初一数学《有理数》复习习题10.3
人教版七年级数学上册 有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.列方程解应用题如图,在数轴上的点A表示,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度秒,乙的平均速度为1单位长度秒请问:(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________.(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?【答案】(1)3;2(2)解:设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有,解得.答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙【解析】【解答】解:(1)设两只蜗牛相向而行,经过x秒相遇,依题意有,解得..答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.【分析】(1)可设两只蜗牛相向而行,经过x秒相遇,根据等量关系:两只蜗牛的速度和时间,列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差时间,列出方程求解即可.3.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c(1)填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)(2)若|a|=2,且点B到点A、C的距离相等① 当b2=16时,求c的值② 求b、c之间的数量关系③ P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x-c|-10|x+a|的值保持不变,求b的值【答案】(1)<;>;>(2)解:① 且 , ,且 , .∵点B到点A,C的距离相等,∴∴ ,∴②∵ , ∴ ,③依题意,得∴原式=∵∴原式= 【此处不取-2没关系】∵当 P 点在运动过程中,原式的值保持不变,即原式的值与无关∴ ,∴【解析】【解答】解:(1)由题中的数轴可知,a<0<b<c,且∴abc<0,a+b>ac,ab-ac>0,故答案为:<,>,>;【分析】(1)根据数轴上的点所表示的数的特点得出a<0<b<c,且,从而根据有理数的乘法法则,加法法则、减法法则及有理数大小的比较方法即可一一判断得出答案;(2)①根据数轴上点的位置及绝对值的意义、有理数的乘方确定a、b的取值,进而根据点B到点A,C的距离相等,即即可求解;②根据数轴上两个点之间的距离及点B到点A,C的距离相等,即,即可得结论;③根据绝对值的意义把算式化简,再根据当P点在运动过程中,原式的值保持不变,即原式的值与无关列出方程,求解即可.4.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.5.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上运动,点A在数轴上表示的数是-12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________,线段BC的长=________;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,当BC=6(单位长度),求t的值;(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为________.【答案】(1)-10;14;24(2)解:当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为14-2t,∴BC=|t-10-(14-2t)|=|3t-24|,∵BC=6,∴|3t-24|=6,解得:t1=6,t2=10.答:当BC=6(单位长度)时,t的值为6或10(3)【解析】【解答】(1)解:∵AB=2,点A在数轴上表示的数是-12,∴点B在数轴上表示的数是-10,∵CD=1,点D在数轴上表示的数是15,∴点C在数轴上表示的数是14,∴BC=14-(-10)=24,故答案为:-10;14;24( 3 )解:当运动时间为t秒时,点A在数轴上表示的数为-t-12,点B在数轴上表示的数为-t-10,点C在数轴上表示的数为14-2t,点D在数轴上表示的数为15-2t,∵0<t<24,∴点C一直在点B的右侧,∵M为AC中点,N为BD中点,∴点M在数轴上表示的数为,点N在数轴上表示的数为,∴MN= - = .故答案为:【分析】(1)根据AB、CD的长度结合点A、D在数轴上表示的数,即可找出点B、C在数轴上表示的数,再根据两点间的距离公式可求出线段BC的长度;(2)找出运动时间为t秒时,点B、C在数轴上表示的数,利用两点间的距离公式结合BC=6,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)找出运动时间为t秒时,点A、B、C、D在数轴上表示的数,进而即可找出点M、N在数轴上表示的数,利用两点间的距离公式可求出线段MN的长.6.数轴上,,三个点对应的数分别为,,,且,到所对应的点的距离都等于7,点在点的右侧,(1)请在数轴上表示点,位置, ________, ________;(2)请用含的代数式表示 ________;(3)若点在点的左侧,且,点以每秒2个单位长度的速度沿数轴向右运动,当且点在的左侧时,求点移动的时间.【答案】(1);6(2)(3)解:点在点的左侧,且,,.设点移动的时间为秒.当点在点的左侧时,,解得:,此时点对应的数为14,在点的右侧,不合题意,舍去;当点在点的右侧且在点的左侧时,,解得:.点移动的时间为秒.【解析】【解答】(1)解:(1)根据题意得:,,,,将其表示在数轴上,如图所示.故答案为:;62)解:根据题意得:.故答案为:【分析】(1)由,到所对应的点的距离都等于7,点在点的右侧,可得出关于,的一元一次方程,解之即可得出,的值;(2)由点,对应的数,利用两点间的距离公式可找出的值;(3)由点在点的左侧及的值可得出的值,设点移动的时间为秒,分点在点的左侧和点在点的右侧且在点的左侧两种情况考虑,由,找出关于的一元一次方程,解之即可得出结论.7.阅读下列材料:我们给出如下定义:数轴上给定两点,以及一条线段,若线段的中点在线段上(点可以与点或重合),则称点与点关于线段径向对称.下图为点与点关于线段径向对称的示意图.解答下列问题:如图1,在数轴上,点为原点,点表示的数为-1,点表示的数为2.(1)①点,,分别表示的数为-3,,3,在,,三点中,________与点关于线段径向对称;②点表示的数为,若点与点关于线段径向对称,则的取值范围是________;(2)在数轴上,点,,表示的数分别是-5,-4,-3,当点以每秒1个单位长度的速度向正半轴方向移动时,线段同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为()秒,问为何值时,线段上至少存在一点与点关于线段径向对称.【答案】(1)点C和点D;1≤x≤5(2)解:移动时间t(t>0)秒时,点H,K,L表示的数分别是-5+t,-4+3t,-3+3t,此时,线段HK的中点设为R1,表示的数为,线段HL的中点设为R2,表示的数为,当线段R1R2,在线段OM上运动时,线段KL上至少存在一点与点H关于线段OM径向对称,当R2经过点O时,2t-4=0时,t=2,当R1经过点M时,时,,所以当时,线段R1 R2在OM上运动,所以当时,线段KL上至少存在一点与点H关于线段OM径向对称.【解析】【解答】解:(1)①与点A点关于线段径向对称需要满足:这个点与A点的中点在线段OM上,点B表示的数是-3,与点A表示的-1的中点是-2,不在线段OM上,所以点B不是;点C表示的数,与点A表示的-1的中点是,在线段OM上,所以点C 是;点D表示的3与点A表示的-1的中点是1,在线段OM上,所以点D是;综上,答案为点C,点D;②结合数轴可知当点x与点A的中点落在点O与点M之间时(包括端点O与M)正确,即,解得,故答案为;【分析】(1)根据题干中给出的径向对称的定义,进行验证解答即可;(2)根据题干中给出的径向对称的定义,列出点x与点A中点的取值范围,即可求出答案;(3)用含t的代数式分别表示出点H,K,L和线段HK与线段HL的中点列式计算即可.8.观察下面的等式:回答下列问题:(1)填空:________ ;(2)已知,则的值是________;(3)设满足上面特征的等式最左边的数为,则的最大值是________,此时的等式为________ .【答案】(1)-4(2)0或-4(3)4;【解析】【解答】解:根据观察可以知道,所有的式子符合的形式,所以(1)中此时2-a=6,解得a=-4,故答案为-4;所以(2)中a=2,故2-2=0,所以x的值为0;根据绝对值的意义将原式化简可得,求得x=0或x=-4,所以x的值为0或-4;(3)根据,可知,整理得,所以,所以y的最大值为4,此时的式子是.【分析】(1)根据即可求解;(2)由(1)的规律即可求解;(3)由(1)可得进行整理,根据绝对值意义求解即可.9.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.【答案】(1)7(2)(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;即:(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,第一种情况:2+2x=2(5-3x),解得:x=1第二种情况:2+2x=2(3x-5),解得:x=3答:经过1秒或3秒后点A到原点的距离是点B到原点的距离的2倍.【解析】【解答】解:(1)故答案为:7(2)【分析】(1)根据两点间距离公式求解即可;(2)根据两点间距离公式求解即可;(3)根据n+2和n-5以及两点间距离公式,即可得出n的取值范围;(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,利用两点间距离公式分两种情况列出方程,求解即可.10.