数学物理方程学习指导书第章数理方程求解中出现的几个特殊类型的常微分方程讲解
常微分方程的基本理论与解法
常微分方程的基本理论与解法在数学领域中,常微分方程是一种描述变量间关系的重要工具。
它广泛应用于物理学、工程学、经济学等多个学科领域,用于描述连续系统的行为。
本文将介绍常微分方程的基本理论和解法。
一、常微分方程的定义和分类常微分方程是一个或多个未知函数及其导数之间的关系式。
通常,常微分方程的解是一个或多个未知函数,使得该方程对给定的自变量集合成立。
常微分方程可分为几个主要类别:1. 一阶常微分方程:这种方程只涉及到一阶导数。
2. 高阶常微分方程:这种方程涉及到高阶导数,如二阶、三阶等。
3. 线性常微分方程:这种方程的形式可表示为函数及其导数的线性组合。
4. 非线性常微分方程:这种方程的形式不满足线性性质。
二、常微分方程的基本理论常微分方程的基本理论包括存在性定理、唯一性定理和稳定性定理。
1. 存在性定理:对于一阶常微分方程初值问题,存在一个解在给定的定义区间上存在,前提是方程在该区间上满足一定的连续性条件。
2. 唯一性定理:对于一阶常微分方程初值问题,如果方程和初值函数在定义区间上满足一定的连续性条件,则存在唯一的解。
3. 稳定性定理:稳定性定理研究的是方程解的渐近行为。
它提供了关于解的长期行为的信息,如解是否趋向于稳定点或周期解。
三、常见的常微分方程解法解常微分方程的方法有多种,下面介绍一些常见的解法。
1. 变量可分离法:当一个一阶常微分方程可以写成f(x)dx = g(y)dy的形式时,可以进行变量分离,将两边分别进行积分,并解出未知函数的表达式。
2. 齐次方程法:当一个一阶常微分方程可以化简为dy/dx = F(y/x)的形式时,引入新的变量u = y/x,将原方程转化为du/dx = F(u),然后进行变量分离并积分。
3. 齐次线性方程法:对于形如dy/dx + P(x)y = Q(x)的一阶线性常微分方程,可以使用齐次线性方程的解法。
通过引入缩放因子e^(∫P(x)dx),将原方程转化为d[e^(∫P(x)dx)y]/dx = e^(∫P(x)dx)Q(x),然后进行变量分离并积分。
常微分方程的基本概念
常微分方程的基本概念常微分方程(Ordinary Differential Equations, ODEs)是数学中的一个重要分支,用来研究包含未知函数及其导数的方程。
它在物理学、工程学、经济学等学科中有着广泛的应用。
本文将介绍常微分方程的基本概念,包括一阶和二阶微分方程、初值问题以及常见的解析解方法。
一、一阶微分方程一阶微分方程是指未知函数的导数只出现一阶的微分方程。
一般形式可以表示为:\[\frac{{dy}}{{dx}} = f(x, y)\]其中,y是未知函数,f(x, y)是已知的函数。
一阶微分方程的解是函数y(x),使得方程对于所有的x成立。
为了求解一阶微分方程,我们可以使用分离变量法、恰当方程法或者线性方程法等解析解方法。
分离变量法要求将未知函数y与自变量x 的项分开,并进行适当变换,使得两边可以分别积分得到解。
恰当方程法要求将一阶微分方程化为全微分形式,然后积分求解。
线性方程法则适用于具有形如\(\frac{{dy}}{{dx}} + p(x)y = q(x)\)的方程,通过乘以合适的因子,将其转化为恰当方程求解。
二、二阶微分方程二阶微分方程是指未知函数的导数出现在方程中的最高阶为二阶的微分方程。
一般形式可以表示为:\[\frac{{d^2y}}{{dx^2}} = f(x, y, \frac{{dy}}{{dx}})\]其中,y是未知函数,f(x, y, \(\frac{{dy}}{{dx}}\))是已知的多元函数。
二阶微分方程的解是函数y(x),使得方程对于所有的x成立。
与一阶微分方程类似,二阶微分方程的求解也可以通过解析解方法进行。
其中,常见的解法包括常系数线性齐次方程法、特殊非齐次方程法和变量分离法等。
常系数线性齐次方程法适用于形如\(\frac{{d^2y}}{{dx^2}} + a\frac{{dy}}{{dx}} + by = 0\)的方程,通过猜测解的形式,将其代入方程并化简求解。
常微分方程知识点整理
常微分方程知识点整理常微分方程是数学中的一个重要分支,研究描述自然界中各种变化规律的微分方程。
在物理、工程、经济学等领域具有广泛的应用。
本文将对常微分方程的基本概念、分类、求解方法等知识点进行整理。
一、常微分方程的基本概念常微分方程是指未知函数的导数及其自变量的关系式。
一般形式为dy/dx = f(x, y),其中y是未知函数,x是自变量,f是已知的函数。
常微分方程可以分为一阶常微分方程和高阶常微分方程。
1. 一阶常微分方程:一阶常微分方程是指方程中只涉及到一阶导数的微分方程。
常见形式为dy/dx = f(x, y)。
其中f(x, y)是已知的函数,也可以是常数。
2. 高阶常微分方程:高阶常微分方程是指方程中涉及到二阶及以上导数的微分方程。
常见形式为d^n y/dx^n = f(x, y, dy/dx, ..., d^(n-1)y/dx^(n-1)),其中n为方程的阶数,f是已知的函数。
二、常微分方程的分类根据方程的形式和性质,常微分方程可以分为线性常微分方程、非线性常微分方程、齐次线性常微分方程等多种类型。
1. 线性常微分方程:线性常微分方程是指方程中未知函数及其导数之间的关系是线性的微分方程。
常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = f(x),其中a_n(x)、a_(n-1)(x)、...、a_1(x)、a_0(x)是已知的函数。
2. 非线性常微分方程:非线性常微分方程是指方程中未知函数及其导数之间的关系是非线性的微分方程。
常见形式为dy/dx = f(x, y),其中f(x, y)是已知的非线性函数。
3. 齐次线性常微分方程:齐次线性常微分方程是指方程中没有常数项的线性常微分方程。
常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = 0。
高中数学中的常微分方程知识点
高中数学中的常微分方程知识点一、引言常微分方程是数学中的一个重要分支,它在自然科学、社会科学和工程技术等领域有着广泛的应用。
高中数学中的常微分方程知识点主要包括一阶微分方程、二阶微分方程和常微分方程的解法等内容。
二、一阶微分方程1. 概念一阶微分方程是指形如dy/dx + P(x)y = Q(x)的方程,其中P(x)和Q(x)是关于自变量x的已知函数。
2. 解法(1)分离变量法:将方程中的y和x分离,化为y = f(x)的形式,然后对两边进行积分。
