.其中真命题是( )A .①③B .①③④C .①④D .④22.⊙O 的直径是10,两平行弦的长度分别是6和8,那么这两弦的距离是( ) A .1 B .7 C .8 D .1或723.△ABC 的顶点都在⊙O 上,若∠BOC =120°,则∠BAC 等于( )A .60°B .90°C .120°D .60°或120° 24.如图,OA 为⊙O 的半径,弦BC ⊥OA 于点P .若BC =8,AP =2,则⊙O 的半径长为( )A .5B .6C .10D 1725.如图,两个同心圆的半径分别是3cm 和5cm ,大圆的一条弦AB 与小圆相切,则弦ABA .3cmB .4cmC .6cmD .8cm26.如图,已知O 的半径为2,AC 与O 相切,连接AO 并延长,交O 于点B ,过点C 作CD AB ⊥,交O 于点D ,连接BD ,若30A ∠=︒,则弦BD 的长为( )A .3B .5C .23D .3227.下列说法正确的是( )A .在同一平面内,三点确定一个圆B .等弧所对的圆心角相等C .旋转会改变图形的形状和大小D .平分弦的直径垂直于弦28.如图,⊙O 内切于ABC ,切点分别为D ,E ,F .已知50B ∠=︒,60C ∠=°,连接OE ,OF ,DE ,DF ,那么EDF ∠等于( )A .40︒B .55︒C .65︒D .70︒29.下列语句中:①平分弦的直径垂直于弦;②相等的圆心角所对的弧相等;③长度相等的两条弧是等弧;④圆是轴对称图形,任何一条直径都是它的对称轴;⑤圆内接四边形的对角互补;⑥在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等,不正确的有( )A .5个B .4个C .3个D .2个30.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角A .有一个内角小于60°B .每一个内角都小于60°C .有一个内角大于60°D .每一个内角都大于60°31.AB =12cm ,过A 、B 两点画半径为6cm 的圆,能画的圆的个数为( ) A .0个 B .1个 C .2个 D .无数个 32.“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”用现在的几何语言表达即:如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为点E ,CE =1寸,AB =10寸,则直径CD 的长度是( )A .12寸B .24寸C .13寸D .26寸33.如图,将边长为a 的正六边形123456A A A A A A 在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当正六边形旋转一周滚动到图2位置时,顶点1A 所经过的路径( )A 843a +B 423a +C 43a +D 423a + 34.已知⊙O 的半径为1,点P 在⊙O 外,则OP 的长( )A .大于1B .小于1C .大于2D .小于235.如图,在Rt △ABC 中,∠ACB =90°, AC =3,以点C 为圆心、CA 为半径的圆与AB 交于点D ,若点D 巧好为线段AB 的中点,则AB 的长度为( )A.32B.3 C.6 D.936.如图所示,在⊙O中,AB AC=,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°37.如图,F为正方形ABCD的边CD上一动点,AB=2.连接BF,过A作AH⊥BF交BC于H,交BF于G,连接CG,当CG为最小值时,CH的长为()A.2B.225C.3﹣5D.3+538.如图,ABC内接与O,50A∠=,E是边BC的重点,连接OE并延长,交O于点D,连接BD,则DBC∠的大小为()A.55°B.6 C.25°D.75°39.已知圆心角为120°的扇形的面积为12π,则扇形的半径为( )A .4B .6C .43D .6240.如图O 的直径AB 垂直于弦CD ,垂足是E ,225A ∠=︒.,4OC =,CD 的长为( )A .22B .4C .42D .841.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠ABC =30°,AC =1,则⊙O 的半径为( )A .1B .2C .3D .2342.如图,点A 、B 、C 是⊙O 上的三个点,若∠AOB =66°,则∠C 的度数为( )A .33°B .34°C .44°D .46°43.已知⊙O 的直径是10,圆心O 到直线l 的距离是5,则直线l 和⊙O 的位置关系是( ) A .相离 B .相交 C .相切 D .无法确定 44.下列说法中一定正确的是( )A .相等的圆心角所对的弧相等B .圆上任意两点间的部分叫做圆弧C .平分弦的直径垂直于弦D .圆周角等于圆心角的一半45.已知O 的半径为2,点P 为O 内一定点,且1PO =,过点P 作O 的弦,其中最短的弦的长度是()A.4 B.3C.23D.246.如图,AB是☉O的直径,∠CAB=40°,则∠D=()A.60°B.30°C.40°D.50°47.下列说法:①优弧比劣弧长;②三点可以确定一个圆;③长度相等的弧是等弧;④经过圆内的一个定点可以作无数条弦;其中不正确的个数是()A.1个B.2个C.3个D.4个48.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是( )A.54︒B.126︒C.136︒D.144︒49.如图,⊙O的直径CD垂直弦AB于点E,且CE=4,OB=8,则AB的长为()A.3B.4 C.6 D.350.已知⊙O半径为6,圆心O在坐标原点上,点P的坐标为(3,4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定51.⊙O的半径为5,点P到圆心O的距离为5,点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定52.如图.在⊙O中,直径AB⊥CD,下列说法不正确的是()A.AB是最长的弦B.∠ADB=90°C.PC=PD D.∠ABD=2∠ADC53.如图,在Rt ABC中,∠ACB=90°,∠A=54°,以BC为直径的⊙O交AB于点D.E是⊙O上一点,且CE=CD,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°54.如图,Rt△ABC的直角顶点C在⊙O上滑动,且各边与⊙O分别交于点D,E,F,G,若EF,DG,DE的度数比为2:3:5,BE=BF,则∠A的度数为()A.30°B.32°C.34°D.36°55.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=40°,B为弧AN的中点,P 是直径MN上一动点,则PA+PB的最小值为()A.5B.3C.5D.356.如图,正方形ABCD的四个顶点分别在⊙O上,点P是弧CD上不同于点C的任意一点,则∠BPC=()A.45°B.60°C.75°D.90°57.如图,点A、B、P在⊙O上,且∠APB=50°.若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有()A.1个B.2个C.3个D.4个58.O的半径为6cm,圆心O到直线l的距离为7cm,则直线l与O的位置关系是()A.相交B.相切C.相离D.不能确定59.如图,已知直线334y x=-与x轴、y轴分别交于A、B两点,P在以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB,则△PAB面积的最小值为()A.5.5 B.10.5 C.8 D.1260.如图,⊙O的半径为2,定点P在⊙O上,动点A,B也在⊙O上,且满足∠APB=30°,C为PB的中点,则点A,B在圆上运动的过程中,线段AC的最大值为()A.3B3C.3 2 D.3参考答案1.C2.C3.B4.D5.B6.D7.D8.B9.C10.A11.C12.B13.C14.C15.D16.B 17.A18.A19.A20.C21.A22.D23.D24.A25.D26.C27.B28.B29.A30.D 31.B32.D33.B34.A35.C36.B37.C38.C39.B40.C41.A42.A43.C44.B 45.C46.D47.C48.D49.D50.A51.C52.D53.B54.D55.B56.A57.D58.C 59.A60.A。

