江苏2019高考数学二轮专项练习练习:专项三 数列

合集下载

高考数学(理)二轮专题练习:数列、不等式(含答案)

高考数学(理)二轮专题练习:数列、不等式(含答案)

数列、不等式1.已知前n 项和S n =a 1+a 2+a 3+…+a n ,则a n =⎩⎪⎨⎪⎧S 1 (n =1)S n -S n -1 (n ≥2).由S n 求a n 时,易忽略n =1的情况.[问题1] 已知数列{a n }的前n 项和S n =n 2+1,则a n =________.答案 ⎩⎪⎨⎪⎧2, n =12n -1, n ≥22.等差数列的有关概念及性质(1)等差数列的判断方法:定义法a n +1-a n =d (d 为常数)或a n +1-a n =a n -a n -1(n ≥2). (2)等差数列的通项:a n =a 1+(n -1)d 或a n =a m +(n -m )d . (3)等差数列的前n 项和:S n =n (a 1+a n )2,S n =na 1+n (n -1)2d . (4)等差数列的性质①当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)·d =dn +a 1-d 是关于n 的一次函数,且斜率为公差d ;前n 项和S n =na 1+n (n -1)2d =d 2n 2+(a 1-d 2)n 是关于n 的二次函数且常数项为0.②若公差d >0,则为递增等差数列;若公差d <0,则为递减等差数列;若公差d =0,则为常数列.③当m +n =p +q 时,则有a m +a n =a p +a q ,特别地,当m +n =2p 时,则有a m +a n =2a p . ④S n ,S 2n -S n ,S 3n -S 2n 成等差数列.[问题2] 已知等差数列{a n }的前n 项和为S n ,且S 10=12,S 20=17,则S 30为( ) A .15 B .20 C .25 D .30 答案 A3.等比数列的有关概念及性质(1)等比数列的判断方法:定义法a n +1a n =q (q 为常数),其中q ≠0,a n ≠0或a n +1a n =a na n -1(n ≥2).如一个等比数列{a n }共有2n +1项,奇数项之积为100,偶数项之积为120,则a n +1=56.(2)等比数列的通项:a n =a 1q n-1或a n =a m q n-m.(3)等比数列的前n 项和:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.易错警示:由于等比数列前n 项和公式有两种形式,为此在求等比数列前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择求和公式的形式,当不能判断公比q 是否为1时,要对q 分q =1和q ≠1两种情形讨论求解.(4)等比中项:若a ,A ,b 成等比数列,那么A 叫做a 与b 的等比中项.值得注意的是,不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个,即为±ab .如已知两个正数a ,b (a ≠b )的等差中项为A ,等比中项为B ,则A 与B 的大小关系为A >B . (5)等比数列的性质当m +n =p +q 时,则有a m ·a n =a p ·a q ,特别地,当m +n =2p 时,则有a m ·a n =a 2p .[问题3] (1)在等比数列{a n }中,a 3+a 8=124,a 4a 7=-512,公比q 是整数,则a 10=________. (2)各项均为正数的等比数列{a n }中,若a 5·a 6=9,则log 3a 1+log 3a 2+…+log 3a 10=________. 答案 (1)512 (2)10 4.数列求和的方法(1)公式法:等差数列、等比数列求和公式; (2)分组求和法; (3)倒序相加法; (4)错位相减法; (5)裂项法;如:1n (n +1)=1n -1n +1;1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k .(6)并项法.数列求和时要明确:项数、通项,并注意根据通项的特点选取合适的方法.[问题4] 数列{a n }满足a n +a n +1=12(n ∈N ,n ≥1),若a 2=1,S n 是{a n }的前n 项和,则S 21的值为________. 答案 925.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示,不能直接用不等式表示.[问题5] 不等式-3x 2+5x -2>0的解集为________. 答案 ⎝⎛⎭⎫23,16.不等式两端同时乘以一个数或同时除以一个数,必须讨论这个数的正负.两个不等式相乘时,必须注意同向同正时才能进行.[问题6] 已知a ,b ,c ,d 为正实数,且c >d ,则“a >b ”是“ac >bd ”的________条件. 答案 充分不必要7.基本不等式:a +b2≥ab (a ,b >0)(1)推广:a 2+b 22≥a +b 2≥ab ≥21a +1b(a ,b >0). (2)用法:已知x ,y 都是正数,则①若积xy 是定值p ,则当x =y 时,和x +y 有最小值2p ; ②若和x +y 是定值s ,则当x =y 时,积xy 有最大值14s 2.易错警示:利用基本不等式求最值时,要注意验证“一正、二定、三相等”的条件. [问题7] 已知a >0,b >0,a +b =1,则y =1a +4b 的最小值是________.答案 98.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.[问题8] 设定点A (0,1),动点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x ≥0,y ≤x ,则|P A |的最小值是________.答案22易错点1 忽视对等比数列中公比的分类讨论致误例1 设等比数列{a n }的前n 项和为S n ,若S 3+S 6=S 9,则数列的公比q 是________. 错解 -1找准失分点 当q =1时,符合要求.很多考生在做本题时都想当然地认为q ≠1. 正解 ①当q =1时,S 3+S 6=9a 1,S 9=9a 1, ∴S 3+S 6=S 9成立. ②当q ≠1时,由S 3+S 6=S 9 得a 1(1-q 3)1-q +a 1(1-q 6)1-q =a 1(1-q 9)1-q∴q 9-q 6-q 3+1=0,即(q 3-1)(q 6-1)=0. ∵q ≠1,∴q 3-1≠0,∴q 6=1,∴q =-1. 答案 1或-1易错点2 忽视分类讨论或讨论不当致误例2 若等差数列{a n }的首项a 1=21,公差d =-4,求:S k =|a 1|+|a 2|+|a 3|+…+|a k |. 错解 由题意,知a n =21-4(n -1)=25-4n ,因此由a n ≥0,解得n ≤254,即数列{a n }的前6项大于0,从第7项开始,以后各项均小于0.|a 1|+|a 2|+|a 3|+…+|a k |=(a 1+a 2+a 3+…+a 6)-(a 7+a 8+…+a k )=2(a 1+a 2+…+a 6)-(a 1+a 2+…+a 6+a 7+a 8+…+a k ) =2k 2-23k +132 所以S k =2k 2-23k +132.找准失分点 忽视了k ≤6的情况,只给出了k ≥7的情况.正解 由题意,知a n =21-4(n -1)=25-4n ,因此由a n ≥0,解得n ≤254,即数列{a n }的前6项大于0,从第7项开始,以后各项均小于0. 当k ≤6时,S k =|a 1|+|a 2|+…+|a k |=a 1+a 2+…+a k =-2k 2+23k .当k ≥7时,|a 1|+|a 2|+|a 3|+…+|a k | =(a 1+a 2+a 3+…+a 6)-(a 7+a 8+…+a k )=2(a 1+a 2+…+a 6)-(a 1+a 2+…+a 6+a 7+a 8+…+a k ) =2k 2-23k +132,所以S k =⎩⎪⎨⎪⎧-2k 2+23k (k ≤6)2k 2-23k +132 (k ≥7).易错点3 忽视等比数列中的隐含条件致误例3 各项均为实数的等比数列{a n }的前n 项和为S n ,若S 10=10,S 30=70,则S 40=________. 错解 150或-200找准失分点 数列S 10,S 20-S 10,S 30-S 20,S 40-S 30的公比q 10>0.忽略了此隐含条件,就产生了增解-200.正解 记b 1=S 10,b 2=S 20-S 10,b 3=S 30-S 20,b 4=S 40-S 30, b 1,b 2,b 3,b 4是以公比为r =q 10>0的等比数列. ∴b 1+b 2+b 3=10+10r +10r 2=S 30=70, ∴r 2+r -6=0,∴r =2或r =-3(舍去), ∴S 40=b 1+b 2+b 3+b 4=10(1-24)1-2=150.答案 150易错点4 忽视基本不等式中等号成立的条件致误例4 已知:a >0,b >0,a +b =1,求⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2的最小值.错解 由⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2=a 2+b 2+1a 2+1b 2+4 ≥2ab +2ab+4≥4ab ·1ab+4=8, 得⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2的最小值是8. 找准失分点 两次利用基本不等式,等号不能同时取到. 正解 ⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2 =a 2+b 2+1a 2+1b 2+4=(a 2+b 2)+⎝⎛⎭⎫1a 2+1b 2+4 =[(a +b )2-2ab ]+⎣⎡⎦⎤⎝⎛⎭⎫1a +1b 2-2ab +4=(1-2ab )⎝⎛⎭⎫1+1a 2b 2+4 由ab ≤⎝⎛⎭⎫a +b 22=14,得1-2ab ≥1-12=12,且1a 2b2≥16,1+1a 2b2≥17.∴原式≥12×17+4=252(当且仅当a =b =12时,等号成立),∴⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2的最小值是252.1.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7等于( ) A .10 B .18 C .20 D .28答案 C解析 因为a 3+a 8=10,所以由等差数列的性质,得a 5+a 6=10, 所以3a 5+a 7=2a 5+2a 6=20,选C.2.若1a <1b <0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b 中,正确的不等式有( )A .0个B .1个C .2个D .3个答案 B解析 由1a <1b<0,得a <0,b <0,故a +b <0且ab >0,所以a +b <ab ,即①正确; 由1a <1b<0,得⎪⎪⎪⎪1a >⎪⎪⎪⎪1b ,两边同乘|ab |,得|b |>|a |,故②错误;由①②知|b |>|a |,a <0,b <0,所以a >b ,即③错误,选B.3.已知,x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy 有( )A .最小值eB .最小值 eC .最大值eD .最大值 e答案 A解析 x >1,y >1,且14ln x ,14,ln y 成等比数列,14ln x ·ln y =(14)2,即14=ln x ·ln y ≤(ln x +ln y 2)2,ln x +ln y ≥1,ln xy ≥1,故xy ≥e.4.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5等于( ) A .3∶4 B .2∶3 C .1∶2 D .1∶3答案 A解析 ∵{a n }是等比数列,∴S 5,S 10-S 5,S 15-S 10也构成等比数列, 记S 5=2k (k ≠0),则S 10=k ,可得S 10-S 5=-k , 进而得S 15-S 10=12k ,于是S 15=32k ,故S 15∶S 5=32k ∶2k =3∶4.5.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,…循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第50个括号内各数之和为( ) A .195 B .197 C .392 D .396答案 C解析 将三个括号作为一组,则由50=16×3+2,知第50个括号应为第17组的第二个括号,即第50个括号中应是两个数.又因为每组中含有6个数,所以第48个括号的最末一个数为数列{2n -1}的第16×6=96项,第50个括号的第一个数应为数列{2n -1}的第98项,即为2×98-1=195,第二个数为2×99-1=197,故第50个括号内各数之和为195+197=392.故选C.6.已知点A (m ,n )在直线x +2y -1=0上,则2m +4n 的最小值为________. 答案 2 2解析 点A (m ,n )在直线x +2y -1=0上,则m +2n =1;2m +4n =2m +22n ≥22m ·22n =22m+2n=2 2.7.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b )2cd 的最小值是________.答案 4解析 由x ,a ,b ,y 成等差数列知a +b =x +y ,① 由x ,c ,d ,y 成等比数列知cd =xy ,②把①②代入(a +b )2cd 得(a +b )2cd =(x +y )2xy =x 2+y 2+2xy xy ≥4,∴(a +b )2cd的最小值为4.8.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2y ≤2x ≤2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.答案 4解析 画出可行域D ,如图中阴影部分所示,而z =OM →·OA →=2x +y , ∴y =-2x +z , 令l 0:y =-2x ,将l 0平移到过点(2,2)时, 截距z 有最大值, 故z max =2×2+2=4.9.已知函数f (x )=⎩⎪⎨⎪⎧(4-a 2)x +4(x ≤6),a x -5(x >6)(a >0,a ≠1).数列{a n }满足a n =f (n )(n ∈N *),且{a n }是单调递增数列,则实数a 的取值范围是________. 答案 (4,8)解析 ∵{a n }是单调递增数列,∴⎩⎪⎨⎪⎧4-a 2>0a >1(4-a 2)×6+4<a2,⎩⎪⎨⎪⎧a <8a >1a <-7或a >4, ∴4<a <8.10.已知正项数列{a n },其前n 项和S n 满足8S n =a 2n +4a n +3,且a 2是a 1和a 7的等比中项. (1)求数列{a n }的通项公式;(2)符号[x ]表示不超过实数x 的最大整数,记b n =[log 2(a n +34)],求b 1+b 2+b 3+…+b 2n .解 (1)由8S n =a 2n +4a n +3,①知8S n -1=a 2n -1+4a n -1+3(n ≥2,n ∈N ).② 由①-②得8a n =(a n -a n -1)(a n +a n -1)+4a n -4a n -1, 整理得(a n -a n -1-4)(a n +a n -1)=0(n ≥2,n ∈N ). ∵{a n }为正项数列, ∴a n +a n -1>0,∴a n -a n -1=4(n ≥2,n ∈N ).∴{a n }为公差为4的等差数列,由8a 1=a 21+4a 1+3,得a 1=3或a 1=1. 当a 1=3时,a 2=7,a 7=27,不满足a 2是a 1和a 7的等比中项. 当a 1=1时,a 2=5,a 7=25,满足a 2是a 1和a 7的等比中项. ∴a n =1+(n -1)4=4n -3.(2)由a n =4n -3得b n =[log 2(a n +34)]=[log 2n ],由符号[x ]表示不超过实数x 的最大整数知,当2m ≤n <2m+1时,[log 2n ]=m ,所以令S =b 1+b 2+b 3+…+b 2n =[log 21]+[log 22]+[log 23]+…+[log 22n ] =0+1+1+2+…+3+…+4+…+n -1+…+n . ∴S =1×21+2×22+3×23+4×24+(n -1)×2n -1+n ,①2S =1×22+2×23+3×24+4×25+(n -1)×2n +2n .② ①-②得-S =2+22+23+24+…+2n -1-(n -1)2n -n=2(1-2n -1)1-2-(n -1)2n -n =(2-n )2n -n -2,∴S =(n -2)2n +n +2,即b 1+b 2+b 3+…+b 2n =(n -2)2n +n +2.。