(2)积分因子法:找出一个函数μ(x),使得原方程两边乘以μ(x)后,可以化为dy/dx + μP(x)y = μQ(x)的形式,然后利用积分因子公式求解。
(3)变量替换法:选择一个合适的变量替换,将原方程化为简单的一阶微分方程,然后求解。
3. 例子求解方程dy/dx + 2y = e^x。
(1)分离变量法:dy/y = e^x dx∫ dy = ∫ e^x dxy = e^x + C其中C是积分常数。
(2)积分因子法:μ(x) = e^(-∫ 2dx) = e^(-2x)μ(dy/dx + 2y) = μQ(x)e^(-2x)dy/dx + 2e^(-2x)y = e(-2x)e x(-dy/dx + 2y)e^(2x) = 1-dy/dx + 2y = e^(-2x)利用积分因子公式求解,得到:y * e^(2x) = -∫ e^(-2x) dx + Cy = (-1/2)e^(-2x) + C/e^(2x)三、二阶微分方程1. 概念二阶微分方程是指形如d²y/dx² + P(x)dy/dx + Q(x)y = R(x)的方程,其中P(x)、Q(x)和R(x)是关于自变量x的已知函数。
2. 解法(1)常数变易法:假设y = e^(αx),代入原方程,得到关于α的二次方程,求解得到α的值,进而求出y的解。
(2)待定系数法:假设y = e^(αx)的系数为待定系数,代入原方程,得到关于待定系数的方程,求解得到待定系数的值,进而求出y的解。
常微分方程常微分方程的基本概念和求解方法
常微分方程常微分方程的基本概念和求解方法常微分方程(Ordinary Differential Equations,简称ODE)是描述自变量只有一个的未知函数及其导数之间关系的方程。
在物理学、工程学、经济学等领域中,常微分方程被广泛应用于各种问题的建模与求解。
本文将介绍常微分方程的基本概念和求解方法。
一、常微分方程的基本概念常微分方程是描述未知函数及其导数之间关系的数学方程。
一般来说,常微分方程可以分为一阶常微分方程和高阶常微分方程两大类。
一阶常微分方程中未知函数的导数最高只有一阶导数,而高阶常微分方程中未知函数的导数可以是二阶、三阶,甚至更高阶的导数。
常微分方程的解是指能够满足方程条件的函数形式,解的形式可以是显式解或隐式解。
显式解是直接给出的解析表达式,而隐式解则是以方程的形式给出。
常微分方程的解集通常具有唯一性。
其中,初始值问题(Initial Value Problem,简称IVP)是对常微分方程的一种特殊求解方法。
在初始值问题中,除了给出方程本身的条件外,还需给出未知函数在某一点的值,用于确定解的具体形式。
二、常微分方程的求解方法常微分方程有多种求解方法,常见的方法包括分离变量法、二阶线性微分方程的特解法和常系数线性齐次微分方程的特征根法等。
具体求解方法选择取决于方程的形式和性质。
1. 分离变量法(Separation of Variables)分离变量法适用于可以将方程的变量分离并分别对各个变量积分的情况。
首先,将方程中的未知函数和其导数分别放在等号两边,然后对方程两边同时积分,最后解出未知函数。
2. 二阶线性微分方程的特解法对于二阶线性微分方程,可以采用特解法求解。
特解法的基本思想是假设未知函数的解具有特定形式,代入方程后求解得到特解。
特解法适用于方程的解一般形式已知的情况。
3. 常系数线性齐次微分方程的特征根法对于常系数线性齐次微分方程,可以采用特征根法求解。
特征根法的基本思想是假设未知函数的解具有指数形式,代入方程后求解得到特征根和特征向量。
常微分方程的基本概念课件
微分方程的解
总结词
求解常微分方程是数学中的一个重要问题。
详细描述
求解常微分方程是数学中的一个重要问题,也是应用领 域中经常遇到的问题。求解常微分方程的方法有多种, 包括分离变量法、变量代换法、积分因子法、常数变易 法等。对于一些特殊类型的常微分方程,如线性微分方 程、一阶常系数线性微分方程等,有特定的解法。此外, 数值解法也是求解常微分方程的一种常用方法,如欧拉 法、龙格-库塔法等。
线性微分方程的解法
总结词
详细描述
欧拉方法
总结词
详细描述
CATALOGUE
常微分方程的应用
物理问题
01
自由落体运动
02 弹性碰撞
03 电路分析
生物问题
种群增长模型
传染病传播模型
神经网络模型
经济问题
供需关系
股票价格动态 经济周期模型
CATALOGUE常微分源自程的数值解法欧拉方法总结词 详细描述
CATALOGUE
常微分方程的解法
分离变量法
总结词
详细描述
变量代换法
总结词
通过引入新的变量来代换原方程中的未知函数,从而将复杂的问题转化为简单的 问题,便于求解。
详细描述
变量代换法是一种常用的求解常微分方程的方法。通过引入新的变量来代换原方 程中的未知函数,我们可以将复杂的问题转化为简单的问题,便于求解。这种方 法适用于具有特定形式的一阶或高阶常微分方程。
龙格-库塔方法
总结词
详细描述
龙格-库塔方法的基本思想是用一系列 的折线来逼近微分方程的解。在每一 步,它首先计算出折线的斜率,然后 用这个斜率来更新折线的位置。
改进的龙格-库塔方法
总结词
改进的龙格-库塔方法是对标准龙格-库塔 方法的改进,它在每一步都使用更高阶 的插值多项式来逼近微分方程的解。
常微分方程的几何解释
(2.2)
a x b, y ,
假设函数 f x, y在给定区域上连续且有界.于是
它在这个区域上确定了一个线素场.下面利用线素场
求出经过 x0, y0 的近似积分曲线.把
x0 ,b n 等分,其分点为:
xk x0 kh, k 0,1, , n
h b x0 , n
xn b
常微分方程
绵阳师范学院
先求出 f x0, y0
用经过 x0, y0 斜率为
y
x1
,
y1
x2
,
y2
f x0, y0 的直线段来近
y0
似积分曲线,其方程为
y y0 f x0, y0 x x0
x0 x1 x2
bx
求出直线上横坐标 x1 处的点的纵坐标
y1 y0 f x0, y0 x1 x0 y0 f x0, y0 h
如果 h 很小 x1, y1 就很接近积分曲线上的点 x1, y x1
因 f x, y 连续.于是由点 x1, y1 出发的斜率为
f x1, y1 的直线段又近似于原积分曲线.它的方程为
了线素场.
y k x
易见在点 x, y 的线素与
过原点与该点的射线重合.
常微分方程
绵阳师范学院
定理2.1 L为(2.1)的积分曲线的充要条件是: 在L 上任一点,L 的切线方向与(2.1)所确定的线 素场在该点的线素方向重合;即L在每间点均与 线素场的线素相切.
证明 必要性 设L为(2.1)的积分曲线,其方程为
20
若初值问题
dy dx
f ( x, y),的解是存在,是否唯一?