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

圆中的新定义问题1(2023•淮安模拟)在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知A (3,0),B (5,0),①在点P 1(6,0),P 2(1,-2),P 3(3,2)中,线段AB 的融合点是 P 1,P 3 ;②若直线y =t 上存在线段AB 的融合点,求t 的取值范围;(2)已知⊙O 的半径为4,A (a ,0),B (a +1,0),直线l 过点T (0,-1),记线段AB 关于l 的对称线段为A B .若对于实数a ,存在直线l ,使得⊙O 上有A B 的融合点,直接写出a 的取值范围.【解答】解:(1)①∵P 1(6,0),A (3,0),∴P 1A 的线段垂直平分线与x 轴的交点为92,0,∴P 1是线段AB 的融合点;∵P 2(1,-2),B (5,0),设直线P 2B 的垂直平分线与x 轴的交点为(a ,0),∴(a -1)2+4=(5-a )2,解得a =52,∴直线P 2B 的垂直平分线与x 轴的交点为52,0,∴P 2不是线段AB 的融合点;∵P 3(3,2),B (5,0),设直线P 3B 的垂直平分线与x 轴的交点为(b ,0),∴(b -3)2+4=(5-b )2,解得b =3,∴直线P 3B 的垂直平分线与x 轴的交点为(3,0),∴P 3是线段AB 的融合点;故答案为:P 1,P 3;②线段AB 的融合点在以A 、B 为圆心,AB 为半径的圆及内部,∵A (3,0),B (5,0),∴AB =2,当y =t 与圆相切时,t =2或t =-2,∴-2≤t ≤2时,直线y =t 上存在线段AB 的融合点;(2)由(1)可知,A B 的融合点在以A 、B 为圆心,A B 为圆心的圆及内部,∵A (a ,0),B (a +1,0),∴AB =A B =1,∵⊙O 上有A B 的融合点,∴圆O 与圆A 、B 有交点,∴圆O 与圆A 、圆B 的公共区域为以O 为圆心2为半径,以O 为圆心6为半径的圆环及内部区域,当a >0时,a 的最大值为62-12=35,最小值为22-12-1=3-1,∴3-1≤a ≤35;当a <0时,a 的最大值为-22-12=-3,最小值为-62-12-1=-35-1,∴-35-1≤a ≤-3;综上所述:a 的取值范围为3-1≤a ≤35或-35-1≤a ≤-3.2(2023•西城区校级模拟)在平面内,C 为线段AB 外的一点,若以点A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点.特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1)如图1,在平面直角坐标系xOy 中,点M 的坐标为(-1,0),点N 的坐标为(1,0),在点P 1(2,1),P 2(-1,2),P 332,12 中,线段MN 的直角点是 P 2、P 3 ;(2)在平面直角坐标系xOy 中,点A ,B 的坐标分别为(t ,0),(0,4).①若t =4,如图2所示,若C 是线段AB 的直角点,且点C 在直线y =-x +8上,求点C 的坐标;②如图3,点D 的坐标为(m ,-2),⊙D 的半径为1,若⊙D 上存在线段AB 的等腰直角点,求出m 的取值范围.【解答】解:(1)∵P 2(-1,2),M (-1,0),∴P 2M ⊥MN ,∴P 2是线段MN 的直角点;∵M (-1,0),N (1,0),∴MN =2,∵P 332,12,∴P 3O =1,∴P 3在以O 为圆心,MN 为直径的圆上,∴∠MP 3N =90°,∴P 3是线段MN 的直角点;故答案为:P 2、P 3;(2)①∵A (4,0),B (0,4),∴OA =OB =4,∴∠OAB =∠OBA =45°.根据题意,若点C 为线段AB 的直角点,则需要分三种情况:当点B 为直角顶点,过点B 作BC 1⊥AB 于点C 1,过点C 1作C 1M ⊥y 轴于点M ,∴∠C 1BM =45°,∴C 1M =BM ,设C 1M =BM =a ,∴C 1(a ,a +4),∴-a +8=a +4,解得a =2,∴C 1(2,6);当点A 为直角顶点,过点A 作AC 2⊥AB 于点C 2,过点C 2作C 2N ⊥x 轴于点N ,∴∠C 2AN =45°,∴C 2N =AN ,设C 2N =AN =b ,∴C 2(b +4,b ),∴-(b +4)+8=b ,解得b =2,∴C 2(6,2);当点C 为直角顶点,取AB 的中点P ,则P (2,2),设C 3的横坐标为t ,则C 3(t ,-t +8),由直角三角形的性质可知,C 3P =BP =AP =22,∴(t -2)2+(-t +6)2=(22)2,解得t =4,∴C3(4,4),综上,点C的坐标为(2,6)或(6,2)或(4,4).②如图,以AB为边向下作正方形ABC1C2,连接AC1,BC2交于点C3,则C1,C2,C3是线段AB的等腰直角点.根据点A的运动可知,点C1在直线l1:x=-4上运动,C2在直线l2:y=-x-4上运动,C3在直线l3:y=-x上运动.设l2与y=-2相交于点K,l3与y=-2相交于点L,∴K(2,-2),L(2,-2).由此可得出临界情况如图:如图3(1)中,当⊙D与l1相切时,m=-5;如图3(2)中,当⊙D与l2相切时,点F为切点,连接DF,则ΔDFK为等腰直角三角形,且DF=1,∴DK=2;∴D(-2+2,-2),即m=-2+2;如图3(3)中,当⊙D与l3相切时,点G为切点,连接DG,则ΔDGL为等腰直角三角形,且DG=1,∴DL=2;∴D(2-2,-2),即m=2-2;如图3(4)中,当⊙D与l3相切时,点H为切点,连接DH,则ΔDHL为等腰直角三角形,且DH=1,∴DL=2;∴D(2+2,-2),即m=2+2;综上,符合题意的m的取值范围:-5≤m≤-2+2或2-2≤m≤2+2.3(2023•秀洲区校级二模)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”;(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是③.(填序号)①矩形②菱形③正方形(2)如图1,RtΔABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,sin C=35,若四边形ABED是“婆氏四边形”,求DE的长;(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD= 180°,①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.【解答】(1)解:∵平行四边形ABCD为⊙O的内接四边形,∴∠ABC=∠ADC,∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴平行四边形ABCD是矩形,∵四边形ABCD是“婆氏四边形”,∴AC⊥BD,∴矩形ABCD是正方形,故答案为:③;(2)解:∵∠BAC=90°,AB=6,sin C=35,∴BC=10,AC=8,∴BD为直径,∴∠BED =∠DEC =90°,∵四边形ABED 是“婆氏四边形”,∴AE ⊥BD ,∴AD =DE ,AB =BE =6,设AD =DE =m ,则CD =8-m ,EC =4,在Rt ΔEDC 中,m 2+42=(8-m )2,解得m =3,∴DE =3;(3)①证明:如图2,设AC ,BD 相交于点E ,∵∠DCA =12∠AOD ,∠BDC =12∠BOC ,∠BOC +∠AOD =180°,∴∠DCA +∠BDC =12(∠AOD +∠BOC )=12×180°=90°,∴∠CED =90°,∴AC ⊥BD ,∵四边形ABCD 是⊙O 的内接四边形,∴四边形ABCD 是“婆氏四边形”;②解:过点O 作OM ⊥AD 交于M ,过O 作ON ⊥BC 交于N ,∴AM =12AD ,BN =12BC ,∠AMO =∠BNO =90°,∴∠AOM +∠OAM =90°,∵OA =BO =CO =DO ,∴∠AOM =12∠AOD ,∠BON =12∠BOC ,∵∠BOC +∠AOD =180°,∴∠AOM =∠OBN ,∴ΔOAM ≅ΔBON (AAS ),∴ON =AM =12AD ,∵AD +BC =4,设ON =AM =n ,则AD =2n ,BC =4-2n ,BN =2-n ,在Rt ΔBON 中,BO =n 2+(2-n )2=2(n -1)2+2,当n =1时,BO 有最小值2,∴⊙O 半径的最小值为2.4(2022秋•西城区期末)给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点A (-1,-2),B (5,-2),C (-1,4).(1)在点D (-4,0),E (2,2),F (6,0)中,与点O 关于线段AB 双对合的点是 D ,F ;(2)点K 是x 轴上一动点,⊙K 的直径为1,①若点A 与点T (0,t )关于⊙K 双对合,求t 的取值范围;②当点K 运动时,若ΔABC 上存在一点与⊙K 上任意一点关于⊙K 双对合,直接写出点K 的横坐标k 的取值范围.【解答】解:(1)当A 点是D 点的中点时,对应点为(2,-4);当B 点是D 点的中点时,对应点为(14,-4);当A 点是E 点的中点时,对应点为(-4,-6);当B 点是E 点的中点时,对应点为(8,-6);当A 点是F 点的中点时,对应点为(-8,-4);当B 点是F 点的中点时,对应点为(4,-4);当A 点是O 点的中点时,对应点为(-2,-4);当B 点是O 点的中点时,对应点为(10,-4);∴D 、F 与点O 关于线段AB 双对合,故答案为:D 、F ;(2)①设K(k,0),∵A(-1,-2),T(0,t),∴A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,-t),∵点A与点T(0,t)关于⊙K双对合,∴A点关于点K的对称点在以G为圆心,∵⊙K的直径为1,∴点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,如图所示,∵点A与点T(0,t)关于⊙K双对合,∴当圆G与圆H有交点,∵GH=1+(t+2)2,∴1+(t+2)2≤2,解得-2-3≤t≤-2+3;②∵A(-1,-2),B(5,-2),C(-1,4),K(k,0),∴A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k-5,2),C点关于K点的对称点G(2k+1, -4),∴ΔABC上任意一点关于K点对称点在阴影区域,∵ΔABC上存在一点与⊙K上任意一点关于⊙K双对合,∴阴影区域与圆K有公共交点,∵阴影部分是由ΔEGF边上任意一点为圆心,1为半径的圆构成的区域,如图1时,k-(2k+1)=12+1,解得k=-52;如图2时,2k+1-k=12+1,解得k=12;∴-52≤k≤12时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;过点K作KN⊥EG交于N,直线EG交x轴于点M,设直线EG的解析式为y=k x+b,∴(2k-5)k +b=2 (2k+1)k +b=-4 ,解得k =-1b=2k-3 ,∴y=-x+2k-3,∴M(2k-3,0),∵直线y=-x与y=-x+2k-3平行,∴∠KMN=45°,∴KM=2KN=322,如图3时,k-(2k-3)=322,解得k=3-322,如图4时,2k-3-k=322,解得k=3+322,∴3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;综上所述:-52≤k≤12或3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合.5(2022•钟楼区模拟)概念认识:平面内,M为图形T上任意一点,N为⊙O上任意一点,将M、N两点间距离的最小值称为图形T到⊙O的“最近距离”,记作d(T-⊙O).例:如图1,在直线l上有A、C、O三点,以AC为对角线作正方形ABCD,以点O为圆心作圆,与l交于E、F两点,若将正方形ABCD记为图形T,则C、E两点间的距离称为图形T到⊙的“最近距离”.数学理解:(1)在平面内有A、B两点,以点A为圆心,5为半径作⊙A,将点B记为图形T,若d(T-⊙A)=2,则AB= 3或7.(2)如图2,在平面直角坐标系中,以O(0,0)为圆心,半径为2作圆.①将点C(4,3)记为图形T,则d(T-⊙O)=.②将一次函数y=kx+22的图记为图形T,若d(T-⊙)>0,求k的取值范围.推广运用:(3)在平面直角坐标系中,P的坐标为(t,0),⊙P的半径为2,D、E两点的坐标分别为(5,5)、(5,-5),将ΔDOE记为图形T,若d(T-⊙P)=1,则t=.【解答】解:(1)如图1中,∵d(T-⊙A)=2,∴CB=CB′=2,∵AC=5,∴AB′=5-2=3,AB=5+2=7.故答案为:3或7.(2)①如图2中,连接OC交⊙O于E.∵C(4,3),∴OC=42+32=5,∵OE=2,∴EC=3,∴d(T-⊙O)=3.故答案为:3.②如图,设直线y=kx+22与⊙O相切于E,K.连接OK,OE.∵OE⊥DE,OK⊥DK,OD=22,OE=OK=2,∴DK=OD2?OK2=(22)2-22=2,DE=OD2?OE2=(22)2-22=2,∴DE=OE=DK=OK,∴四边形DEOK是菱形,∵∠DKO=∠DEO=90°,∴四边形DEOK是正方形,∴∠ODE=∠ODK=45°,∴直线DE的解析式为y=-x+22,直线DK的解析式为y=x+22,∵d(T-⊙O)>0,∴观察图象可知满足条件的k的值为-1<k<1且k≠0.(3)如图3-1中,当点P在DE的右边时.∵D(5,5),∴∠DOP=45°,∵d(T-⊙P)=1,∴OP=5+1+2=8∴t=8.如图3-2中,当点P在∠DOE的外侧时,由题意可知OM=1,OP=1+2=3,t=-3.综上所述,满足条件的t的值为8或-3.6(2022秋•昌平区期末)已知:对于平面直角坐标系xOy中的点P和⊙O,⊙O的半径为4,交x轴于点A,B,对于点P给出如下定义:过点C的直线与⊙O交于点M,N,点P为线段MN的中点,我们把这样的点P叫做关于MN的“折弦点”.(1)若C(-2,0).①点P1(0,0),P2(-1,1),P3(2,2)中是关于MN的“折弦点”的是 P1,P2 ;②若直线y=kx+3(k≠0).上只存在一个关于MN的“折弦点”,求k的值;(2)点C在线段AB上,直线y=x+b上存在关于MN的“折弦点”,直接写出b的取值范围.【解答】解:(1)①连接OP,∵P点是弦MN的中点,∴OP⊥MN,∴∠CPO=90°,∴P点在以CO为直径的圆上,∵C(-2,0),∴P点在以(-1,0)为圆心,1为半径的圆上,∵点P1(0,0),P2(-1,1)在该圆上,∴点P1(0,0),P2(-1,1)是关于MN的“折弦点”,故答案为:P1,P2;②由①可知,P点在以(-1,0)为圆心,1为半径的圆上,设圆心D(-1,0),∵直线y=kx+3(k≠0)上只存在一个关于MN的“折弦点”,∴直线y=kx+3(k≠0)与圆D相切,过点D作DF垂直直线y=kx+3交于点F,∵直线y=kx+3与x轴交于点E-3k,0,与y轴交于点G(0,3),∴DE=-1+3k,OF=3k,OG=3,∵∠DFE=∠EOG=90°,∴ΔEGO∽ΔEFD,∴DF GO =ED EG,∴13=3k-13+3k2,解得k=3 3;(2)由(1)可知,P点在以OC为直径的圆上,∵直线y=x+b上存在关于MN的“折弦点”,∴直线y=x+b与圆D相交或相切,过D点作DF垂直直线y=x+b交于点F,∵直线y=x+b与x轴交于点(-b,0),与y轴交于点(0,b),当C点与A点重合时,b有最大值,此时D(-2,0),∴(-2+b)2=8,解得b=22+2或b=22+2(舍);当C点与B点重合时,b有最小值,此时D(2,0),∴(-b-2)2=8,解得b=22-2(舍)或b=-22-2;∴-22-2≤b≤22+2时,直线y=x+b上存在关于MN的“折弦点”.7(2022秋•东城区校级月考)如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°<∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(2,2),P2(2,0),P3(2,1)中,⊙O的环绕点是 P1 ;②直线y=3x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为2,圆心为(0,t),以-m,33m(m>0)为圆心,33m为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.【解答】解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN,当∠MPN=60°时,∵PT平分∠MPN,∴∠TPN=∠MPT=30°,∵TM⊥PM,TN⊥PN,∴∠TNP=∠PMT=90°,∴TP =2TM =2,以T 为圆心,TP 为半径作⊙T .观察图象可知:当60°<∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),故答案为:P 1;②如图中,设小圆交y 轴的正半轴于F ,当直线y =3x +b 经过点F 时,b =1,当直线y =3x +b 与大圆相切于K (在第二象限)时,连接OK ,由题意B (0,b ),A -b 3,0,所以OB =b ,OA =b 3,AB =103b ,∵OK =2,12×AB ×OK =12×OA ×OB ,∴b =210,观察图象可知,当1<b <210时,线段AB 上存在⊙的环绕点,根据对称怀可知:当-210<b <-1时,线段AB 上存在⊙的环绕点,综上所述,满足条件的b 的值为1<b <210或-210<b <-1;(2)如图中,不妨设E -m ,33m (m >0),则点E 直线y =-33x 上,∵m >0,∴点E 在射线OE 上运动,作EM ⊥x 轴;∵E -m ,33m (m >0),∴OM =m ,EM =33m ,以E -m ,33m (m >0)为圆心,33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON ,观察图象可知:以E -m ,33m (m >0)为圆心,33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,当⊙T 的圆心在y 轴的正半轴上时,假设以T 为圆心,4为半径的圆与射线ON 相切于D ,连接TD ,∵tan ∠EOM =EM OM=33,∴∠EOM =30°,∵OM ,ON 是⊙E 的切线,∴∠EON =∠EOM =30°.∴∠TOD =30°,∴OT =2DT =8,∴T (0,8),当⊙T 的圆心在y 轴的负半轴上时,且经过点O (0.0)时,T (0,-4),观察图象可知,当-4<t <8时,在图象上存在⊙T 的环绕点.8(2022秋•海淀区校级月考)对于平面直角坐标系中的线段AB 和点P (点P 不在线段AB 上),给出如下定义:当PA =PB 时,过点A (或点B )向直线PB (或PA )作垂线段,则称此垂线段为点P 关于线段AB 的“测度线段”,垂足称为点P 关于线段AB 的“测度点”.如图所示,线段AD 和BC 为点P 关于线段AB 的“测度线段”,点C 与点D为点P关于线段AB的“测度点”.(1)如图,点M(0,4)、N(2,0),①点P的坐标为(5,4),直接写出点P关于线段MN的“测度线段”的长度4;②点H为平面直角坐标系中的一点,且HM=HN,则下列四个点:Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,是点H 关于线段MN的“测度点”的是;(2)直线y=-34x+6与x轴、y轴分别交于点A与点B,①点G为平面直角坐标系中一点,且GA=GB,若一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,直接写出k的取值范围为;②⊙O的半径为r,点C与点D均在⊙O上,且线段CD=65r.点K与点O位于线段CD的异侧,且KC=KD,若在线段AB上存在点K关于线段CD的“测度点”,直接写出r的取值范围为.【解答】解:(1)①∵M(0,4)、P(5,4),∴MP⎳x轴,∴点P关于线段MN的“测度线段”的长度为4,故答案为:4;②∵过点N作NF⊥MH交于F点,过点M作MG⊥NH交于点G,∵∠MFN=∠MGN=90°,∴F、G点在以MN为直径的圆上,设MN的中点为E,∵点M(0,4)、N(2,0),∴E(1,2),MN=25,∴点H关于线段MN的“测度点”在以E为圆心,5为半径的圆上,且不与M、N重合,∵Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,Q1E=5,Q2E=5,Q3E=2,Q4E=5,∴Q1,Q2是点H关于线段MN的“测度点”,故答案为:Q1,Q2;(2)①当x=0时,y=6,∴B(0,6),当y=0时,x=8,∴A(8,0),∴AB的中点F(4,3),AB=10,由(1)可知,点G关于线段AB的“测度点”在以F为圆心,5为半径的圆上,且不与A、B点重合,∵一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,∴直线y=kx-14k+3与圆F相切或相交,过点F作FK垂直直线y=kx-14k+3交于点K,直线与y轴的交点为T,过点F作FL⎳KT交于交y轴于点L,过点L作SL⊥KT交于点S,∴LS =FK =5,∴LF 的直线解析式为y =kx -4k +3,∴L (0,-4k +3),T (0,-14k +3),∴TL =-10k ,∵sin ∠LTS =5-10k =11+k 2,∴k =±33,∴-33≤k ≤33时,一次函数y =kx -14k +3上存在点G 关于线段AB 的“测度点”,故答案为:-33≤k ≤33;②由(1)可知,K 点关于线段CD 的“测度点”在以CD 为直角的半圆上,且不与C 、D 重合,当CD ⎳AB ,且AB 与圆P 相切时,r 有最小值,由①可得,45=35r 6-r ,解得r =247,当CD 在AB 上时,r 有最大值,r =6,∴247≤r <6时,线段AB 上存在点K 关于线段CD 的“测度点”,故答案为:247≤r <6.9(2022•盐城一模)对于平面内的两点K 、L ,作出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90°,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点A (4,0),在点Q 1(0,4),Q 2(2,23),Q 3(-2,23),Q 4(22,-22)中,是点A 关于点O 的锐角旋转点的是 Q 2,Q 4 .(2)已知点B (5,0),点C 在直线y =2x +b 上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围.(3)点D 是x 轴上的动点,D (t ,0),E (t -3,0),点F (m ,n )是以D 为圆心,3为半径的圆上一个动点,且满足n ≥0.若直线y =2x +6上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.【解答】解:(1)如图,∵A (4,0),Q 1(0,4),∴OA =OQ 1=4,∠AOQ 1=90°,∴点Q 1不是点A 关于点O 的锐角旋转点;∵Q 2(2,23),作Q 2F ⊥x 轴于点F ,∴OQ 2=OF 2+Q 2F 2=22+(23)2=4=OA ,∵tan ∠Q 2OF =232=3,∴∠Q 2OF =60°,∴点Q 2是点A 关于点O 的锐角旋转点;∵Q 3(-2,23),作Q 3G ⊥x 轴于点G ,则tan ∠Q 3OG =Q 3G OG=232=3,∴∠Q3OG =60°,∴OQ 3=OG cos ∠Q 3OG =2cos60°=4=OA ,∵∠AOQ 3=180°-60°=120°,∴Q 3不是点A 关于点O 的锐角旋转点;∵Q 4(22,-22),作Q 4H ⊥x 轴于点H ,则tan ∠Q 4OH =Q 4H OH =2222=1,∴∠Q 4OH =45°,∵OQ 4=OH cos ∠Q 4OH =22cos45°=4=OA ,∴Q 4是点A 关于点O 的锐角旋转点;综上所述,在点Q 1,Q 2,Q 3,Q 4中,是点A 关于点O 的锐角旋转点的是Q 2,Q 4,故答案为:Q 2,Q 4.(2)在y 轴上取点P (0,5),当直线y =2x +b 经过点P 时,可得b =5,当直线y =2x +b 经过点B 时,则2×5+b =0,解得:b =-10,∴当-10<b <5时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线y =2x +b 上,过点O 作OG ⊥直线y =2x +b ,垂足G 在第四象限时,如图,则OT =-b ,OS =-12b ,∴ST =OS 2+OT 2=-12b 2+(-b )2=-52b ,当OG =5时,b 取得最小值,∵5×-52b =-b ×-12b ,∴b =-55,∴-55≤b <5.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,如图3(2)中,阴影部分与直线y =2x +6相切于点G ,tan ∠EMG =2,SG =3,过点G 作GI ⊥x 轴于点I ,过点S 作SJ ⊥GI 于点J ,∴∠SGJ =∠EMG ,∴tan ∠SGJ =tan ∠EMG =2,∴GJ =355,SJ =655,∴GI =GJ +JI =3+355,∴MI =12GI =32+3510,∴OE =IE +MI -OM =352-32,即x E =t -3=352-32,解得t =352+32,如图3(3)中,阴影部分与HK 相切于点G ,tan ∠OMK =tan ∠EMH =2,EH =6,则MH =3,EM =35,∴x E =t -3=-3-35,解得t =-35,观察图象可知,-35≤t <3+352+32.10(2022秋•姜堰区期中)如图1,在平面内,过⊙T 外一点P 画它的两条切线,切点分别为M 、N ,若∠MPN ≥90°,则称点P 为⊙T 的“限角点”.(1)在平面直角坐标系xOy 中,当⊙O 半径为1时,在①P 1(1,0),②P 2-1,12,③P 3(-1,-1),④P 4(2,-1)中,⊙O 的“限角点”是②④;(填写序号)(2)如图2,⊙A 的半径为2,圆心为(0,2),直线l :y =-34x +b 交坐标轴于点B 、C ,若直线l 上有且只有一个⊙A 的“限角点”,求b 的值.(3)如图3,E (2,3)、F (1,2)、G (3,2),⊙D 的半径为2,圆心D 从原点O 出发,以2个单位/s 的速度沿直线l :y =x 向上运动,若ΔEFG 三边上存在⊙D 的“限角点”,请直接写出运动的时间t (s )的取值范围.【解答】解:(1)∵⊙O 半径为1,∴当P 为圆O 的“限角点”时,1<OP ≤2,∵OP 1=1,OP 2=52,OP 3=2,OP 4=5,∴⊙O 的“限角点”是P 2,P 3,故答案为:②③;(2)∵⊙A 的半径为2,∴当P 为圆A 的“限角点”时,2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P m ,-34m +b ,∴PA =2,此时AP ⊥BC ,令x =0,则y =b ,∴C (0,b ),令y =0,则x =43b ,∴B 43b ,0 ,∴tan ∠OCB =OB OC =43=AP CP ,∴CP =32,∴AC =52,∴|b -2|=52,∴b =92或b =-12;(3)∵圆心D 从原点O 出发,以2个单位/s 的速度沿直线l 移动,∴圆沿x 轴正方向移动t 个单位,沿y 轴正方向移动t 个单位,∴移动后D 点坐标为(t ,t ),设ΔEFG 边上的点P 是圆D 的“限角点”,则2<PD ≤2,在圆D 移动的过程中,当DF =2时,(t -1)2+(t -2)2=4,解得t =3-72或t =3+72,当t =3-72时,ΔEFG 边上开始出现⊙D 的“限角点”,当圆D 移动到E 点在圆上时,DE =2,(t -2)2+(t -3)2=2,解得t =5+32或t =5-32,∴3-72≤t <5-32时,ΔEFG 边上存在⊙D 的“限角点”,当圆D 再次移动到点F 在圆上时,DF =2,(t -2)2+(t -1)2=2,解得t =3+32或t 3-32,当t =3+32时,ΔEFG 三边上开始又要出现⊙D 的“限角点”;设直线EG 的解析式为y =kx +b ,直线y =x 与直线EG 的交点设为点H ,∴2k +b =33k +b=2 ,解得k =-1b =5 ,解得y =-x +5,联立方程组y =-x +5y =x,解得x =52y =52,∴H 52,52,当DH =2时,2t -52 2=4,解得t =2+52或t =-2+52,∴当t =2+52,ΔEFG 边上存在⊙D 的“限角点”,∴3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”;综上所述:3-72≤t <5-32或3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”.11(2022秋•西城区校级期中)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P绕点M逆时针旋转90°,得到点P ,点P 关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图1,若点M在坐标原点,点N(1,1),①点P(-2,0)的“对应点”Q的坐标为 (2,0) ;②若点P的“对应点”Q的坐标为(-1,3),则点P的坐标为;(2)如图2,已知⊙O的半径为1,M是⊙O上一点,点N(0,2),若P(m,0)(m>1)为⊙O外一点,点Q为点P的“对应点”,连接PQ.①当点M(a,b)在第一象限时,求点Q的坐标(用含a,b,m的式子表示);②当点M在⊙O 上运动时,直接写出PQ长的最大值与最小值的积为.(用含m的式子表示)【解答】解:(1)①∵P(-2,0),∴P点绕点M逆时针旋转90°得到点P (0,-2),∵点P 关于点N的对称点为Q,∴Q(2,0);故答案为:(2,0);②∵Q的坐标为(-1,3),∴Q点关于N(1,1)的对称点为P (3,-1),将P 绕M点顺时针旋转90°得到点P,过P 作P F⊥x轴于点F,过点P作PE⊥x轴于点E,∵∠P OP=90°,∴∠POE+∠FOP =90°,∵∠EPO+∠EOP=90°,∴∠FOP =∠EPO,∵OP=OP ,∴ΔPOE≅△OP F(AAS),∴EO=P F=1,PE=OF=3,∴P(-1.-3),故答案为:(-1,-3);(2)①过点M作EF⊥x轴于点F,过点P 作P E⊥EF交于点E,由(1)可得ΔMPF≅△P ME(AAS),∴MF=EP ,FP=ME,∵M(a,b),P(m,0),∴EF=b+m-a,EP =b,∴P (a+b,b+m-a),∵点N(0,2),∴Q(-a-b,4-b-m+a);②P点绕O点逆时针旋转90°后得到点G,∴G(0,m),∵P (a+b,b+m-a),∴GP =2(a 2+b 2),∵M (a ,b )在圆O 上,∴a 2+b 2=1,∴GP =2,∴P 在以G 为圆心,2为半径的圆上,设G 点关于N 点的对称点为H ,则H (0,4-m ),∴QH =2(a 2+b 2)=2,∴Q 点在以H 为圆心2为半径的圆上,∴PQ 的最大值为PH +2,PQ 的最小值为PH -2,∴PQ 长的最大值与最小值的积为(PH +2)(PH -2)=2m 2-8m +14,故答案为:2m 2-8m +14.12(2022•秦淮区二模)【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD 是矩形,⊙O 1和⊙O 2都与边AD 相切,⊙O 2与边AB 相切,⊙O 1和⊙O 3都经过点B ,⊙O 3经过点D ,3个圆都经过点C .在这3个圆中,是矩形ABCD 的第Ⅰ类圆的是①,是矩形ABCD 的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD ,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.【解答】解:(1)由定义可得,①的矩形有一条边AD 与⊙O 1相切,点B 、C 在圆上,∴①是第Ⅰ类圆;②的矩形有两条边AD 、AB 与⊙O 2相切,点C 在圆上,∴②是第Ⅱ类圆;故答案为:①,②;(2)如图1,设AD =6,AB =4,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =4-r ,由垂径定理可得,BF =CF =3,在Rt ΔBOF 中,r 2=(4-r )2+32,解得r =258;如图2,设AD =4,BC =6,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =6-r ,由垂径定理可得,BF =CF =2,在Rt ΔBOF 中,r 2=(6-r )2+22,解得r =103;综上所述:第Ⅰ类圆的半径是258或103;如图3,AD =6,AB =4,过点O 作MN ⊥AD 交于点M ,交BC 于点N ,连接OC ,设AB 边与⊙O 的切点为G ,连接OG ,∴GO ⊥AB ,设OM =r ,则OC =r ,则ON =4-r ,∵OG =r ,∴BN =r ,∴NC =6-r ,在Rt ΔOCN 中,r 2=(4-r )2+(6-r )2,解得r =10-43,∴第Ⅱ类圆的半径是10-43;(3)①如图4,第一步,作线段AD 的垂直平分线交AD 于点E ,第二步,连接EC ,第三步,作EC 的垂直平分线交EF 于点O ,第四步,以O 为圆心,EO 为半径作圆,∴⊙O 即为所求第Ⅰ类圆;②如图5,第一步:作∠BAD 的平分线;第二步:在角平分线上任取点E ,过点E 作EF ⊥AD ,垂足为点F ;第三步:以点E 为圆心,EF 为半径作圆E ,交AC 于点G ,连接FG ;第四步:过点C 作CH ⎳FG ,CH 交AD 于点H ;第五步:过点H 作AD 的垂线,交∠BAD 的平分线于点O ;第六步:以点O 为圆心,OH 为半径的圆,⊙O 即为所求第Ⅱ类圆.13(2021秋•海淀区校级期末)新定义:在平面直角坐标系xOy 中,若几何图形G 与⊙A 有公共点,则称几何图形G 的叫⊙A 的关联图形,特别地,若⊙A 的关联图形G 为直线,则称该直线为⊙A 的关联直线.如图,∠M 为⊙A 的关联图形,直线l 为⊙A 的关联直线.(1)已知⊙O 是以原点为圆心,2为半径的圆,下列图形:①直线y =2x +2;②直线y =-x +3;③双曲线y =2x,是⊙O 的关联图形的是①③(请直接写出正确的序号).(2)如图1,⊙T 的圆心为T (1,0),半径为1,直线l :y =-x +b 与x 轴交于点N ,若直线l 是⊙T 的关联直线,求点N 的横坐标的取值范围.(3)如图2,已知点B (0,2),C (2,0),D (0,-2),⊙I 经过点C ,⊙I 的关联直线HB 经过点B ,与⊙I 的一个交点为P ;⊙I 的关联直线HD 经过点D ,与⊙I 的一个交点为Q ;直线HB ,HD 交于点H ,若线段PQ 在直线x =6上且恰为⊙I 的直径,请直接写出点H 横坐标h 的取值范围.【解答】解:(1)由题意①③是⊙O的关联图形,故答案为①③.(2)如图1中,∵直线l1y=-x+b是⊙T的关联直线,∴直线l的临界状态是和⊙T相切的两条直线l1和l2,当临界状态为l1时,连接TM(M为切点),∴TM=1,TM⊥MB,且∠MNO=45°,∴ΔTMN是等腰直角三角形,∴TN=2,OT=1,∴N(1+2,0),把N(1+2,0)代入y=-x+b中,得到b=1+2,同法可得当直线l2是临界状态时,b=-2+1,∴点N的横坐标的取值范围为-2+1≤N x≤2+1.(3)如图3-1中,当点Q在点P是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H与点C重合,此时H(2,0),得到h的最大值为2,如图3-2中,当点P在点Q是上方时,直线PB,QD交于点H,当圆心I在x轴上时,点H(-6,0)得到h的最小值为-6,综上所述,-6≤h<0,0<h≤2.14(2022春•海淀区校级月考)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”.已知O(0,0),A(1,1),B(m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2,n=1时,如图1,线段BC与线段OA的“冰雪距离”是1.②当m=2时,线段BC与线段OA的“冰雪距离”是1,则n的取值范围是.(2)如图2,若点B落在圆心为A,半径为1的圆上,当n≥1时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为1,线段BC的中点为M.求点M随线段BC运动所走过的路径长.【解答】解:(1)①当m=2,n=1时,B(2,1),C(2,3).线段BC与线段OA的冰雪距离为AB=1.故答案为:1.②当m=2时,点A到直线BC的距离为1.若线段BC与线段OA的冰雪距离是1,则点A到BC的垂线的垂足在线段BC上,∴n≤1≤n+2,即-1≤n≤1.故答案为:-1≤n ≤1.(2)如图,B 2(0,1)为圆A 与y 轴的切点,B 11-22,1+22满足∠B 1AO =90°.当B 在B 1右侧时,冰雪距离d ≥B 1A =22.当B 在弧B 1B 2上时,冰雪距离d 为点B 到OA 的距离,结合图象可知,当且仅当B 处在点B 2时,d 取最小值22.(3)如图,当点B 位于图中弧DI 、线段IH 、弧HG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当点C 位于图中弧DE 、线段EF 、弧FG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当线段BC 由图中B 1D 向上平移到DC 3时,或由B 2G 向上平移到GC 4时,线段BC 与线段OA 的“冰雪距离”始终为1.对应中点M 所走过的路线长为:2π+4+22.15(2022•东城区校级开学)对于⊙C 和⊙C 上的一点A ,若平面内的点P 满足:射线AP 与⊙C 交于点Q (点Q 可以与点P 重合),且1≤PAQA ≤2,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标 (2,0)(答案不唯一);(2)若点B 是点A 关于⊙O 的“生长点”,且满足∠BAO =30°,求点B 的纵坐标t 的取值范围;(3)直线y =3x +b 与x 轴交于点M ,且与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是.【解答】解:(1)根据“生长点”定义,点P 的坐标可以是(2,0),故答案为:(2,0)(答案不唯一);(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,使得∠OAM =30°,并在射线AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N ,则由题意,线段MN 和M N 上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴∠MHA =90°,即∠OAM +∠AMH =90°.∵AC 是⊙O 的直径,∴∠AMC =90°,即∠AMH +∠HMC =90°.∴∠OAM =∠HMC =30°.∴tan30°=MH AH=HC MH =33,设MH=y,则AH=3y,CH=33y,∴AC=AH+CH=433y=2,解得y=32,即点M的纵坐标为32.又由AN=2AM,A为(-1,0),可得点N的纵坐标为3,故在线段MN上,点B的纵坐标t满足:32≤t≤3,由对称性,在线段M N 上,点B的纵坐标t满足:?3≤t≤?3 2,∴点B的纵坐标t的取值范围是:32≤t≤3或?3≤t≤?32.(3)如图,Q是⊙O上异于点A的任意一点,延长AQ到P,使得PA=2AQ,∵Q的轨迹是以O为圆心,1为半径的圆,∴点P的运动轨迹是以K(1,0)为圆心,2为半径的圆,当直线MN与⊙K相切于点R时,连接KR,在RtΔKMR中,∠KRM=90°,∵直线y=3x+b与x轴夹角为60°,∴∠KMR=60°,KR=2,∴KM=2÷sin60°=433,∴OM=1+433,∴ON=3OM=4+3,∴b=-4-3,当直线MN经过G(0,-1)时,满足条件,此时b=-1,观察图象可知:当-4-3≤b≤-1时,线段MN上存在点A关于⊙O的“生长点”,根据对称性,同法可得当1≤b≤4-3时,也满足条件.故答案为:-4-3≤b≤-1或1≤b≤4-3.16(2022•东城区校级开学)在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0,如图,点A(-23,0),B(0,2).(1)如果⊙O的半径为2,那么d(A,⊙O)= 23-2 ,d(B,⊙O)=;(2)如果⊙O的半径为r,且d(⊙O,AB)>0,求r的取值范围;(3)如果C(0,m)是y轴上的动点,⊙C的半径为1,使d(⊙C,AB)<1,直接写出m的取值范围为.【解答】解:(1)∵⊙O的半径为2,A(-23,0),B(0,2),∴OB=2,OA=23>2,∴点A在⊙O外,点B在⊙O上,∴d(A,⊙O)=23-2,d(B,⊙O)=0,故答案为:23-2;0;(2)如图1,过点O 作OD ⊥AB 于点D ,在Rt ΔAOB 中,∵tan ∠BAO =OB OA =223=33,∴∠BAO =30°.在Rt ΔADO 中,sin ∠BAO =DO OA =12=DO23,∴DO =3,∵d (⊙O ,AB )=0,∴r 的取值范围是0<r <3或r >23;(3)如图2,过点C 作CN ⊥AB 于点N ,由(2)知,∠BAO =30°.∵C (m ,0),当点C 在点B 的上边时,m >2,此时,d (⊙C ,AB )=BC ,∴BC ≤1,即m -2≤1,解得m ≤3;当点C 与点B 重合时,m =2,此时d (⊙C ,AB )=0,当点C 在点B 的下边时,m <2,∴BC =2-m ,∴CN =BC ⋅sin ∠OBA =32(2-m ).∵d (⊙C ,AB )<1,⊙C 的半径为1,∴0<32(2-m )<1.∴2-233<m <2.综上所述:2-233<m ≤3.故答案为:2-233<m ≤3.17(2021秋•润州区校级月考)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的反称点的定义如下:若在射线CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时,①分别判断点M (3,1),N 32,0,T (-1,3)关于⊙O 的反称点是否存在?若存在,直接求其坐标;②将⊙O 沿x 轴水平向右平移1个单位为⊙O ′,点P 在直线y =-x +1上,若点P 关于⊙O ′的反称点P ′存在,且点P ′不在坐标轴上,则点P 的横坐标的取值范围 1-2≤x ≤1+2且x ≠2-2 ;(2)⊙C 的圆心在x 轴上,半径为1,直线y =-x +12与x 轴,y 轴分别交于点A 、B ,点E 与点D 分别在点A 与点B 的右侧2个单位,线段AE 、线段BD 都是水平的,若四边形ABDE 四边上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,直接写出圆心C 的横坐标的取值范围.。