先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10);(2)到表示数和数距离相等的点表示的数是,有这样的关系 =.解决问题:根据上述规律完成下列各题:(1)到表示数50和数150距离相等的点表示的数是________(2)到表示数和数距离相等的点表示的数是________(3)到表示数 12和数 26距离相等的点表示的数是________(4)到表示数a和数b距离相等的点表示的数是________【答案】(1)100(2)(3)-14(4)【解析】【解答】解:(1)由题意得:到表示数50和数150距离相等的点表示的数为:(2)到表示数和数距离相等的点表示的数为:(3)到表示数 -12 和数 -26 距离相等的点表示的数为:(4)到表示数a和数b距离相等的点表示的数为: .故答案为:100,, -14,.【分析】根据题中的叙述分别表示出数轴上这些到两点之间距离相等的点,最后得出规律到两点之间距离相等的点的数等于这两点坐标之和除以2, 即x=.11.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=________,AC=________,BE=________;(2)当线段CE运动到点A在C、E之间时,①设AF长为 x,用含 x 的代数式表示BE的值(结果需化简);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.【答案】(1)16;6;2(2)解:∵点F是AE的中点,∴AF=EF,设AF=EF=x,∴CF=8﹣x,∴BE=16﹣2x=2(8﹣x),∴BE=2CF.故答案为① 16-2x,② BE=2CF.(3)解:①当0<t≤6时,P对应数:-6+3t,Q对应数-4+2t,,解得:t=1或3;②当6<t≤8时,P对应数, Q对应数-4+2t,,解得:或;故答案为t=1或3或或【解析】【解答】(1)数轴上A、B两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F是AE的中点,∴AF=EF=7,,∴AC=AF﹣CF=6,BE=AB﹣AE=16﹣7×2=2,故答案为16,6,2;【分析】(1)由数轴上A、B两点对应的数分別是-4、12,可得AB的长;由CE=8,CF=1,可得EF的长,由点F是AE的中点,可得AF的长,用AB的长减去2倍的EF的长即为BE 的长;(2)设AF=FE=x,则CF=8-x,用含x的式子表示出BE,即可得出答案(3)分①当0<t≤6时;②当6<t≤8时,两种情况讨论计算即可得解12.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.【答案】(1)解:根据数轴上点的位置得:;(2)解:根据题意得:a+b<0,b-1<0,a-c<0,则;(3)解:根据题意得:b<0,a<0,c>0,m=-1-c,∴原式 .【解析】【分析】(1)根据数轴上点的位置判断即可;(2)由数轴可得a+b<0,b-1<0,a-c<0,然后利用绝对值的代数意义化简即可;(3)根据b<0,a<0,c>0,m=-1-c,进行计算即可.。
初一数学有理数复习资料及经典习题
一、有理数代数式几个重要的代数式:〔 m、n 表示整数〕用运算符号+-× ÷ 连接数及字母的式子称为代数式〔单独一个数或一个字母也是代数式〕〔1〕a 与 b 的平方差是:;a与b差的平方是:;〔2〕假设 a、b、c 是正整数,那么两位整数是:,那么三位整数是:;〔 3〕假设m、 n 是整数,那么被 5 除商m 余 n 的数是:;偶数是:,奇数是:;三个连续整数是:;一、有理数1.有理数:凡能写成q( p, q为整数且 p 0) 形式的数,都是有理数. p正整数、 0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数 .注意: 0 即不是正数,也不是负数; -a 不一定是负数, +a 也不一定是正数;不是有理数;正有理数正整数正整数正分数整数零① 有理数零② 有理数负整数负有理数负整数分数正分数负分数负分数有理数的分类注意:有理数中,1、0、-1 是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;自然数0 和正整数; a>0 a 是正数; a<0 a 是负数;a≥ 0 a 是正数或 0 a 是非负数;a≤ 0 a 是负数或 0 a 是非正数 .数轴数轴是规定了原点、正方向、单位长度的一条直线相反数绝对值有理数比大小倒数用式子表示:只有符号不同的两个数,我们说其中一个是另一个的相反数; 0 的相反数还是 0注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b ;相反数的和为 0 a+b=0 a 、b 互为相反数 .正数的绝对值是其本身,0 的绝对值是0,负数的绝对值是它的相反数可表示为:a (a 0) a (a 0)a 0 (a 0) 或 a a ( a 0) ;a (a 0)注意:绝对值的问题经常分类或者分段讨论;a;a1 a 0 ;1 a 0aa|a| 是重要的非负数,即 |a| ≥0;注意: |a| ·|b|=|a ·b|, a ab ba2是重要的非负数,即 a2≥0;假设 a2+|b|=0 a=0,b=0比较大小的两种方法:1,相减法:〔用于多项式的大小比较〕a 与b 比较大小三种情况: a-b >0 那么 a>b a-b=0那么a=b a-b <0 那么 a< b2,相除法:〔分式的大小比较〕a 与b 比较大小三种情况: a÷b>1 那么 a> b a÷ b=1那么a=b a÷b<1 那么 a< b注意,多项式,分式,或者先需要化简再比较大小!!!用式子表示:乘积为 1 的两个数互为倒数;注意: 0 没有倒数;假设 a ≠0,那么a的倒数是1;倒数是本身的a数是± 1;假设 ab=1 a、 b 互为倒数;假设 ab=-1a、 b 互为负倒数.有理数 加法的交换律: a+b=b+a ;〔2〕加法的结合律:〔a+b 〕+c=a+〔b+c 〕a-b+c=a- 〔 〕 a- 〔 b-c 〕=加法的a- 〔 -b-c 〕 = a-b-c= a-〔 〕 运算律 a-b=a+〔 〕有理数 交换律:ab=ba ;结合律:〔ab 〕c=a 〔 bc 〕;分配律:a 〔b+c 〕=ab+ac乘法的 a 〔b+c 〕= ab+ac=a( )运算律 ab+ac+ad=a( ) a〔 b+c+d 〕= 有理数 除以一个数等于乘以这个数的倒数; 除法法 注意:零不能做除数, 即 a无意义那么有理数 乘方的法那么正数的任何次幂都是正数;负数的奇次幂是负数;负数的偶次幂是正数; 当 n 为正奇数时 : (-a) n = 或(a -b)n=当 n 为正偶数时 : (-a)n= 或 (a-b) n =先看完整个题目,再想解题方法,由条件得出解题思路条件中,相反数,倒数,积,整数,取值区间,等等不同情况来判断需要的解题方法,绝对值类:首要想到化简绝对值,化简时注意绝对值里面大于等于 0 或者小于 0如不能化简,看绝对值能不能合并化简,移项〔等号左边移动右边,把绝对值的都移动到左边,数字移动到右边〕解题方 1.在数轴上分段讨论,取值注意等于的情况法2. 分类讨论大于 0 或者小于 0 的不同情况 3. 利用有理式的相乘相除法那么,进行计算。
最新七年级有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)(1)求B地在数轴上表示的数;(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?【答案】(1)解:, .答:地在数轴上表示的数是12或(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:第五次行进后相对A的位置为:,第六次行进后相对A的位置为:,因为点、与点的距离都是3米,所以点、点到地的距离相等(3)解:若地在原点的右侧,前进为“+”,后退为“-”,则当为100时,它在数轴上表示的数为:,∵B点表示的为12.∴AB的距离为(米 .答:小乌龟到达的点与点之间的距离是70米【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。
七年级10.3有理数加减
有理数加减混合运算习题课一、选择题1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数; ②一个有理数不是正数就是负数; ③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的 A.1 B.2 C.3 D.42.a,b 是有理数,它们在数轴上的对应点的位置如下图所示:a 0 b把a,-a,b,-b 按照从小到大的顺序排列 ( )A. -b <-a <a <bB.-a <-b <a <bC. -b <a <-a <bD.-b <b <-a <a 3.下列说法正确的是 ( )①0是绝对值最小的有理数; ②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数; ④两个数比较,绝对值大的反而小 A.①② B.①③ C.①②③ D.①②③④4.下列运算正确的是 ( )A.1)7275(7275-=+-=+-B.-7-2×5=-9×5=-45C.3÷3135445=÷=⨯ D.-(-3)2=-95.若a+b <0,ab <0,则 ( )A.a >0,b >0;B.a <0,b <0;C. a,b 两数一正一负,且正数的绝对值大于负数的绝对值;D.a,b 两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差 ( ) A.0.8kg B.0.6kg C.0.5kg D.0.4kg 7.一根1m 长的小棒,第一次截去它的31,第二次截去剩下的31,如此截下去,第五次后剩下( ) A .(31)5m B. [1-(31)5]m C. (32)5m D. [1-(32)5]m8.若ab ≠0,则bba a +的取值不可能是 ( ) A.0 B.1 C.2 D.-2 二、填空题: 9.比213-大而比312小的所有整数的和为 。