《常微分方程》知识点整理
《常微分方程》知识点整理
一、定义与特点
常微分方程(ordinary differential equation)是数学中描述物理、
化学、生物等过程的重要工具,它描述物体状态及其变化的模型,可以用
来研究物体的动力、动力学、物理现象等问题。
它可以从几何角度、分析
角度以及物理角度这三个角度来看待,它是一个研究条件下物体状态和变
化的数学方程。
常微分方程有以下几个特点:
1.常微分方程是一类特殊的未知函数问题,它由一个函数及它的一阶
或多阶导数组成。
2.未知函数有可能是多元函数,也可能是单元函数,可以是实函数也
可以是复函数。
3.常微分方程的形式因微分函数种类而各异,有非线性方程、线性方程、常系数方程、变系数方程等类型。
4.常微分方程的解可以是定状态的、非定状态的、稳定的或不稳定的,它可以有解或得不到解。
5.常微分方程具有很深的理论性,可用来求解物理、化学、力学等问题,可以修正原来结论,使现象更加接近实际情况。
二、种类
1.线性常微分方程:线性微分方程是常微分方程中最简单的类型,它
的特点是多重未知函数的阶和系数形式都是定值,而不依赖于其他函数,
它的解可以直接用几何方法求解(比如可以用函数级数的展开形式求解)。
2.二次可积常微分方程:这类方程中。
常微分方程常见形式及解法
常微分方程常见形式及解法在数学的广袤领域中,常微分方程是一个极其重要的分支,它在物理学、工程学、经济学等众多领域都有着广泛的应用。
简单来说,常微分方程就是含有一个自变量和未知函数及其导数的方程。
接下来,让我们一起深入探讨常微分方程的常见形式以及相应的解法。
一、常微分方程的常见形式1、一阶常微分方程可分离变量方程:形如$dy/dx = f(x)g(y)$的方程,通过将变量分离,将其化为$\frac{dy}{g(y)}=f(x)dx$,然后两边分别积分求解。
齐次方程:形如$dy/dx = F(y/x)$的方程,通过令$u = y/x$,将其转化为可分离变量的方程进行求解。
一阶线性方程:形如$dy/dx + P(x)y = Q(x)$的方程,使用积分因子法求解。
2、二阶常微分方程二阶线性常微分方程:形如$y''+ p(x)y' + q(x)y = f(x)$的方程。
当$f(x) = 0$时,称为二阶线性齐次方程;当$f(x) ≠ 0$时,称为二阶线性非齐次方程。
常系数线性方程:当$p(x)$和$q(x)$都是常数时,即$y''+ py'+ qy = f(x)$,这种方程的解法相对较为固定。
二、常微分方程的解法1、变量分离法这是求解一阶常微分方程的一种基本方法。
对于可分离变量的方程,我们将变量分别放在等式的两边,然后对两边进行积分。
例如,对于方程$dy/dx = x/y$,可以变形为$ydy = xdx$,然后积分得到$\frac{1}{2}y^2 =\frac{1}{2}x^2 + C$,从而解得$y =\pm \sqrt{x^2 +2C}$。
2、齐次方程的解法对于齐次方程$dy/dx = F(y/x)$,令$u = y/x$,则$y = ux$,$dy/dx = u + x(du/dx)$。
原方程可化为$u + x(du/dx) = F(u)$,这就变成了一个可分离变量的方程,从而可以求解。
数理方程重点总结
X (0) A 0 B 1 0
断 言: B 0, 于 是 有
u
u
0,
0 (2)
x x0
x xl
X ( x) A sin x
又 由 边 界 条 件u
0, 得
x xl
sin l 0
于 是 , 得 到 空 间 变 量 问题 的 本 征 值
l n
或
n
( n l
)2
(n 1,2,3,)
据此,解得H( y)
H ( y) cos y 1 y2 1 H (0) 6
(7)
将 (5) 、 (7) 代 入 (4) 式 , 即 得 特 解
u( x, y) 1 x3 y2 cos y 1 y2 1 x2
6
6
再另附:直接积分法 求偏微分方程的通解
2u u
t
2 2xt
xt x
可 以 由 两 个 边 界 条 件 唯一 地 被 确 定 。
例如 f (x) x
W (x)
1 6a 2
x3
C1 x C2
W (0) M1
M1 C2
W (l) M2
l3 M2 6a2 C1l M1
据此,得到W ( x) 的解
C1
M2
M1
l3 6a 2
l
M2
l
M1
l2 6a 2
X X 0
(1)
u x
0 , u
x0
x
0
xl
(2)
(1) 式的通解为
X ( x) Acos x B sin x
(3)
对上式求导,得
X ( x) A sin x B cos x
X ( x) A sin x B cos x
数理方程课件
一阶常微分方程在物理学、工程学、经济学等领域有广泛应用。
一阶常微分方程可以用于描述各种实际问题中变量的变化规律,如物理中的自由落体运动、电路中的电流变化等。在经济学中,一阶常微分方程可以用于描述供求关系的变化、消费和储蓄的动态过程等。在工程学中,一阶常微分方程也广泛应用于控制系统、化学反应动力学等领域。
数理方程可以根据其形式和性质进行分类。
总结词
根据其形式和性质,数理方程可以分为线性与非线性、自治与非自治、常系数与变系数等多种类型。这些分类有助于更好地理解和研究数理方程的性质和应用。
详细描述
数理方程的分类
总结词
数理方程在各个领域都有广泛的应用。
详细描述
数理方程在物理学、工程学、经济学、生物学等许多领域都有重要的应用。例如,在物理学中,描述波动、热传导、引力场等问题的方程都是数理方程。在工程学中,流体动力学、电磁学等领域的问题也都可以通过数理方程来描述和解决。
总结词
一阶常微分方程的定义
一阶常微分方程的解法
求解一阶常微分方程的方法主要有分离变量法、积分因子法、常数变易法和线性化法等。
总结词
分离变量法是将方程中的变量分离出来,使方程变为可求解的形式。积分因子法是通过引入一个因子,使方程变为全微分方程,从而简化求解过程。常数变易法适用于形式为y' = f(x)y的方程,通过代入可求解。线性化法则是将非线性方程转化为线性方程,便于求解。
分离变量法
有限差分法
有限元法
变分法
用离散的差分近似代替连续的微分,适用于求解初值问题和边界问题。
将连续的求解区域离散化为有限个小的子区域,适用于求解复杂的几何形状和边界条件。
通过求某个泛函的极值来求解偏微分方程,适用于求解某些特殊类型的方程。
常微分方程主要内容
常微分方程主要内容
摘要:
1.常微分方程的概述
2.常微分方程的主要内容
3.常微分方程的应用
4.学习常微分方程的方法和技巧
正文:
一、常微分方程的概述
常微分方程是微分方程的一个分支,主要研究变量随时间变化的规律。
它在数学、物理、化学、生物学等领域有着广泛的应用,是解决许多实际问题的关键工具。
二、常微分方程的主要内容
1.基本概念:常微分方程涉及的基本概念包括导数、微分、积分等,这些概念是理解常微分方程的基础。
2.基本定理:常微分方程的基本定理包括解的存在唯一性定理、解的延展定理等,这些定理是研究常微分方程的关键。
3.解法:常微分方程的解法包括初等基分法、线性微分方程组解法、n 阶线性微分方程解法等,这些解法是求解常微分方程的具体方法。
4.特殊类型:常微分方程中的特殊类型包括线性微分方程、非线性微分方程、隐式微分方程、显式微分方程等,这些特殊类型需要特殊的处理方法。
三、常微分方程的应用
常微分方程在实际应用中具有广泛的应用,包括数值计算、微分方程建模等。
例如,在物理学中,常微分方程可以用来描述物体的运动规律;在生物学中,常微分方程可以用来描述生物种群的演化规律等。
四、学习常微分方程的方法和技巧
学习常微分方程需要掌握一定的数学基础,包括微积分、线性代数等。
此外,学习常微分方程还需要掌握一些基本的数学分析方法,如极限、连续、导数、微分等。
在解决常微分方程问题时,需要灵活运用这些方法和技巧,以求得问题的解决。
总之,常微分方程是数学中的一个重要分支,它在实际应用中具有广泛的应用。
常微分方程与解法
常微分方程与解法常微分方程是数学中的一门重要的分支,广泛应用于自然科学、工程、经济等领域。
它描述了物理系统中的变化规律,具有很高的实用价值和理论意义。
本文将介绍常微分方程的基本概念、分类以及解法。
一、常微分方程的概念和分类常微分方程是指一个或多个未知函数及其导数之间的关系式,一般形式为 dy/dx = f(x)、d²y/dx² = f(x)、dy/dt = f(x, y)、d²y/dt² = f(x, y) 等。
其中,y 是要求解的未知函数,x 或 t 是自变量,f 是已知的函数。
根据常微分方程中未知函数的阶数,可将其分为一阶、二阶、高阶等不同类型。
1. 一阶常微分方程:形式为 dy/dx = f(x)。
一阶常微分方程只涉及到未知函数的一阶导数,是最简单的类型,通常以一阶线性常微分方程和一阶非线性常微分方程为代表。
2. 二阶常微分方程:形式为 d²y/dx² = f(x)。
二阶常微分方程是一阶导数和二阶导数相结合的方程,常见的包括二阶线性常微分方程和二阶非线性常微分方程。
3. 高阶常微分方程:形式为dⁿy/dxⁿ = f(x)。
高阶常微分方程是一阶导数、二阶导数及更高阶导数共同参与的方程,其解法相对更加复杂。
二、常微分方程的解法常微分方程的解法可以分为解析解法和数值解法两大类。
解析解法是指通过代数和函数的性质直接求得解析表达式,而数值解法则是通过数值计算近似得到数值解。
1. 解析解法解析解法是常微分方程求解的理论基础,它可以给出问题的精确解,常用的解析解法包括分离变量法、齐次方程法、常数变易法、常数变异法、拉普拉斯变换法等。
- 分离变量法:对于一阶常微分方程 dy/dx = f(x) ,可以通过将变量分离得到与 y 和 x 有关的微分方程,进而对其进行求解。
- 齐次方程法:对于一阶常微分方程 dy/dx = f(x,y)/g(x,y) ,若 f(x,y)和 g(x,y) 是关于 x 和 y 的同次多项式,可以通过引入新变量 z=y/x 来转化为齐次方程,再通过变量代换求解得到解析解。
23《数学物理方程》二十三讲特殊函数常微分方程
并移项得:
----《数学物理方法》二十三讲----
2
d R
2
2
R d
dR
R d
Z
2
Z"
"
m
2
令
则得:
( m 0 ,1, )
(1) (2)
2
" 0
( 2 ) ( )
d R
2 2
( ) A cos m B sin m
r u r
拉普拉斯方程 u xx
u
u yy u zz 0
①球坐标系下的拉氏方程表示为:
1 r
2
(r
2
)
1
2
r sin
(sin
)
1 r sin
2 2
u
2
2
0
如何得到该方程? 上述方程如何求解?