江苏省各地2019届高考模拟考试数学试题分类汇编:数列(含答案)

江苏省各地2019届高考模拟考试数学试题分类汇编:数列(含答案)

第 1 页 共 21 页 江苏省各地2019届高考模拟考试数学试题分类汇编:
数列
一、填空题
1、(南京市、盐城市2019届高三第二次模拟)等差数列{}n a 中,410a =,前12项的和1290S =,则18a 的值为 .
2、(南京市2019届高三第三次模拟)已知数列{a n }的前n 项和为S n ,且2S n =3n -1,n ∈N*.若b n =log 3a n ,则b 1+b 2+b 3+b 4的值为 .
3、(南通、如皋市2019届高三下学期语数英学科模拟(二))已知数列{n a }的首项118a =,数列{n b }是等比数列,且5b =2,若1n n n
a b a +=,则10a =__ 4、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月)) 已知数列{}n a 是等比数列,有下列四个命题: ①数列{}n a 是等比数列; ②数列{}1+n n a a 是等比数列; ③数列1⎧⎫⎨⎬⎩⎭
n a 是等比数列; ④数列{}2lg n a 是等比数列. 其中正确的命题有 个.
5、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟(5月)) 已知{}n a 是等比数列,前n 项和为n S .若324a a -=,416a =,则3S 的值为
6、(苏锡常镇四市2019届高三教学情况调查(二))已知等比数列{}n a 的前n 项和为n S ,若622a a =,则128
S S = . 7、(苏锡常镇四市2019届高三教学情况调查(一))如图是抽取某学校160名学生的体重频率分布直方图,已知从左到右的前3组的频率成等差数列,则第2组的频数为。