人教版七年级上册数学第一章《有理数》单元复习整合练(含答案)
人教版七年级上册数学《有理数》单元复习整合练考点一:正负数的意义一.知识点回顾:二.典型习题1.如果收入100元记作+100元,那么支出100元记作( )A.-100元B.+100元C.-200元D.+200元2.如果电梯上升5层记为+5,那么电梯下降2层应记为( )A.+2层B.-2层C.+5层D.-5层3.大米包装袋上(10±0.1)kg的标识表示此袋大米重( )A.(9.9~10.1)kgB.10.1 kgC.9.9 kgD.10 kg4.纽约、悉尼与北京的时差如表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是( )A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时考点二:有理数的相关概念知识点回顾:(1)绝对值为正数的有理数有两个;(2)0没有倒数;(3)倒数为本身的数有1,-1;(4)相反数为本身的数为0.典型习题1. -的相反数是( )A.6B.-6C.D.-2.-15的绝对值为()A.-15B.15C.-D.3.-的倒数是( )A.-2B.C.2D.14.-a一定是( )A.正数B.负数C.0D.以上选项都不正确5.如图,点A所表示的数的绝对值是()A.3B.-3C.D.-6.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2 019+2 020n+c2 019的值为.考点三:有理数的比较与计算知识点回顾:有理数运算的四个“注意事项”1.熟记有理数的运算顺序;2.正确运用有理数运算法则;3.灵活运用运算律;4.时刻注意符号问题.典型习题1.下列各数中,比-3小的数是( )A.-5B.-1C.0D.12.计算(-3)×9的结果等于( )A.-27B.-6C.27D.63.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( )A.|a|>4B.c-b>0C.ac>0D.a+c>04.计算下列各式,值最小的是( )A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-95.计算:÷= .6.计算: (1)16-(-18)+(-9)-15; (2)×24-;(3)-32+(-2)2×(-5)-|-6|.考点四:科学记数法,近似数知识点回顾:1.用科学记数法把有理数表示为“a×10n”的形式,a的条件是:1≤|a|<10;2.比较有理数a×10n和b×10m的大小,不仅要比较a和b的大小,更要比较m和n的大小.典型习题1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149 597 870 700 m,约为149 600 000 km.将数149 600 000用科学记数法表示为( )A.14.96×107B.1.496×107C.14.96×108D.1.496×1082. -268 000用科学记数法表示为( )A.-268×103B.-268×104C.-26.8×104D.-2.68×1053. 2020年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为( )A.6×104B.0.6×105C.6×106D.6×1054.近似数5.0×102精确到( )A.十分位B.个位C.十位D.百位人教版七年级上册数学《有理数》单元复习整合练(解析版)考点一:正负数的意义一.知识点回顾:正负数意义的本质区别正数和负数意义的本质区别是表示具有相反意义的量,通过正(负)数表示的意义,从而确定负(正)数表示的意义.二.典型习题1.如果收入100元记作+100元,那么支出100元记作( A)A.-100元B.+100元C.-200元D.+200元2.如果电梯上升5层记为+5,那么电梯下降2层应记为( B)A.+2层B.-2层C.+5层D.-5层3.大米包装袋上(10±0.1)kg的标识表示此袋大米重( A)A.(9.9~10.1)kgB.10.1 kgC.9.9 kgD.10 kg4.纽约、悉尼与北京的时差如表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):城市悉尼纽约时差/时+2 -13当北京6月15日23时,悉尼、纽约的时间分别是( A)A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时考点二:有理数的相关概念知识点回顾:(1)绝对值为正数的有理数有两个;(2)0没有倒数;(3)倒数为本身的数有1,-1;(4)相反数为本身的数为0.典型习题1. -的相反数是( C)A.6B.-6C.D.-2.-15的绝对值为( B )A.-15B.15C.-D.3.-的倒数是( A)A.-2B.C.2D.14.-a一定是( D)A.正数B.负数C.0D.以上选项都不正确5.如图,点A所表示的数的绝对值是(A)A.3B.-3C.D.-6.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2 019+2 020n+c2 019的值为0.考点三:有理数的比较与计算知识点回顾:有理数运算的四个“注意事项”1.熟记有理数的运算顺序;2.正确运用有理数运算法则;3.灵活运用运算律;4.时刻注意符号问题.典型习题1.下列各数中,比-3小的数是( A)A.-5B.-1C.0D.12.计算(-3)×9的结果等于( A)A.-27B.-6C.27D.63.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( B)A.|a|>4B.c-b>0C.ac>0D.a+c>04.计算下列各式,值最小的是( A)A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-95.计算:÷= -.6.计算: (1)16-(-18)+(-9)-15; (2)×24-;(3)-32+(-2)2×(-5)-|-6|.【解析】(1)原式=16+18-9-15=10;(2)原式=×24+×24-×24-=-4+14-9-=;(3)原式=-9+4×(-5)-6=-9-20-6=-35.考点四:科学记数法,近似数知识点回顾:1.用科学记数法把有理数表示为“a×10n”的形式,a的条件是:1≤|a|<10;典型习题1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149 597 870 700 m,约为149 600 000 km.将数149 600 000用科学记数法表示为( D)A.14.96×107B.1.496×107C.14.96×108D.1.496×1082. -268 000用科学记数法表示为( D)A.-268×103B.-268×104C.-26.8×104D.-2.68×1053. 2020年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为( D)A.6×104B.0.6×105C.6×106D.6×1054.近似数5.0×102精确到( C)A.十分位B.个位C.十位D.百位。
七年级数学上册有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.如图,数轴上一动点从原点出发,在数轴上进行往返运动,运动情况如下表(注:表格中的表示2到4之间的数).运动次数运动方向运动路程数轴上对应的数第1次____①_____3-3第2次左____②_____第3次____③_________④_____(1)完成表格;①________;②________;③________;④________.(2)已知第4次运动的路程为 .①此时数轴上对应的数是________;②若第4次运动后点恰好回到原点,则这4次运动的总路程是多少?________【答案】(1)左;;右; .(2)或;解:当时,或-0.5,不符合题意;当时,,,所以这4次运动的总路程是32.【解析】【解答】解:(1)动点从原点运动到点-3,所以是向左运动;再从点-3向左运动,故终点数字是;∵,∴,∴第三次点是向右运动,运动路程是,故答案为:左,,右, .( 2 )①向右运动时,;向左运动时,,故答案为或;【分析】(1)根据始点与终点的数字符号确定第一次运动方向;第一次终点数字与第二次运动路程的差即第二次终点数字;根据第三次终点数字与第二次终点数字的差的符号确定运动方向和运动路程.(2)①分向左或向右两种可能,根据确定第四次移动后最终在数轴上的对应数字;②根据第四次运动后的对应数字确定的值,再计算总路程.2.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)-4;2(2)解:存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。