2 2 2
利用球坐标系与直角坐标系之间的变换关系 分离变量法!
z
x u r , r x y z 首先假设方程的解的形式为: ( rsin , )cos R ( r )Y ( , )
M ( x, 试探解y , z )
r
y r sin sin 将试探解带入球坐标系下的拉普拉斯方程得: arctg
x
y
M (r , , )
第一个方程:
' ' 0
m
2
( m 0 ,1, )
自然周期条件
( 2 ) ( )
----《数学物理方法》二十三讲----
常微分方程基本概念解析
常微分方程基本概念解析常微分方程是研究变量之间关系的一种数学工具,主要用于描述自然界和社会现象中各种变化的规律。
它是微积分的重要分支,具有广泛的应用前景。
本文将对常微分方程的基本概念进行解析。
一、常微分方程的定义常微分方程是指包含未知函数及其导数的代数方程,其中未知函数是变量的函数。
一般常微分方程的形式可表示为:dy/dx = f(x),其中y 是函数,f(x)是已知函数。
常微分方程主要关注如何求解这样的方程,找到满足约束条件的函数。
二、常微分方程的类型常微分方程可以分为很多类型,包括一阶常微分方程、高阶常微分方程、线性常微分方程、非线性常微分方程等等。
每一种类型都有其独特的特点和解法。
接下来我们将重点介绍一阶常微分方程和二阶常微分方程。
1. 一阶常微分方程一阶常微分方程是形如dy/dx = f(x, y)的方程,其中y是未知函数,f(x, y)是已知函数。
解一阶常微分方程的方法包括分离变量法、齐次方程法、一阶线性方程法等。
2. 二阶常微分方程二阶常微分方程是形如d²y/dx² = f(x, y, dy/dx)的方程,其中y是未知函数,f(x, y, dy/dx)是已知函数。
解二阶常微分方程的方法包括特征方程法、常数变易法、欧拉方程法等。
三、常微分方程的解的存在唯一性对于一些特殊的常微分方程,其解的存在唯一性成立。
根据皮卡-林德洛夫定理,如果在某个区间上,函数f(x, y)在y上满足利普希茨条件,则存在唯一的解。
四、常微分方程的应用领域常微分方程在各个领域都有广泛的应用。
在物理学中,常微分方程被用于描述粒子的运动和场的演化;在经济学中,常微分方程被用于描述经济模型中的变动;在生物学中,常微分方程被用于解释生物系统的动力学行为等。
总之,常微分方程是现代科学研究不可或缺的工具。
五、总结常微分方程是描述变量之间关系的一种强大工具,它在科学研究中具有重要的地位和作用。
本文对常微分方程的基本概念进行了解析,并介绍了一阶常微分方程和二阶常微分方程的解法以及常微分方程的应用领域。
常微分方程讲义
常微分方程讲义微分方程是数学的一个重要分支,它的本质是求解某个函数的微分(偏导数)方程等式,并得出相应的函数解。
因此,它也被称为“函数微分学”。
微分方程常常用于研究物理和其他科学的解析理论上的问题,比如力学、流体力学、声学、电磁学等方面的研究。
一般来说,微分方程包括微分解析方程、积分方程和偏微分方程,其中,最常用的是偏微分方程。
它是由一个或多个复变量函数的某个变量(或多个变量)的偏导数组成的方程,而它的解就是被偏微分方程包含的函数。
偏微分方程可以分为常微分方程和时滞微分方程,本文讲义主要介绍的是前者,即常微分方程。
常微分方程是由一个复变量函数的某个变量的导数组成的方程式,它的解是一个关于变量的函数。
它的基本思想是:将某些可变量的函数表示为可以用一个或几个未知函数的函数,求解该未知函数,从而求解特定问题所对应的函数,用以描述和分析物理系统的特性。
常微分方程可以通过三种方式求解:第一种是数值方法,即将微分方程的求解转换成一系列的算数计算,它是最常用的解法;第二种是图像方法,它是通过拟合图形来确定方程的解的;第三种是函数解法,即求解方程的解析表达式,它也是研究微分方程的重要方法。
如何求解一般常微分方程?一般来说,要先将原始方程化为不带高次导数(称为常数阶微分方程)或不带高次导数和常数(称为普通微分方程)的形式,然后再进行解算。
这些方程又可以分为线性微分方程、二阶微分方程、高阶微分方程及一类特殊微分方程。
线性微分方程是指形如y′+ay=f(x)的微分方程,它的解可以通过谱解的方法求出,就是将此方程转换为一个定义域上的线性算子的本征方程,再根据本征方程的本质解其求解。
二阶微分方程是指形如y′′+ay′+by=f(x)的微分方程,它的解可以利用解析方法或特殊求解的方法求得,常见的有求解公式或积分方法。
高阶微分方程是指形如y′(n)+ay′(n-1)+…+by=f(x)的微分方程,它的解是求解公式,这种公式只有当所求解的方程满足某些条件时才可以得出,如果不满足,就只能利用特殊的解法来解高阶方程。
常微分方程知识点总结
常微分方程知识点总结1. 常微分方程的定义:常微分方程是指包含未知函数及其导数的方程。
一般形式为:dy/dx=f(x,y)。
其中,y为未知函数,x为自变量,f为已知函数。
2.常微分方程的分类:常微分方程可分为一阶常微分方程和高阶常微分方程。
一阶常微分方程包含未知函数的一阶导数,高阶常微分方程则包含未知函数的高阶导数。
3.一阶常微分方程的解法:一阶常微分方程的解法有几种常见的方法。
一种是分离变量法,即将方程两边进行变量分离,然后进行积分。
另一种是齐次方程法,将方程进行变量替换后化为齐次方程,然后进行求解。
还有一种是线性方程法,将方程化为线性方程,然后进行求解。
4.高阶常微分方程的解法:对于高阶常微分方程,常用的方法是特征根法。
通过求解其特征方程得到特征根,然后根据特征根的个数和重数,确定齐次线性微分方程的通解形式。
再根据待定系数法确定非齐次线性微分方程的一个特解,进而得到非齐次线性微分方程的通解。
5.常微分方程的初值问题:常微分方程的初值问题指的是给定一个初始条件,求解满足该条件的函数。
在求解过程中,需要将初始条件代入方程,得到特定的常数,从而确定唯一的解。
6.常微分方程的数值解法:对于一些难以求解的常微分方程,可以采用数值解法进行求解。
常见的数值解法包括欧拉法、龙格-库塔法、亚当斯法等。
这些方法通过将微分方程转化为差分方程,然后进行迭代计算,逼近微分方程的解。
7.常微分方程的稳定性分析:稳定性分析是研究常微分方程解的长期行为。
可以通过线性化理论、相图等方法进行稳定性分析。
线性化理论通过线性化方程,判断非线性常微分方程解的稳定性。
相图是一种可视化的方法,通过绘制解的轨迹图,观察解的长期行为。
8.常微分方程的应用:常微分方程在各个领域都有广泛的应用。
在物理学中,常微分方程可以描述运动学问题、电路问题等。
在工程学中,可以应用于控制系统、电力系统等。
在生物学中,可以用于建立生物模型、研究生物过程等。
总结起来,常微分方程是数学中的一门重要学科,研究的是包含未知函数及其导数的方程。
数学中的常微分方程理论
数学中的常微分方程理论数学中的常微分方程,是一种描述自然现象的重要工具。
常微分方程是描述一些变量的变化规律,例如天体运动、物理力学中的某些问题、生物学中的种群变化等等。
本文将简单介绍常微分方程的定义、解法和应用。
一、常微分方程的定义常微分方程指导数关系中,与未知函数及其导数相关的方程。
通常表示为:$$F(x, y, y', y'',...,y^{(n)})=0$$其中 $y$ 是未知函数,$x$ 是自变量,$y', y'',...,y^{(n)}$ 是$y$ 的一阶、二阶……$n$ 阶导数。
上式中,$F(x, y, y',y'',...,y^{(n)})=0$ 是对 $y$ 的某种关系式,称为常微分方程或简称微分方程。
如果未知函数$y$ 的导数只出现在一阶导数或者零次,即$$F(x, y, y')=0$$则称为一阶微分方程;如果出现到 $n$ 阶导数,则称为 $n$ 阶微分方程。
二、常微分方程的解法常微分方程解的表示是这个方程的基本问题,解是由若干个常数构成的一组函数,其个数等于微分方程的阶数。
常微分方程的解法分为两种,一种是直接求解,另一种是利用数值计算的方法。