2019年高考数学二轮复习专项三 特色讲练数学传统文化

2019年高考数学二轮复习专项三 特色讲练数学传统文化

年份 卷别 考查内容及考题位置 命题分析2018卷Ⅲ三视图·T 3数学文化题是近几年课标全国卷中出现的新题型,预计在高考中,数学文化题仍会以选择题或填空题的形式考查,也不排除以解答题的形式考查,难度适中或容易.2017卷Ⅰ中国古代太极图与几何概型·T 2 卷Ⅱ数列求和·T 3 2016卷Ⅱ秦九韶算法·T 8立体几何中的数学文化题立体几何中的数学文化题一般以我国古代发现的球的体积公式、圆柱的体积公式、圆锥的体积公式、圆台的体积公式和“牟合方盖”“阳马”“鳖臑”“堑堵”“刍薨”等中国古代几何名词为背景考查空间几何体的三视图、几何体的体积与表面积等.[典型例题](1)(2018·郑州第二次质量预测)我国古代数学专著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“鳖臑”意指四个面都是直角三角形的三棱锥.某“鳖臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知该几何体的高为22,则该几何体外接球的表面积为________.(2)(2018·黄冈模拟)我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是几何体的高,“幂”是截面面积.其意:如果两个等高的几何体在同高处的截面面积恒等,那么这两个几何体的体积相等.已知双曲线C 的渐近线方程为y =±2x ,一个焦点为(5,0).直线y =0与y =3在第一象限内与双曲线及渐近线围成如图所示的图形OABN ,则它绕y 轴旋转一圈所得几何体的体积为________.【解析】 (1)由该几何体的三视图还原其直观图,并放入长方体中,如图中的三棱锥A -BCD 所示,其中AB =22,BC =CD =2,易知长方体的外接球即三棱锥A ­BCD 的外接球,设外接球的直径为2R ,所以4R 2=(22)2+(2)2+(2)2=8+2+2=12,则R 2=3,因此外接球的表面积S =4πR 2=12π.(2)由题意可得双曲线的方程为x 2-y 24=1,直线y =3在第一象限内与渐近线的交点N 的坐标为⎝⎛⎭⎫32,3,与双曲线在第一象限内的交点B 的坐标为⎝⎛⎭⎫132,3,在所得几何体中,在高为h 处作一截面,则截面面积为π⎝⎛⎭⎫1+h 24-h24=π,根据祖暅原理,可得该几何体的体积与底面面积为π,高为3的圆柱的体积相同,故所得几何体的体积为3π.【答案】 (1)12π (2)3π(1)本例(1)以“鳖臑”为背景,考查由三视图还原几何体,并求几何体的表面积.此类问题源于生活中的盖房问题.这将引领师生关注生产、生活中的社会问题,体现数学文化“以数化人”的功能.对于其他几何体,如“刍童”“羡除”等,需要给予关注.(2)祖暅原理是我国古代数学家祖暅提出的一个关于几何体体积的著名定理,祖暅提出这个原理,要比其他国家的数学家早一千多年.人教A 版《必修2》教材第30页专门介绍了祖暅原理.本题取材于祖暅原理,既考查了考生的基础知识和基本技能,又展示了中华优秀传统文化.[对点训练]《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈7264L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.355113解析:选A.依题意,设圆锥的底面半径为r ,则V =13πr 2h ≈7264L 2h =7264(2πr )2h ,化简得π≈227.故选A.数列中的数学文化题数列中的数学文化题一般以我国古代数学名著中的等差数列和等比数列问题为背景,考查等差数列和等比数列的概念、通项公式和前n 项和公式.[典型例题](1)《九章算术》中有一题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何.其意思是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”若按此比例偿还,牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿( )A.507斗粟 B.107斗粟 C.157斗粟 D.207斗粟 (2)北宋数学家沈括的主要成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n 层,上底由a ×b 个物体组成,以下各层的长、宽依次增加一个物体,最下层(即下底)由c ×d 个物体组成,沈括给出求隙积中物体总数的公式为s =n 6[(2a +c )b +(2c +a )d ]+n6(c -a ),其中a 是上底长,b 是上底宽,c 是下底长,d 是下底宽,n 为层数.已知由若干个相同小球粘黏组成的隙积的三视图如图所示,则该隙积中所有小球的个数为( )A .83B .84C .85D .86【解析】 (1)法一:设羊、马、牛主人赔偿的粟的斗数分别为a 1,a 2,a 3,则这3个数依次成等比数列,公比q =2,所以a 1+2a 1+4a 1=5,解得a 1=57,故a 3=207,a 3-a 1=207-57=157,故选C.法二:羊、马、牛主人赔偿的比例是1∶2∶4,故牛主人应赔偿5×47=207(斗),羊主人应赔偿5×17=57(斗),故牛主人比羊主人多赔偿了207-57=157(斗),故选C. (2)由三视图知,n =5,a =3,b =1,c =7,d =5,代入公式s =n 6[(2a +c )b +(2c +a )d ]+n6(c -a )得s =85,故选C.【答案】 (1)C (2)C解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等比(差)数列的概念、通项公式和前n 项和公式.[对点训练]《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为:已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列,问五人各得多少钱?(“钱”是古代的一种重量单位)在这个问题中,丙所得为( )A.76钱B.56钱C.23钱 D.1钱解析:选D.因为甲、乙、丙、丁、戊每人所得依次成等差数列,设每人所得依次为a -2d 、a -d 、a 、a +d 、a +2d ,则a -2d +a -d +a +a +d +a +2d =5,解得a =1,即丙所得为1钱,故选D.算法中的数学文化题算法中的数学文化题一般以我国古代优秀算法为背景,考查程序框图.[典型例题](1)公元三世纪中期,数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并因此创立了割圆术.利用割圆术,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的割圆术设计的程序框图,则输出的n 为(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)( )A .12B .24C .36D .48(2)我国古代的劳动人民曾创造了灿烂的中华文明,戍边的官兵通过在烽火台上举火向国内报告,烽火台上点火表示数字1,不点火表示数字0,这蕴含了进位制的思想.图中的程序框图的算法思路就源于我国古代戍边官兵的“烽火传信”.执行该程序框图,若输入a =110011,k =2,n =7,则输出的b =( )A .19B .31C.51 D.63【解析】(1)按照程序框图执行,n=6,S=3sin 60°=332,不满足条件S≥3.10,执行循环;n=12,S=6sin 30°=3,不满足条件S≥3.10,执行循环;n=24,S=12sin 15°≈12×0.258 8=3.105 6,满足条件S≥3.10,跳出循环,输出n的值为24,故选B.(2)按照程序框图执行,b依次为0,1,3,3,3,19,51,当b=51时,i=i+1=7,跳出循环,故输出b=51.故选C.【答案】(1)B(2)C辗转相除法、更相减损术、秦九韶算法、进位制和割圆术都是课本上出现的算法案例.其中,更相减损术和秦九韶算法是中国古代的优秀算法,课本上的进位制案例原本不渗透中国古代数学文化,但命题人巧妙地将烽火戍边的故事作为背景,强化了试题的“文化育人”功能.[对点训练]《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数.若是,用2约简;若不是,执行第二步;第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出“更相减损术”的程序框图如图所示,如果输入的a=114,b=30,则输出的n为()A.3 B.6C.7 D.30解析:选C.a=114,b=30,k=1,n=0,a,b都是偶数,a=57,b=15,k=2,a,b不满足都为偶数,a=b不成立,a>b成立,a=57-15=42,n=0+1=1;a=b不成立,a>b成立,a=42-15=27,n=1+1=2;a=b不成立,a>b成立,a=27-15=12,n=2+1=3;a=b不成立,a>b不成立,a=15,b=12,a =15-12=3,n=3+1=4;a=b不成立,a>b不成立,a=12,b=3,a=12-3=9,n=4+1=5;a=b不成立,a>b成立,a=9-3=6,n=5+1=6;a=b不成立,a>b成立,a=6-3=3,n=6+1=7;a=b成立,输出的kb=6,n=7.概率中的数学文化题概率中的数学文化题一般以优秀传统文化为背景,考查古典概型和几何概型.[典型例题](1)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,田忌获胜的概率是( )A.13B.14C.15D.16(2)太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案,如图所示,其中小圆的半径均为1,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A.136B.118C.112D.19【解析】 (1)从双方的马匹中随机选一匹马进行一场比赛,对阵情况如下表:齐王的马 上 上 上 中 中 中 下 下 下 田忌的马上中下上中下上中下双方马的对阵中,有3种对抗情况田忌能赢,所以田忌获胜的概率P =39=13.