最新人教版七年级数学上册 有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=________;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.【答案】(1)3(2)解:线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1× =,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或(3)解:当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4(4)解:当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.2.如图1,A、B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16(2)解:设点P表示的数为x.分两种情况:①当点P在线段AB上时,∵AP= PB,∴x+12=(4﹣x),解得x=﹣8;②当点P在线段BA的延长线上时,∵AP= PB,∴﹣12﹣x=(4﹣x),解得x=﹣20.综上所述,点P表示的数为﹣8或﹣20(3)解:分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP=4OQ,∴12﹣5t=4(4﹣2t),解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP=4OQ,∴|12﹣5t|=4×3(t﹣2),∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,解得t=,符合题意;或t=,不符合题意舍去.综上所述,当OP=4OQ时的运动时间t的值为或秒【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.3.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)解:AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.4.[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.[问题情境]已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).[综合运用](1)运动开始前,A、B两点的距离为________;线段AB的中点M所表示的数________.(2)点A运动t秒后所在位置的点表示的数为________;点B运动t秒后所在位置的点表示的数为________;(用含t的代数式表示)(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B 两点重合,则中点M也与A,B两点重合)【答案】(1)18;-1(2)﹣10+3t;8﹣2t(3)解:设它们按上述方式运动,A、B两点经过x秒会相遇,根据题意得﹣10+3x=8﹣2x,解得x= ,﹣10+3x= .答:A、B两点经过秒会相遇,相遇点所表示的数是;(4)解:由题意得, =0,解得t=2,答:经过2秒A,B两点的中点M会与原点重合.M点的运动方向向右,运动速度为每秒个单位长度.故答案为18,﹣1;﹣10+3t,8﹣2t.【解析】【解答】解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示的数为 =﹣1;(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;【分析】(1)根据A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b及线段AB的中点M表示的数为即可求解;(2)点A运动t秒后所在位置的点表示的数=运动开始前A点表示的数+点A运动的路程,点B运动t秒后所在位置的点表示的数=运动开始前B点表示的数﹣点B运动的路程;(3)设它们按上述方式运动,A、B两点经过x秒会相遇,等量关系为:点A运动的路程+点B运动的路程=18,依此列出方程,解方程即可;(4)设A,B按上述方式继续运动t秒线段AB的中点M能否与原点重合,根据线段AB的中点表示的数为0列出方程,解方程即可.5.若有理数在数轴上的点位置如图所示:(1)判断代数式的符号;(2)化简:【答案】(1)解:因为所以(2)解:因为所以原式.【解析】【分析】(1)根据有理数的加减法,可得答案;(2)根据绝对值的性质,可化简去掉绝对值,根据合并同类项,可得答案.6.阅读材料:在数轴上,点 A 在原点 0 的左边,距离原点 4 个单位长度,点 B 在原点的右边,点 A 和点B 之间的距离为 14个单位长度.(1)点 A 表示的数是________,点 B 表示的数是________;(2)点 A、B 同时出发沿数轴向左移动,速度分别为 1 个单位长度/秒,3 个单位长度/秒,经过多少秒,点 A 与点 B重合?(3)点 M、N 分别从点 A、B 出发沿数轴向右移动,速度分别为 1 个单位长度/秒、2 个单位长度/秒,点 P 为 ON 的中点,设 OP-AM 的值为 y,在移动过程中,y 值是否发生变化?若不变,求出 y 值;若变化,说明理由.【答案】(1)-4;10(2)解:由题意知,此时为速度问题里面的追击问题,则由速度差×相遇时间=相距距离可知:设经过x秒后重合,即x秒后AB相遇.则(3-1)x=14解得:x=7故7秒后点A,B重合.(3)解:y不发生变化,理由如下:设运动时间为x秒,则AM=x而OP=则y=OP-AM=故y为定值,不发生变化.【解析】【解答】解:(1)由A在原点左边4个单位长度可知A点表示的数是-4,由B 在原点右边且与点A距离14个单位长度可知,-4+14=10,则B点表示的数是10.【分析】(1)由A在原点左边4个单位长度可知A点表示的数是-4,再根据B 在原点右边且与点A距离14个单位长度,可由-4+14=10可得B点表示的数.(2)把A,B看成距离为14个单位长度的追击问题,由速度差×相遇时间=相距距离列出等式求解.(3)设移动时间为x秒,用含有x的代数式表示出OP与AM的长度,然后根据y= OP-AM列出关系式判断,若式中不含x项则不发生变化,含x项则发生变化.7.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为,所以的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.⑴发现问题:代数式的最小值是多少?⑵探究问题:如图,点分别表示的是,.∵的几何意义是线段与的长度之和∴当点在线段上时, ;当点点在点的左侧或点的右侧时∴的最小值是3.⑶解决问题:①. 的最小值是 ________ ;②.利用上述思想方法解不等式:________③.当为何值时,代数式的最小值是2________.【答案】6;设A表示-3,B表示1,P表示x,∴线段AB的长度为4,则,的几何意义表示为PA+PB,∴不等式的几何意义是PA+PB>AB,∴P 不能在线段AB上,应该在A的左侧或者B的右侧,即不等式的解集为或.故答案为:或.;设A表示-a,B表示3,P表示x,则线段AB 的长度为,的几何意义表示为PA+PB,当P在线段AB上时PA+PB取得最小值,∴∴或,即或;故答案为:或 .【解析】【解答】解:(3)①设A表示的数为4,B表示的数为-2,P表示的数为x ,∴表示数轴上的点P到4的距离,用线段PA表示,表示数轴上的点P到-2的距离,用线段PB表示,∴的几何意义表示为PA+PB,当P在线段AB上时取得最小值为AB,且线段AB的长度为6,∴的最小值为6.故答案为:6.【分析】(3)①根据绝对值的几何意义可知,变成数轴上的点到-2的距离和到4的距离之和的最小值;②根据题意画出相应的图形,确定出所求不等式的解集即可;③根据原式的最小值为2,得到3左边和右边,且到3距离为2的点即可.8.已知:是最大的负整数,且、b、c满足(c﹣5)2+| +b|=0,请回答问题.(1)请直接写出、b、c的值: =________,b=________,c=________.(2)、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到1之间运动时(即0≤x≤1时),请化简式子:|x+1|﹣|x﹣1|+2|x-5|(请写出化简过程). (3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和8个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-1;1;5(2)解:当0≤x≤1时x+1>0,x﹣1≤0,x-5 0则|x+1|﹣|x﹣1|+2|x-5|=x+1﹣(1﹣x)+2(5-x)=x+1﹣1+x+10-2x=10(3)解:BC﹣AB的值不随的变化而改变,总为2秒时,点A表示的数为,点B表示的数为,点C表示的数为,此时,BC=()-()= ,AB=()-()= ,所以BC-AB=()-()=2∴BC﹣AB的值不随着时间t的变化而改变,总为2.【解析】【解答】解:(1)∵是最大的负整数,∴ =﹣1∵(c﹣5)2+| +b|=0∴c-5=0;a+b=0∴b=1;c=5【分析】(1)根据绝对值和完全平方式的非负性求值即可;(2)由0≤x≤1得出x+1>0;x﹣1≤0;x-5 0,然后根据绝对值的意义进行化简;(3)分别表示出t秒后,点A,B,C 所表示的数,然后根据两点间的距离求得BC,AB的长度,然后进行计算并化简.9.阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.【答案】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4②数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3.③根据题意得x+1≥0且x-2≤0,则-1≤x≤2;④解方程|x+1|+|x﹣2|=5.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.所以答案为:3或-2.【解析】【分析】①②直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|.代入数值运用绝对值即可求任意两点间的距离.③根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围.④根据题意分三种情况:当x≤﹣1时,当﹣1<x≤2时,当x>2时,分别求出方程的解即可.10.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【答案】(1)1(2)解:设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R(3)解:线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.【解析】【解答】解:(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,【分析】(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.11.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{2,3},{4,5,6},…,我们称之为集合,其中每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2019−x也必是这个集合的元素,这样的集合我们又称为黄金集合,例如{0,2019}就是一个黄金集合,(1)集合{2019}________黄金集合,集合{−1,2020}________黄金集合.(填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4019,则该集合是否存在最小的元素?如果存在,请求出这个最小元素,否则说明理由;(3)若一个黄金集合中所有元素之和为整数M,且16150<M<16155,则该黄金集合中共有多少个元素?请说明你的理由.【答案】(1)不是;是(2)解:一个黄金集合中最大的一个元素为4019,则该集合存在最小的元素,该集合最小的元素是−2000.∵2019−a中a的值越大,则2019−a的值越小,∴一个黄金集合中最大的一个元素为4019,则最小的元素为:2019−4019=−2000.(3)解:该集合共有16个元素。