(一)直接求解直接求解的方法包括分离变量法、一阶线性微分方程的特解法、齐次方程的解法、常系数齐次线性微分方程、变系数齐次线性微分方程、非齐次线性微分方程的特解、常系数非齐次线性微分方程等等,这里不再一一叙述。
(二)利用数值计算法求解如果某些微分方程没有解析解的公式,就需要借助计算机来求解,常见的数值计算方法有以下几种:1. 欧拉公式法:欧拉公式法是一种一阶微分方程的数值解法,将微分方程离散化,通过计算机计算得出区间内每个点的值。
即用前一个点的值插值出后一个点的值。
2. 龙格-库塔法:龙格-库塔法是一种高阶微分方程数值解法,可以将任意高阶微分方程转化为一系列一阶微分方程。
数学物理方程学习指导书第7章数理方程求解中出现的几个特殊类型的常微分方程
第7章 数理方程求解中出现的几个特殊类型的常微分方程在第5章中,我们用分离变量法求解了一些定解问题,从5.3可以看出,当我们采用极坐标系以后,经过分离变量就会出现变系数的线性常微分方程.在那里,由于我们只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程.如果我们不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程,本章我们将通过在柱坐标和球坐标系中对定解问题进行分离变量,引出贝塞尔方程与勒让德方程,由于这两个方程都属施特姆-刘维尔型的,所以在本章我们还要简要地介绍一下施特姆-刘维尔特征理论,这个理论是分离变量法的基础.7.1 贝塞尔方程的引出下面我们以圆盘的瞬时温度分布为例推导出贝塞尔方程,设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零度,且初始温度为已知,求圆盘内的瞬时温度分布规律.这个问题可以归结为求解下述定解问题22222220;(7.1)(,);(7.2)0.(7.3)t x y R u u ut x y u x y u ϕ=+=⎧∂∂∂=+⎪∂∂∂⎪⎪=⎨⎪=⎪⎪⎩用分离变量法解这个问题,先令(,,)(,)(),u x y t V x y T t =代入方程(7.1)得2222,V V VT T xy ⎛⎫∂∂'=+ ⎪∂∂⎝⎭或2222(0).V VT x y T Vλλ∂∂+'∂∂==->由此我们得到下面关于函数()T t 和(,)V x y 的方程()()0,T t T t λ'+= (7.4) 22220.V VV x yλ∂∂++=∂∂ (7.5)从(7.4)得().t T t Ae λ-=方程(7.5)称为亥姆霍兹(Helmhotz )方程,为了求出这个方程满足条件2220x y R V+== (7.6)的固有值与固有函数,我们引用平面上的极坐系.将方程(7.5)与条件(7.6)写成极坐标形式得22222110,;(7.7)0.(7.8)R V V VV R V ρλρρρρρθ=⎧∂∂∂+++=<⎪∂∂∂⎨⎪=⎩再令 (,)()V R ρθρ=Θ(θ), 代入(7.7)并分离变量可得()()0θμθ'Θ+Θ= (7.9)22''()'()()()0.R R R ρρρρλρμρ++-= (7.10)由于(,,)u x y t 是单值函数,所以(,)V x y 也必是单值的,因此()θΘ应该是以π2为周期的周期函数,这就决定了μ只能等于如下的数:2220,1,2,3,.对应于这些数2,n n μ=有0()θΘ=2a (为常数), ()n θΘ=cos sin n n a nb n θθ+ (1,2,3,n =).以2n n μ=代入方程(7.10),并作代换r =,则得222()()()()0.r F r rF r r n F r '''+--= (7.11)其中().F r R =这是一个变系数的线性常微分方程,称为n 阶贝塞尔(Bessel )方程.原定解问题的最后解决就归结为求贝塞尔方程(7.11)的固有值与固有函数.贝塞尔方程的解将在下一章讨论.7.2 勒让德方程的引出现在我们对球坐标系中的拉普拉斯方程进行分离变量.在球坐标系中拉普拉斯方程为2222222111sin 0.sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂⎛⎫⎛⎫++= ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭(7.12)令 (,,)()u r R r θϕ=()()θϕΘΦ, 代入(5.12)得2222222111sin 0.sin sin d dR d d d r R R r dr dr r d d r d θθθθθϕΘΦ⎛⎫⎛⎫ΘΦ+Φ+Θ= ⎪ ⎪⎝⎭⎝⎭ 以2r R ΦΘ乘上式各项得 2222111sin 0sin sin d dR d d d r R dr dr d d d θθθθθϕΘΦ⎛⎫⎛⎫++= ⎪ ⎪ΘΦ⎝⎭⎝⎭ 或2222111sin ,sin sin d dR d d d r R dr dr d d d θθθθθϕΘΦ⎛⎫⎛⎫=-- ⎪ ⎪ΘΦ⎝⎭⎝⎭上式左端只与r 有关,右端只与,θϕ有关,要它们相等只有当它们都是常数时才有可能.为了以后的需要,我们把这个常数写成(1)n n +的形式(这是可以做到的,因为任何一个实数总可以写成这种形式,这里的n 可能为实数,也有可能为复数),则得21(1),d dR r n n R dr dr ⎛⎫=+ ⎪⎝⎭(7.13) 22211sin (1).sin sin d d d n n d d d θθθθθϕΘΦ⎛⎫+=-+ ⎪ΘΦ⎝⎭(7.14)将方程(7.13)左端的导数计算出来,即有2222(1)0.d R dRr r n n R dr dr+-+= 这是一个欧拉方程,这的通解为(1)12(),n n R r A r A r -+=+其中12,A A 为任意常数.以2sin θ乘方程(7.14)的两端得22211sin sin (1)sin 0,d d d n n d d d θθθθθϕΘΦ⎛⎫+++= ⎪ΘΦ⎝⎭即22211sin sin (1)sin .d d d n n d d d θθθθθϕΘΦ⎛⎫++=- ⎪ΘΦ⎝⎭此式的左端只与θ有关,而右端只与ϕ有关,因此只有当它们均为常数时才有可能相等,同时由对方程(7.9)的讨论可知,这个常数必须等于2(1,2,3,)m m =,从而得221sin sin (1)sin ,d d n n m d d θθθθθΘ⎛⎫++= ⎪Θ⎝⎭(7.15) 2221.d m d ϕΦ=-Φ (7.16) 由方程(7.16)得12()cos sin .B m B m φϕϕΦ=+至于()θΘ所满足的微分方程可写为221sin (1)0.sin sin d d m n n d d θθθθθΘ⎛⎫-++Θ= ⎪⎝⎭ 把上式第一项中的导数计算出来,并化简得2222(1)0,sin d d m ctg n n d d θθθθ⎡⎤ΘΘ+++-Θ=⎢⎥⎣⎦(7.17) 这个方程称为连带的勒让德(Legendre)方程.如果引用cos x θ=为自变量(11),x -≤≤并将()θΘ改记成()P x ,则(7.17)变成22222(1)2(1)0.1d P dP m x x n n P dx dx x ⎡⎤--++-=⎢⎥-⎣⎦(7.18)若(,,)u r θϕ与ϕ无关,则从(7.16)可知0m =,这时(7.18)简化成222(1)2(1)0.d P dP x x n n P dx dx--++= (7.19)方程(7.19)称为勒让德方程,因此定解问题的解决也归结为求勒让德方程的固有值与固有函数.这个方程的解将在下一章讨论.7.3 施特姆-刘维尔理论简述前面两节我们已从不同的物理模型引出了两个特殊类型的微分方程(当然从其他的物理模型还可引出其他一些特殊方程),一些定解问题的解决都归结为求这两个方程的固有值与固有函数.本节我们就更一般的微分方程()()()0(),d dy k x q x y x y a x b dx dx λρ⎡⎤-+=<<⎢⎥⎣⎦(7.20)阐述固有值问题的一些结论,不难看出,方程(7.11)、(7.18)、(7.19)都是这个方程的特例.