故选A.(2)函数y =3sin π6x 的图象与x 轴相交于点(6,0)和点(-6,0),则大圆的半径为6,面积为36π,而小圆的半径为1,两个小圆的面积和为2π,所以所求的概率是2π36π=118.故选B.【答案】 (1)A (2)B(1)本例(1)选取田忌赛马这一为人熟知的故事作为背景,考查了古典概型,趣味性很强,利于缓解考生在考场的紧张心理,体现了对考生的人文关怀.(2)本例(2)以中国优秀传统文化太极图为背景,考查几何概型,角度新颖,所给图形有利于考生分析问题和解决问题,给出了如何将抽象的数学问题形象化的范例.[对点训练]《九章算术》是我国古代数学名著,书中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )A.π15 B.2π5 C.2π15D.4π15解析:选C.因为该直角三角形两直角边长分别为5步和12步,所以其斜边长为13步,设其内切圆的半径为r ,则12×5×12=12(5+12+13)r ,解得r =2.由几何概型的概率公式,得此点取自内切圆内的概率P =4π12×5×12=2π15.故选C.三角函数中的数学文化题三角函数中的数学文化题一般以我国古代数学名著中的几何测量问题或几何图形为背景,考查解三角形或三角变换.[典型例题](2018·益阳、湘潭调研)《数书九章》中给出了“已知三角形三边长求三角形面积的求法”,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代人具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.若把这段文字写成公式,即S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222,现有周长为22+5的△ABC 满足sin A ∶sin B ∶sin C =(2-1)∶5∶(2+1),用上面给出的公式求得△ABC 的面积为( )A.32 B.34 C.52D.54【解析】 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =(2-1)∶5∶(2+1),可设三角形的三边分别为a =(2-1)x ,b =5x ,c =(2+1)x ,由题意得(2-1)x +5x +(2+1)x =(22+5)x =22+5,则x =1,故由三角形的面积公式可得△ABC 的面积S =14⎣⎢⎡⎦⎥⎤(2+1)2(2-1)2-⎝ ⎛⎭⎪⎫3+22+3-22-522=34,故选B. 【答案】 B我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S =p (p -a )(p -b )(p -c ),其中p =12(a +b +c ))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白,从中可以看出我国古代已经具有很高的数学水平,人教A 版《必修5》教材对此有专门介绍.本题取材于教材中出现的“三斜求积”公式,考查了运算求解能力,同时也传播了中华优秀传统文化.[对点训练]第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为1,大正方形的面积为25,直角三角形中较大的锐角为θ,那么tan ⎝⎛⎭⎫θ+π4=________.解析:依题意得大、小正方形的边长分别是5,1,于是有5sin θ-5cos θ=1(0<θ<π2),即有sin θ-cos θ=15.从而(sin θ+cos θ)2=2-(sin θ-cos θ)2=4925,则sin θ+cos θ=75,因此sin θ=45,cos θ=35,tan θ=43,故tan ⎝⎛⎭⎫θ+π4=tan θ+11-tan θ=-7.答案:-7函数中的数学文化题函数中的数学文化题一般以中华优秀传统文化为背景,考查函数的图象与性质.[典型例题]中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.定义:图象能够将圆O 的周长和面积同时等分成两部分的函数称为圆O 的一个“太极函数”,给出下列命题:①对于任意一个圆O ,其“太极函数”有无数个; ②函数f (x )=ln(x 2+x 2+1)可以是某个圆的“太极函数”; ③正弦函数y =sin x 可以同时是无数个圆的“太极函数”;④函数y =f (x )是“太极函数”的充要条件为函数y =f (x )的图象是中心对称图形. 其中正确的命题为( )A .①③B .①③④C .②③D .①④【解析】 过圆心的直线都可以将圆的周长和面积等分成两部分,故对于任意一个圆O ,其“太极函数”有无数个,故①正确;函数f (x )=ln(x 2+x 2+1)的图象如图所示,故其不可能为圆的“太极函数”,故②错误;将圆的圆心放在正弦函数y =sin x 图象的对称中心上,则正弦函数y =sin x 是该圆的“太极函数”,从而正弦函数y =sin x 可以同时是无数个圆的“太极函数”,故③正确; 函数y =f (x )的图象是中心对称图形,则y =f (x )是“太极函数”,但函数y =f (x )是“太极函数”时,图象不一定是中心对称图形,如图,故④错误.故选A.【答案】 A中华太极图,悠悠千古昭著于世,像朝日那样辉煌宏丽,又像明月那样清亮壮美.它是我们华夏先祖的智慧结晶,它是中国传统文化的骄傲象征,它更是中华民族献给人类文明的无价之宝.试题通过太极图展示了数学文化的民族性与世界性.[对点训练]在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,如图所示,鳖臑ABCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则函数y =f (x )的图象大致是( )解析:选A.如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则PQ ∥AB ,QR ∥CD . 因为PQ ⊥BD ,又PQ ∩QR =Q ,所以BD ⊥平面PQR ,所以BD ⊥PR ,即PR 为△PBD 中BD 边上的高.设AB =BD =CD =1,则CP AC =x 3=PQ 1,即PQ =x 3,又QR 1=BQ BC =APAC =3-x 3,所以QR =3-x 3,所以PR =PQ 2+QR 2=⎝⎛⎭⎫x 32+⎝ ⎛⎭⎪⎫3-x 32=332x 2-23x +3,所以f (x )=362x 2-23x +3=66⎝⎛⎭⎫x -322+34,故选A.一、选择题1.(2018·合肥模拟)我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(ɡuǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四个节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是( )A .五寸B .二尺五寸C .三尺五寸D .四尺五寸解析:选B.设从夏至到冬至的晷长依次构成等差数列{a n },公差为d ,a 1=15,a 13=135,则15+12d =135,解得d =10.所以a 2=15+10=25,所以小暑的晷长是25寸.故选B.2.(2018·益阳、湘潭调研)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例.若输入n ,x 的值分别为3,3,则输出v 的值为( )A .15B .16C .47D .48解析:选D.执行程序框图,n =3,x =3,v =1,i =2≥0,v =1×3+2=5,i =1≥0,v =5×3+1=16,i =0≥0,v =16×3+0=48,i =-1<0,退出循环,输出v 的值为48.故选D.3.(2018·沈阳教学质量监测(一))刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国宝贵的数学遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )A.334πB.332πC.12πD.14π解析:选B.如图,在单位圆中作其内接正六边形,则所求概率P =S 六边形S 圆=34×12×6π×12=332π.4.(2018·高考北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32f B.322f C.1225fD.1227f解析:选D.从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122,第一个单音的频率为f ,由等比数列的概念可知,这十三个单音的频率构成一个首项为f ,公比为122的等比数列,记为{a n },则第八个单音频率为a 8=f (122)8-1=1227f ,故选D.5.(2018·潍坊模拟)“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅、…、癸酉,甲戌、乙亥、丙子、…、癸未,甲申、乙酉、丙戌、…、癸巳,…,癸亥,60个为一周,周而复始,循环记录.2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( )A .己亥年B .戊戌年C .庚子年D .辛丑年解析:选C.由题意知2014年是甲午年,则2015到2020年分别为乙未年、丙申年、丁酉年、戊戌年、己亥年、庚子年.6.