人教版七年级的上有理数全章总复习及试题.doc
人教版七年级上有理数全章总复习及试题正数与负数一、必记概念:0 既,也。
在实际生活中,常常用正数和负数表示具有 意义的量。
如果上升10 米记作 +10 米,那么下降作。
二、练习:1. 下列结论中错误的是()5 米记A.零是整数 B. 零不是正数 C. 零是偶数 D. 零不是自然数2. 如果顺时针旋转 30°记作 -30 °,那么逆时针旋转 45°记作 。
3. 某人向东走 5 米,又回头向西走 5 米,此人实际距原地米。
4. 如果中午以后的 2 小时记作 +2 小时,那么 +2 小时前 3 小时应记作 。
5. 观察下面依次排列的一列数,你能发现它们排列的规律是什么吗?后面空格内的三个数是什么,试把它写出来。
( 1) 2 、 -3 、 4、 -5 、 6、 、、、( 2) 1 、 2、 3、5、 8、、 、 、6. “一个数前面加‘ - ’ , 它一定是负数”对吗?有理数1.2.1 有理数一、必记概念:1. 正整数、零和负整数统称为;正分数和负分数统称为;和统称为有理数。
2. 把一些数放在一起,就组成一个数的,简称数集。
3. 零和正数统称为,零和负数统称为 。
4. 正整数和零统称为,又统称为;零和负整数统称为。
二、练习:(一)把下列各数填在相应的集合中: -1 、、 3、0、1 、 6、 9、 1 3、 114、 -1953 7正数集合:﹛ ﹜ 负数集合:﹛ ﹜ 整数集合:﹛ ﹜ 分数集合:﹛﹜ 非正数集合:﹛ ﹜ 非负数集合:﹛ ﹜ 非正整数集合:﹛﹜ 非负整数集合:﹛﹜(二) 判断题:1. 一个有理数不是正数就是分数。
( )2. 一个有理数不是整数就是分数。
( )3. 有限小数和无限小数都是有理数。
()4. 0 C 表示没有温度。
( )(三)选择题:5. 下列说法:( 1)零是正数;( 2)零是整数; ( 3)零是有理数; ( 4)零是非负数; ( 5)零是偶数。
七年级数学有理数知识点章节复习及练习题
有理数章节复习知识详解一、有理数概念及意义整数与分数统称为有理数.有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数 0的特殊性:0既不是正数也不是负数,是整数,不是分数。
0是最小的自然数,1是最小的正整数,-1是最大的负整数。
有限小数:小数部分的位数是有限的小数。
无限小数:小数部分的位数是无限的小数。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。
例如: 0.333 …, 5.32727 …等等。
注意 :循环小数是无限小数,也称作无限循环小数。
整数和分数都可以写成有限小数或无限循环小数,所以有理数也可以分类为有限小数和无限循环小数。
1.下列说法中正确的是(???)A 、一个有理数,不是正数就是负数 ? ?B 、一个有理数,不是整数就是分数C 、有理数可分为非负有理数和非正有理数??D 、整数和小数统称有理数2.若两个有理数的和是正数,那么一定有结论(?????)?A 、两个加数都是正数B 、两个加数有一个是正数C 、一个加数正数,另一个加数为零D 、两个加数不能同为负数3.下列数中,为有理数的是()二、数轴的概念及应用规定了原点、正方向和单位长度的直线叫做数轴.1.数轴上表示2和5的两点之间的距离是_______个单位长度;表示1和-3两点之间的距离是___个单位长度;2.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .0>abB .0>-b aC .0>+b aD .0||||>-b a三、相反数 1 0 -1 a b B A(第1题图)1. 概念:只有符号不同的两个数叫做互为相反数。
0的相反数仍是0.2. 几何定义:在数轴上原点的两侧,到原点的距离相等的两点所表示数为相反数。
3. 任何一个数都有它的相反数4. 相反数性质:a 与b 互为相反数,则a+b=0.1.如果a 和b 是符号相反的两个数,在数轴上a 所对应的数和b 所对应的点相距6个单位长度,如果a=-2,则b 的值为_________________.????2.已知x 、y 互为相反数,则-15(x +y )=__________________.3.如果a 的相反数是最大的负整数,b 的相反数是最小的正整数,a+b=___________.????四、绝对值在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
北师大版七年级数学上有理数分类复习题
有理数复习知识点1:有理数的基本概念(有理数 数轴 相反数 绝对值)有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数 ()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数; ⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数. 板块一、基本概念 例题讲解1、选择下面是关于0的一些说法,其中正确说法的个数是( )①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数. A.0ﻩ B.1 C.2 ﻩD.3 2、下面关于有理数的说法正确的是( ).A.有理数可分为正有理数和负有理数两大类. B. 正整数集合与负整数集合合在一起就构成整数集合 C. 整数和分数统称为有理数 D. 正数、负数和零的统称为有理数 板块二、数轴、相反数、倒数、绝对值3、a 和b 是满足ab ≠0的有理数,现有四个命题:( ) A. 1个 B. 2个 C. 3个 D. 4个①224a b -+的相反数是224a b -+;②a b -的相反数是a 的相反数与b 的相反数的差; ③ab 的相反数是a 的相反数和b 的相反数的乘积;④ab 的倒数是a 的倒数和b 的倒数的乘积.其中真命题有 4、一个数的绝对值大于它本身,那么这个数是( )A 、正有理数ﻩB 、负有理数 C 、零 D 、不可能 5、数轴上离开原点2个单位长度的点表示的数是____________;6、有理数-3,0,20,-1.25,1.75,-∣-12∣,-(-5)中,正整数有________个,非负数有______个;7、绝对值最小的有理数是________;绝对值等于3的数是______; 绝对值等于本身的数是_______;绝对值等于相反数的数是_________数;一个数的绝对值一定是________数。
七年级上册有理数复习题
有理数课标要求1.通过具体情境的观察、思考、探索,理解有理数的概念,了解分类讨论思想;2.借助数轴理解数形结合思想,学会用数轴比较数的大小,解决一些数学问题;3.理解互为相反数的意义、绝对值的意义、倒数的意义,会进行与之有关的计算;4.掌握有理数加、减、乘、除、乘方的法则,会进行加、减、乘、除及混合运算;5.掌握科学记数法的意义及表示方法;6.了解近似数及有效数字的意义,会按题目要求取近似数.中招考点1.用数轴比较数的大小,解决一些实际问题2.互为相反数、倒数的有关计算.3.有理数的加、减、乘、除、乘方的有关计算.4.科学记数法、近似数的有关应用题.5.灵活运用本章知识解决实际问题.典型例题在例题前,我们来了解一下本章的知识结构与要点.例1 小红家、学校和小华家自东向西依次坐落在一条东西走向的大街上,小红家距学校1千米,小华家距学校2千米,小明沿街从学校向西走1千米,又向东走2千米,此时小明的位置在________.分析:本题可借助数轴来解,如图所示,以学校为原点,学校以西为正方向,这样把实际问题转小华家学校2 -11化为数学问题,观察数轴便可知此时小明的位置在小红家.例2 若a与互为相反数,则a的倒数是___________.解:这道题既考察了相反数的概念,又考察了倒数的概念.的相反数是,所以a=,a 的倒数是5 36.例3 如图是一个正方体纸盒的展开图,在其中的四个正方形内分别标有1,2,3和-3,要在其余正方形内分别填上-1,-2,使得按虚线折成正方体后,相对面上的两数互为相反数,则A处应填_______.解∶因为A的对面是2,所以正确答案是-2.例4 已知有理数a,b满足条件a>0,b<0,|a|<|b|,则下列关系正确的是().<b<a<-b <-a<a<-b <-b<b<a<-a<-b<a解:这一题考察了绝对值的意义,和有理数大小比较,我们可借助数轴帮助解决问题,请同学们自己解答.例5 计算–(+–(–41/4)+–(+91/2)解:原式=–++–=–+++=–12+8=–4说明:本题可以全部化成分数,通过通分来做;也可把所有整数部分相加,所有分数部分相加,最后在计算.