初三数学【圆】试题及答案

初三数学【圆】试题及答案

圆一.选择题(共20小题)1.到圆心的距离大于半径的点的集合是()A.圆的内部B.圆的外部C.圆D.圆的外部和圆【分析】根据圆是到定点距离等于定长的点的集合,以及点和圆的位置关系即可解决.【解答】解:根据点和圆的位置关系,知圆的外部是到圆心的距离大于的所有点的集合;故选:B.【点评】此题考查圆的认识问题,理解圆上的点、圆内的点和圆外的点所满足的条件.2.如图,在⊙O中,分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是()A.8B.16 C.32D.32【分析】过O作OH⊥AB交⊙O于E,反向延长EO交CD于G,交⊙O于F,连接OA,OB,OD,根据平行线的性质得到EF⊥CD,根据折叠的性质得到OH=OA,推出△AOD 是等边三角形,得到D,O,B三点共线,且BD为⊙O的直径,求得∠DAB=90°,同理,∠ABC=∠ADC=90°,得到四边形ABCD是矩形,于是得到结论.【解答】解:过O作OH⊥AB交⊙O于E,反向延长EO交CD于G,交⊙O于F,连接OA,OB,OD,∵AB∥CD,∴EF⊥CD,∵分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=OA,∴∠HAO=30°,∴∠AOH=60°,同理∠DOG=60°,∴∠AOD=60°,∴△AOD是等边三角形,∵OA=OB,∴∠ABO=∠BAO=30°,∴∠AOB=120°,∴∠AOD+∠AOB=180°,∴D,O,B三点共线,且BD为⊙O的直径,∴∠DAB=90°,同理,∠ABC=∠ADC=90°,∴四边形ABCD是矩形,∴AD=AO=4,AB=AD=4,∴四边形ABCD的面积是16,故选:B.【点评】本题考查了垂径定理,圆周角定理,矩形的判定和性质,正确的作出辅助线是解题的关键.3.《九章算术》是我国古代著名数学暮作,书中记载:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O 的直径,弦AB⊥DC于E,ED=1寸,AB=10寸,求直径CD的长.”则CD=()A.13寸B.20寸C.26寸D.28寸【分析】连接OA构成直角三角形,先根据垂径定理,由DE垂直AB得到点E为AB的中点,由AB=10可求出AE的长,再设出圆的半径OA为x,表示出OE,根据勾股定理建立关于x的方程,求出方程的解即可得到x的值,即为圆的半径,把求出的半径代入即可得到答案.【解答】解:连接OA,∵AB⊥CD,且AB=10,∴AE=BE=5,设圆O的半径OA的长为x,则OC=OD=x∵DE=1,∴OE=x﹣1,在直角三角形AOE中,根据勾股定理得:x2﹣(x﹣1)2=52,化简得:x2﹣x2+2x﹣1=25,即2x=26,解得:x=13所以CD=26(寸).故选:C.【点评】此题考查了垂径定理的应用,注意利用圆的半径,弦的一半及弦心距所构成的直角三角形来解决实际问题,做此类题时要多观察,多分析,才能发现线段之间的联系.4.如图,AB是⊙O的直径,点D,C在⊙O上,∠DOC=90°,AC=2,BD=2,则⊙O 的半径为()A.B.C.D.【分析】作半径OE⊥AB,连接DE,作BF⊥DE于F,如图,利用等角的余角相等得到∠DOE=∠AOC,则DE=AC=2,利用三角形内角和可计算出∠BDE=135°,所以∠BDF=45°,从而可计算出DF=BF=2,利用勾股定理计算出BE=2,然后根据△BOE为等腰直角三角形可得到OB的长.【解答】解:作半径OE⊥AB,连接DE,作BF⊥DE于F,如图,∵∠DOC=90°,∠BOE=90°,∴∠DOE=∠AOC,∴DE=AC=2,∵∠BDE=180°﹣×90°=135°,∴∠BDF=45°,∴DF=BF=BD=×2=2,在Rt△BEF,BE==2,∵△BOE为等腰直角三角形,∴OB=×2=.故选:D.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.5.如图,在⊙O中,点C在优弧上,将沿BC折叠后刚好经过AB的中点D,连接AC,CD.则下列结论中错误的是()①AC=CD;②AD=BD;③+=;④CD平分∠ACBA.1B.2C.3D.4【分析】根据折叠的性质可得AD=CD;根据线段中点的定义可得AD=BD;根据垂径定理可作判断③;延长OD交⊙O于E,连接CE,根据垂径定理可作判断④.【解答】解:过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;∵点D是AB的中点,∴AD=BD,∵AC=CD',故②正确;∴=,由折叠得:=,∴+=;故③正确;延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:A.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.6.如图,四边形ABCD为⊙O的内接四边形,∠BCD=110°,则∠BOD的度数是()A.70°B.120C.140°D.160°【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∠BCD=110°,∴∠A=180°﹣∠BCD=70°,由圆周角定理得,∠BOD=2∠A=140°,故选:C.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.7.如图,⨀O的两条弦AB、CD相交于点E,AC和DB的延长线交于点P,下列结论中成立的是()A.PC•CA=PB•BD B.CE•AE=BE•EDC.CE•CD=BE•BA D.PB•PD=PC•P A【分析】利用相似三角形的性质即可解决问题.【解答】解:∵∠P=∠P,∠A=∠D,∴△P AB∽△PDC,∴=,∴PB•PD=PC•P A,故选:D.【点评】本题考查相似三角形的判定,相交弦定理等知识,解题的关键是正确寻找相似三角形解决问题.8.在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B 在⊙A内时,实数a的取值范围是()A.a>2B.a>8C.2<a<8D.a<2或a>8【分析】首先确定OB的取值范围,然后根据点A所表示的实数写出a的取值范围,即可得到正确选项.【解答】解:∵⊙A的半径为3,若点B在⊙A内,∴OB<3,∵点A所表示的实数为5,∴2<a<8,故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.9.下列语句中正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;④三点确定一个圆.A.1个B.2个C.3个D.4个【分析】利用确定圆的条件、垂径定理及圆心角、弧、弦之间的关系逐一作出判断即可得到答案.【解答】解:①同圆或等圆中,相等的圆心角所对的弧相等,故不符合题意;②平分弦(弦不是直径)的直径垂直于弦;故不符合题意;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;故符合题意;④不在一条直线上的三点确定一个圆,故不符合题意,故选:A.【点评】本题考查了确定圆的条件、垂径定理及圆心角、弧、弦之间的关系等有关的基础知识,虽然不很难,但很容易出错.10.已知圆心O到直线l的距离为d,⊙O的半径r=6,若d是方程x2﹣x﹣6=0的一个根,则直线l与圆O的位置关系为()A.相切B.相交C.相离D.不能确定【分析】先根据d是方程x2﹣x﹣6=0的一个根求出d的值,再由直线和圆的位置关系即可得出结论.【解答】解∵d是方程x2﹣x﹣6=0的一个根,∴d=3.∵当d=3,r=6时,d<r,∴直线于圆相交.故选:B.【点评】本题考查的是直线与圆的位置关系,熟知设⊙O的半径为r,圆心O到直线l 的距离为d.当d<r时,直线l和⊙O相交;当d=r时直线l和⊙O相切;当d>r时,直线l和⊙O相离是解答此题的关键.11.下列语句中,正确的是()A.同一平面上三点确定一个圆B.菱形的四个顶点在同一个圆上C.三角形的外心是三角形三边垂直平分线的交点D.三角形的外心到三角形三边的距离相等【分析】根据确定圆的条件,三角形的外心的定义,以及圆内接四边形的对角互补的性质对各选项分析判断后利用排除法.【解答】解:A、同一平面上三点必须不在同一直线上才可以确定一个圆,故本选项错误;B、菱形的对角相等,但不一定互补,所以四个顶点不一定在同一个圆上,故本选项错误;C、三角形的外心是三角形三边中垂线的交点,是外心定义,正确;D、三角形的外心到三角形三个定点的距离相等,到三边的距离不一定相等,故本选项错误.故选:C.【点评】本题主要考查了三角形的外心的定义,确定圆的条件,圆内接四边形的对角互补的性质,都是基础知识,需熟练掌握.12.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的半径是()A.3cm B.3cm C.6cm D.6cm【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理求得OB,从而得出光盘的半径.【解答】解:设圆心为O,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°,∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的半径是3cm.故选:B.【点评】此题考查了切线的性质,切线长定理,含30°直角三角形的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.13.下列说法中,正确的是()A.经过半径的端点并且垂直于这条半径的直线是这个圆的切线B.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.90°的圆周角所对的弦是直径D.如果两个圆心角相等,那么它们所对的弦相等【分析】根据切线的判定定理,垂径定理,圆周角定理以及弧、弦、圆心角之间的关系判断即可.【解答】解:A、经过半径的外端并且垂直于这条半径的直线是圆的切线,故不符合题意;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故不符合题意;C、90°的圆周角所对的弦是这个圆的直径,故符合题意;D、在同圆或等圆中,如果两个圆心角相等,那么它们所对的弦相等,所对的弧也相等,故不符合题意;故选:C.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.用到的知识点有切线的判定定理,垂径定理,圆周角定理以及弧、弦、圆心角之间的关系.判断命题的真假关键是要熟悉课本中的性质定理.14.如图,四边形ABCD是矩形,点P是△ABD的内切圆的圆心,过P作PE⊥BC,PF⊥CD,垂足分别为点E、F,则四边形PECF和矩形ABCD的面积之比等于()A.1:2B.2:3C.3:4D.无法确定【分析】延长EP交AD于M,延长FP交AB于N,如图,设AD=a,AB=b,BD=c,⊙P的半径为r,利用平行线的性质得到PM⊥AD,PN⊥AB,再根据切线的性质得到PM =PN=r,根据直角三角形的内切圆半径的计算方法得到r=,所以PE•PF=•,利用完全平方公式和平方差公式得到PE•PF=ab,然后计算四边形PECF和矩形ABCD的面积之比.【解答】解:延长EP交AD于M,延长FP交AB于N,如图,设AD=a,AB=b,BD =c,⊙P的半径为r,∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∵PE⊥BC,PF⊥CD,∴PM⊥AD,PN⊥AB,∵点P是△ABD的内切圆的圆心∴PM=PN=r,∴r=,∴PF=a﹣=,PE=b﹣=,∴PE•PF=•==,而a2+b2=c2,∴PE•PF==ab,∴四边形PECF和矩形ABCD的面积之比=ab:ab=1:2.故选:A.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了切线的性质和矩形的性质.15.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C 的半径长是()A.11B.10C.9D.8【分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.【解答】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.由题意:,解得,故选:C.【点评】本题考查两圆的位置关系,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.16.已知⊙O1与⊙O2交于A、B两点,且⊙O2经过⊙O1的圆心O1点,点C在⊙O1上.如图所示,∠AO2B=80°,则∠ACB=()A.100°B.40°C.80°D.70°【分析】在优弧AB上取一点E,连接AE,BE,AO1,BO1.利用圆周角定理,圆内接四边形的性质即可解决问题.【解答】解:在优弧AB上取一点E,连接AE,BE,AO1,BO1.∵∠AEB=∠AO2B,∠AO2B=80°,∴∠AEB=40°,∵∠AEB+∠AO1B=180°,∴∠AO1B=180°﹣∠AEB=140°,∴∠ACB=∠AO1B=70°,故选:D.【点评】本题考查圆周角定理,圆内接四边形的性质,相交两圆的性质等知识,教育的关键是学会添加常用辅助线,属于中考常考题型.17.如图,点O是正五边形ABCDE的中心,则∠AOB的度数是()A.65°B.70°C.72°D.78°【分析】由正五边形的性质即可得出答案.【解答】解:∵点O是正五边形ABCDE的中心,∴∠AOB=360°÷5=72°.故选:C.【点评】本题考查了正多边形和圆、正五边形的性质;熟记正五边形的中心角的计算方法是解题的关键.18.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9C.3πD.6π【分析】直接利用弧长公式计算即可.【解答】解:该莱洛三角形的周长=3×=3π.故选:C.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).也考查了等边三角形的性质.19.如图,在Rt△ABC中,∠ABC=90°,AB=4cm,BC=3cm,分别以A,C为圆心,以的长为半径作圆.将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为()cm2A.6﹣πB.6﹣πC.πD.6﹣π【分析】根据阴影的面积=△ABC的面积﹣两个扇形的面积和扇形的面积公式计算即可.【解答】解:∵∠B=90°,∴∠A+∠C=90°,设∠A=α,∠B=C=β,则α+β=90°,∵∠B=90°,AB=4cm,BC=3cm,∴AC===5cm,∴阴影的面积为×3×4﹣﹣=(6﹣π)cm2.故选:B.【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式:S=是解题的关键.20.已知圆锥的底面半径为2cm,母线长为3cm,则该圆锥的侧面积为()A.18πB.12πC.6πD.3π【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径是2cm,则底面周长=4πcm,圆锥的侧面积=×4π×3=6πcm2.故选:C.【点评】本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.二.填空题(共6小题)21.如图,在矩形ABCD中,AB=4cm,AD=12cm,动点P以每秒1cm的速度从点C 沿折线C﹣D﹣A匀速运动,到点A运动停止.以P为圆心作半径为cm的⊙P,当⊙P 与对角线BD相切时,点P的运动时间为4﹣2或6s.【分析】由矩形的性质和直角三角形的性质得出∠ADB=30°,∠BDC=60°,分两种情况①当⊙P与对角线BD相切,点P在CD上时;②当⊙P与对角线BD相切,点P 在AD上时;由直角三角形的性质即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠ADC=∠A=90°,CD=AB=4,∴BD===8=2AB,∴∠ADB=30°,∠BDC=60°,①当⊙P与对角线BD相切,点P在CD上时,如图1所示:设QD为E,连接PE,则PE⊥BD,∴∠DPE=30°,∴DE=PE=1,∴PD=2DE=2,∴CP=4﹣2,∵动点P以每秒1cm的速度从点C沿折线C﹣D﹣A匀速运动,∴点P的运动时间为4﹣2(秒),②当⊙P与对角线BD相切,点P在AD上时,如图2所示:设QD为F,连接PF,则PF⊥BD,∵∠ADB=30°,∴PD=2PF=2,∴CD+PD═6,∵动点P以每秒1cm的速度从点C沿折线C﹣D﹣A匀速运动,∴点P的运动时间为6秒;综上所述,⊙P与对角线BD相切时,点P的运动时间为4﹣2(秒)或6秒;故答案为:4﹣2或6.【点评】本题考查了切线的性质、矩形的性质、直角三角形的性质等知识;熟练掌握切线的性质和直角三角形的性质是解题的关键.22.如图,菱形ABCD,∠B=60°,AB=4,⊙O内切于菱形ABCD,则⊙O的半径为.【分析】作辅助线,构建直角△AOB,分别计算OA、OB的长,根据面积法可得OE的长.【解答】解:设AB和BC上的切点分别为E、F,连接OA、OE、OB、OF,则OE⊥AB,OF⊥BC,∵⊙O内切于菱形ABCD,∴OE=OF,∴OB平分∠ABC,∵∠ABC=60°,∴∠ABO=30°,同理得∠BAO=60°,∴∠AOB=90°,∴AO=AB=2,OB=2,∴S△AOB=AB•OE=AO•OB,4OE=2×,OE=,故答案为:.【点评】本题考查切线的性质、菱形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.如图,已知⊙O与Rt△AOB的斜边交于C,D两点,C、D恰好是AB的三等分点,若⊙O的半径等于5,则AB的长为3.【分析】过O作OH⊥AB,由陈经理得到CH=DH,推出△AOB是等腰直角三角形,得到OH=AH,设AC=CD=BD=x,根据勾股定理即可得到结论.【解答】解:过O作OH⊥CD,∴CH=DH,∵AC=BD=AB,∴AH=BH,∴△AOB是等腰直角三角形,∴OH=AH,设AC=CD=BD=x,∴AH=OH=1.5x,∴CH2+OH2=OC2,∴(x)2+(x)2=52,∴x=,∴AB=3,故答案为:3.【点评】本题考查了勾股定理,等腰直角三角形的判定和性质,垂径定理,正确的作出辅助线是解题的关键.24.已知⊙O1的半径长为4,⊙O2的半径长为r,圆心距O1O2=6,当⊙O1与⊙O2外切时,r的长为2.【分析】根据两圆的位置关系和数量之间的联系解答即可.【解答】解:∵⊙O1的半径长为4,⊙O2的半径长为r,圆心距O1O2=6,当⊙O1与⊙O2外切时,∴r+4=6,解得:r=2,故答案为:2;【点评】本题考查的是圆与圆的位置关系与数量之间的联系,关键是根据两圆外切⇔d =R+r解答.25.一个圆柱的高缩小2 倍,底面半径扩大2 倍,表面积不变.错误.(判断对错)【分析】根据圆柱的表面积即可得到结论.【解答】解:设原圆柱的高为h,底面半径为r,现在的圆柱的高为h,底面半径为2r,∴原表面积=2πr2•h,现在的表面积=2π•(2r)2h=4πr2h,∴表面积发生了变化,故答案为:错误.【点评】本题考查了圆柱的计算,正确的计算圆柱的表面积是解题的关键.26.如图,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,使∠EAF=90°,tan∠AEF=,则点F 与点C的最小距离为3﹣1.【分析】如图取AB的中点G,连接FG,FC,GC,由△F AG∽△EAD,推出FG:DE =AF:AE=1:3,因为DE=3,可得FG=1,推出点F的运动轨迹是以G为圆心1为半径的圆,再利用两点之间线段最短即可解决问题.【解答】解:如图取AB的中点G,连接FG.FC.GC.∵∠EAF=90°,tan∠AEF=,∴=,∵AB=6,AG=GB,∴AG=GB=3,∵AD=9,∴==,∴=,∵四边形ABCD是矩形,∴∠BAD=∠B═∠EAF=90°,∴∠F AG=∠EAD,∴△F AG∽△EAD,∴FG:DE=AF:AE=1:3,∵DE=3,∴FG=1,∴点F的运动轨迹是以G为圆心1为半径的圆,∵GC==3,∴FC≥GC﹣FG,∴FC≥3﹣1,∴CF的最小值为3﹣1.故答案为3﹣1.【点评】本题考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.三.解答题(共1小题)27.如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,过A作AD⊥CD,D为垂足.(1)求证:∠DAC=∠BAC;(2)若AC=6,cos∠BAC=,求⊙O的直径.【分析】(1)连接BC,OC,根据圆周角定理和弦切角定理可证得∠DAC=∠BAC;(2)根据已知条件得,从而求得AB的长.【解答】证明:(1)连接BC,OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵直线CD与⊙O相切于点C,∴∠ACD=∠B,∠OCD=90°,∵AD⊥CD,∴∠D AC+∠ACD=90°,∴∠DAC=∠BAC;(2)∵cos∠BAC=,∴=,∵AC=6,∴AB=10,故⊙O的直径为10.【点评】本题考查了弦切角定理和圆周角定理以及解直角三角形,是基础知识要熟练掌握.第21页(共21页)。