(2018·惠州第二次调研)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:卦名 符号表示的二进制数表示的十进制数坤 000 0 艮 001 1 坎 010 2 巽0113依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( ) A .33 B .34 C .36D .35解析:选B.由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B.7.(2018·兰州模拟)刘徽《九章算术注》记载:“邪解立方,得两堑堵.邪解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意即把一长方体沿对角面一分为二,这相同的两块叫堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2∶1,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为( )A.3πB.3π2C .3πD .4π解析:选B.由三视图得阳马是一个四棱锥,如图中四棱锥P -ABCD ,其中底面是边长为1的正方形,侧棱P A ⊥底面ABCD 且P A =1,所以PC =3,PC 是四棱锥P -ABCD 的外接球的直径,所以此阳马的外接球的体积为4π3⎝⎛⎭⎫323=3π2,故选B.8.(2018·唐山五校联考)割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.这是公元三世纪我国古代数学家刘徽大胆地应用以直代曲、无限趋近求圆周率的思想方法.现利用刘徽的“割圆术”思想设计一个计算圆周率的近似值的程序框图(如图).若输入的a =3,n =10,则输出的n =( )A .20B .40C .80D .160参考数据:α 36° 18° 9° 4.5° sin α0.587 80.309 00.156 40.078 5解析:选B.当a =3,n =10时,b =3,a =12×10sin 360°10=2.939,此时|a -b |=0.061>0.05,不满足条件,则n =20,b =2.939,a =12×20×sin 360°20=3.090,此时|a -b |=0.151>0.05,不满足条件,则n =40,b =3.090,a =12×40×sin 360°40=3.128,此时|a -b |=0.038<0.05,满足条件,故输出的n =40.故选B. 9.我国南宋著名数学家秦九韶发现了由三角形三边长求三角形的面积的“三斜求积”公式:设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,则△ABC 的面积S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222.若a 2sin C =4sinA ,(a +c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为( )A. 3 B .2 C .3D. 6解析:选A.根据正弦定理,由a 2sin C =4sin A ,得ac =4.再结合(a +c )2=12+b 2,得a 2+c 2-b 2=4,则S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222=16-44=3,故选A. 10.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A.392B.752C .39D.6018解析:选B.设下底面的长为x ⎝⎛⎭⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝⎛⎭⎫922+92×172+392=752.故选B.11.(2018·昆明模拟)我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,提出下面的体积计算原理(祖暅原理):“幂势既同,则积不容异”.“幂”是截面面积,“势”是几何体的高.意思是:若两个等高几何体在同高处的截面面积总相等,则这两个几何体的体积相等.现在一旋转体D (如图1所示),它是由抛物线y =x 2(x ≥0),直线y =4及y 轴围成的封闭图形绕y 轴旋转一周形成的几何体,旋转体D 的参照体的三视图如图2所示,利用祖暅原理,则旋转体D 的体积是( )A.16π3 B .6π C .8πD .16π解析:选C.由三视图知参照体是一个直三棱柱,其体积V =12×4×4×π=8π,故旋转体D 的体积为8π,故选C.12.(2018·郑州第一次质量预测)刍甍,中国古代算数中的一种几何形体,《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也”.翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶”.如图为一个刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则该茅草屋顶的面积为( )A .24B .32 5C .64D .32 6解析:选B.由三视图可知该几何体的直观图如图所示,其中S 四边形ABED =S 四边形ACFD ,S △ABC =S △DEF .过点A 向平面BCFE 作垂线,垂足为A ′,作AM ⊥CF 于点M ,作AN ⊥BC 于点N ,连接A ′N ,易知AA ′=4,A ′N =CM =8-42=2,CN =12BC =2.在Rt △AA ′N 中,AN =AA ′2+A ′N 2=42+22=25,在Rt △ANC 中,AC=CN 2+AN 2=22+(25)2=26,在Rt △AMC 中,AM =AC 2-CM 2=(26)2-22=2 5.所以S四边形ACFD =12×(4+8)×25=125,S △ABC=12×BC ×AN =12×4×25=4 5.所以该茅草屋顶的面积为2×125+2×45=325,故选B.二、填空题13.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:“今有蒲草第1天长高3尺,莞草第1天长高1尺.以后,蒲草每天长高前一天的一半,莞草每天长高前一天的2倍.问第几天蒲草和莞草的高度相同?”根据上述的已知条件,可求得第________天时,蒲草和莞草的高度相同.(结果采取“只入不舍”的原则取整数,相关数据:lg 3≈0.477 1,lg 2≈0.301 0).解析:由题意得,蒲草的长度组成首项为a 1=3,公比为12的等比数列{a n },设其前n 项和为A n ;莞草的长度组成首项为b 1=1,公比为2的等比数列{b n },设其前n 项和为B n .则A n =3⎝⎛⎭⎫1-12n 1-12,B n =2n -12-1,令3⎝⎛⎭⎫1-12n 1-12=2n -12-1,化简得2n +62n =7(n ∈N *),解得2n =6,所以n =lg 6lg 2=1+lg 3lg 2≈3,即第3天时蒲草和莞草长度相等.答案:314.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n =________.解析:第一次循环,得S =2,否;第二次循环,得n =2,a =12,A =2,S =92,否;第三次循环,得n=3,a =14,A =4,S =354,否;第四次循环,得n =4,a =18,A =8,S =1358>10,是,输出的n =4.答案:415.(2018·广州调研)我国南宋数学家杨辉所著的《详解九章算法》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角”.现将杨辉三角中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为S n ,如S 1=1,S 2=2,S 3=2,S 4=4,…,则S 126=________.解析:题图②中的三角形数表,从上往下数,第1次全行的数都为1的是第1行,有1个1,第2次全行的数都为1的是第2行,有2个1,第3次全行的数都为1的是第4行,有4个1,依此类推,第n 次全行的数都为1的是第2n-1行,有2n-1个1.第1行,1个1,第2行,2个1,第3行,2个1,第4行,4个1;第1行1的个数是第2行1的个数的12,第2行与第3行1的个数相同,第3行1的个数是第4行1的个数的12;第5行,2个1,第6行,4个1,第7行,4个1,第8行,8个1;第5行1的个数是第6行1的个数的12,第6行与第7行1的个数相同,第7行1的个数是第8行1的个数的12.根据以上规律,当n =8时,第28-1行有128个1,即S 128=128,第127行有64个1,即S 127=64,第126行有64个1,即S 126=64. 答案:6416.我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,于五世纪末提出下面的体积计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是几何体的高,“幂”是截面积.意思是,两等高立方体,若在每一等高处的截面积都相等,则两立方体体积相等.现有下题:在xOy 平面上,将两个半圆弧(x -1)2+y 2=1(x ≥1)和(x -3)2+y 2=1(x ≥3)、两条直线y =1和y =-1围成的封闭图形记为D ,如图所示阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,y )(|y |≤1)作Ω的水平截面,所得截面面积为4π1-y 2+8π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为________.解析:根据提示,一个底面半径为1,高为2π的圆柱平放,一个高为2,底面积为8π的长方体,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面面积都相等,故它们的体积相等,即Ω的体积为π·12·2π+2·8π=2π2+16π.答案:2π2+16π。