事实上,若取2(),(),(),0,,n k x x q x x x a b R xρ=====则(7.20)就变成贝塞尔方程 20;d dy n x y xy dx dx x λ⎡⎤-+=⎢⎥⎣⎦若取2()1,()0,()1,1,1,k x x q x x a b ρ=-===-=则方程(7.20)就成为勒让德方程2(1)0;d dy x y dx dx λ⎡⎤-+=⎢⎥⎣⎦ 若取222()1,(),()1,1,1,1m k x x q x x a b x ρ=-===-=-则方程(7.20)就变成连带的勒让德方程222(1)0.1d dy m x y y dx dx x λ⎡⎤--+=⎢⎥-⎣⎦方程(7.20)称为施特姆-刘维尔(Sturm-Liouville )型方程(任一个二阶线性常微分方程012'''p y p y p y ly ++=乘以适当函数后总可以化成这种形式).本节所要叙述的施特姆-刘维尔理论,就是有关方程(7.20)的固有值问题的一些结论.为了论述方程(7.20)的固有值问题,我们对方程(7.20)中函数()k x 及()q x 作一些假定.设函数()k x 及其导数在闭区间[,]a b 上均连续,当a x b <≤时()0k x >,而()0;()k a q x =或者在闭区间[,]a b 上连续,或者在开区间(,)a b 内连续而在区间的端点处有一阶极点(贝塞尔方程、勒让德方程及连带的勒让德方程中的系数都满足这些条件),在这些条件下,方程(7.20)的固有值问题的提法为:求此方程满足条件()0;()y b y a =<∞*)*)这样的边界条件称为自然边界条件,在§2.3中已经遇到过这样的条件,如果k(b)=0,则在这点亦应将条件y(b)=0换成自然边界条件y(b)<0换成自然边界条件y(b)<∞,如果在a,b 两点k(x)都为零,则在这的非零解(固有函数)及对应于非零解的λ值(固有值).关于这个固有值问题有以下几点结论:1、存在无穷多个实的固有值,它们构成一个递增数列,即1231n n λλλλλ+≤≤≤≤≤对应于这无穷多个固有值有无穷多个固有函数123(),(),(),y x y x yx2、当()0q x ≥时,所有固有值均不为负,即(1,2,3,)n n λ≥=3、设m n λλ≠是任意两个不相同的固有值,对应于这两个固有值的固有函数记为()m y x 与()n y x ,则()()()0.bm n ax y x y x dx ρ=⎰这个结论可以表述为:对应于不同固有值的固有函数在区间[,]a b 上以权函数()x ρ互相正交.4、固有函数123(),(),(),,(),n y x y x y x y x 在区间[,]a b 上构成一个完备系.即任意一个具有一阶连续导数及分段连续二阶导数的函数()f x ,只要它满足固有值问题中的边界条件,则它一定可以按固有函数系}{()n y x 展开为绝对一致收敛的级数1()(),n n n f x f y x ∞==∑其中2()()()()()bn anbnax f x y x dxf x y x dxρρ=⎰⎰结论1与4的证明超出了本书的范围,需要用到积分方程的理论,结论2与3的证明并不困难,下面我们仅给出结论3的证明,这个证明的方法具有启发性,凡是要证明某一特定的固有函数系的正交性都可采用这个方法.下面我们就来证明当m n λλ≠时,下列关系()()()0bm n ax y x y x dx ρ=⎰(7.21)成立.证 因为固有函数()m y x 与()n y x 分别是方程(7.20)当m λλ=与n λλ=时的非零解,两点均应提自然边界条件.所以有()()()()()()0,m m m m dy x d k x q x y x x y x dx dx λρ⎡⎤-+=⎢⎥⎣⎦ (7.22) ()()()()()()0.n n n n dy x d k x q x y x x y x dx dx λρ⎡⎤-+=⎢⎥⎣⎦(7.23) 以()n y x 乘(7 .22)减去()m y x 乘(7.23)得()()()()()()m n n m dy x dy x d d y x k x y x k x dx dx dx dx ⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦ ()()()()0.m n m n x y x y x λλρ+-=对这个等式从a 到b 对x 积分得()()0()()()()bb m n n m aa dy x dy x d d y x k x dx y x k x dx dx dx dx dx ⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰()()()()bm n m n ax y x y x dx λλρ+-⎰()()()()()()bm nn m ady x dy x k x y x k x y x dx dx ⎡⎤=-⎢⎥⎣⎦()()()()()()bb m n n m a a dy x dy x dy x dy x k x dx k x dxdx dx dx dx-+⎰⎰()()()()bm n m n ax y x y x dx λλρ+-⎰()()()()()m m n m dy x dy b k b y b y b dx dx ⎡⎤=-⎢⎥⎣⎦()()()()()m n n m dy a dy a k a y a y a dx dx ⎡⎤--⎢⎥⎣⎦()()()(),bm n m n ax y x y x dx λλρ+-⎰ (7,24)此处符号()n dy a dx 表示()n dy x dx在x a =处的值,其余类似.(7.24)式右端前两项的值可以分几种情况来讨论:(i)在端点b 加有第一类边界条件()0,y b =这时有()()0,m n y b y b ==从而()()()()()0.m n n m dy b dy b k b y b y b dx dx ⎡⎤-=⎢⎥⎣⎦(ii)在端点b 加有第二类边界条件()0,dy b dx= 这时有()()0,m n dy b dy b dx dx==从而 ()()()()()0.m n n m dy b dy b k b y b y b dx dx ⎡⎤-=⎢⎥⎣⎦(iii)在端点b 加有第三类边界条件,()()0,dy b y b hdx+= 这时有()()0,()()0.m m nndy b y b h dxdy b y b h dx ⎧+=⎪⎪⎨⎪+=⎪⎩由这两式可得()()()()0,m n n m dy b dy b y b y b dx dx-= 从而()()()()()0.m n n m dy b dy b k b y b y b dx dx ⎡⎤-=⎢⎥⎣⎦(iv) 在端点b 加有自然边界条件(),y b <∞这时必有()0,k b =从而()()()()()0.m n n m dy b dy b k b y b y b dx dx ⎡⎤-=⎢⎥⎣⎦综合上述,不论在b 点加哪一种边界条件,(7.24)右端第一项总是等于零.同理,对端点a 也有()()()()()0.m n n m dy a dy a k a y a y a dx dx ⎡⎤-=⎢⎥⎣⎦因此,最后可得()()()()0.bm n m n ax y x y x dx λλρ-=⎰但m n λλ≠,所以()()()0.bm n ax y x y x dx ρ=⎰正交性得到了证明.上面四个结论是分离变量法的理论基础,在第二章我们用分离变量法求解定解问题时,已经假定定解问题的解能够展成固有函数的级数,至于为什么能这样展开,当时没有说明,现在利用固有函数系的完备性就足以说明以前的有关运算是允许的.下面两章还要用到这里所讲的结论.