九年级数学下册《第二十四章 圆》练习题及答案解析

九年级数学下册《第二十四章 圆》练习题及答案解析

九年级数学下册《第二十四章圆》练习题及答案解析一、单选题1.如图,O的半径为4,点A为O上一点,OA的垂直平分线分别交O于点B,C,则BC的长为()A.3B.4C.3D.32.下列条件中,不能确定一个圆的是()A.圆心与半径B.直径C.平面上的三个已知点D.三角形的三个顶点3.如图,在正方形网格中,点A,B,C,D,O都在格点上.下列说法正确的是()A.点O是ABC的内心B.点O是ABC的外心C.点O是ABD的内心D.点O是ABD的外心4.若⊙O的半径为5cm,点A到圆心O的距离为4cm,则点A与⊙O的位置关系是()A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定5.如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.=AB AD D.∠BCA=∠DCA6.有下到结论:(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)三角形的外心到三角形各边的距离相等,其中正确的结论的个数有()A.0个B.1个C.2个D.3个7.一个点到圆的最大距离为11,最小距离为5,则圆的半径为().A.16或6 B.3或8 C.3 D.8 8.⊙O的面积是25π,点P到圆心O的距离为d,下列说法正确的是( ) A.当d≥5时,点在圆⊙O外B.当d<5时,点在圆⊙O上C.当d>5时,点在圆⊙O外D.当d≤5时,点在圆⊙O内9.如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=45,BD=5,则OH的长为()A.23B.56C.1 D.7610.如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.5 2B.3C.25 11D5二、填空题11.若O的半径为5cm,点A到圆心O的距离为4cm,那么点A与O的位置关系是. 12.如图,⊙O的直径为10,圆心O到弦AB的距离OM=3,则弦AB的长是13.如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB=.14.如图, AB 是圆 O 的直径, AD DC CB AC ==, 与 OD 交于点 E .如果 3AC = ,那么 DE 的长为 .三、计算题15.如图,AB 、CD 是⊙O 的直径,弦CE ∥AB , AC 的度数为70°.求∠EOC 的度数.16.如图,AB 、CD 是⊙O 的直径,弦CE ∥AB ,弧 CE 的度数为50°,求∠AOC 的度数.17.如图,A 、B 、C 、D 均为⊙O 上的点,其中A 、B 两点的连线经过圆心O ,线段AB 、CD 的延长线交于点E ,已知AB=2DE ,∠E=18°,求∠AOC 的度数.四、解答题18.如图,AB 是 O 的直径,弦 CD AB ⊥ 于点E ,若 8AB = , 6CD = ,求 OE 的长.19.已知AB,AC为弦,OM⊥AB于M,ON⊥AC于N,求证:MN∥BC且MN=12BC.20.已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且OE=OF.求证:AE=BF.五、综合题21.如图,在Rt△ABC中,∠BAC=90°,以点A为圆心,AC长为半径作圆,交BC于点D,交AB于点E,连结DE.(1)若∠ABC=20°,求∠DEA的度数;(2)若AC=3,AB=4,求CD的长.22.如图,在平面直角坐标系中,O(0,0),A(0,-6),B(8,0)三点在⊙P上.(1)求⊙P的半径及圆心P的坐标;(2)M为劣弧OB的中点,求证:AM是∠OAB的平分线.23.定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.(1)如图1,在对半四边形ABCD中,∠A+∠B=12(∠C+∠D),求∠A与∠B的度数之和;(2)如图2,O为锐角△ABC的外心,过点O的直线交AC,BC于点D,E,∠OAB=30°,求证:四边形ABED是对半四边形;(3)如图3,在△ABC中,D,E分别是AC,BC上一点,CD=CE=3,CE=3EB,F为DE的中点,∠AFB=120°,当AB为对半四边形ABED的对半线时,求AC的长.参考答案与解析1.【答案】D【解析】【解答】解:设OA与BC相交于点D,连接OB,BC是OA的垂直平分线,2OD AD∴==,90BDO∠=︒,2BC BD∴=,在Rt BDO中,224223BD=-=22343BC∴=⨯=故答案为:D.【分析】设OA与BC相交于点D,连接OB,先利用勾股定理求出BD的长,再利用BC=2BD可得答案。

九年级数学上册《圆》练习题及答案解析

九年级数学上册《圆》练习题及答案解析

九年级数学上册《圆》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.下列说法正确的是()A.直径是弦,弦是直径B.过圆心的线段是直径C.圆中最长的弦是直径D.直径只有二条2.下列语句不正确的有()个.①直径是弦;①优弧一定大于劣弧;①长度相等的弧是等弧;①半圆是弧.A.1B.2C.3D.43.如图,在①O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦.A.2B.3C.4D.54.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等5.下列由实线组成的图形中,为半圆的是()A.B.C.D.6.下列说法正确的是()A.平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若一条直线与一个圆有公共点,则二者相交二、填空题7.如图,已知在Rt△ABC 中,①ACB =90°,分别以AC ,BC ,AB 为直径作半圆,面积分别记为S 1,S 2,S 3,若S 3=9π,则S 1+S 2等于_____.8.如图,Rt ABC 中,90ACB ∠=︒,以点C 为圆心,BC 为半径的圆交AB 于D ,交AC 于点E ,40BCD ∠=︒,则A ∠=______.9.如图,圆中扇子对应的圆心角α(180α)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则βα-的度数是__________.10.数学家赵爽在注解《周髀算经》时给出了“赵爽弦图”,如图所示,它是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,若直角三角形较短直角边长为6,大正方形的边长为10,则小正方形的边长为________.11.如图,在O 中,AB 为直径,8AB =,BD 为弦,过点A 的切线与BD 的延长线交于点C ,E 为线段BD 上一点(不与点B 重合),且OE DE =.(1)若35B ∠=︒,则AD 的长为______(结果保留π);(2)若6AC =,则DE BE=______.三、解答题12.如图,在Rt ABC 中,90ACB ∠=︒,以AC 为直径作O ,交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点E .(1)求证:DF 是O 的切线;(2)若2CF =,4DF =,求O 的半径.13.如图,点A ,B 分别在①DPE 两边上,且PA PB =,点C 在①DPE 平分线上.(1)连接AC ,BC ,求证:AC BC =;(2)连接AB 交PC 于点O ,若60APB ∠=︒,6PA =,求PO 的长;(3)若PO OC ,且点O 是PAB △的外心,请直接写出四边形P ACB 的形状.参考答案与解析:1.C【详解】解:A 、直径是弦,但弦不一定是直径,不符合题意;B 、过圆心的弦是直径,但线段不一定是直径,不符合题意;C 、圆中最长的弦是直径,符合题意;D 、直径有无数条,不符合题意,故选C .2.B【分析】根据圆的概念、等弧的概念、垂径定理、弧、弦直径的关系定理判断即可.【详解】解:①直径是弦,①正确;①在同圆或等圆中,优弧大于劣弧,①错误;①在同圆或等圆中,长度相等的弧是等弧,①错误;①半圆是弧,①正确;故不正确的有2个.故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B【详解】根据弦的概念,AB 、BC 、EC 为圆的弦,共有3条弦.故选B.4.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.5.B【分析】根据半圆的定义即可判断.【详解】半圆是直径所对的弧,但是不含直径,故选B .【点睛】此题主要考查圆的基本性质,解题的根据熟知半圆的定义.6.B【分析】利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可【详解】A 、平分弦(不是直径)的直径垂直于弦,故本选项错误;B 、半圆或直径所对的圆周角是直角,故本选项正确;C 、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D 、若一条直线与一个圆有公共点,则二者相交或相切,故本选项错误,故选B .【点睛】本题考查直线与圆的位置关系,垂径定理,圆心角、弧、弦的关系,圆周角定理.能清楚的知道每个定理的条件和它对应的结论是解题的关键.7.9π.【分析】根据勾股定理和圆的面积公式,可以得到S 1+S 2的值,从而可以解答本题.【详解】解:①①ACB =90°,①AC 2+BC 2=AB 2,①S 1=π(2AC )2×12,S 2=π(2BC )2×12,S 3=π(2AB )2×12, ①S 1+S 2=π(2AC )2×12+π(2BC )2×12=π(2AB )2×12=S 3, ①S 3=9π,①S 1+S 2=9π,故答案为:9π.【点睛】本题考查勾股定理,解答本题的关键是利用数形结合的思想解答.8.20°.【分析】由半径相等得CB=CD,则①B=①CDB,在根据三角形内角和计算出①B=12(180°-①BCD)=70°,然后利用互余计算①A的度数.【详解】解:①CB=CD,①①B=①CDB,①①B+①CDB+①BCD=180°,①①B=12(180°-①BCD)=12(180°-40°)=70°,①①ACB=90°,①①A=90°-①B=20°.故答案为20°.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了三角形内角和定理.9.90°##90度【分析】根据题意得出α=0.6β,结合图形得出β=225°,然后求解即可.【详解】解:由题意可得:α:β=0.6,即α=0.6β,①α+β=360°,①0.6β+β=360°,解得:β=225°,①α=360°-225°=135°,①β-α=90°,故答案为:90°.【点睛】题目主要考查圆心角的计算及一元一次方程的应用,理解题意,得出两个角度的关系是解题关键.10.2【分析】在Rt①ABC中,根据勾股定理求出AC,即可求出CD.【详解】解:如图,①若直角三角形较短直角边长为6,大正方形的边长为10,①AB =10,BC =AD =6,在Rt ①ABC 中,AC 8,①CD =AC ﹣AD =8﹣6=2.故答案为:2.【点睛】本题主要考查了勾股定理,熟练掌握勾股定理是解决问题的关键.11. 149π 2539 【分析】(1)根据圆周角定理求出①AOD =70°,再利用弧长公式求解;(2)解直角三角形求出BC ,AD ,BD ,再利用相似三角形的性质求出DE ,BE ,可得结论.【详解】解:(1)①270AOD ABD ∠=∠=︒,①AD 的长704141809ππ⋅⋅==; 故答案为:149π; (2)连接AD ,①AC 是切线,AB 是直径,①AB AC ⊥,①10BC ,①AB 是直径,①90ADB ∠=︒,①AD CB ⊥,①1122AB AC BC AD ⋅⋅=⋅⋅,①245 AD=,①325 BD==,①OB OD=,EO ED=,①EDO EOD OBD ∠=∠=∠,①DOE DBO△∽△,①DO DE DB DO=,①43245DE=,①52 DE=,①325395210 BE BD DE=-=-=,①5252393910DEBE==.故答案为:25 39.【点睛】本题主要考查圆的相关知识,相似三角形的判定和性质,解直角三角形等知识,熟练掌握各性质及判定定理,正确寻找相似三角形解决问题是解题的关键.12.(1)见解析(2)3【分析】(1)连接OD、CD,由AC为①O的直径知①BCD是直角三角形,结合E为BC的中点知①CDE=①DCE,由①ODC=①OCD且①OCD+①DCE=90°可得答案;(2)设①O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.(1)解:如图,连接OD、CD.①AC为①O的直径,①①ADC=90°,①①CDB=90°,即①BCD是直角三角形,①E为BC的中点,①BE=CE=DE,①①CDE=①DCE,①OD=OC,①①ODC=①OCD,①①ACB=90°,①①OCD+①DCE=90°,①①ODC+①CDE=90°,即OD①DE,①DE是①O的切线;(2)解:设①O的半径为r,①①ODF=90°,①OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,①①O的半径为3.【点睛】本题主要考查了圆切线的判定与性质,等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理等等,熟知圆切线的性质与判定是解题的关键.13.(1)证明见解析(2)(3)正方形,理由见解析【分析】(1)证明①P AC①①PBC即可得到结论;(2)根据已知条件得到①APC=①BPC=30°,OP①AB于O,求得AO=3,再利用勾股定理即可得到结论;P A B C在以O为圆心,OP为半径的圆上,再证明①APB=①PBC=①BCA=①CAP=90°,可得(3)先证明,,,OBP BPC POB根据正方形的判定定理即可得到结论.四边形APBC为矩形,再证明45,90,(1)证明:①点C在①DPE平分线上,① APC BPC ∠=∠ ,又①P A =PB ,PC =PC ,①①P AC ①①PBC (SAS );.AC BC(2)解:①,,60,PA PB APOBPO APB ①①APC =①BPC =30°,OP ①AB 于O ;①P A =6,①AO =3, 22633 3.OP(3) 解:如图,①点O 是①P AB 的外心,①OA =OB =OP ,而OP =OC , ,,,P A B C 在以O 为圆心,OP 为半径的圆上,,AB PC 为圆的直径,①①APB =①PBC =①BCA =①CAP =90°,①四边形APBC 为矩形,PC 平分,APB ∠45,APC BPC,OP OB 45,90,OBP BPC POB①四边形APBC 为正方形.【点睛】本题考查了圆的综合题,全等三角形的判定和性质,正方形的判定,圆的确定,圆周角定理,正确的识别图形是解题的关键.。

人教版数学九年级上册 第二十四章 《圆》 压轴题综合培优训练(含答案)

人教版数学九年级上册 第二十四章 《圆》 压轴题综合培优训练(含答案)