江苏省2019高考数学二轮复习自主加餐的3大题型14个填空题强化练九数列含解析

江苏省2019高考数学二轮复习自主加餐的3大题型14个填空题强化练九数列含解析

14个填空题专项强化练(九) 数 列A 组——题型分类练题型一 等差、等比数列的基本运算1.设S n 是等差数列{a n }的前n 项和,若a 2=7,S 7=-7,则a 7的值为________.解析:因为等差数列{a n }满足a 2=7,S 7=-7,所以S 7=7a 4=-7,a 4=-1,所以d ==-4,所以a 7=a 2+5d =-13.a 4-a 24-2答案:-132.(2018·盐城高三模拟)设数列{a n }的前n 项和为S n ,若S n =2a n +n (n ∈N *),则数列{a n }的通项公式为a n =________.解析:S n =2a n +n (n ∈N *) ①,当n =1时,得a 1=-1,当n ≥2时,S n -1=2a n -1+n -1 ②,①-②,得a n =2a n -2a n -1+1(n ≥2),即a n -1=2(a n -1-1)(n ≥2),则数列{a n -1}是以-2为首项,2为公比的等比数列,则a n -1=-2×2n -1=-2n ,a 1=-1符合上式.所以数列{a n }的通项公式为a n =1-2n .答案:1-2n3.已知等比数列{a n }的各项均为正数,若a 4=a ,a 2+a 4=,则a 5=________.2516解析:法一:设等比数列{a n }的首项为a 1(a 1>0),公比为q (q >0),由题意Error!解得Error!所以a 5=a 1q 4=.132法二:(整体思想)依题意由Error!得16a +16a 2-5=0,即(4a 2+5)(4a 2-1)=0,又等2比数列{a n }各项均为正数,所以a 2=,从而a 4=,从而由q 2==,又q >0,所以q =,a 5=14116a 4a 21412a 4q =×=.11612132答案:132[临门一脚]1.等差、等比数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.2.在等差、等比混合后考查基本量的计算容易造成公式和性质混淆,从而造成计算失误.3.等差、等比数列的通项公式:等差数列{a n }的通项公式为a n =a 1+(n -1)d =a m +(n -m )d ;等比数列{a n }的通项公式为a n =a 1q n -1=a m q n -m (a 1≠0,q ≠0).4.等差、等比数列的前n 项和:(1)等差数列的前n 项和为:S n ==na 1+d =n 2+n (二次n a 1+a n2n n -12d 2(a 1-d2)函数).特别地,当d ≠0时,S n 是关于n 的二次函数,且常数项为0,即可设S n =an 2+bn (a ,b 为常数).(2)等比数列的前n 项和为:S n =Error!特别地,若q ≠1,设a =,则S n =a -aq n ,要注意对q 是否等于1讨论.a 11-q题型二 等差、等比数列的性质1.(2018·苏北四市质检)已知等差数列{a n }满足a 1+a 3+a 5+a 7+a 9=10,a -a =36,282则a 11的值为________.解析:因为数列{a n }是等差数列,所以a 1+a 3+a 5+a 7+a 9=5a 5=10,a 5=2,则a -a =282(a 8+a 2)(a 8-a 2)=12a 5d =24d =36,d =,则a 11=a 5+6d =11.32答案:112.设S n 是等比数列{a n }的前n 项和,若=3,则=________.S 4S 2S 6S4解析:设S 2=k ,S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,∴==.S 6S 47k 3k 73答案:733.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+lna 20=________.解析:因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.答案:504.已知数列{a n }是等差数列,且a n >0,若a 1+a 2+…+a 100=500,则a 50·a 51的最大值为________.解析:法一:设等差数列{a n }的公差为d (d ≥0),由题意得,100a 1+4 950d =500,所以a 1=5-49.5d ,所以a 50·a 51=(a 1+49d )·(a 1+50d )=(5-0.5d )·(5+0.5d )=-0.25d 2+25.又d ≥0,所以当d =0时,a 50·a 51有最大值25.法二:由等差数列的性质知,50(a 50+a 51)=500,即a 50+a 51=10,所以由基本不等式得a 50·a 51≤2=25,当且仅当a 50=a 51=5时取等号,所以a 50·a51有最大值25.(a 50+a 512)答案:255.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,若=,则使得A n B n 7n +45n +3a nbn为整数的正整数n 的个数是________.解析:由===a nb n A 2n -1B 2n -17 2n -1 +45 2n -1 +37n +19n +1==7+.因此n ∈N *,∈N *,7 n +1 +12n +112n +1a n b n 故n +1=2,3,4,6,12,即n 共有5个.答案:5[临门一脚]1.若序号m +n =p +q ,在等差数列中,则有a m +a n =a p +a q ;特别的,若序号m +n =2p ,则a m +a n =2a p ;在等比数列中,则有a m ·a n =a p ·a q ;特别的,若序号m +n =2p ,则a m ·a n =a;该性质还可以运用于更多项之间的关系.2p 2.在等差数列{a n }中,S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,其公差为kd ;其中S n 为前n 项的和,且S n ≠0(n ∈N *);在等比数列{a n }中,当q ≠-1或k 不为偶数时S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其中S n 为前n 项的和(n ∈N *).题型三 数列的综合问题1.已知等比数列{a n }的前4项和为5,且4a 1,a 2,a 2成等差数列,若b n =,321log 23a n +1则数列{b n b n +1}的前10项和为________.解析:由4a 1,a 2,a 2成等差数列,可得4a 1+a 2=3a 2,则2a 1=a 2,则等比数列{a n }的32公比q ==2,则数列{a n }的前4项和为=5,解得a 1=,所以a n =×2n -1,b n =a 2a 1a 1 1-24 1-21313=,则b n b n +1==-,其前10项和为++…+1log 23a n +11n 1n n +1 1n 1n +1(1-12)(12-13)(110-111)=.1011答案:10112.对于数列{a n },定义数列{b n }满足:b n =a n +1-a n (n ∈N *),且b n +1-b n =1(n ∈N *),a 3=1,a 4=-1,则a 1=________.解析:由a 3=1,a 4=-1及b n =a n +1-a n 得b 3=a 4-a 3=-2,又由b n +1-b n =1得数列{b n }是等差数列,b n =b 3+(n -3)×1=n -5,所以a n +1-a n =n -5,从而得a 3-a 2=-3⇒a 2=4,a 2-a 1=-4⇒a 1=8.答案:83.(2018·南京四校联考)已知数列{a n }的前n 项和S n =8n -n 2,令b n =a n a n +1a n +2(n ∈N *),设数列{b n }的前n 项和为T n ,当T n 取得最大值时,n =________.解析:法一:当n =1时,a 1=7;当n ≥2时,a n =S n -S n -1=9-2n ,经检验,n =1时也符合,故a n =9-2n ,则b n =a n a n +1a n +2=(9-2n )(7-2n )(5-2n ),当T n 取得最大值时,应满足{b n }的前n 项均为非负项.令b n ≥0得,n ≤2.5或3.5≤n ≤4.5,又n ∈N *,所以n =1,2,4,而T 1=105,T 2=120,T 4=120,故当T n 取得最大值时,n =2或4.法二:由S n =8n -n 2知,数列{a n }为等差数列,且a n =9-2n ,即7,5,3,1,-1,-3,-5,-7,…,枚举知,T 1=105,T 2=120,T 3=117,T 4=120,T 5=105,…,故当T n 取得最大值时,n =2或4.答案:2或44.在等差数列{a n }中,首项a 1=3,公差d =2,若某学生对其中连续10项进行求和,在漏掉一项的前提下,求得余下9项的和为185,则此连续10项的和为________.