习 题 七1、在平面极坐标系中将二维波动方程2222222u u u a t xy ⎛⎫∂∂∂=+ ⎪∂∂∂⎝⎭ 进行分离变量,写出各常微分方程.2、在球坐标系中,将三维波动方程222222222u u u u a t xy z ⎛⎫∂∂∂∂=++ ⎪∂∂∂∂⎝⎭ 进行分离变量,写出各常微分方程.3、在柱面坐标系中,将三维拉普拉斯方程进行分离变量,写出各常微分方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章 数理方程求解中出现的几个特殊类型的常微分方程在第5章中,我们用分离变量法求解了一些定解问题,从5.3可以看出,当我们采用极坐标系以后,经过分离变量就会出现变系数的线性常微分方程.在那里,由于我们只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程.如果我们不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程,本章我们将通过在柱坐标和球坐标系中对定解问题进行分离变量,引出贝塞尔方程与勒让德方程,由于这两个方程都属施特姆-刘维尔型的,所以在本章我们还要简要地介绍一下施特姆-刘维尔特征理论,这个理论是分离变量法的基础.7.1 贝塞尔方程的引出下面我们以圆盘的瞬时温度分布为例推导出贝塞尔方程,设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零度,且初始温度为已知,求圆盘内的瞬时温度分布规律.这个问题可以归结为求解下述定解问题22222220;(7.1)(,);(7.2)0.(7.3)t x y R u u ut xy u x y u ϕ=+=⎧∂∂∂=+⎪∂∂∂⎪⎪=⎨⎪=⎪⎪⎩用分离变量法解这个问题,先令(,,)(,)(),u x y t V x y T t =代入方程(7.1)得2222,V V VT T xy ⎛⎫∂∂'=+ ⎪∂∂⎝⎭或2222(0).V VT x y T Vλλ∂∂+'∂∂==->由此我们得到下面关于函数()T t 和(,)V x y 的方程()()0,T t T t λ'+= (7.4)22220.V VV x yλ∂∂++=∂∂ (7.5)从(7.4)得().t T t Ae λ-=方程(7.5)称为亥姆霍兹(Helmhotz )方程,为了求出这个方程满足条件2220x y R V+== (7.6)的固有值与固有函数,我们引用平面上的极坐系.将方程(7.5)与条件(7.6)写成极坐标形式得22222110,;(7.7)0.(7.8)R V V VV R V ρλρρρρρθ=⎧∂∂∂+++=<⎪∂∂∂⎨⎪=⎩再令 (,)()V R ρθρ=Θ(θ), 代入(7.7)并分离变量可得()()0θμθ'Θ+Θ= (7.9)22''()'()()()0.R R R ρρρρλρμρ++-= (7.10)由于(,,)u x y t 是单值函数,所以(,)V x y 也必是单值的,因此()θΘ应该是以π2为周期的周期函数,这就决定了μ只能等于如下的数:2220,1,2,3,.对应于这些数2,n n μ=有0()θΘ=2a (为常数), ()n θΘ=cos sin n n a nb n θθ+ (1,2,3,n =).以2n n μ=代入方程(7.10),并作代换r =,则得222()()()()0.r F r rF r r n F r '''+--= (7.11)其中().F r R =这是一个变系数的线性常微分方程,称为n 阶贝塞尔(Bessel )方程.原定解问题的最后解决就归结为求贝塞尔方程(7.11)的固有值与固有函数.贝塞尔方程的解将在下一章讨论.7.2 勒让德方程的引出现在我们对球坐标系中的拉普拉斯方程进行分离变量.在球坐标系中拉普拉斯方程为2222222111sin 0.sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂⎛⎫⎛⎫++= ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭ (7.12) 令 (,,)()u r R r θϕ=()()θϕΘΦ, 代入(5.12)得2222222111sin 0.sin sin d dR d d d r R R r dr dr r d d r d θθθθθϕΘΦ⎛⎫⎛⎫ΘΦ+Φ+Θ= ⎪ ⎪⎝⎭⎝⎭ 以2r R ΦΘ乘上式各项得 2222111sin 0sin sin d dR d d d r R dr dr d d d θθθθθϕΘΦ⎛⎫⎛⎫++= ⎪ ⎪ΘΦ⎝⎭⎝⎭ 或2222111sin ,sin sin d dR d d d r R dr dr d d d θθθθθϕΘΦ⎛⎫⎛⎫=-- ⎪ ⎪ΘΦ⎝⎭⎝⎭上式左端只与r 有关,右端只与,θϕ有关,要它们相等只有当它们都是常数时才有可能.为了以后的需要,我们把这个常数写成(1)n n +的形式(这是可以做到的,因为任何一个实数总可以写成这种形式,这里的n 可能为实数,也有可能为复数),则得21(1),d dR r n n R dr dr ⎛⎫=+ ⎪⎝⎭(7.13) 22211sin (1).sin sin d d d n n d d d θθθθθϕΘΦ⎛⎫+=-+ ⎪ΘΦ⎝⎭ (7.14) 将方程(7.13)左端的导数计算出来,即有2222(1)0.d R dRr r n n R dr dr+-+= 这是一个欧拉方程,这的通解为(1)12(),n n R r A r A r -+=+其中12,A A 为任意常数.以2sin θ乘方程(7.14)的两端得22211sin sin (1)sin 0,d d d n n d d d θθθθθϕΘΦ⎛⎫+++= ⎪ΘΦ⎝⎭即22211sin sin (1)sin .d d d n n d d d θθθθθϕΘΦ⎛⎫++=- ⎪ΘΦ⎝⎭ 此式的左端只与θ有关,而右端只与ϕ有关,因此只有当它们均为常数时才有可能相等,同时由对方程(7.9)的讨论可知,这个常数必须等于2(1,2,3,)m m =,从而得221sin sin (1)sin ,d d n n m d d θθθθθΘ⎛⎫++= ⎪Θ⎝⎭(7.15) 2221.d m d ϕΦ=-Φ (7.16) 由方程(7.16)得12()cos sin .B m B m φϕϕΦ=+至于()θΘ所满足的微分方程可写为221sin (1)0.sin sin d d m n n d d θθθθθΘ⎛⎫-++Θ= ⎪⎝⎭ 把上式第一项中的导数计算出来,并化简得2222(1)0,sin d d m ctg n n d d θθθθ⎡⎤ΘΘ+++-Θ=⎢⎥⎣⎦(7.17) 这个方程称为连带的勒让德(Legendre)方程.如果引用cos x θ=为自变量(11),x -≤≤并将()θΘ改记成()P x ,则(7.17)变成22222(1)2(1)0.1d P dP m x x n n P dx dx x ⎡⎤--++-=⎢⎥-⎣⎦(7.18)若(,,)u r θϕ与ϕ无关,则从(7.16)可知0m =,这时(7.18)简化成222(1)2(1)0.d P dP x x n n P dx dx--++= (7.19)方程(7.19)称为勒让德方程,因此定解问题的解决也归结为求勒让德方程的固有值与固有函数.这个方程的解将在下一章讨论.7.3 施特姆-刘维尔理论简述前面两节我们已从不同的物理模型引出了两个特殊类型的微分方程(当然从其他的物理模型还可引出其他一些特殊方程),一些定解问题的解决都归结为求这两个方程的固有值与固有函数.本节我们就更一般的微分方程()()()0(),d dy k x q x y x y a x b dx dx λρ⎡⎤-+=<<⎢⎥⎣⎦(7.20)阐述固有值问题的一些结论,不难看出,方程(7.11)、(7.18)、(7.19)都是这个方程的特例.