《圆》压轴题综合培优训练1.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC 交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.2.如图,在△ABC中,CA=CB,E是边BC上一点,以AE为直径的⊙O经过点C,并交AB 于点D,连结ED.(1)判断△BDE的形状并证明.(2)连结CO并延长交AB于点F,若BE=CE=3,求AF的长.3.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).4.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD 的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=2,DE=2,求AD的长.(3)在(2)的条件下,求弧BD的长.5.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.(1)求证:DE是⊙O的切线;(2)当⊙O半径为3,CE=2时,求BD长.6.如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.7.如图,AH是圆O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为直径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若AD=8,EB=5,求⊙O的直径.8.如图,AB是⊙O的直径,弦CD垂直平分OA,垂足为点M,连接并延长CO交⊙O于点E,分别连接DE,BE,DB,其中∠EDB=30°,∠CDE的平分线DN交CE于点G,交⊙O于点N,延长CE至点F,使FG=FD.(1)求证:DF是⊙O的切线;(2)若⊙O半径r为8,求线段DB,BE与劣弧DE所围成的阴影部分的面积.9.如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.(1)求证:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;(3)若BD=6,DF=4,求AD的长10.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.(I)如图①,若∠F=50°,求∠BGF的大小;(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.11.如图,AB是圆O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交圆O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果OA=3,求AE•AB的值.12.Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一点,⊙O交AB于点D,交BC 延长线于点E.连接ED,交AC于点G,且AG=AD.(1)求证:AB与⊙O相切;(2)设⊙O与AC的延长线交于点F,连接EF,若EF∥AB,且EF=5,求BD的长.13.Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.(Ⅰ)如图①,求∠ODE的大小;(Ⅱ)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.14.如图,已知圆O是△ABC的外接圆,AB是圆O的直径,C是圆上的一点,D是AB延长线上的一点,AE⊥CD交DC的延长线于点E,且AC平分∠EAB.(1)求证:DE是圆O的切线.(2)若AB=6,AE=4.8,求BD和BC的长.15.已知AB是半圆O的直径,M,N是半圆不与A,B重合的两点,且点N在弧BM上.(1)如图1,MA=6,MB=8,∠NOB=60°,求NB的长;(2)如图2,过点M作MC⊥AB于点C,点P是MN的中点,连接MB、NA、PC,试探究∠MCP、∠NAB、∠MBA之间的数量关系,并证明.参考答案一.解答题1.解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠ADO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∴∠EDB=∠ADO=∠CAB,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,则∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C=60°,E是直角三角形的中线,∴DE=CE,∴△DEC为等边三角形,⊙O 的面积:12π=(AB )2π,则AB =4,∠CAB =30°,∴BD =2,BC =4,AC =8,而OE =AC =4,四边形OBED 的外接圆面积S 2=π(2)2=4π,等边三角形△DEC 边长为2,则其内切圆的半径为:,面积为,故△DEC 的内切圆面积S 1和四边形OBED 的外接圆面积S 2的比为:. 2.(1)证明:△BDE 是等腰直角三角形.∵AE 是⊙O 的直径∴∠ACB =∠ADE =90°,∴∠BDE =180°﹣90°=90°.∵CA =CB ,∴∠B =45°,∴△BDE 是等腰直角三角形.(2)过点F 作FG ⊥AC 于点G ,则△AFG 是等腰直角三角形,且AG =FG .∵OA =OC ,∴∠EAC =∠FCG .∵BE =CE =3,∴AC =BC =2CE =6,∴tan ∠FCG =tan ∠EAC =.∴CG =2FG =2AG .∴FG =AG =2,∴AF =2. 3.【解答】(1)证明:∵⊙O 切BC 于D ,∴OD ⊥BC ,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴△AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=AO=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM =S△DMO,∴S阴影=S扇形EOD==π.4.(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴=,∴EC2=DE•AE,∴(2)2=2(2+AD),∴AD=4.(3)∵直角△CDE中,tan∠DCE===,∴∠DCE=30°,又∵△AEC∽△CED,∴∠A=∠DCE=30°,∴∠DOB=2∠A=60°,BD=AD•tan A=4×=,∴△OBD是等边三角形,则OD=BD=,则弧BD的长是=.5.(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切线;(2)证明:∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴,∴BD•CD=AB•CE,∵BD=CD,∴BD2=AB•CE,∵⊙O半径为3,CE=2,∴BD==2.6.证明:(1)连接OA,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.7.解:(1)如图1,连接OE,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠FAH,∴∠EAO=∠FAE,∴∠FAE=∠AEO,∴AF∥OE,∴∠AFE+∠OEF=180°,∵AF⊥GF,∴∠AFE=∠OEF=90°,∴OE⊥GF,∵点E在圆上,OE是半径,∴GF是⊙O的切线.(2)设AB=x,∵四边形ABCD是矩形,∴AB=CD=x,BC=AD=8,∴CE=BC﹣BE=3,∵AE是∠BAF的角平分线,BE⊥AB,EF⊥AF,∴EF=BE=5,在Rt△CEF中,根据勾股定理得,CF=4,∴DF=CD﹣CF=x﹣4,在Rt△ABE和Rt△AFE中,,∴Rt△ABE≌Rt△AFE(HL),∴AF=AB=x,在Rt△ADF中,x2﹣(x﹣4)2=64,∴x=10,∴AB=10,设⊙O的半径为r,∴OB=10﹣r,在Rt△BOE中,r2﹣(10﹣r)2=25,∴r=,∴⊙O的直径为.8.(1)证明:连接OD,∵CD垂直平分OA,∴OM=OA=OD,∴∠ODC=30°,∵CE为⊙O的直径,∴∠CDE=90°,∵DN平分∠CDE,∴∠CDN=45°,∴∠ODN=45°﹣30°=15°,∵OD=OC,∴∠DCO=∠ODC=30°,∴∠FGD=45°+30°=75°,∵FD=FG,∴∠FDG=∠FGD=75°,∴∠ODF=∠ODN+∠FDG=15°+75°=90°,∴DF是⊙O的切线;(2)解:∵∠EDB=30°,∴∠EOB=60°,Rt△CDE中,∠DEC=60°,∴∠DEC=∠EOB=60°,∴DE∥AB,∴S△DOE =S△ODE,∴S阴影=S扇形ODE==;答:线段DB,BE与劣弧DE所围成的阴影部分的面积是,9.(1)证明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:连接CD,如图,∵∠BAC=90°,∴BC为直径,∴∠BDC=90°,∵∠1=∠2,∴DB=BC,∴△DBC为等腰直角三角形,∴BC=BD=4,∴△ABC外接圆的半径为2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=9.10.解:(I)如图①,连接OB,∵BF为⊙O的切线,∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如图②,连接OB,BO的延长线交AC于H,∵BF为⊙O的切线,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,与(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.11.(1)证明:连接OB.∵CD⊥OA,∴∠ADE=90°,∴∠DAE+∠AED=90°,∵OA=OB,∴∠A=∠OBA,∵CE=CB,∴∠CBE=∠CEB=∠AED,∴∠ABO+∠CBE=90°,∴∠OBC=90°,∴OB⊥BC.(2)解:连接OF.∵AD=OD,FD⊥OA,∴FA=FO=AO,∴△AOF是等边三角形,∴∠AOF=60°,∴∠ABF=∠AOF=30°.(3)解:延长AO交⊙O于H,连接BH.∵AH是直径,∴∠ABH=∠ADE=90°,∵∠DAE=∠HAB,∴△DAE∽△BAH,∴=,∴AE•AB=AD•AH=×6=9.12.(1)证明:连结OD,∵∠ACB=90°,∴∠OED+∠EGC=90°,∵OD=OE,∴∠ODE=∠OED,∵AG=AD,∴∠ADG=∠AGD,∵∠AGD=∠EGC,∴∠OED+∠EGC=∠ADG+∠ODE=∠ADO=90°,∴OD⊥AB,∵OD为半径,∴AB是⊙O的切线;(2)解:连接OF,∵EF∥AB,AC:BC=4:3,∴CF:CE=4:3,又∵EF=5,∴CF=4,CE=3,设半径=r,则OF=r,CF=4,CO=r﹣3.在Rt△OCF中,由勾股定理,可得r=,∵EF∥AB,∴∠CEF=∠B,∵∠ECF=∠ODB=90°,∴△CEF∽△DBO,∴=,∴=,∴BD=.13.证明:(Ⅰ)连接OE,BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°,∵E点是BC的中点,∴DE=BC=BE,∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE,∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位线,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=.14.解:(1)如图,连接OC,∵AC平分∠EAB,∴∠EAC=∠BA C;又在圆中OA=OC,∴∠ACO=∠BAC,∴∠EAC=∠ACO,∴OC∥AE,由AE⊥DC知OC⊥DC,∴DE是⊙O的切线.(2)∵∠D=∠D,∠E=∠OCD=90°,∴△DCO∽△DEA,∴=,∴=,∴=,∴BD=2;∵Rt△EAC∽Rt△CAB,∴=,∴=∴AC2=,由勾股定理得:BC==.15.解:(1)如图1,∵AB是半圆O的直径,∴∠M=90°,在Rt△AMB中,AB=,∴AB=10.∴OB=5,∵OB=ON,又∵∠NOB=60°,∴△NOB是等边三角形,∴NB=OB=5.(2)结论:∠MCP+∠MBA+∠NAB=90°.理由:方法一:如图2中,画⊙O,延长MC交⊙O于点Q,连接NQ,NB.∵MC⊥AB,又∵OM=OQ,∴MC=CQ,即C是MQ的中点,又∵P是MQ的中点,∴CP是△MQN的中位线,∴CP∥QN,∴∠MCP=∠MQN,∵∠MQN=∠MON,∠MBN=∠MON,∴∠MQN=∠MBN,∴∠MCP=∠MBN,∵AB是直径,∴∠ANB=90°,∴在△ANB中,∠NBA+∠NAB=90°,∴∠MBN+∠MBA+∠NAB=90°,即∠MCP+∠MBA+∠NAB=90°.方法二:如图2﹣1中,连接MO,OP,NO,BN.∵P是MN中点,又∵OM=ON,∴OP⊥MN,且∠MOP=∠MON,∵MC⊥AB,∴∠MCO=∠MPO=90°,∴设OM的中点为Q,则QM=QO=QC=QP,∴点C,P在以OM为直径的圆上,在该圆中,∠MCP=∠MOP=∠MQP,又∵∠MOP=∠MON,∴∠MCP=∠MON,在半圆O中,∠NBM=∠MON,∴∠MCP=∠NBM,∵AB是直径,∴∠ANB=90°,∴在△ANB中,∠NBA+∠NAB=90°,∴∠NBM+∠MBA+∠NAB=90°,即∠MCP+∠MBA+∠NAB=90°.。

九年级数学圆知识点及习题(含答案)

九年级数学圆知识点及习题(含答案)

九年级数学圆知识点及习题(含答案)1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形, 圆心是它的对称中心。

3.垂直于弦的直径平分这条弦 ,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等 ,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等 ,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90° ,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆 ,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角2、与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外 ,②点在圆上 ,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交 ,②相切 ,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含 ,②相内切 ,③相交 ,④相外切 ,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长相等,这点与圆心之间的连线平分这两条切线的夹角。

九年级数学圆的练习题

九年级数学圆的练习题

九年级数学圆的练习题 九年级数学关于圆的知识点即将学完,教师们要准备哪些练习题呢?下⾯是店铺为⼤家带来的九年级数学关于圆的练习题,希望会给⼤家带来帮助。

九年级数学圆的练习题⽬ ⼀、选择题(本⼤题共30⼩题,每⼩题1分,共计30分) 1.下列命题:①长度相等的弧是等弧②任意三点确定⼀个圆③相等的圆⼼⾓所对的弦相等④外⼼在三⾓形的⼀条边上的三⾓形是直⾓三⾓形,其中真命题共有( )A.0个B.1个C.2个D.3个 2.同⼀平⾯内两圆的半径是R和r,圆⼼距是d,若以R、r、d为边长,能围成⼀个三⾓形,则这两个圆的位置关系是( )A.外离B.相切C.相交D.内含 3.四边形ABCD内接于⊙O,若它的⼀个外⾓∠DCE=70°,则∠BOD=( )A.35°B.70°C.110°D.140° 第3题第4题第5题 4.⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( )A.3≤OM≤5B.4≤OM≤5C.3 5.⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )A.42 °B.28°C.21°D.20° 6.△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( )A.2cmB.4cmC.6cmD.8cm 第6题第7题第10题 7.圆⼼⾓都是90°的扇形OAB与扇形OCD叠放在⼀起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的⾯积为( ) A. B. C. D. 8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相切,则满⾜条件的⊙C有( )A.2个B.4个C.5个D.6个 9.设⊙O的半径为2,圆⼼O到直线的距离OP=m,且m使得关于x的⽅程有实数根,则直线与⊙O的位置关系为( )A.相离或相切B.相切或相交C.相离或相交D.⽆法确定 10.把直⾓△ABC的斜边AC放在定直线上,按顺时针的⽅向在直线上转动两次,使它转到△A2B2C2的位置,设AB= ,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( ) A. B. C. D. 11.(成都)⼩红同学要⽤纸板制作⼀个⾼4cm,底⾯周长是6πcm的圆锥形漏⽃模型,若不计接缝和损耗,则她所需纸板的⾯积是( )A.12πcm2B.15πcm2 C .18πcm2 D.24πcm2 第11题第12题第13题 12.扇形OAB是⼀个圆锥的侧⾯展开图,若⼩正⽅形⽅格的边长为1,则这个圆锥的底⾯半径为( ) A. B. C. D. 13.如图是⼀个五环图案,它由五个圆组成.下排的两个圆的位置关系是( )A.内含B.外切C.相交D.外离 14.AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )A.130°B.120°C.110°D.100° 第14题第16题第17题 15.有4个命题:①直径相等的两个圆是等圆; ②长度相等的两条弧是等弧;③圆中最⼤的弧是过圆⼼的弧;④⼀条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( )A.①③B.①③④C.①④D.① 16.点I为△ABC的内⼼,点O为△ABC的外⼼,∠O=140°,则∠I为( )A.140°B.125°C.130°D.110° 17.等腰直⾓三⾓形AOB的⾯积为S1,以点O为圆⼼,OA为半径的弧与以AB为直径的半圆围成的图形的⾯积为S2,则S1与S2的关系是( )A. S1>S2B. S1 18.如果正多边形的⼀个外⾓等于60°,那么它的边数为( )A. 4B. 5C. 6D. 7 19.等边三⾓形的周长为18,则它的内切圆半径是( )A. 6B. )3C.D. 20.⼀个扇形的弧长为厘⽶,⾯积是厘⽶2,则扇形的圆⼼⾓是( )A. 120°B. 150°C. 210°D. 240° 21.两圆半径之⽐为2:3,当两圆内切时,圆⼼距是4厘⽶,当两圆外切时,圆⼼距为( )A. 5厘⽶B. 11厘⽶C. 14厘⽶D. 20厘⽶ 22.⼀个圆锥的侧⾯积是底⾯积的2倍,则这个圆锥的侧⾯展开图的圆周⾓是( )A. 60°B. 90°C. 120°D. 180° 23.圆内接正五边形ABCDE中,对⾓线AC和BD相交于点P,则∠APB的度数是( )A.36°B.60°C.72°D.108° 24.如图所⽰,把边长为2的正⽅形ABCD的⼀边放在定直线上,按顺时针⽅向绕点D旋转到如图的位置,则点B运动到点B′所经过的路线长度为( )A.1B.C.D. 第24题第26题第27题 25.如果⼀个正三⾓形和⼀个正六边形⾯积相等,那么它们边长的⽐为( )A.6:1B.C.3:1D. 26.如图所⽰,圆锥的母线长是3,底⾯半径是1,A是底⾯圆周上⼀点,从点A出发绕侧⾯⼀周,再回到点A的最短的路线长是( ) A. B. C. D.3 27.在中,, .将其绕点顺时针旋转⼀周,则分别以为半径的圆形成⼀圆环.该圆环的⾯积为( ) A. B. C. D. 28. 是等腰直⾓三⾓形,且 .曲线 …叫做“等腰直⾓三⾓形的渐开线”,其中,,,…的圆⼼依次按循环.如果,那么曲线和线段围成图形的⾯积为( ) A. B. C. D. 第28题第29题第30题 29.图中,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD于点C,AB=2,半圆O的半径为2,则BC的长为( )A.2B.1C.1.5D.0. 5 30.在平⾯直⾓坐标系中,点P在第⼀象限,⊙P与轴相切于点Q,与轴交于M(0,2),N(0,8) 两点,则点P的坐标是( ) A. B. C. D. ⼆、填空题(本⼤题共30⼩题,每⼩2分,共计60分) 31.某圆柱形⽹球筒,其底⾯直径是10cm,长为80cm,将七个这样的⽹球筒如图所⽰放置并包装侧⾯,则需________________ 的包装膜(不计接缝,取3). 第31题第32题 32.在“世界杯”⾜球⽐赛中,甲带球向对⽅球门PQ进攻,当他带球冲到A点时,同样⼄已经助攻冲到B点.有两种射门⽅式:第⼀种是甲直接射门;第⼆种是甲将球传给⼄,由⼄射门.仅从射门⾓度考虑,应选择________种射门⽅式. 33.如果圆的内接正六边形的边长为6cm,则其外接圆的半径为___________. 34.直⾓坐标系中⼀条圆弧经过⽹格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆⼼坐标为_____________. 35.两条互相垂直的弦将⊙O分成四部分,相对的两部分⾯积之和分别记为S1、S2,若圆⼼到两弦的距离分别为2和3,则|S1-S2|=__________. 36.⊙O的直径CD垂直于弦EF,垂⾜为G,若∠EOD=40°,则∠DCF等于________度. 第36题第37题第38题 37.A是半径为2的⊙O外⼀点,OA=4,AB是⊙O的切线,点B是切点,弦BC ∥OA,连结AC,则图中阴影部分的⾯积为_________. 38.劳技课上,王芳制作了⼀个圆锥形纸帽,其尺⼨如图.则将这个纸帽展开成扇形时的圆⼼⾓等于_______. 39.已知PA是⊙O的切线,切点为A,PA=3,∠APO=30°,那么OP=_______. 第39题第40题第41题 40.某花园⼩区⼀圆形管道破裂,修理⼯准备更换⼀段新管道,现在量得污⽔⽔⾯宽度为80cm,⽔⾯到管道顶部距离为20cm,则修理⼯应准备内直径是________cm的管道. 41. 为的直径,点在上,,则 ________. 42.在⊙O中,AB为⊙O 的直径,弦CD⊥AB,∠AOC=60°,则∠B=________. 第42题第47题第48题 43.已知⊙O1和⊙O2的半径分别为2和3,两圆相交于点A、B,且AB=2,则O1O2=______. 44.已知四边形ABCD是⊙O的外切等腰梯形,其周长为20,则梯形的中位线长为_____. 45.⽤铁⽪制造⼀个圆柱形的油桶,上⾯有盖,它的⾼为80厘⽶,底⾯圆的直径为50厘⽶,那么这个油桶需要铁⽪(不计接缝)_________厘⽶2(不取近似值). 46.已知两圆的半径分别为3和7,圆⼼距为5,则这两个圆的公切线有_____条. 47.以AB为直径的⊙O与直线CD相切于点E,且AC⊥CD,BD⊥CD,AC=8cm,BD=2cm,则四边形ACDB的⾯积为______. 48.PA、PB、DE分别切⊙O于A、B、C,⊙O的半径长为6cm,PO=10cm,则△PDE的周长是______. 49.⼀个正⽅形和⼀个正六边形的外接圆半径相等,则此正⽅形与正六边形的⾯积之⽐为_______. 50.已知正六边形边长为a,则它的内切圆⾯积为_______. 51.有⼀个边长为2cm的正六边形,若要剪⼀张圆形纸⽚完全盖住这个图形,则这个圆形纸⽚的最⼩半径是________. 第51题第53题 52.如果⼀条弧长等于,它的半径是R,那么这条弧所对的圆⼼⾓度数为______,当圆⼼⾓增加30°时,这条弧长增加______. 53.如图所⽰,OA=30B,则的长是的长的_____倍. 54.母线长为,底⾯半径为r的圆锥的表⾯积=_______. 55.已知扇形半径为2cm,⾯积是,扇形的圆⼼⾓为_____°,扇形的弧长是______cm. 56.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转⼀周,所得圆柱体的表⾯积是_______.(⽤含的代数式表⽰) 57.粮仓顶部是⼀个圆锥形,其底⾯周长为36m,母线长为8m,为防⾬需在粮仓顶部铺上油毡,如果按⽤料的10%计接头的重合部分,那么这座粮仓实际需⽤________m2的油毡. 58.某机械传动装置静⽌状态时,连杆与点运动所形成的⊙O交于点,现测得, .⊙O半径,此时点到圆⼼的距离是______cm. 59. 是⊙O的直径,点在的延长线上,过点作⊙O的切线,切点为,若,则 ______. 第59题第60题 60.⊙O1和⊙O2相交于A,B,且AO1和AO2分别是两圆的切线,A为切点,若⊙O1的半径r1=3cm,⊙O2的半径为r2=4cm,则弦AB=___cm. 三、解答题(63~64题,每题2分,其他每题8分,共计60分) 61.AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂⾜为E. (1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O半径为5,∠BAC=60°,求DE的长. 62.如图所⽰,已知△ABC中,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G. (1)∠BFG与∠BGF是否相等?为什么? (2)求由DG、GE和所围成的图形的⾯积(阴影部分). 63.以等腰三⾓形的⼀腰为直径的⊙O交底边于点,交于点,连结,并过点作,垂⾜为 .根据以上条件写出三个正确结论(除外)是: (1)___________________________ _____________________________________; (2)________________________________________________________________; (3)________________________________________________________________. 64.要在直径为50厘⽶的圆形⽊板上截出四个⼤⼩相同的圆形凳⾯.问怎样才能截出直径最⼤的凳⾯,最⼤直径是多少厘⽶? 65.如图是⼀纸杯,它的母线AC和EF延长后形成的⽴体图形是圆锥,该圆锥的侧⾯展开图形是扇形OAB .经测量,纸杯上开⼝圆的直径是6cm,下底⾯直径为4cm,母线长为EF=8cm.求扇形OAB的圆⼼⾓及这个纸杯的表⾯积(⾯积计算结果⽤表⽰) . 66.在△ABC中,∠BCA =90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ与⊙O的位置关系,并说明理由. 67.有这样⼀道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任⼀点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R. (1)证明:RP=RQ. (2)请探究下列变化: A、变化⼀:交换题设与结论.已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任⼀点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上⼀点,且RP=RQ. 证明:RQ为⊙O的切线. B、变化⼆:运动探求.(1)如图2,若OA向上平移,变化⼀中结论还成⽴吗?(只交待判断) 答:_________. (2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成⽴吗?为什么? 68.在平⾯直⾓坐标系中,矩形ABCO的⾯积为15,边OA⽐OC⼤2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F. (1)求OA、OC的长; (2)求证:DF为⊙O′的切线; (3)⼩明在解答本题时,发现△AOE是等腰三⾓形.由此,他断定:“直线BC上⼀定存在除点E以外的点P,使△AOP也是等腰三⾓形,且点P⼀定在⊙O′外”.你同意他的看法吗?请充分说明理由. 69.已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合),连结BD,过点C作BD的平⾏线交⊙O1于点E,连BE. (1)求证:BE是⊙O2的切线; (2)如图(2),若两圆圆⼼在公共弦AB的同侧,其他条件不变,判断BE和⊙O2的位置关系(不要求证明). 九年级数学圆的练习题答案 ⼀、选择题 01.B 02.C 03.D 04.A 05.B 06.C 07.C 08.D 09.B 10.B 11.B 12.B 13.D 14.C 15.A 16.B 17.C 18.C 19.C 20.B 21.D 22.D 23.C 24.D 25.B 26.C 27.C 28.C 29.B 30.D ⼆、填空题 31. 【答案】12000 32. 【答案】第⼆种 33 . 【答案】6cm 34. 【答案】(2,0) 35. 【答案】24(提⽰:由圆的对称性可知,等于e的⾯积,即为4×6=24) 36. 【答案】200 37. 【答案】 38. 【答案】90° 39. 【答案】 40. 【答案】100 41. 【答案】40° 42. 【答案】30° 43. 【答案】2 ± 44. 【答案】5. 45. 【答案】厘⽶ 46. 【答案】2 47. 【答案】40cm2 48.【答案】16cm. 49.【答案】4 :9. 50. 【答案】 51 . 【答案】2cm 52. 【答案】45°, 53. 【答案】 3 54. 【答案】 55 . 【答案】, ; 56. 【答案】130 cm2 57. 【答案】158.4 58. 【答案】 7.5 59. 【答案】40° 60. 【答案】 三、解答题 61.解:(1)证明:连接AD ∵AB是⊙O的直径 ∴∠ADB=90° ⼜BD=CD ∴AD是BC的垂直平分线 ∴AB=AC (2)连接OD ∵点O、D分别是AB、BC的中点 ∴OD∥AC ⼜DE⊥AC ∴OD⊥DE ∴DE为⊙O的切线 (3)由AB=AC,∠BAC=60 °知△ABC是等边三⾓形 ∵⊙O的半径为5 ∴AB=BC=10, CD= BC=5 ⼜∠C=60° ∴ . 62.解:(1)∠BFG=∠BGF 连接OD,∵ OD=OF(⊙O的半径), ∴∠ODF=∠OFD. ∵⊙O与AC相切于点D,∴ OD⊥AC ⼜∵∠C=90°,即GC⊥AC,∴ OD∥GC, ∴∠BGF=∠OD F. ⼜∵∠BFG=∠OFD,∴∠BFG=∠BGF. (2)如图所⽰,连接OE,则ODCE为正⽅形且边长为3. ∵∠BFG=∠BGF, ∴ BG=BF=OB-OF= , 从⽽CG=CB+BG= , ∴阴影部分的⾯积=△DCG的⾯积-(正⽅形ODCE的⾯积 - 扇形ODE的⾯积) 63.(1) ,(2)∠BAD=∠CAD,(3) 是的切线(以及AD⊥BC,弧BD=弧DG等). 64.设计⽅案如左图所⽰,在右图中,易证四边形OAO′C为正⽅形,OO′+O′B=25, 所以圆形凳⾯的最⼤直径为25( -1)厘⽶. 65.扇形OAB的圆⼼⾓为45°,纸杯的表⾯积为44 . 解:设扇形OAB的圆⼼⾓为n° 弧长AB等于纸杯上开⼝圆周长: 弧长CD等于纸杯下底⾯圆周长: 可列⽅程组,解得 所以扇形OAB的圆⼼⾓为45°,OF等于16cm 纸杯表⾯积=纸杯侧⾯积+纸杯底⾯积=扇形OAB的⾯积-扇形OCD的⾯积+纸杯底⾯积即 S纸杯表⾯积 66.连接OP、CP,则∠OPC=∠OCP. 由题意知△ACP是直⾓三⾓形,⼜Q是AC的中点,因此QP=QC,∠QPC=∠QCP. ⽽∠OCP+∠QCP=90°,所以∠OPC+∠QPC=90°即OP⊥PQ,PQ与⊙O相切. 67.解:连接OQ, ∵OQ=OB,∴∠OBP=∠OQP ⼜∵QR为⊙O的切线,∴OQ⊥QR 即∠OQP+∠PQR=90° ⽽∠OBP+∠OPB=90° 故∠PQR=∠OPB ⼜∵∠OPB与∠QPR为对顶⾓ ∴∠OPB=∠QPR,∴∠PQR=∠QPR ∴RP=RQ 变化⼀、连接OQ,证明OQ⊥QR; 变化⼆、(1)结论成⽴ (2)结论成⽴,连接OQ,证明∠B=∠OQB,则∠P=∠PQR,所以RQ=PR. 68.(1)在矩形OABC中,设OC=x 则OA=x+2,依题意得 解得: (不合题意,舍去) ∴OC=3, OA=5 (2)连结O′D,在矩形OABC中,OC=AB,∠OCB=∠ABC=90°,CE=BE= ∴△OCE≌△ABE ∴EA=EO ∴∠1=∠2 在⊙O′中,∵ O′O= O′D ∴∠1=∠3 ∴∠3=∠2 ∴O′D∥AE,∵DF⊥AE ∴ DF⊥O′D ⼜∵点D在⊙O′上,O′D为⊙O′的半径,∴DF为⊙O′切线. (3)不同意. 理由如下: ①当AO=AP时, 以点A为圆⼼,以AO为半径画弧交BC于P1和P4两点 过P1点作P1H⊥OA于点H,P1H=OC=3,∵AP1=OA=5 ∴AH=4,∴OH =1 求得点P1(1,3) 同理可得:P4(9,3) ②当OA=OP时,同上可求得:P2(4,3),P3( 4,3) 因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,⼜存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三⾓形. 69.【提⽰】(1)过B作⊙O2的直径BH,连结AB、AH,证∠EBH=90°.(2)⽤类似的⽅法去探求. 【证明】(1)连结AB,作⊙O2的直径BH,连结AH. 则∠ABH+∠H=90°,∠H=∠ADB,∠EBA=∠ECA. ∵ EC∥BD, ∴∠ADB=∠ACE=∠EBA. ∴∠EBA+∠ABH=90°. 即∠EBH=90°. ∴ BE是⊙O2的切线. (2)同理可知,BE仍是⊙O2的切线. 【点评】证明⼀与圆有公共点的直线是圆的切线的⼀般⽅法是过公共点作半径(或直径),再证直径与半径垂直,但此题已知条件中⽆9 0°的⾓,故作直径构造90°的⾓,再进⾏⾓的转换.同时两圆相交,通常作它们的公共弦,这样把两圆中的⾓都联系起来了.另外,当问题进⾏了变式时,要学会借鉴已有的思路解题.。