解析:由已知条件可得数列{a n }的通项公式a n =2n +1,设连续10项为a i +1,a i +2,a i +3,…,a i +10,i ∈N ,设漏掉的一项为a i +k,1≤k ≤10,由-a i +k =185, a i +1+a i +10 ×102得(2i +3+2i +21)×5-2i -2k -1=185,即18i -2k =66,即9i -k =33,所以34≤9i =k +33≤43,3<≤i ≤<5,所以i =4,此时,由36=33+k 得k =3,所以a i +k =a 7=15,故349439此连续10项的和为200.答案:200[临门一脚]1.数列求和的方法主要有错位相减法、倒序相加法、公式法、拆项并项法、裂项相消法等.2.根据递推关系式求通项公式的方法有累加法,累积法,待定系数法,取倒数、取对数等.3.数列单调性可以用定义研究,也可以构造函数进行研究,要注意数列和所构造函数的定义域的差别.B 组——高考提速练1.设S n 为等差数列{a n }的前n 项和,若a 2=1,a 4=5,则S 5=________.解析:法一:由等差数列的通项公式,得5=1+2d ,则d =2,a 1=-1,S 5=5×(-1)+×2=15.5×42法二:S 5====15.5 a 1+a 5 25 a 2+a 4 25×62答案:152.在数列{a n }中,a 1=3,且对任意大于1的正整数n ,-=,则a n =________.a n a n -13解析:由定义知{}是以为首项,以为公差的等差数列,故=n ,即a n =3n 2.a n 33a n 3答案:3n 23.在等比数列{a n }中,若a 1=1,a 3a 5=4(a 4-1),则a 7=________.解析:法一:设等比数列{a n }的公比为q ,因为a 1=1,a 3a 5=4(a 4-1),所以q 2·q 4=4(q 3-1),即q 6-4q 3+4=0,q 3=2,所以a 7=q 6=4.法二:设等比数列{a n }的公比为q, 由a 3a 5=4(a 4-1)得a =4(a 4-1),即a -4a 4+4=0,2424所以a 4=2,因为a 1=1,所以q 3=2,a 7=q 6=4.答案:44.记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为________.解析:设等差数列{a n }的公差为d ,则由Error!得Error!即Error!解得d =4.答案:45.已知等比数列{a n }的前n 项和为S n ,公比q =3,S 3+S 4=,则a 3=________.533解析:因为等比数列{a n }的公比q =3,所以S 3+S 4=2S 3+a 4=2a 3+3a 3=a 3=,所以a 3=3.(1+13+19)539533答案:36.设公差不为0的等差数列{a n }的前n 项和为S n .若S 3=a ,且S 1,S 2,S 4成等比数列,2则a 10=________.解析:设等差数列{a n }的公差为d (d ≠0),由S 3=a 得3a 2=a ,解得a 2=0或a 2=3.22又由S 1,S 2,S 4成等比数列可得S =S 1S 4.若a 2=0,则S 1=S 2=a 1≠0,S 2=S 4=a 1,a 2+a 3+a 4=23a 3=0,a 3=0,则d =0,故a 2=0舍去;若a 2=3,则S 1=3-d ,S 2=6-d ,S 4=12+2d ,有(6-d )2=(3-d )(12+2d )(d ≠0),得d =2,此时a 10=a 2+8d =19.答案:197.在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }的前n 项和,若S n 取得最大值,则n =________.解析:因为3a 4=7a 7,所以3(a 1+3d )=7(a 1+6d ),所以a 1=-d >0,所以d <0,334所以a n =a 1+(n -1)d =(4n -37),d4当n ≤9时,a n >0,当n ≥10时,a n <0,所以使S n 取得最大值的n =9.答案:98.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯________盏.解析:每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7==381,解得a 1=3.a 1 1-271-2答案:39.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的____________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).解析:因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.故“d >0”是“S 4+S 6>2S 5”的充要条件.答案:充要10.设数列满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则(a k ak +1)的值为________.{a n }100∑k =1解析:因为(1-a n +1)(1+a n )=1,所以a n -a n +1-a n a n +1=0,从而-=1,=1,1an +11a n 1a1所以数列是以1为首项,1为公差的等差数列,所以=1+n -1=n ,所以a n=,故a n an +1{1a n}1a n1n ==-,因此(a k a k +1)=++…+=1-=.1n n +1 1n 1n +1100∑k =1(1-12)(12-13)(1100-1101)1101100101答案:10010111.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足=9,=,则数S 2m S m a 2m a m 5m +1m -1列{a n }的公比为________.解析:设数列{a n }的公比为q ,若q =1,则=2,与题中条件矛盾,故q ≠1.因为=S 2m S m S 2mS m =q m +1=9,所以q m =8.所以==q m =8=,所以m =3,所以q 3=a 1 1-q 2m1-q a 1 1-q m 1-qa 2m a m a 1q 2m -1a 1q m -15m +1m -18,所以q =2.答案:212.数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列的前8项和为{1a n}________.解析:因为a n +1-a n =n +1,所以a 2-a 1=1+1,a 3-a 2=2+1,a 4-a 3=3+1,…a n -a n -1=(n -1)+1,以上等式相加,得a n -a 1=1+2+3+…+(n -1)+n -1,把a 1=1代入上式得,a n =1+2+3+…+(n -1)+n =,n n +12∴==2,1a n 2n n +1 (1n -1n +1)∴数列的前n 项的和{1a n}S n =2(1-12+12-13+13-14+…+1n -1n +1)=2=,(1-1n +1)2n n +1∴数列的前8项和为.{1a n}169答案:16913.设S n 是等比数列{a n }的前n 项和,a n >0,若S 6-2S 3=5,则S 9-S 6的最小值为________.解析:法一:当q =1时,S 6-2S 3=0,不合题意,所以q ≠1,从而由S 6-2S 3=5得-=5,从而得==<0,故1-q <0,a 1 1-q 6 1-q 2a 1 1-q 3 1-q a 11-q 5-q 6+2q 3-15- q 3-1 2即q >1,故S 9-S 6=-=a 1 1-q 9 1-q a 1 1-q 6 1-q·(q 6-q 9)=,令q 3-1=t >0,则S 9-S 6==55- q 3-1 25q 6q 3-15 t +1 2t (t +1t+2)≥20,当且仅当t =1,即q 3=2时等号成立.法二:因为S 6=S 3(1+q 3),所以由S 6-2S 3=5得S 3=>0,从而q >1,故S 9-S 6=S 3(q 65q 3-1+q 3+1)-S3(q 3+1)=S3q 6=,以下同法一.5q 6q 3-1答案:2014.已知数列{b n }的每一项都是正整数,且b 1=5,b 2=7<b 3,数列{a n }是公差为d (d ∈N *)的等差数列,且有a 7=6,则使得数列{ab n }是等比数列的d 的值为________.解析:法一:ab 1=a 5=6-2d ,ab 2=a 7=6,易知d ≠3,等比数列{ab n }的公比q ==66-2d,ab n =(6-2d )·n -1,又ab n =6+(b n -7)d ,所以6+(b n -7)d =(6-2d )n -1,33-d (33-d )(33-d)所以6+(b 3-7)d =(6-2d )·2,即6+(b 3-7)d =,由b 3>7,得3-d >0,由d ∈N *(33-d )183-d得d =1或2,当d =1时,b n=4n -1+1,不合题意,当d =2时,b n=3n -1+4,符合题意,(32)所以所求d 的值为2.法二:由数列{ab n }是等比数列得ab 1ab 3=a 2b 2,而ab n =a 7+(b n -7)d ,所以,由b 1=5,b 2=7得,(6-2d )·[6+(b 3-7)d ]=36,易知d ≠3,解得b 3-7=>0,由d ∈N *得,d =163-d或2,当d =1时,b n =4n -1+1,不合题意,当d =2时,b n =3n -1+4,符合题意,所以(32)所求d 的值为2.答案:2。