例6 如图:a , b , c在数轴上的位置如图所示,试化简:︳a-b|-2c-|c+b|+|3b|分析:本题考察的是绝对值的意义与运用,关键是如何判断绝对值里面数值的符号,从而去掉绝对值.解:略例7 2004年全年国内生产总值按可比价格计算,比上年增长%,达到136515亿元.136515亿元用科学记数法表示(保留4个有效数字)为o4545元 元 元 元解:本题考察的是科学记数法和有效数字.136515亿元=×105亿元=×1013元注:科学记数法是把某一个数写成a ×10n 的形式,其中1≤|a|<10,n 为整数.例8 计算:(1)-52 (2)(- )3 (3)(-1)2005 (4)(-1 )2 解:本题考察乘方的意义和简单的乘方运算,应按照乘方的意义来进行运算,注意符号.-52=-25 (- )3=-( ) = -(-1)2005 =-1 (-1 )2= ( )2 = 例9 (- )-2-23×+20040+|-1|解:原式=4-8×+1+1=4-1+2=5例10 已知:a 、b 均为负数,c 为正数,且|b|>|a|>|c|,化简.解:依题意,画数轴、标出各数.b-a<0, 所以得b<a<0<c, 且b+c<0 , a-c<0,?原式=│b+c │+│a-c │+│b-a │=-(b+c )-(a-c)-(b-a)=-2b说明:通过构造数轴,将表示a 、b 、c 的点标在数轴上后,便能直观地看出b+c<0 ,a-c<0,b-a<0,再来化简代数式就不易出错了.34342764812512强化练习一、填空题1.甲、乙两厂三月产值与上月相比,甲厂增产3%,可记作________,乙厂减产%,可记作_________.2.将下列各数填在相应的表示数集的大括号内:+3,-1,,315,0,,-21/7,,+400%,+81/9,.分数集∶{ …}负数集∶{ …}非负整数集∶{ …}.3.1nm 等于十亿分之一米,用科学记数法表示:2.5m=_____nm.4.近似数×105有______个有效数字,精确到_ ____位.5.(–4)3=_______.二、选择题1.下列说法不正确的是 ( ) A.没有最大的有理数 B.没有最小的有理数 C.有最小的正有理数D.有绝对值最小的有理数2. 在数轴上表示-12的点与表示3的点,这两点间的距离为( )B.-9C.-153. 若a 的平方是4,则a 的立方是( ).8 C D. –8和84. 如果ab>0,a+b<0,那么a,b 的符号是( )>0,b>0 >0, b<0 C.a<0 ,b>0 D. a<0, b<0三、计算题1. -121-551-1+51+221 2. 已知有理数a,b,c 的和为0,且a=7,b=-2,则c 为多少3. 2÷(-73)×74÷(-571) 4.4-(-2)2-3÷(-1)3+0×(-2)3 5. (-1)2005+(-3)3×|-181|-(-4)3÷(-2)5 四、简答题1.某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.0021升的误差,现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数,检查结果如下:+,,,,+,+.请用绝对值的知识说明:(1)哪几瓶是符合要求的(即在误差范围内的)(2)哪一瓶的净含量最接近规定的净含量2.出租车司机小李某天下午的营运路线是在东西走向的一条大街上进行的,如果规定向东为正,向西为负,那么他这天下午行车的里程如下(单位:千米):+16,-18,-3,+15,-11,+14,+10,+4,-12,-15.请回答下列问题:(1)将最后一名乘客送到目的地时,小李距下午出车地点的距离是多少千米(2)如果汽车耗油量为a升/千米,则这天下午汽车共耗油多少升反馈检测A卷一、选择题1.下列各式不正确的是()A.︱︱=︱︱ B.(-3)4=34 C. -8< -9 +1≥02. 如果一个有理数的平方是正数,那么这个有理数的立方是()A.正数 B.负数 C.非零数 D.非负数3.计算(-1)2003+(-1)2003÷︱-1︱+(-1)2000的结果为()B. -1 C. 0 D. 24.数a,b,c在数轴上的位置如图所示,则a,b, -c由小到大的顺序是()A. a,-c,b ,a,-c ,b,-c ,-c,a5.已知一个多位数的个位数字为m,且这个多位数的任何次幂的个位数字仍为m,那么这个数字m( )A.可能是0和1B.只能是0C.只能是1D.以上都不对6.下列说法错误的是()A.相反数与本身相等的数只有0B.倒数与本身相等的数只有1和-1C.平方与本身相等的数只有0和1D.立方与本身相等的数只有0和17.点A在数轴上距原点5个单位长度,将A点先向左移动2个单位长度,再向右移动6个单位长度,此时A点所表示的数是()A. –1B.9C. –1或9D. 1或98.若a+b<0,且ab<0,则(),b同号 B. a,b异号 ,b都是负数 ,b都是正数9. 如果一个数与它的相反数在数轴上对应点间的距离为8个单位长度,那么这个数是( )A.+8和–8B.+4和–4C.+8D. –4二、填空题1.大于-5的负整数是_______________.2.已知今天早晨的气温是–14℃,中午的气温比它高5℃,则今天中午的气温是_________.3.已知一列按一定规律排列的数:–1,3,–5,7,–9,…,–17,19,如果从中任意选出若干个数相加,使它们的和为0,那么至少要选_______个数,请列出算式________(写出一个正确的即可)4.若x,y 满足︱2x-1︱+︱y+2︱=0,那么-x3+y2=__________.5. 绝对值不小于3但小于6的负整数有_______个,他们分别是___________.6.(1)若x2=x,则x=___ ; (2)若x3= x2,则x=____ ;(3)若x3= x,则x=____.7. 一根长50厘米的弹簧,一端固定,另一端挂上物体,在正常情况下,物体的质量每增加1千克,弹簧就伸长3厘米,在正常情况下(即弹性限度内),若弹簧挂x 千克的重物,则弹簧伸长到______ 厘米.三、解答题1. 一货车司机小张某天上午的营运路线全部是在南北走向的向阳大街上进行的,如果规定向南为正,那么他在这天上午的行车路程如下(单位:千米):+18,-15,+36,-48,-3.(1) 上午停工时,小张在上午出车地点的什么位置上(2)若货车的耗油量为0.3升/千米,则这天上午该货车共耗油多少升2. 已知圆环的外圆半径为40mm ,内圆半径为27mm ,求圆环的面积.(π取准确值)3. 某厂的一个冷冻仓库的室温是-12℃,现有一批食物需要在-25℃冷藏,如果每小时仓库的温度降低2℃,则经过多长时间仓库能降到所需温度4. 用“<”号将下列各数连接起来,并求出它们的相反数和倒数.2,,-3, - , 345122323 9105. 比较大小(填“>”“=”或“<”号=(1)12+52_______2×1×5;(2)(-2)2+32____2×(-2)×3;(3)(-4)2+(-4)2______2×(-4) ×(-4)通过观察、归纳,探索出反映这一规律的一般结论,并用字母表示这一规律.6. 已知a,b 互为倒数,c,d 互为相反数,且︱x ︱=3,求2x2-(ab-c-d )+︱ab+3︱的值.7. 计算 (1)-23+(-2)2×(-1)-(-2)3÷(-2)2 (2)-×(- 1 )× ÷(-4) (3)-(-1)3-(-1 - )×÷(-4) 反馈检测B 卷一、填空题1.绝对值大于1而小于4的整数是________2.如果两个数互为相反数,那么它们的和等于_______;如果两个数互为倒数,那么它们的积等于_________.3.通过测量得到某同学的身高是1.64米,意味着他的身高的精确值h 满足_______.4. 3745≈__________ (保留两个有效数字);≈______(精确到千分位).5. ______的绝对值等于,______的相反数等于0.6. 四个互不相等的整数的积是9,那么这四个整数的和等于( ).9 C D.以上答案都不对二、计算题 (1)(-9)-(-21) (2)( - )+ (- ) (3)(-1 )×(- )÷(4)(-1)+ (-1)2 + (-1)3+(-1)4 + … +(-1)99+(-1)100+(-1)101 (5) ( 81 + 65 - 43 )÷(-24) (6)-99 1817 ×9 三、问答题1. 什么数等于它的倒数什么数等于它的相反数什么数等于它的绝对值2. 大于0而小于1的整数有没有大于0而小于1的有理数有多少个试写出十个这样的有351213121213理数.3.赵先生将甲、乙两种股票同时卖出,其中甲种股票进价是1000元,获利20%,一种股票进价也是1000元,获利-20%,则赵先生在这次买卖中是赚是赔4.小红家春天粉刷房间,雇用了5个工人,干了10天完成;用了某种涂料150升,费用为4800元;粉刷的面积是150m2,最后结算工钱时,有以下几种方案:方案一:按工算,每个工30元;(1个工人干1天是一个工)方案二:按涂料费用算,涂料费用的30%作为工钱;方案三:按粉刷面积算,每平方米付工钱12元.请你帮小红家出主意,选择方案________付钱最合算(最省).5.草履虫可以吞噬细菌,使污水净化,一只草履虫每小时大约能够形成60个食物泡,每个食物泡中大约含有30个细菌,那么100只草履虫每天大约能够吞噬多少个细菌(用科学记数法表示).6.某超市对顾客进行优惠购物,规定如下:①若一次购物少于200元,则不予优惠;②若一次购物满200元,但不超过500元,按标价给予九折优惠;③若一次购物超过500元,其中500元以下部分(包括500元)给予九折优惠,超过500元部分给予8折优惠.小李两次去该超市购物,分别付款198元和554元,现在小张决定一次性地购买和小李分两次购买同样多的物品,他需付款多少元7.我国宇航员杨利伟乘“神舟五号”绕地球飞行了14周,飞行轨道近似看作圆,其半径为×103千米,总航程约为多少千米(π取,保留3个有效数字)第二部分参考答案强化练习:一、1.+3%、% ; 2.略 3.2.5×1010; 4. 4、百;二、. 2. D 3. D 4. D 三、. ;; 27 ;; 2四、1. 解:分别求出每个数的绝对值,将所求值与误差进行比较分析,小于或等于的为合格品,再合格品中再比较绝对值的大小,越小的质量越好。