九年级数学上册专题07 圆易错题(原卷版)

九年级数学上册专题07 圆易错题(原卷版)

r=6-42=1r=6+42=5点P 到圆上一点的最大距离是6cm ,最小距离是4cm ,圆的半径是___专题07 圆易错题圆,期末必考。

圆与其它不同是,圆中隐含条件多,圆的题解不出,往往不是由于条件不够,更多的是由于条件太多,而我们由于对模型运用不够熟练,基础知识掌握不牢造成的。

本专题精选期末圆的易错试题,并配以详细的解答,为你复习迎考助力!圆中易错两种情况1.平行弦间距2.点到圆上点的距离最大与最小:3.弦对圆周角:4.相切的上下左右 EF=OE-OF=4-3=1EF=OE+OF=4+3=7AB ∥CD,AB=10,CD=8,圆的半径是5,则AB 与CD 之间的距离是____所以:∠P 2=60°,∠P 1=120°3.可得:BE=3,OB=2易证:∠1=60°,∠AOB =120°1.画出示意图。

2.作OE ⊥AB ,垂足为E 。

在半径是2的⊙O 中,弦AB=23,则AB 所对的圆周角_____.1一.选择题1.如图,△ABC 与△ACD 中,AD =AC =DC =2√3,∠BAC :∠B :∠ACB =1:2:3,则△ABC 的外心与△ACD 的内心之间的距离为( )A .2B .√3+1C .2√3D .32.如图,Rt △ABC 中,AB ⊥BC ,AB =4,BC =3,P 是平面上的一个点,连换AP ,BP ,已知∠P 始终为直角,则线段CP 长的最大值为( )A .6B .√29C .√13+2D .53.给出下列结论:①有一个角是100°的两个等腰三角形相似.②三角形的内切圆和外接圆是同心圆.③圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.④等腰梯形既是轴对称图形,又是中心对称图形.⑤平分弦的直径垂直于弦,并且平分弦所对的两弧.⑥过直线外一点有且只有一条直线平行于已知直线.简记:上切下切左切右切线段直线分类讨论其中正确命题有( )个.A .2个B .3个C .4个D .5个4.如图,△ABC 和△AMN 都是等边三角形,点M 是△ABC 的外心,那么MN :BC 的值为( )A .23B .√33C .14D .49 5.如图,在平面直角坐标系中,以M (2,3)为圆心,AB 为直径的圆与x 轴相切,与y 轴交于A ,C 两点,则AC 的长为( )A .4B .2√5C .2√13D .66.如图,AB 是⊙O 的弦,PO ⊥OA 交AB 于点P ,过点B 的切线交OP 的延长线于点C ,若⊙O 的半径为√5,OP =1,则BC 的长为( )A .2B .√6C .52D .√57.如图,AB 是⊙O 的直径,弦CD 交AB 于点E ,连接AC 、AD .若∠BAC =28°,则∠D 的度数是( )A.56°B.58°C.60°D.62°8.如图,AB是⊙O的直径,CD是⊙O的弦,连接BD、BC,若∠ABD=56°,则∠BCD的度数为()A.34°B.56°C.68°D.102°9.如图,线段AB是⊙O的直径,点C在圆上,∠AOC=60°,点P是线段AB延长线上的一点,连结PC,则∠APC的度数不可能是()A.30°B.25°C.10°D.5°10.下列语句:①长度相等的弧是等弧;②过平面内三点可以作一个圆;③平分弦的直径垂直于弦;④90°的圆周角所对的弦是直径;⑤等弦对等弧.其中正确的个数是()A.1个B.2个C.3个D.4个11.如图,点A,B,C,D都在圆上,线段AC与BD交于点M,MB=MD,当点B,D,M保持不变,点A在圆上自点B向点D运动的过程中(点A不与点B,点D重合),那么线段MA与MC 的乘积()A.不变B.先变大,后变小C.变大D.先变小,后变大二.填空题(共28小题)12.如图,半圆O的直径DE=12cm,在Rt△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,当圆心O运动到点B时停止,点D、E始终在直线BC上.设运动时间为t(s),运动开始时,半圆O在△ABC的左侧,OC=8cm.当t=时,Rt△ABC 的一边所在直线与半圆O所在的圆相切.13.已知点M(2.0),⊙M的半径为1,OA切⊙M于点A,点P为⊙M上的动点,当P的坐标为时,△POA是等腰三角形.14.已知三角形ABC是锐角三角形,其中∠A=30°,BC=4,设BC边上的高为h,则h的取值范围是.15.如图,已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是边AB上的动点,Q是边BC上的动点,且∠CPQ=90°,则线段CQ的取值范围是.16.如图,点O为△ABC的外接圆圆心,点E为圆上一点,BC、OE互相平分,CF⊥AE于F,连接DF.若OE=2√3,DF=1,则△ABC的周长为.17.如图,D为△ABC的内心,点E在AC上,且AD⊥DE,若DE=2,AD=CE=3,则AB的长为.18.如图,在△ABC中,∠BAC=30°,∠ACB=60°,BC=1,点P从点A出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A',连结A'C,A'P.点P到达点B时,线段A'P扫过的面积为.19.点M是半径为5的⊙O内一点,且OM=4,在过M所有⊙O的弦中,弦长为整数的弦的条数为.20.AB=AC=AD,∠CAB=100°,则∠BDC=.21.如图,AB是⊙O的弦,AB=2√2,点P是优弧APB上的动点,∠P=45°,连接P A,PB,AC 是△ABP的中线.(1)若∠CAB=∠P,则AC=;(2)AC的最大值=.22.如图,已知点A(3,0)、B(﹣1,0)点Q是y轴上一点,当∠AQB=135°时点Q的坐标是.23.已知等腰△ABC的外心是O,AB=AC,∠BOC=100°,则∠ABC=.24.已知⊙O中,两弦AB和CD相交于点P,若AP:PB=2:3,CP=2cm,DP=12cm,则弦AB 的长为cm.25.在△ABC中,AB=6,AC=8,高AD=4.8,设能完全覆盖△ABC的圆的半径为r,则r的最小值为.26.已知△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣1,﹣3),C(3,﹣3)则△ABC外接圆半径的长度为.27.如图,AB是⊙O的直径,AD、BC是⊙O的切线,P是⊙O上一动点,若AD=3,AB=4,BC =6,则△PDC的面积的最小值是.28.如图,⊙O既是正△ABC的外接圆,又是正△DEF的内切圆,则内外两个正三角形的相似比是.29.如图,点C在以O为圆心的半圆内一点,直径AB=4,∠BCO=90°,∠OBC=30°,将△BOC 绕圆心逆时针旋转到使点C的对应点C′在半径OA上,则边BC扫过区域(图中阴影部分)面积为.(结果保留π)30.如图,C、D是⊙O上两点,位于直径AB的两侧,设∠ABC=24°,则∠BDC=°.31.某园林单位要在一个绿化带内开挖一个△ABC的工作面,使得∠ACB=60°,CD是AB边上的高,且CD=6,则△ABC的面积最小值是.32.如图,正方形ABCD的边长为4,E是AD的中点,点P是边AB上的一个动点,连接PE,以P 为圆心,PE的长为半径作⊙P.当⊙P与正方形ABCD的边相切时,则AP的长为.̂上一动点,过点P作PC⊥OA于点C,PD⊥OB于33.如图,在扇形AOB中,OA=2,点P为AB点D,连接CD,当CD取得最大值时,扇形OAB的周长为.34.如图,圆内一条弦CD与直径AB相交成30°角,且分直径成1cm和5cm两部分,则这条弦的弦心距是.35.已知圆的两条平行弦分别长6dm和8dm,若这圆的半径是5dm,则两条平行弦之间的距离为.36.如图,P(x,y)是以坐标原点为圆心、5为半径的圆周上的点,若x、y都是整数,则这样的点共有个.37.在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于°.38.圆中一条弦所对的圆心角为60°,那么它所对的圆周角度数为度.39.一圆中两弦相交,一弦长为2a且被交点平分,另一弦被交点分成1:4两部分,则另一弦长为.三.解答题40.如图,CD为⊙O的直径,CD⊥AB,垂足为F,AO⊥BC,垂足为E,连接AC.(1)求∠B的度数;(2)若CE=4√3,求圆O的半径.41.如图,AB是⊙O的直径,点C,D是⊙O上的点,且OD∥BC,AC分别与BD,OD相交于点E,F.̂的中点;(1)求证:点D为AC(2)若DF=4,AC=16,求⊙O的直径.42.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC、AD.若∠BAC=35°,(1)求∠D的度数;(2)若∠ACD=65°,求∠CEB的度数.43.如图,AB是⊙O的直径,点C为⊙O上一点,D为弧BC的中点,过D作DF⊥AB于点E,交⊙O于点F,交弦BC于点G,连接CD,BF.(1)求证:BC=DF.(2)若BC=8,BE=2,求⊙O的半径.44.如图,AB是⊙O的直径,弦CD⊥AB于点E,G是AĈ上任意一点,连接AD,AG,GD.(1)若∠ADC=70°,求∠AGD的度数;(2)若OE=3,CD=8,求⊙O的半径r.45.如图,在圆O中,弦AB的垂直平分线OE交弦BG于点D,OE交圆O于点C、F,连接OG,OB,圆O的半径为r.(1)若∠AGB=60°,求弦AB的长(用r的代数式表示);(2)证明:∠E=∠OBD;(3)若D是CO中点,求EF的长(用r的代数式表示).46.如图,在△ABC中,以AB为直径的⊙O分别与AC,BC交于点E,D,且BD=CD.(1)求证:∠B=∠C.(2)过点D作DF⊥OD,过点F作FH⊥AB,若AB=5,CD=√5,求AH的值.47.如图,△ABC是⊙O的内接三角形,直径AB=4,CD平分∠ACB交⊙O于点D,交AB于点E,连接AD、BD.(1)若∠CAB=25°,求∠AED的度数;(2)求AD的长.48.已知△ABC内接于⊙O,AB为⊙O直径,弦CD与AB相交于点E,∠BAC=36°.(Ⅰ)如图①,若CD平分∠ACB,连接BD,求∠ABC和∠CBD的大小;(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若AE=AC,求∠P的大小.49.如图,BE为⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.(1)求证:AC是⊙O的切线;(2)若AD⊥BC于点F,DE=4,OF=2,求图中阴影部分的面积.50.如图,△ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作DG∥BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,∠A=∠D.(1)求证:BD与⊙O相切;(2)若AE=OE,CF平分∠ACB,BD=12,求DE的长.。

新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷

新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷

新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷并且可以用于解决一些圆的问题。

在圆O中,圆心角∠XXX和∠AEB相等,则弦AB和DE相等,弦BC和BD相等,弦AC和AD相等,且弦心距相等。

七、切线与切点1、切线定义:过圆上一点的直线称为圆的切线;2、切点定义:圆上与切线相切的点称为切点;3、定理:切线垂直于半径,切点在切线上,且切点到圆心的距离等于半径长。

在圆O中,点A在圆上,线段AB是圆O上的一条切线,点B是切点,且AB垂直于半径OA,AB上的点与圆心O的距离等于半径OA的长度。

参考答案:一、圆的概念集合形式的概念:圆是到定点的距离等于定长的点的集合。

圆的外部是到定点的距离大于定长的点的集合,圆的内部是到定点的距离小于定长的点的集合。

轨迹形式的概念:圆是到定点的距离等于定长的点的轨迹,以定点为圆心,定长为半径的圆。

垂直平分线是到线段两端距离相等的点的轨迹,角的平分线是到角两边距离相等的点的轨迹,到直线的距离相等的点的轨迹是平行于这条直线且到这条直线的距离等于定长的两条直线,到两条平行线距离相等的点的轨迹是平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系点在圆内的距离小于半径,点在圆上的距离等于半径,点在圆外的距离大于半径。

三、直线与圆的位置关系直线与圆相离的距离大于半径,直线与圆相切的距离等于半径,直线与圆相交的距离小于半径。

四、圆与圆的位置关系圆与圆外离的距离大于两圆半径之和,圆与圆外切的距离等于两圆半径之和,圆与圆相交的距离在两圆半径之差和之和之间,圆与圆内切的距离等于两圆半径之差,圆与圆内含的距离小于两圆半径之差。

五、垂径定理垂径定理是指垂直于弦的直径平分弦且平分弦所对的弧。

推论1包括平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧,弦的垂直平分线经过圆心并且平分弦所对的两条弧,平分弦所对的一条弧的直径垂直平分弦并且平分弦所对的另一条弧。