事实上,若取2(),(),(),0,,n k x x q x x x a b R xρ=====则(7.20)就变成贝塞尔方程 20;d dy n x y xy dx dx x λ⎡⎤-+=⎢⎥⎣⎦若取2()1,()0,()1,1,1,k x x q x x a b ρ=-===-=则方程(7.20)就成为勒让德方程2(1)0;d dy x y dx dx λ⎡⎤-+=⎢⎥⎣⎦ 若取222()1,(),()1,1,1,1m k x x q x x a b x ρ=-===-=-则方程(7.20)就变成连带的勒让德方程222(1)0.1d dy m x y y dx dx x λ⎡⎤--+=⎢⎥-⎣⎦方程(7.20)称为施特姆-刘维尔(Sturm-Liouville )型方程(任一个二阶线性常微分方程012'''p y p y p y ly ++=乘以适当函数后总可以化成这种形式).本节所要叙述的施特姆-刘维尔理论,就是有关方程(7.20)的固有值问题的一些结论.为了论述方程(7.20)的固有值问题,我们对方程(7.20)中函数()k x 及()q x 作一些假定.设函数()k x 及其导数在闭区间[,]a b 上均连续,当a x b <≤时()0k x >,而()0;()k a q x =或者在闭区间[,]a b 上连续,或者在开区间(,)a b 内连续而在区间的端点处有一阶极点(贝塞尔方程、勒让德方程及连带的勒让德方程中的系数都满足这些条件),在这些条件下,方程(7.20)的固有值问题的提法为:求此方程满足条件()0;()y b y a =<∞*)*)这样的边界条件称为自然边界条件,在§2.3中已经遇到过这样的条件,如果k(b)=0,则在这点亦应将条件y(b)=0换成自然边界条件y(b)<0换成自然边界条件y(b)<∞,如果在a,b 两点k(x)都为零,则在这的非零解(固有函数)及对应于非零解的λ值(固有值).关于这个固有值问题有以下几点结论:1、存在无穷多个实的固有值,它们构成一个递增数列,即1231n n λλλλλ+≤≤≤≤≤对应于这无穷多个固有值有无穷多个固有函数123(),(),(),y x y x yx2、当()0q x ≥时,所有固有值均不为负,即(1,2,3,)n n λ≥=3、设m n λλ≠是任意两个不相同的固有值,对应于这两个固有值的固有函数记为()m y x 与()n y x ,则()()()0.bm n ax y x y x dx ρ=⎰这个结论可以表述为:对应于不同固有值的固有函数在区间[,]a b 上以权函数()x ρ互相正交.4、固有函数123(),(),(),,(),n y x y x y x y x 在区间[,]a b 上构成一个完备系.即任意一个具有一阶连续导数及分段连续二阶导数的函数()f x ,只要它满足固有值问题中的边界条件,则它一定可以按固有函数系}{()n y x 展开为绝对一致收敛的级数1()(),n n n f x f y x ∞==∑其中2()()()()()bn anbnax f x y x dxf x y x dxρρ=⎰⎰结论1与4的证明超出了本书的范围,需要用到积分方程的理论,结论2与3的证明并不困难,下面我们仅给出结论3的证明,这个证明的方法具有启发性,凡是要证明某一特定的固有函数系的正交性都可采用这个方法.下面我们就来证明当m n λλ≠时,下列关系()()()0bm n ax y x y x dx ρ=⎰(7.21)成立.证 因为固有函数()m y x 与()n y x 分别是方程(7.20)当m λλ=与n λλ=时的非零解,两点均应提自然边界条件.所以有()()()()()()0,m m m m dy x d k x q x y x x y x dx dx λρ⎡⎤-+=⎢⎥⎣⎦ (7.22) ()()()()()()0.n n n n dy x d k x q x y x x y x dx dx λρ⎡⎤-+=⎢⎥⎣⎦(7.23) 以()n y x 乘(7 .22)减去()m y x 乘(7.23)得()()()()()()m n n m dy x dy x d d y x k x y x k x dx dx dx dx ⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦()()()()0.m n m n x y x y x λλρ+-=对这个等式从a 到b 对x 积分得()()0()()()()bb m n n m aa dy x dy x d d y x k x dx y x k x dx dx dx dx dx ⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰()()()()bm n m n ax y x y x dx λλρ+-⎰()()()()()()bm nn m ady x dy x k x y x k x y x dx dx ⎡⎤=-⎢⎥⎣⎦()()()()()()bb m n n m a a dy x dy x dy x dy x k x dx k x dxdx dx dx dx-+⎰⎰()()()()bm n m n ax y x y x dx λλρ+-⎰()()()()()m m n m dy x dy b k b y b y b dx dx ⎡⎤=-⎢⎥⎣⎦()()()()()m n n m dy a dy a k a y a y a dx dx ⎡⎤--⎢⎥⎣⎦()()()(),bm n m n ax y x y x dx λλρ+-⎰ (7,24)此处符号()n dy a dx 表示()n dy x dx在x a =处的值,其余类似.(7.24)式右端前两项的值可以分几种情况来讨论:(i)在端点b 加有第一类边界条件()0,y b =这时有()()0,m n y b y b ==从而()()()()()0.m n n m dy b dy b k b y b y b dx dx ⎡⎤-=⎢⎥⎣⎦(ii)在端点b 加有第二类边界条件()0,dy b dx= 这时有()()0,m n dy b dy b dx dx==从而 ()()()()()0.m n n m dy b dy b k b y b y b dx dx ⎡⎤-=⎢⎥⎣⎦(iii)在端点b 加有第三类边界条件,()()0,dy b y b hdx+= 这时有()()0,()()0.m m nndy b y b h dxdy b y b h dx ⎧+=⎪⎪⎨⎪+=⎪⎩由这两式可得()()()()0,m n n m dy b dy b y b y b dx dx-= 从而()()()()()0.m n n m dy b dy b k b y b y b dx dx ⎡⎤-=⎢⎥⎣⎦(iv) 在端点b 加有自然边界条件(),y b <∞这时必有()0,k b =从而()()()()()0.m n n m dy b dy b k b y b y b dx dx ⎡⎤-=⎢⎥⎣⎦综合上述,不论在b 点加哪一种边界条件,(7.24)右端第一项总是等于零.同理,对端点a 也有()()()()()0.m n n m dy a dy a k a y a y a dx dx ⎡⎤-=⎢⎥⎣⎦因此,最后可得()()()()0.bm n m n ax y x y x dx λλρ-=⎰但m n λλ≠,所以()()()0.bm n ax y x y x dx ρ=⎰正交性得到了证明.上面四个结论是分离变量法的理论基础,在第二章我们用分离变量法求解定解问题时,已经假定定解问题的解能够展成固有函数的级数,至于为什么能这样展开,当时没有说明,现在利用固有函数系的完备性就足以说明以前的有关运算是允许的.下面两章还要用到这里所讲的结论.习 题 七1、在平面极坐标系中将二维波动方程2222222u u u a t xy ⎛⎫∂∂∂=+ ⎪∂∂∂⎝⎭ 进行分离变量,写出各常微分方程.2、在球坐标系中,将三维波动方程222222222u u u u a t xy z ⎛⎫∂∂∂∂=++ ⎪∂∂∂∂⎝⎭ 进行分离变量,写出各常微分方程.3、在柱面坐标系中,将三维拉普拉斯方程进行分离变量,写出各常微分方程.。