最新七年级上册有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.3.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)(1)求B地在数轴上表示的数;(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?【答案】(1)解:, .答:地在数轴上表示的数是12或(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:第五次行进后相对A的位置为:,第六次行进后相对A的位置为:,因为点、与点的距离都是3米,所以点、点到地的距离相等(3)解:若地在原点的右侧,前进为“+”,后退为“-”,则当为100时,它在数轴上表示的数为:,∵B点表示的为12.∴AB的距离为(米 .答:小乌龟到达的点与点之间的距离是70米【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。
初一数学有理数复习资料及经典习题.docx
一、有理数代数式几个重要的代数式:( m、n 表示整数)用运算符号+-× ÷ 连接数及字母的式子称为代数式(单独一个数或一个字母也是代数式)(1)a 与 b 的平方差是:;a与b差的平方是:;(2)若 a、b、c 是正整数,则两位整数是:,则三位整数是:;( 3)若m、 n 是整数,则被 5 除商m 余 n 的数是:;偶数是:,奇数是:;三个连续整数是:;一、有理数1.有理数:凡能写成q( p, q为整数且 p 0) 形式的数,都是有理数. p正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数 .注意: 0 即不是正数,也不是负数; -a 不一定是负数, +a 也不一定是正数;不是有理数;正有理数正整数正整数正分数整数零① 有理数零② 有理数负整数负有理数负整数分数正分数负分数负分数注意:有理数有理数中, 1、 0、 -1 是三个特殊的数,它们有自己的特性;的分类这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;自然数0 和正整数; a>0 a 是正数; a<0 a 是负数;a≥ 0 a 是正数或 0 a 是非负数;a≤ 0 a 是负数或 0 a 是非正数 .数轴数轴是规定了原点、正方向、单位长度的一条直线相反数绝对值有理数比大小倒数用式子表示:只有符号不同的两个数,我们说其中一个是另一个的相反数; 0 的相反数还是 0注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b ;相反数的和为 0a+b=0 a 、b 互为相反数 .正数的绝对值是其本身,0 的绝对值是0,负数的绝对值是它的相反数可表示为:a(a0)a(a 0)a0(a 0) 或 a a ( a 0) ;a (a0)注意:绝对值的问题经常分类或者分段讨论;a;a1 a 0;1 a 0aa|a| 是重要的非负数,即 |a|≥0;注意: |a| ·|b|=|a·b|,a ab ba2是重要的非负数,即 a2≥0;若 a2+|b|=0a=0,b=0比较大小的两种方法:1,相减法:(用于多项式的大小比较)a 与b 比较大小三种情况: a-b >0 则 a>b a-b=0则 a=b a-b <0则a< b2,相除法:(分式的大小比较)a 与b 比较大小三种情况: a÷b>1 则 a> b a÷ b=1则a=b a÷b<1则a< b注意,多项式,分式,或者先需要化简再比较大小!!!用式子表示:乘积为 1 的两个数互为倒数;注意: 0 没有倒数;若 a ≠0,那么a的倒数是1;倒数是本身的a数是± 1;若 ab=1 a、 b 互为倒数;若 ab=-1a、 b 互为负倒数.有理数 加法的交换律: a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c )a-b+c=a- ( )a- ( b-c )=加法的a- ( -b-c ) = a-b-c= a-( ) 运算律a-b=a+( )有理数 交换律:ab=ba ;结合律:(ab )c=a ( bc );分配律:a (b+c )=ab+ac乘法的a (b+c )= ab+ac=a( )运算律 ab+ac+ad=a() a( b+c+d )=有理数 除以一个数等于乘以这个数的倒数;除法法 注意:零不能做除数, 即 a无意义则有理数 乘方的法则正数的任何次幂都是正数;负数的奇次幂是负数;负数的偶次幂是正数; 当 n 为正奇数时 : (-a) n = 或(a -b)n=当 n 为正偶数时 : (-a)n= 或 (a-b) n =先看完整个题目,再想解题办法,由已知条件得出解题思路已知条件中,相反数,倒数,积,整数,取值区间,等等不同情况来判断需要的解题方法,绝对值类:首要想到化简绝对值,化简时注意绝对值里面大于等于 0 或者小于 0如不能化简,看绝对值能不能合并化简,移项(等号左边移动右边,把绝对值的都移动到左边,数字移动到右边) 解题方1.在数轴上分段讨论,取值注意等于的情况法2. 分类讨论大于 0 或者小于 0 的不同情况3. 利用有理式的相乘相除法则,进行计算。
最新七年级数学上册有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.2.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。
(1)点A表示的数为________,点B表示的数为________,线段AB的长为________。
(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________。
初一数学有理数复习资料及经典习题.docx
、有理数代数式用运算符号+ - X 4-连接数及字母的式子称为代数式(单独一个数或一个字母也是代数式)儿个重要的代数式:(m、n 表示整数) (1)a与b的平方差是:;a与b差的平方是:;(2)若a、b、c是正整数,则两位整数是:,则三位整数是:;(3)若叭n是整数,则被5除商m余n的数是:;偶数是:,奇数是:;三个连续整数是:;一、有理数1 •有理数:凡能写成9(p,q为整数且P")形式的数,都是有理数.P正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;兀不是有理数;有理数的分类①有理数<正有理数《零负有理数<「正整数正分数②有理数<〔负整数〔负分数整数<分数•'正整数零负整数 '正分数〔负分数注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;自然数O0和正整数;a>0^a是正数;a<0oa是负数;a20 o a是正数或0 o a是非负数;aW 0 o a是负数或0 o a是非正数.数轴数轴是规定了原点、正方向、单位长度的一条直线相反数用式子表示:只有符号不同的两个数,我们说其屮一个是另一个的相反数;0 的相反数还是0注意:a b+c的相反数是a+b c; a b的相反数是b a; a+b的相反数疋a b;相反数的和为0 o a+b=0 o a、b互为相反数.绝对值正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数a (a >0) c可表示为:|a =jo (a = 0)或|a ;-a (a<0) 「( )注意:绝对值的问题经常分类或者分段讨论;I a lai-—=1 <=>a>0 ; — = -1 « a <0 ; a aa是重要的非负数,即a 20;注意:a • b| = |a-b , a l = ab b『是重要的非负数,即a2^0;若a2+ b 二0 o a=0, b=0有理数比人小比较大小的两种方法:1,相减法:(用于多项式的大小比较)a与b比较大小三种情况:a~b>0 则a>b a~b=0 则a=b a~b<0则a<b2,相除法:(分式的大小比较)a与b比较大小三种情况:a4-b> 1 则a>b a4-b=l 则沪b a4-b<l 则a<b注意,多项式,分式,或者先需要化简再比较大小!!!倒数用式子表示:乘积为1的两个数互为倒数;注意:0没有倒数;若aHO,那么。
【精选】七年级数学上册有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求 ________.(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.【答案】(1)7(2)-3,-2,-1,0,1,2;(3)最小;3【解析】【解答】(1)原式=|5+2|=7.故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.当x<-3时,- (x+3) - (x-2) =5 ,-x-3-x+2=5,解得x=-3(范围内不成立)当-3≤x≤2时,(x+3) - (x-2) = 5,x+3-x+1=4,0x=0,x为任意数,则整数x=-3,-2,-1, 0,1,当x>2时,(x+3) + (x-2) = 5,x=2(范围内不成立) .综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,令x-3=0或x-6=0时,则x=3,x=6当x<3时,-(x-3)-(x-6)=-2x+3﹥3当3≤x≤6时,x-3-(x-6)=3,当x>6时,x-3+x-6=2x-9>3∴对于任何有理数x,有最小值为3【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.2.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.3.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:①:若,则=________.②:的最小值为________.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)-12(2)6或10;20(3)6;3或5(4)2或4【解析】【解答】解:(1)∵AB=20,点A表示的数是8,B是数轴上位于点A左侧一点,∴点B表示的数是8-20=-12.故答案为:-12.(2)∵|x-8|=2∴x-8=±2解之:x=10或x=6;|x-(-12)|+|x-8|的最小值为8-(-12)=20.故答案为:6或10;20.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴OP=2t∴AP=8-2t当t=1时,AP=8-2×1=6;当AP=2时,则|8-2t|=2,解之:t=5或t=3.故答案为:6;3或5.(4)∵点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,∴点Q的速度为每秒8个单位长度,设运动时间为t(t>0)秒时,P,Q之间的距离为4.∴8t-4t-12=4或12+4t-8t=4解之:t=4或t=2故答案为:2或4.【分析】(1)根据点A表示的数和点B的位置关系,就可得到点B所表示的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11. 已 知 有 理 数 ( 1) 求 ( 3) 化 简