六、圆心角定理圆心角定理是指同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

九年级数学圆专题训练题

九年级数学圆专题训练题

九年级数学圆专题训练题九年级数学圆专题训练题一、选择题1.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()A.3B.2C.1D.0考点:切线的性质.分析:连接OD,CD是⊙O的切线,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等边三角形,∠C=∠BDC=30°,再结合在直角三角形中300所对的直角边等于斜边的一半,继而得到结论①②③成立.解答:解:如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,∴△OBD是等边三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,②成立;∴AB=2BC,③成立;∴∠A=∠C,∴DA=DC,①成立;综上所述,①②③均成立,故答案选:A.点评:本题考查了圆的有关性质的综合应用,在本题中借用切线的性质,求得相应角的度数是解题的关键.2.如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次考点:直线与圆的位置关系.分析:根据题意作出图形,直接写出答案即可.解答:解:如图:,⊙O2与矩形的边只有一个公共点的情况一共出现4次,故选B.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.3.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()(第1题图)A.1B.1或5C.3D.5考点:直线与圆的位置关系;坐标与图形性质.分析:平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.解答:解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选B.点评:本题考查了直线与圆的位置关系,解题的.关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.4.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D.1个分析:(1)利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;(2)利用(1)所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;(3)利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出CO=PO=AB;(4)利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故此选项正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故此选项正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,故此选项正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故此选项正确;故选:A.点评:此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.5.(2014•武汉,第10题3分)如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.1B.1/2C.3/5D.2考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义分析:(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.解答:解:连接OA、OB、OP,延长BO交PA的延长线于点F.∵PA,PB切⊙O于A、B两点,CD切⊙O于点E∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB,∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=.在Rt△BFP和Rt△OAF中,,∴Rt△BFP∽RT△OAF.∴===,∴AF=FB,在Rt△FBP中,∵PF2﹣PB2=FB2∴(PA+AF)2﹣PB2=FB2∴(r+BF)2﹣()2=BF2,解得BF=r,∴tan∠APB===,故选:B.6.如图,G为△ABC的重心.若圆G分别与AC、BC相切,且与AB 相交于两点,则关于△ABC三边长的大小关系,下列何者正确?()A.BCACC.ABAC分析:G为△ABC的重心,则△ABG面积=△BCG面积=△ACG面积,根据三角形的面积公式即可判断.解:∵G为△ABC的重心,∴△ABG面积=△BCG面积=△ACG面积,又∵GHa=GHb>GHc,∴BC=AC故选D.点评:本题考查了三角形的重心的性质以及三角形的面积公式,理解重心的性质是关键.7.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④考点:垂径定理;菱形的判定;圆周角定理;解直角三角形.分析:分别根据垂径定理、菱形的判定定理、锐角三角函数的定义对各选项进行逐一判断即可.解答:解:∵点A是劣弧的中点,OA过圆心,∴OA⊥BC,故①正确;∵∠D=30°,∴∠ABC=∠D=30°,∴∠AOB=60°,∵点A是点A是劣弧的中点,∴BC=2CE,∵OA=OB,∴OB=OB=AB=6cm,∴BE=AB•cos30°=6×=3cm,∴BC=2BE=6cm,故B正确;∵∠AOB=60°,∴sin∠AOB=sin60°=,故③正确;∵∠AOB=60°,∴AB=OB,∵点A是劣弧的中点,∴AC=OC,∴AB=BO=OC=CA,∴四边形ABOC是菱形,故④正确.故选B.点评:本题考查了垂径定理、菱形的判定、圆周角定理、解直角三角形,综合性较强,是一道好题.8.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.7C.3D.5解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.。

人教版九年级上册数学圆专题卷(有答案)

人教版九年级上册数学圆专题卷(有答案)

人教版九年级上册数学圆专题卷(有答案)一、单选题(共12题;共24分)1.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是().A. πr2B. πr2C. πr2D. πr22.若⊙O的半径为6,点P在⊙O内,则OP的长可能是()A. 5B. 6C. 7D. 83.如图,A、B、C三点在⊙O上,∠AOB=80º,则∠ACB的大小()`A. 40ºB. 60ºC. 80ºD. 100º4.已知AB、CD是两个不同圆的弦,如AB=CD,那么与的关系是()A. =B. >C. <D. 不能确定5.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A. 2B. 4C. 8D. 166.已知⊙O1与⊙O2的半径分别为3和4,若圆心距O1O2=1,则两圆的位置关系是():A. 相交B. 相离C. 内切D. 外切7.两圆的半径分别是5cm和4cm,圆心距为7cm,则两圆的位置关系是( )A. 相交B. 内切C. 外切D. 外离8.如图,某公园的一座石拱桥是圆弧形(劣弧),拱的半径为13米,拱高CD为8米,则拱桥的跨度AB 的长为())A. 20米B. 24米C. 28米D. 24米9.如图,PA、PB、DE分别切⊙O于A、B、C点,若圆O的半径为6,OP=10,则△PDE的周长为()A. 10B. 12C. 16D. 2010.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为()A. B. 2 C. 2 D. 311.(2017•葫芦岛)如图,点A,B,C是⊙O上的点,∠AOB=70°,则∠ACB的度数是())A. 30°B. 35°C. 45°D. 70°12.如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的各顶点称为格点,直角△ABC的顶点均在格点上,则满足条件的点C有()A. 6个B. 8个C. 10个D. 12个二、填空题(共6题;共20分)13.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB =________°.14.(2011•南通)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点:相同点:①________;②________.不同点:①________;②________.!15.如图,在⊙O中,点A、O、D和点B、O、C分别在一条直线上,图中共有 ________条弦,它们分别是 ________16.如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为________.17.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是________.18.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为________cm.三、综合题(共5题;共56分)19.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.》(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.20.如图,在半径为2的⊙O中,弦AB长为2.、(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.21.(2015•北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD 的延长线交于点P,使∠PED=∠C.^(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.;22.(2017•安顺)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 ,求阴影部分的面积.23.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=________°,理由是:________;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.`答案一、单选题1.B2. A3. A4.D5. B6. C7. A8. B9. C 10.C 11.B 12. C二、填空题13.4414.都是轴对称图形;都有外接圆和内切圆;内角和不同;对角线的条数不同15.三;AE,DC,AD.16.17.618.三、综合题19. (1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)解:∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.20.(1)解:过点O作OD⊥AB于点D,连接AO,BO.如图1所示:∵OD⊥AB且过圆心,AB=2,∴AD= AB=1,∠ADO=90°,在Rt△ADO中,∠ADO=90°,AO=2,AD=1,∴OD= = .即点O到AB的距离为.(2)解:如图2所示:∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA= (360°﹣∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.21.(1)证明:如图,连接OE.∵CD是圆O的直径,∴∠CED=90°.∵OC=OE,∴∠1=∠2.又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)证明:∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)解:设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,OE2=OF2+EF2,即52=x2+(2x﹣5)2,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF=﹣2=.22.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂中平分BC,∴EC=EB,在△OCE和△OBE中,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切(2)解:设⊙O的半径为r,则OD=r﹣1,在Rt△OBD中,BD=CD= BC= ,∴(r﹣1)2+()2=r2,解得r=2,∵tan∠BOD= = ,∴∠BOD=60°,∴∠BOC=2∠BOD=120°,在Rt△OBE中,BE= OB=2 ,∴阴影部分的面积=S四边形OBEC﹣S扇形BOC=2S△OBE﹣S扇形BOC=2× ×2×2 ﹣=4 ﹣π23.(1)90;直径所对的圆周角是直角(2)解:△EAD是等腰三角形.证明:∵∠ABC的平分线与AC相交于点D,∴∠CBD=∠ABE∵AE是⊙O的切线,∴∠EAB=90°∴∠AEB+∠EBA=90°,∵∠EDA=∠CDB,∠CDB+∠CBD=90°,∵∠CBE=∠ABE,∴∠AED=∠EDA,∴AE=AD∴△EAD是等腰三角形(3)解:∵AE=AD,AD=6,∴AE=AD=6,∵AB=8,∴在直角三角形AEB中,EB=10∵∠CDB=∠E,∠CBD=∠ABE∴△CDB∽△AEB,∴= = =∴设CB=4x,CD=3x则BD=5x,∴CA=CD+DA=3x+6,在直角三角形ACB中,AC2+BC2=AB2即:(3x+6)2+(4x)2=82,解得:x=﹣2(舍去)或x=∴BD=5x=。

《常考题》初中九年级数学上册第二十四章《圆》知识点总结(含答案解析)

《常考题》初中九年级数学上册第二十四章《圆》知识点总结(含答案解析)

一、选择题1.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在⊙O 上,点D 在优弧ADB 上,DA DB =,则AOD ∠的度数为( )A .165°B .155°C .145°D .135° 2.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104π 3.如图,分别以AB,AC 为直径的两个半圆,其中AC 是半圆O 的一条弦,E 是弧AEC 中点,D 是半圆ADC 中点.若DE=2,AB=12,且AC˃6,则AC 长为( )A .6+2B .8+2C . 6+22D .8+22 4.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70° 5.如图,AB 为O 的直径,C 为O 上一点,其中6AB =,120AOC ∠=︒,P 为O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为( )A .37B .3272+C .237+D .33722+ 6.下列事件属于确定事件的为( )A .氧化物中一定含有氧元素B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态 7.如图,已知AB 是O 的直径,AD 切O 于点A ,CE CB =.则下列结论中不一定正确的是( )A .OC BE ⊥B .//OC AE C .2COE BAC ∠=∠D .OD AC ⊥ 8.如图,在ABC 中,90C ∠=︒,7AB =,4AC =,以点C 为圆心、CA 为半径的圆交AB 于点D ,求弦AD 的长为( )A 433B .327C 233D .1679.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .1410.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,同勾中 容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是( ) A .8.5 B .17 C .3 D .611.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,点B 为劣弧AN 的中点,P 是直径MN 上一动点,则PA+PB 的最小值为( )A .2B .1C .2D .22 12.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70°13.如图,四边形ABCD 内接于O ,若108B ∠=︒,则D ∠的大小为( )A .36°B .54°C .62°D .72° 14.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59πC .109πD .518π 15.在△ABC 中,∠ACB 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ,如图所示.若AB=4,AC=2,图中两个新月形面积分别为S 1,S 2,两个弓形面积分别为S 3,S 4,S 1-S 2=14π,则S 3-S 4的值是( )A .294πB .234πC .114πD .54π 二、填空题16.已知扇形的圆心角为120︒,面积为π,则扇形的半径是___________. 17.如图,在半径为3的⊙O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是____________.18.如图,已知O 是以数轴上原点O 为圆心,半径为2的圆,45AOB ∠=︒,点P 在x正半轴上运动,若过点P 与OA 平行的直线与O 有公共点,设P 点对应的数为x ,则x 的取值范围是______.19.如图,直线AB 、CD 相交于点,30O AOC ∠=︒,半径为1cm 的⊙P 的圆心在直线AB 上,且与点O 的距离为8cm ,如果⊙P 以2cm/s 的速度,由A 向B 的方向运动,那么_________秒后⊙P 与直线CD 相切.20.已知一个圆锥形纸帽的底面半径为5cm,母线长为10cm,则该圆锥的侧面积为_____cm2(结果保留π)21.在△ABC中,已知∠ACB=90°,BC=3,AC=4,以点C为圆心,2.5为半径作圆,那么直线AB与这个圆的位置关系分别是_________.22.如图,若∠BOD=140°,则∠BCD=___________ .,半径为15cm的扇形卡纸,围成一个圆锥侧23.小红在手工制作课上,用面积为215cm面,则这个圆锥的底面半径为_______cm.24.如图,半径为3的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则OC=_____.25.扇形的半径为6cm,弧长为10cm,则扇形面积是________.26.湖州南浔镇河流密如蛛网,民间有“千步一桥”之说.如图,某圆弧形桥拱的跨度AB=12米,拱高CD=4米,则该拱桥的半径为____米.三、解答题27.正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.(1)如图1,若点E在AB上,F是DE上的一点,DF=BE.①求证:ADF≌ABE;②求证:DE﹣BE2AE.(2)如图2,若点E在AD上,直接写出线段DE、BE、AE之间的等量关系.28.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠CAE=∠ADC .(1)求证:AE 是⊙O 的切线;(2)若⊙O 的半径为2,∠B=60°,求图中阴影部分的面积.(结果保留根号和π) 29.如图,O 的直径AB 为10,弦BC 为6,D 是AC 的中点,弦BD 和CE 交于点F ,且DF DC =.(1)求证:EB EF =;(2)求CE 的长.30.已知PA 、PB 分别与O 相切于点A ,B 两点,76APB ∠=︒ ,C 为O 上一点. (1)如图,求ACB ∠的大小; (2)如图,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.。

人教版九年级数学上册圆的练习题

人教版九年级数学上册圆的练习题

人教版九年级数学上册圆的练习题练一一、选择题1.若⊙O的半径为5㎝,点A到圆心O的距离为4㎝,那么点A与圆心O的位置关系是()A。

点A在圆外B。

点A在圆上C。

点A在圆内D。

不能确定2.在⊙O中,已知弦AB的长为8㎝,AB的弦心距为3㎝,则⊙O的半径为()A。

7㎝B。

5㎝C。

7㎝D。

3㎝3.如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为()A。

6B。

8C。

10D。

124.下列命题中,①圆是轴对称图形;②圆是中心对称图形;③圆既是轴对称图形,又是中心对称图形;④圆是轴对称图形,对称轴是直径;⑤圆是中心对称图形,对称中心是圆心。

其中正确的命题是()A。

①②③B。

①②⑤C。

①②③⑤D。

②③④⑤5.如图所示,正方形ABCD内接于⊙O,P是劣弧AD上任意一点,则∠ABP+∠DCP=()A。

90°B。

60°C。

45°D。

30°6.以已知点O为圆心作圆,可以作()圆A。

1个B。

2个C。

3个D。

无数个7.若圆心角∠PCB=60°,则弧PCB所对的圆周角等于()A。

30°B。

40°C。

60°D。

80°8.如图,A、B、C是⊙O上的三点,∠AOC=100°则∠ABC的度数是()A。

30°B。

45°C。

50°D。

60°9.如图,AB为⊙O的直径,点C在⊙O上,若∠A=40°,则∠B等于()A。

80°B。

60°C。

50°D。

40°二、填空题11.已知⊙O的半径为4cm,A为线段OP的中点,当OP=5 cm时,点A在⊙O 上;当OP=8cm时,点A在⊙O 上;当OP=10 cm时,点A在⊙O 外。

12.如图,弓形的弦长AB为23cm,高CD为1cm,则弓形所在圆的半径为12cm。

13.一条弦把圆心分成1:3两部分,则劣弧所对的圆心角为120°。

九年级数学《圆》经典试题集锦

九年级数学《圆》经典试题集锦

九年级数学《圆》经典试题集锦九年级数学《圆》经典试题集锦一、选择题1.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O 于点A,如果PA=,PB=1,那么∠APC等于2.如果圆柱的高为20厘米,底面半径是高的,那么这个圆柱的侧面积是100π平方厘米200π平方厘米500π平方厘米200平方厘米3.“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=寸,求直径CD的长”.依题意,CD长为寸13寸25寸26寸4.已知:如图,⊙O半径为5,PC切⊙O于点C,PO交⊙O于点A,PA=4,那么PC的长等于 6 2 2 2 5.如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于2厘米2厘米4厘米8厘米6.相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘米和17厘米,则这两圆的圆心距为7厘米16厘米21厘米27厘米7.如图,⊙O为△ABC的内切圆,∠C=,AO 的延长线交BC于点D,AC=4,DC=1,,则⊙O的半径等于8.一居民小区有一正多边形的活动场.为迎接“AAPP”会议在重庆市的召开,小区管委会决定在这个多边形的每个顶点处修建一个半径为2米的扇形花台,花台都以多边形的顶点为圆心,比多边形的内角为圆心角,花台占地面积共为12π平方米.若每个花台的造价为400元,则建造这些花台共需资金2400元2800元3200元3600元9.如图,AB是⊙O直径,CD是弦.若AB=10厘米,CD=8厘米,那么A、B两点到直线CD的距离之和为12厘米10厘米8厘米6厘米10.某工件形状如图所示,圆弧BC 的度数为,AB=6厘米,点B到点C的距离等于AB,∠BAC =,则工件的面积等于4π6π8π10π 11.如图,PA切⊙O于点A,PBC是⊙O的割线且过圆心,PA=4,PB=2,则⊙O的半径等于 3 4 6 8 12.已知⊙O的半径为3厘米,⊙的半径为5厘米.⊙O与⊙相交于点D、E.若两圆的公共弦DE 的长是6厘米,则两圆的圆心距O的长为2厘米10厘米2厘米或10厘米4厘米13.如图,两个等圆⊙O和⊙的两条切线OA、OB,A、B是切点,则∠AOB等于14.如图,AB是⊙O的直径,∠C=,则∠ABD=15.弧长为6π的弧所对的圆心角为,则弧所在的圆的半径为 6 6 12 18 16.如图,在△ABC中,∠BAC=,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为 1 2 1+ 2-17.已知圆的内接正六边形的周长为18,那么圆的面积为18π9π6π3π 18.如图,点P是半径为5的⊙O内一点,且OP=3,在过点P的所有弦中,长度为整数的弦一共有2条3条4条5条19.如图,正六边形ABCDEF的边长的上a,分别以C、F为圆心,a为半径画弧,则图中阴影部分的面积是20.过⊙O内一点M的最长的弦长为6厘米,最短的弦长为4厘米,则OM的长为厘米厘米2厘米5厘米21.已知圆锥的底面半径是3,高是4,则这个圆锥侧面展开图的面积是12π15π30π24π22.已知⊙O的直径AB与弦AC的夹角为,过C点的切线PC与AB延长线交P.PC=5,则⊙O的半径为10 5 23.如图:PA 切⊙O于点A,PBC是⊙O的一条割线,有PA=3,PB=BC,那么BC的长是3 3 24.如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE,则图中五个扇形的面积之和是π 1.5π2π 2.5π 25.正六边形的半径为2厘米,那么它的周长为6厘米12厘米24厘米12厘米26.一个圆柱形油桶的底面直径为0.6米,高为1米,那么这个油桶的侧面积为0.09π平方米0.3π平方米0.6平方米0.6π平方米27.一个形如圆锥的冰淇淋纸筒,其底面直径为6厘米,母线长为5厘米,围成这样的冰淇淋纸筒所需纸片的面积是66π平方厘米30π平方厘米28π平方厘米15π平方厘米28.在半径为2的⊙O中,圆心O到弦AB的距离为1,则弦AB所对的圆心角的度数可以是29.将一张长80厘米、宽40厘米的矩形铁皮卷成一个高为40厘米的圆柱形水桶的侧面,,则桶底的面积为平方厘米1600π平方厘米平方厘米6400π平方厘米30.如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10厘米,AP∶PB=1∶5,那么⊙O的半径是6厘米厘米8厘米厘米31.在Rt△ABC中,已知AB=6,AC=8,∠A=.如果把Rt△ABC 绕直线AC旋转一周得到一个圆锥,其表面积为S;把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S,那么S∶S等于2∶3 3∶4 4∶9 5∶12 32.如图,⊙O的弦AB=8厘米,弦CD平分AB于点E.若CE=2厘米.ED长为8厘米6厘米4厘米2厘米33.如图,四边形ABCD 内接于⊙O,若∠BOD=,则∠BCD=34.如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F.若⊙O的半径为,则BF的长为35.如图,AB是⊙O的直径,∠ACD=,则∠BAD的度数为36.已知:点P直线l 的距离为3,以点P为圆心,r为半径画圆,如果圆上有且只有两点到直线l的距离均为2,则半径r的取值范围是r >1 r>2 2<r<3 1<r<5 37.边长为a的正方边形的边心距为 a a a 2a 38.如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥的母线长为4,高线长为3,则圆柱的侧面积为30ππ20ππ 39.如图,扇形的半径OA=20厘米,∠AOB=,用它做成一个圆锥的侧面,则此圆锥底面的半径为3.75厘米7.5厘米15厘米30厘米40.如图,正六边形ABCDEF中.阴影部分面积为12平方厘米,则此正六边形的边长为2厘米4厘米6厘米8厘米41.已知扇形的弧长是2π厘米,半径为12厘米,则这个扇形的圆心角是42.圆锥的高线长是厘米,底面直径为12厘米,则这个圆锥的侧面积是48π厘米24平方厘米48平方厘米60π平方厘米43.如图,AB是⊙O的直径,点P在BA的延长线上,PC 是⊙O的切线,C为切点,PC=2,PA=4,则⊙O的半径等于1 2 44.已知圆柱的母线长为5厘米,表面积为28π平方厘米,则这个圆柱的底面半径是5厘米4厘米2厘米3厘米45.半径相等的圆内接正三角形、正方形、正六边形的边长之比为1∶∶∶∶13∶2∶1 1∶2∶3 46.如图,若四边形ABCD是半径为1和⊙O的内接正方形,则图中四个弓形的面积和为厘米厘米厘米厘米47.如图,已知圆心角∠BOC=,则圆周角∠BAC 的度数是48.半径为5厘米的圆中,有一条长为6厘米的弦,则圆心到此弦的距离为3厘米4厘米5厘米6厘米49.已知:Rt△ABC中,∠C=,O为斜边AB上的一点,以O为圆心的圆与边AC、BC分别相切于点E、F,若AC=1,BC=3,则⊙O的半径为50.已知:如图,E是相交两圆⊙M和⊙O 的一个交点,且ME⊥NE,AB为外公切线,切点分别为A、B,连结AE、BE.则∠AEB的度数为145°140°135°130°二、填空题1.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧上的一点,已知∠BAC=,那么∠BDC=__________度.2.在Rt△ABC中,∠C=,AB=3,BC=1,以AC 所在直线为轴旋转一周,所得圆锥的侧面展开图的面积是__________.3.如果圆锥母线长为6厘米,那么这个圆锥的侧面积是_______平方厘米4.一种圆状包装的保鲜膜,如图所示,其规格为“20厘米×60米”,经测量这筒保鲜膜的内径、外径的长分别为3.2厘米、4.0厘米,则该种保鲜膜的厚度约为_________厘米.5.两个点O为圆心的同心圆中,大圆的弦AB与小圆相切,如果AB的长为24,大圆的半径OA为13,那么小圆的半径为___________.6.已知⊙O中,两弦AB与CD相交于点E,若E为AB的中点,CE∶ED=1∶4,AB =4,则CD的长等于___________.7.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,,,的度数比为3∶2∶4,MN是⊙O的切线,C是切点,则∠BCM的度数为___________.8.如图,P是⊙O的直径AB延长线上一点,PC切⊙O于点C,PC=6,BC∶AC=1∶2,则AB的长为___________.9.如图,四边形ABCD内接于⊙O,AD∥BC,=,若AD=4,BC=6,则四边形ABCD的面积为__________.10.(山西省)若一个圆柱的侧面积等于两底面积的和,则它的高h与底面半径r的大小关系是__________.11.要用圆形铁片截出边长为4厘米的正方形铁片,则选用的圆形铁片的直径最小要___________厘米.12.圆内两条弦AB和CD相交于P点,AB长为7,AB把CD分成两部分的线段长分别为2和6,那么=__________.13.△ABC是半径为2厘米的圆内接三角形,若BC=2厘米,则∠A的度数为________.14.如图,已知OA、OB是⊙O的半径,且OA=5,∠AOB=15,AC⊥OB于C,则图中阴影部分的面积S=_________.15.如图,圆内接正六边形ABCDEF中,AC、BF交于点M.则∶=_________.16.(哈尔滨市)两圆外离,圆心距为25厘米,两圆周长分别为15π厘米和10π厘米.则其内公切线和连心线所夹的锐角等于__________度.17.将两边长分别为4厘米和6厘米的矩形以其一边所在直线为轴旋转一周,所得圆柱体的表面积为_________平方厘米.18.如图,在⊙O的内接四边形ABCD中,∠BCD=130,则∠BOD的度数是________.19.已知⊙O的半径为4厘米,以O为圆心的小圆与⊙O组成的圆环的面积等于小圆的面积,则这个小圆的半径是______厘米.20.如图,⊙O的半径OA是⊙O的直径,C是⊙O上的一点,OC交⊙O于点B.若⊙O的半径等于5厘米,的长等于⊙O周长的,则的长是_________.21.正三角形的内切圆与外接圆面积之比为_________.22.如图,AB=8,AC=6,以AC和BC为直径作半圆,两圆的公切线MN与AB的延长线交于D,则BD的长为_________.23.圆锥的母线长为5厘米,高为3厘米,在它的侧面展开图中,扇形的圆心角是_________度.24.如图,AB是⊙O的直径,弦CD⊥AB,垂足是G,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长是_________.25.在⊙O中,直径AB=4厘米,弦CD⊥AB于E,OE=,则弦CD的长为__________厘米.26.若圆锥底面的直径为厘米,线线长为5厘米,则它的侧面积为__________平方厘米.27.如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于M点.若OA=a,PM =a,那么△PMB的周长的__________.28.在半径9厘米的圆中,的圆心角所对的弧长为__________厘米.29.扇形的圆心角为120,弧长为6π厘米,那么这个扇形的面积为_________.30.如果圆O的直径为10厘米,弦AB的长为6厘米,那么弦AB的弦心距等于________厘米.31.某种商品的商标图案如图所求,已知菱形ABCD的边长为4,∠A=,是以A为圆心,AB 长为半径的弧,是以B为圆心,BC长为半径的弧,则该商标图案的面积为_________.32.已知,一个直角三角形的两条直角边的长分别为3厘米、4厘米、以它的直角边所在直角线为轴旋转一周,所得圆锥的表面积是__________.33.正六边形的边心距与半径的比值为_________.34.如图,已知扇形AOB的半径为12,OA⊥OB,C为OA上一点,以AC为直径的半圆和以OB 为直径的半圆相切,则半圆的半径为__________.35.如图,PA、PB与⊙O分别相切于点A、点B,AC是⊙O的直径,PC交⊙O于点D.已知∠APB=,AC=2,那么CD的长为________.36.底面半径为2厘米,高为3厘米的圆柱的体积为_________立方厘米.37.边长为2厘米的正六边形的外接圆半径是________厘米,内切圆半径是________厘米.38.如图,PT是⊙O的切线,T为切点,PB是⊙O的割线交⊙O于A、B两点,交弦CD 于点M,已知:CM=10,MD=2,PA=MB=4,则PT的长等于__________.39.如图,扇形OAB中,∠AOB =,半径OA=1,C是线段AB的中点,CD∥OA,交于点D,则CD=________.40.已知扇形的圆心角为150,它所对的弧长为20π厘米,则扇形的半径是________厘米,扇形的面积是__________平方厘米.41.如图,AB是⊙O直径,CE切⊙O于点C,CD⊥AB,D为垂足,AB=12厘米,∠B=30,则∠ECB=__________;CD=_________厘米.42.如图,DE是⊙O直径,弦AB⊥DE,垂足为C,若AB=6,CE=1,则CD=________,OC=_________.43.如果把人的头顶和脚底分别看作一个点,把地球赤道作一个圆,那么身高压2米的汤姆沿着地球赤道环道环行一周,他的头顶比脚底多行________米.44.已知:⊙O的半径为1,M为⊙O外的一点,MA切⊙O于点A,MA=1.若AB是⊙O的弦,且AB=,则MB的长度为_________.45.如果圆的半径为4厘米,那么它的周长为__________厘米.三、解答题: 1.已知:如图,△ABC内接于⊙O,过点B作⊙O的切线,交CA的延长线于点E,∠EBC=2∠C.①求证:AB =AC;②若tan∠ABE=,求的值;求当AC=2时,AE的长.2.如图,PA为⊙O的切线,A为切点,⊙O的割线PBC 过点O与⊙O分别交于B、C,PA=8cm,PB=4cm,求⊙O 的半径.3.已知:如图,BC是⊙O的直径,AC切⊙O于点C,AB 交⊙O于点D,若AD︰DB=2︰3,AC=10,求sinB的值. 4.如图,PC为⊙O的切线,C为切点,PAB是过O的割线,CD⊥AB于点D,若tanB=,PC=10cm,求三角形BCD 的面积.5.如图,在两个半圆中,大圆的弦MN与小圆相切,D为切点,且MN∥AB,MN=a,ON、CD分别为两圆的半径,求阴影部分的面积.6.已知,如图,以△ABC的边AB作直径的⊙O,分别并AC、BC于点D、E,弦FG∥AB,S△CDE︰S△ABC=1︰4,DE=5cm,FG=8cm,求梯形AFGB的面积.7.如图所示:PA为⊙O的切线,A为切点,PBC是过点O 的割线,PA=10,PB=5,求:⊙O的面积;cos∠BAP的值.参考答案一、选择题1.B 2.B 3.D 4.D 5.C 6.C 7.A 8.C 9.D 10.B 11.A 12.B 13.C 14.D 15.D 16.A 17.B 18.C 19.C 20.B 21.C 22.A 23.A 24.B 25.B 26.D 27.D 28.C 29.A 30.B 31.A 32.A 33.B 34.C 35.A 36.D 37.B 38.B 39.B 40.B 41.C 42.D 43.A 44.C 45.B 46.C 47.A 48.B 49.C 50.C 二、填空题1.50 2.2π3.18π4.5.5 6.5 7.30°8.9 9.25 10.h=r 11.4 12.3或4 13.60°或120°14.15.1:2 16.30 17.80π或120π18.100°19.20.π21.1:4 22.1 23.288 24.4 25.2 26.15π27.28.3π29.27π平方厘米30.4 31.32.24π平方厘米或36π平方厘米33.34.4 35.36.12π37.2,38.39.40.24,240π41.60°,42.9,4 43.4π44.1或45.8π 三、解答题:1.∵BE切⊙O于点B,∴∠ABE=∠C.∵∠EBC=2∠C,即∠ABE+∠ABC=2∠C,∴∠C +∠ABC=2∠C,∴∠ABC=∠C,∴AB=AC.①连结AO,交BC于点F,∵AB=AC,∴=,∴AO⊥BC且BF=FC.在Rt△ABF 中,=tan∠ABF,又tan∠ABF=tanC=tan∠ABE=,∴=,∴AF=BF.∴AB===BF.∴.②在△EBA与△ECB中,∵∠E=∠E,∠EBA=∠ECB,∴△EBA∽△ECB.∴,解之,得EA2=EA·,又E A≠0,∴EA=AC,EA=×2=.2.设⊙的半径为r,由切割线定理,得PA2=PB·PC,∴82=4,解得r=6.即⊙O的半径为6cm.3.由已知AD︰DB=2︰3,可设AD=2k,DB =3k.∵AC切⊙O于点C,线段ADB为⊙O的割线,∴AC2=AD·AB,∵AB=AD+DB=2k +3k=5k,∴102=2k×5k,∴k2=10,∵k >0,∴k=.∴AB=5k=5.∵AC切⊙O 于C,BC为⊙O的直径,∴AC⊥BC.在Rt△ACB中,sinB=.4.解法一:连结AC.∵AB是⊙O的直径,点C在⊙O上,∴∠ACB =90°.CD⊥AB于点D,∴∠ADC=∠BDC =90°,∠2=90°-∠BAC=∠B.∵tanB=,∴tan∠2=.∴.设AD=x,CD=2x,DB=4x,AB=5x.∵PC切⊙O于点C,点B在⊙O上,∴∠1=∠B.∵∠P=∠P,∴△PAC∽△PCB,∴.∵PC=10,∴PA=5,∵PC切⊙O 于点C,PAB是⊙O的割线,∵PC2=PA·PB,∴102=5.解得x=3.∴AD=3,CD=6,DB=12.∴S△BCD=CD·DB=×6×12=36.即三角形BCD的面积36cm2.解法二:同解法一,由△PAC ∽△PCB,得.∵PA=10,∴PB=20.由切割线定理,得PC2=PA·PB.∴PA==5,∴AB =PB-PA=15,∵AD+DB=x+4x=15,解得x=3,∴CD=2x=6,DB=4x=12.∴S△BCD =CD·DB=×6×12=36.即三角形BCD的面积36cm2.5.解:如图取MN的中点E,连结OE,∴OE⊥MN,EN=MN=a.在四边形EOCD中,∵CO⊥DE,OE⊥DE,DE∥CO,∴四边形EOCD 为矩形.∴OE=CD,在Rt△NOE中,NO2-OE2=EN2=.∴S阴影=π=π·=.6.解:∵∠CDE=∠CBA,∠DCE=∠BCA,∴△CDE ∽△ABC.∴∴===,即,解得AB =10,作OM⊥FG,垂足为M,则FM=FG=×8=4,连结OF,∵OA=AB=×10=5.∴OF=OA=5.在Rt△OMF中,由勾股定理,得OM ===3.∴梯形AFGB的面积=·OM=×3=27.7.ÞPA2=PB·PCÞPC=20Þ半径为7.5Þ圆面积为.Þ△ACP∽△BAPÞÞ.解法一:设AB=x,AC=2x,BC为⊙O的直径Þ∠CAB=90°,则BC=x.∵∠BAP=∠C,∴cos∠BAP=cos∠C=解法二:设AB=x,在Rt△ABC中,AC2+AB2=BC2,即x2+2=152,解之得x=3,∴AC=6,∵∠BAP=∠C,∴∴cos∠BAP=cos∠C=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为()A.桃核承气汤B.血府逐瘀汤C.膈下逐瘀汤D.少腹逐瘀汤E.复元活血汤 颅脑外伤后GCS评分3-5分系A.轻型颅脑外伤B.中型颅脑外伤C.重型颅脑外伤D.特重型颅脑外伤E.以上都不是 采用法兰盘组装的杆体,其法兰盘贴和合率不得低于75%,用0.3mm塞尺检查,插入深度的面积不得大于总面积的多少?A.25%;B.30%;C.35%;D.40%; 喜欢自我表现属于人类行为发展过程的A.被动发展阶段B.主动发展阶段C.自主发展阶段D.巩固发展阶段E.自我发展阶段 助理编辑的主要职责不包括。A.协助编辑进行工作B.在编辑指导下,初审和加工稿件,协助发稿C.检查样书,练习撰写书讯、书评等出版物宣传材料D.分担稿件复审工作 可降低双香豆素抗凝作用的药物是()A.广谱抗生素B.阿司匹林C.苯巴比妥D.氯贝丁酯E.保泰松 腹外疝发病原因中最重要的是A.腹壁强度降低B.慢性便秘C.慢性咳嗽D.排尿困难E.腹水 关于中期妊娠利凡诺引产,下列哪项正确A.成功率75%以上B.引产时间为36~48小时C.并发症较多D.不是中期妊娠引产首选方法E.只能羊膜腔内注射 夏普指数调整的是全部风险,因此,当某基金就是投资者的全部投资时,可以用夏普指数作为绩效衡量的适宜指标。A.正确B.错误 月经期行经第2天时,可见成群的()A.子宫内膜细胞B.子宫颈内膜细胞C.表层细胞D.中层细胞E.底层细胞 病理反射 “棕色瘤”见于A.骨囊肿B.动脉瘤样骨囊肿C.甲状旁腺功能亢进D.血友病性关节炎E.痛风性关节炎 对于将公路作为试车场地的行为,交通主管部门应当责令停止违法行为,可处罚款额为元以下。A.3000B.5000C.10000D.30000 泰勒等人所倡导的的理论,为提高劳动生产率、促进企业劳动组织的科学化提供了可靠的依据和方法,开创了现代劳动定额学以及工业工程学的先河。A.动作与时间研究B.时间与成本研究C.动作与收益研究D.成本与收益研究 《循环经济促进法》规定,发展循环经济应当在技术可行、经济合理和有利于节约资源、保护环境的前提下,按照的原则实施。A.减少废物产生B.减量化优先C.能源消耗最低D.再利用优先 油田采出程度定义为与地质储量之比。A、年采油量B、累积采油量C、无水采油量D、地质储量 急性乳腺炎最多见的原因是A.有乳腺囊性增生症病史B.先天乳头内陷C.初产妇D.全身抵抗力下降E.乳头皮肤破溃损伤 疲劳会使船员.A.体力下降,反应迟钝B.体力不支,大脑不听使唤C.记忆、判断、感知失误D.以上都是 肝性脑病病人治疗,为了取代脑部假性神经传导介质,应选用A.多巴胺B.谷氨酸钾C.精氨酸盐D.去甲肾上腺素E.以上都不是 根据《公路工程标准施工招标文件》(2009年版)合同文件范本,关于计量支付管理的说法,错误的有A.承包人应对已完成的分项工程向业主申请质量认证B.承包人应在协议约定的时间内向监理工程师申请计量C.监理工程师应对实际完成的工程量进行计量,并签发计量证书给承包人D.承包人可凭 下列哪项不是透气性硬性角膜接触镜(RGP镜)的特性。A.矫正视力清晰B.对角膜散光矫正佳C.可设计成各种特殊镜片,如圆锥角膜镜片等D.镜片可塑性强,佩戴舒适E.不干扰角膜生理代谢,并发症少 味感产生的机制是什么? 安全气囊的碰撞传感器一般安装在汽车。A.中部B.前部C.后部 因钠过量而引起的火灾,能使用干粉灭火剂扑救.A.正确B.错误 儿童初诊为急性白血病,家长首先出现的最常见的心理反应是A.悲伤B.震惊C.否认D.平静E.愤怒 心室内动作电位快速传导与扩布的部位是。A.希氏束B.房室结C.左、右束支D.窦房结E.结间束 霍乱休克抢救中,下列措施错误的是A.尽快补充液体和电解质,扩容治疗B.大量应用缩血管药物是稳定血压的关键C.必要时加用激素D.及时补充钾E.急性肺水肿心力衰竭者用强心药 利用平衡法心血池显像监测急性心肌梗死时,下面哪一项提示大面积穿壁性心肌梗死A.局部室壁运动异常B.EF轻度下降C.广泛的室壁运动异常和LVEF的明显降低D.弥漫性室壁运动低下E.振幅图及时相图异常改变 流行性感冒疫情监测的主要目的不包括A.及早发现病原变异B.及早发现病人C.及早采取预防措施D.确定疫苗接种对象E.及早治疗 正常成人食管下口(即贲门)与气管最下约距多少个胸椎距离?()A.9B.8C.6D.4E.2 位于某市的某工厂转让一栋3年前购入的旧办公楼,购置成本550万元,转让收入为700万,已提折旧300万元。经房地产评估机构评定,该楼的重置成本价为1000万元,成新度为6成新,则应纳土地增值税万元。A.27.53B.140C.120D.50 关于胃黏膜的自身防御-修复因素,错误的是A.前列腺素B.表皮生长因子C.黏膜屏障D.胆盐E.黏膜血流量 下列关于“五腔心”层面描述,正确的是()A."五腔心"层面即为左心室流出道层面B.此层面可见主动脉窦C.可见左、右心房D.可见左、右心室E.可见下腔静脉 显示十、五、三车距离信号,十车为110m,五车为m,三车为33m。A.88B.77C.66D.55 土体构型 牡蛎散中功专止汗的药物是A.煅牡蛎B.麻黄根C.生黄芪D.小麦E.山茱萸 “内科护理常规”属于()A.临时备用医嘱B.临时医嘱C.长期备用医嘱D.长期医嘱E.即刻执行医嘱 关于肥胖者饮食治疗的叙述错误的是A.控制主食,限制脂肪、糖和甜食B.适当提高蛋白质供量C.一般采用极低热量饮食减肥D.补充足量的维生素,微量元素和纤维素E.饮食治疗的关键是控制饮食的总热量,而不是单纯地控制主食或几种食物 釉质外观呈淡黄色的原因是A.釉质形成不全B.釉质矿化不全C.釉质矿化程度高,透出深部牙本质的颜色D.色素沉着E.氟牙症 女,31岁,持续性高血压1年.血压165/100mmHg,血钾3.0mmol/L,血肾素水平降低,尿pH7.5,血HCO35mmol/L,应考虑()A.原发性高血压B.垂体腺瘤C.醛固酮瘤D.皮质醇增多症E.嗜铬细胞瘤
相关文档
最新文档