在数轴上的位置如图所示且 ( 2)
。
4
102× (-4.5)-(-3)× (-5) ÷ 2
5.6× 0.258× (20-1.25)
(174+209)× 26- 90000
4.6-(-3/4+1.6-4-3/4)
1+1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
……} ……} ……} ……} ……} ……}
16. 已知 a<c<0,b>0,且|a|>|b|>|c|,则|a|+|b|-|c|+|a+b|+|b+c|+|a+c|等于( ) A.-3a+b+c B.3a+3b+c C.a-b+2c D.-a+3b-3c 17.下列结论正确的是( ) A. 近似数 1.230 和 1.23 的有效数字一样 B. 近似数 79.0 是精确到个位的数,它的有效数字是 7、9 C. 近似数 3.0324 有 5 个有效数字
练习:一个数的相反数的倒数是-4,这个数是__________如果 a 与-3 互为相反数, 那么 a 等于( 4.绝对值 -∣1.5∣. 例 8 已知∣x∣=4,∣y∣=6,求代数式∣x+y∣的值. 练习:1、 2 的倒数是 3.. 绝 对 值 不 大 于 3 2..计算 5 (4.8) 2.3 =____________. 的 整 数 有
1 2 1 2
例 4 如右图所示,数轴的一部分被墨水污染了, 被污染的部分内含有的整数为 练习:1、实数 a , b 在数轴上表示如图所示,则结论错误的是
A. a b o
B. ab 0
C. b a
D. a b 0
2.数轴上有一点到原点的距离是 5.5,那么这个点表示的数是 _________. 3.一个点从数轴的原点开始,先向右移 3 个单位长度,再向左移动 5 个单位长度,则 终点表示的数是____. 4. 数轴上点 A 对应的数为 -3,那么与 A 相距 1 个长度的点 B 所对应的数是 _________. 3.相反数 例 5.(1)-3 与
2
2
n 1 ,2,3……这些简单情形,从中探索其规律。
⑴通过计算,探索规律:
152 225 可写成 100 1 1 1 25 ;
252 625 可写成 100 2 2 1 25 ;
352 1225 可写成 100 3 3 1 25 ;
1 1
1 2 1 3 1 4
2
;
;……;第 2003 个数是
。
14. 把下列各数填在相应的集合内。
整数集合:{ 负数集合:{ 分数集合:{ 非负数集合:{ 正有理数集合:{ 负分数集合:{ 二 选择题 15.(1)下列说法正确的是( ) (A)绝对值较大的数较大; (B)绝对值较大的数较小; (C)绝对值相等的两数相等; (D)相等两数的绝对值相等。
练习:
1.若密云水库的水位比标准水位高出 3cm 记为+3cm, 某月的水位记录中显示, 1 日水位为-5cm,2 日水位为-1cm,3 日水位为+4cm,则( A.1 日与 2 日水位相差 6cm B.1 日与 3 日水位相差 1cm C.2 日与 3 日水位相差 5cm D.均不正确
1
)
2.篮球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数, 检查的结果如下表: 篮球编号 1 2 +7 3 -3 4 -8 5 +9
452 2025 可写成 100 4 4 1 25 ;
8
………………
752 5625 可写成________________________________
852 7225 可写成________________________________
⑵根据以上规律,试计算 105 = 13.观察下面一列数,根据规律写出横线上的数, - ; ;- ; ;
2
互为相反数;0 的相反数是
.
( 2 ) m 的相反数是 是 .
, m 1 的相反数是
, m 1 的相反数
(3)已知 a 9, 那么 a 的相反数是
.已知 a 9 ,则 a 的相反数是
.
例 6 如果 a 0 ,化简下列各数的符号,并说出是正数还是负数 (1)(a) ; (2)(a) (3)(a) (4)(a)
9
D. 近似数 5 千与近似数 5000 的精确度相同 18.两个有理数相加,如果和比其中任何加数都小,那么这两个加数( (A)都是正数 19. 如果有理数 A. 当 B. C. D. 以上说法都不对 20.两个非零有理数的和为正数,那么这两个有理数为( (A)都是正数 (C)正数大于负数 三计算题 21. 求下面各式的值 (-48)÷ 6-(-25)× (-4) (B)至少有一个为正数 (D)正数大于负数的绝对值,或都为正数。 ) (B)都是负数 ( ) )
有理数复习
知识点一、有理数概念 1、正数与负数 例 1:按要求选择下列各数: 8,3,0,-1.5, ,-0.037,+0.62,-3, 3 , , +2,-7 属于整数集合的有__________ 属于分数集合的有_________ 属于负数集合的有_____________
1 4 1 2 9 8
4 5 6 7 1 2
8.到点 3 距离 4 个单位的点表示的有理数是_____________。 9.____________________范围内的有理数经过四舍五入得到的近似数 3.142。 10.小于 3 的正整数有_____. 11. 如果 m<0,n>0,|m|>|n|,那么 m+n__________0。 12.你能很快算出 2005 吗? 为了解决这个问题,我们考察个位上的数为 5 的正整数的平方,任意一个 个位数为 5 的正整数可写成 10n+5(n 为正整数) ,即求 10n 5 的值,试分析
_ _ _ _ _ _ _ _ _ .
) 例 7:求绝对值.: (1)0.5; (2) ;
1 2
(3)-(-3) ; (4)
4.. 已 知
x 3 , y 2 x, y 则 0 的值是 , x y
模拟试题
1、 填 空 : ⑴若 m , n 互 为 相 反 数 , 则 m + n = . ⑵某 人 转 动 转 盘 , 如 果 沿 逆 时 针 转 5 圈 记 作 + 5 圈 , 那 么 沿 顺 时 针 转 12 圈可表示成 ; ⑶某 次 乒 乓 球 质 量 检 测 中 , 一 只 乒 乓 球 超 出 标 准 0.02 克 记 作 + 0.02 克 , 那 么 - 0.03 可 表 示 成 ; 2、 如 图 , 两点所表示的两数的( ) A .和 为 正 数 B .和 为 负 数 C .积 为 正 数 D .积 为 负 数 3、 .如 果 ,那么下列关系式中正确的是( ). A. B. C. D. 4. 下 列 说 法 中 不 正 确 的 是 ( ) A. - 5 表 示 的 点 到 原 点 的 距 离 是 5 ; B. 一 个 有 理 数 的 绝 对 值 一 定是正数; C. 一 个 有 理 数 的 绝 对 值 一 定 不 是 负 数 ; D. 互 为相反数的两个数的绝 对值一定相等. 5. 一 定 是 正 数 的 是 ( ) A.|m| + 2 B.|m| C.m - 3 D. - |m| 6. 如 果 有 理 数 a , b 满 足 a + b>0 , ab<0 , 则 下 列 式 子 正 确 的 是 ( )
3
A. 当 a>0 , b<0 时 , |a|>|b| B. 当 a<0 , b>0 时 , |a|>|b| C.a>0 , b>0 D.a<0 , b<0 7. 某 城 市 按 以 下 规 定 收 取 每 月 煤 气 费 , 用 煤 气 不 超 过 60 立 方 米 ,按 每 立 方 米 0.8 元 收 费 ; 如 果 超 过 60 立 方 米 , 超 过 部 分 按 每 立 方 米 1.2 元 收 费 。已 知 甲 用 户 某 月 份 用 煤 气 80 立 方 米 ,那 么 这 个 月 甲 用 户 应 交 煤 气 费 ( ) A. 64 元 B. 66 元 C. 72 元 D. 96 元 8. 观 察 下 列 算 式 : , , , ,请 你在观察规律之后并用你得到的规律填空: . 9. a 为 最 小 的 正 整 数 ,b 为 a 的 相 反 数 的 倒 数 ,c 的 相 反 数 等 于 本 身 的 数 , 则 10 小 明 早 晨 跑 步 ,他 从 自 家 向 东 跑 了 2 千 米 到 达 小 彬 家 ,继 续 向 东 跑 了 1.5 千 米 到 达 小 红 家 ,然 后 向 西 跑 了 4.5 千 米 到 达 中 心 广 场 ,最 后 回 到 家 ( 1) 小 彬 家 距 中 心 广 场 多 远 ? ( 2) 小 明 一 共 跑 了 多 少 千 米 ?
与标准质量的差 +4 (克)
最接近标准质量的是 _______ 号篮球;质量最大的篮球比质量最小的篮球重
_______ 克.
3.判断:1)最小的自然数是 1;2)最小的整数是 1;3)一个有理数的倒数 等于它本身,则这个数是 1; 2.数 轴 例 3 在数轴上表示下列各数,再按大小顺序用“<”号连接起来. -4,0,-4.5,- 1 ,2,3.5,1, 2
285+(3000-372)÷ 36
(247+18)× 27÷ 25
51+(2304-2042)× 23