2025届高考数学二轮复习-数列题型解答题专项训练【含解析】

2025届高考数学二轮复习-数列题型解答题专项训练【含解析】

2025届高考数学二轮复习-数列题型解答题专项训练一、解答题1.已知数列{}n a 的前n 项和为n S ,且()113n n S a =-.(1)求1a ,2a ;(2)证明:数列{}n a 是等比数列.答案:(1)112a =-;214a =(2)数列{}n a 是首项和公比均为12-的等比数列解析:(1)当1n =时,()111113a S a ==-,所以112a =-.当2n =时,()22211123S a a =-+=-,所以214a =.(2)由()113n n S a =-,得()1111(2)3n n S a n --=-≥,所以()111(2)3n n n n n a S S a a n --=-=-≥,所以11(2)2n n a a n -=-≥.又112a =-,所以数列{}n a 是首项和公比均为12-的等比数列.所以数列{}n a 是以3为首项,2为公差的等差数列.(2)由(1)知()32121n a n n =+-=+.3.在数列{}n a 中,14a =,1431n n a a n +=-+,*n ∈N .(1)设n n b a n =-,求证:数列{}n b 是等比数列;(2)求数列{}n a 的前n 项和n S .答案:(1)见解析(2)()1412n n n ++-解析:(1)证明:1431,n n a a n +=-+11(1)43114()4,n n n n n b a n a n n a n b ++∴=-+=-+--=-=又111413,b a =-=-=∴数列{}n b 是首项为3、公比为4的等比数列;(2)由(1)可知134n n a n --=⨯,即134n n a n -=+⨯,()()()31411412142n n n n n n n S -++∴=+=--.4.在数列{}n a 中,616a =,点()()1,n n a a n *+∈N 在直线30x y -+=上.(1)求数列{}n a 的通项公式;(2)若2n n n b a =,求数列{}n b 的前n 项和n T .答案:(1)32n a n =-(2)见解析解析:(1)依题意,130n n a a +-+=,即13n n a a +-=,因此数列{}n a 是公差为3的等差数列,则63(6)32n a a n n =+-=-,所以数列{}n a 的通项公式是32n a n =-.(2)由(1)得(32)2n n b n =-⋅,则132421242(32)2n n T n =⨯+⨯+⋅⋅⋅+-⨯+⨯,于是23121242(35)2(32)2n n n T n n +=⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得2123112(12))23(222(32)22(312)232n n n n n T n n ++--=+++⋅⋅⋅+--⋅--⋅-=+⋅-1(532)10n n +⋅=--,所以1(35)210n n T n +=-⋅+.5.已知公差不为0的等差数列{}n a 的前n 项和为n S ,且636S =,1a ,3a ,13a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若不等式4n kT <对任意的*n ∈N 都成立,求实数k的取值范围.答案:(1)21n a n =-(2)2k ≥.解析:(1)设等差数列{}n a 公差为d ,由题意1211161536(2)(12)a d a d a a d +=⎧⎨+=+⎩,0d ≠,解得112a d =⎧⎨=⎩,所以12(1)21n a n n =+-=-;(2)由(1)111111()(21)(21)22121n n a a n n n n +==--+-+,所以1111111111(1)()((12323522121221n T n n n =-+-++-=--++,易知n T 是递增的且12n T <,不等式4n k T <对任意的*n ∈N 都成立,则142k ≥,所以2k ≥.6.已知数列{}n a 的前n 项和n S 满足24(1)n S n =+,n +∈N .(1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对任意的n +∈N ,不等式25n T a a <-恒成立,求实数a 的取值范围.答案:(1) 1, 1 21, 24n n a n n =⎧⎪=⎨+≥⎪⎩(2)3a ≤-或4a ≥解析:(1)24(1)n S n =+当1n =时,214(11)a =+,即11a =当2n ≥时,由1n n n a S S -=-,故224(1)21n a n n n =+-=+,得214n n a +=.易见11a =不符合该式,故 1 121, 24n n a n n =⎧⎪=⎨+=⎪⎩,(2)由0n a >,易知n T 递增;112145T a a ==当2n ≥时,()()111611821232123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭.从而41111111281285577921235235n T n n n ⎛⎫=+-+-++-=-< ⎪+++⎝⎭.又由25n T a a <-,故212a a ≤-,解得3a ≤-或4a ≥即实数a 的取值范围为3a ≤-或4a ≥7.记n S 为数列{}n a 的前n 项和,已知112a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列.(1)求{}n a 的通项公式;(2)设()1nn n b a =-,求{}n b 的前2n 项和2n T .答案:(1)12n a n =(2)2n解析:(1)由n n S a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列,且111S a =,则()11111222n n S n n a =+-⨯=+,即()21n n S n a =+,当2n ≥时,112n n S na --=,两式相减可得:()121n n n a n a na -=+-,整理可得11n n a na n -=-,故121121121121212n n n n n a a a n n a a n n a a a n ----=⋅⋅⋅⋅=⨯⨯⨯⨯-=-,将1n =代入上式,12n a =,故{}n a 的通项公式为12n a n =.(2)由()1nn n b a =-,则21212342221n n n n a a T b a a a a b b -=-+-+-+-+++=()()()()22121242132122n n n n n a a n a a a a a a a a --++=+++-+++=-()111122*********n nn n ⎡⎤=⨯+⨯-⨯-⨯⎢⎥⎦=-⎣.8.已知数列{}n a 是各项均为正数的等比数列,且11a =,34a =,数列{}n b 中()*221log log n n n b a a n +=+∈N .(1)求数列{}n b 的通项公式;(2)若数列{}n b 的前n 项和为n S ,数列{}n c 满足141n n c S =-,求数列{}n c 的前n 项和n T .答案:(1)21n b n =-(2)21n nT n =+解析:(1)正项等比数列{}n a 的公比为q ,由231a a q =,得24q =,而0q >,解得2q =,于是1112n n n a a q --==,由221log log n n n b a a +=+,得12222log o 21l g n n n n b -=+=-,所以数列{}n b 的通项公式21n b n =-.(2)由(1)知,21n b n =-,显然数列{}n b 是等差数列,21(21)2n n S n n +-=⋅=,2111111(4141(21)(21)22121n n c S n n n n n ====----+-+,所以11111111[(1)()()](1)2335212122121n nT n n n n =-+-++-=-=-+++.9.已知等差数列{}n a 前n 项和为n S ,满足33a =,410S =.数列{}n b 满足12b =,112n n n nb a b a ++=,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 满足()1(1)32n n n n n c a b +-+=,*n ∈N ,求数列{}n c 的前n 项和n T .答案:(1)见解析(2)见解析解析:(1)设数列{}n a 的公差为d ,11234610a d a d +=⎧∴⎨+=⎩,解得11a =,1d =,n a n ∴=.()121n n n b b n ++=,112n n b n b n++∴=,且121b =,所以n b n ⎧⎫⎨⎬⎩⎭是等比数列,2n nb n∴=,2n n b n ∴=⋅(2)()()()()1111(1)3211(1)(1)(1)12212212n n n nn n n n n n n c n n n n n n ++++⎛⎫-+--==-+=- ⎪ ⎪+⋅⋅+⋅⋅+⋅⎝⎭,()1111(1)212n n n T n ++∴=---+⋅10.已知各项为正的数列{}n a 的首项为2,26a =,22211122n n n n n n n n a a a a a a a a +++++-=--.(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和n S ,求数列{}28n n S a +-(其中*n ∈N )前n 项和的最小值.答案:(1)42n a n =-(2)最小值为38-解析:(1)因为22211122n n n n n n n n a a a a a a a a +++++-=--,所以有()()12120n n n n n a a a a a +++++-=,而0n a >,10n n a a +∴+≠,所以2120n n n a a a +++-=,则211121n n n n n n a a a a a a a a +++--=-=-=⋅⋅⋅=-,又12a =,26a =,∴214a a -=,由等差数列定义知数列{}n a 是以2为首项,4为公差的等差数列.∴数列{}n a 的通项公式为42n a n =-.(2)由(1)有2(1)=2+4=22n n n S n n -⨯,()()2282430253n n S a n n n n ∴+-=+-=+-,令280n n S a +->,有4,5,6,n =⋅⋅⋅;280n n S a +-<,有1,2n =;280n n S a +-=,有3n =.所以{}28n n S a +-前n 项和的最小值为()()()()215132252338+-++-=-,当且仅当2n =,3时取到.11.记n S 为数列{}n a 的前n 项和,已知2n S n =,等比数列{}n b 满足11b a =,35b a =.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和n T .答案:(1)()*21n a n n =-∈N (2)当3q =时,3122n n T =-;当3q =-时,1(3)44n n T -=-.解析:(1)当1n =时,111a S ==,当2n ≥时,1n n n a S S -=-22(1)n n =--21n =-,因为11a =适合上式,所以()*21n a n n =-∈N .(2)由(1)得11b =,39b =,设等比数列{}n b 的公比为q ,则2319b b q =⋅=,解得3q =±,当3q =时,()113311322n n nT ⋅-==--,当3q =-时,11(3)1(3)1(3)44nn n T ⎡⎤⋅---⎣⎦==---.12.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若4a ,7a ,9a 成等比数列,求n S 的最小值.答案:(1)证明见解析(2)12n =或13时,n S 取得最小值,最小值为-78解析:(1)由221nn S n a n+=+,得2n n 22S n a n n +=+,①所以2112(1)2(1)(1)n n S n a n n ++++=+++,②②-①,得112212(1)21n n n a n a n a n ++++=+-+,化简得11n n a a +-=,所以数列{}n a 是公差为1的等差数列.(2)由(1)知数列{}n a 的公差为1.由2749a a a =,得()()()2111638a a a +=++,解得112a =-.所以22(1)251256251222228n n n n n S n n --⎛⎫=-+==-- ⎪⎝⎭,所以当12n =或13时,n S 取得最小值,最小值为-78.13.已知数列{}n a 满足11a =,11,,22,n n n a n n a a n n +⎧+⎪=⎨⎪-⎩为奇数为偶数,数列{}n b 满足22n n b a =-.(1)求2a ,3a .(2)求证:数列{}n b 是等比数列,并求其通项公式.(3)已知12log n n c b =,求证:122311111n nc c c c c c -+++<.答案:(1)232a =,352a =-(2)证明见解析(3)证明见解析解析:(1)由数列{}n a 的递推关系,知2113122a a =+=,325222a a =-⨯=-.(2)()12221212211112(21)2(21)4(21)12222n n n n n n b a a n a n a n n a ++++=-=++-=+-=-+-=-()211222n n a b =-=.因为12122b a =-=-,所以数列{}n b 的各项均不为0,所以112n n b b +=,即数列{}n b 是首项为12-,公比为12的等比数列,所以1111222n nn b -⎛⎫⎛⎫=-=- ⎪⎪⎝⎭⎝⎭.(3)由(2)知11221log log 2nn n c b n ⎛⎫=== ⎪⎝⎭.所以12231111n nc c c c c c -+++1111223(1)n n =+++⨯⨯-1111112231n n=-+-++--11n=-1<.14.已知数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列.(1)求数列{}n a 的通项公式;(2)若21log nn na b a +=,设数列{}n b 的前n 项和为n T ,求证:13n T ≤<.答案:(1)2n n a =(2)证明见解析解析:(1)因为2a ,3a ,44a -成等差数列,所以32424a a a =+-,又因为数列{}n a 的公比为2,所以2311122224a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =,所以1222n n n a -=⨯=.(2)由(1)知2nn a =,则221log 1log 2122n n n nn n a n b a +++===,所以2323412222n nn T +=++++,①231123122222n n n n n T ++=++++,②①-②得23111111122222n nn n T ++⎛⎫=++++- ⎪⎝⎭212111111111122221111221122n n n n n n -+++⎛⎫-- ⎪++⎝⎭=+-=+---11112133122222n n n n n +++++=+--=-.所以3332n nn T +=-<.又因为102n n n b +=>,所以{}n T 是递增数列,所以11n T T ≥=,所以13n T ≤<.15.在①221n n b b =+,②212a b b =+,③1b ,2b ,4b 成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{}n a 中,11a =,13n n a a +=,公差不等于0的等差数列{}n b 满足__________,__________求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n S .答案:选①②;选②③解析:因为11a =,13n n a a +=,所以{}n a 是以1为首项,3为公比的等比数列,所以13n n a -=.方案一:选①②.设数列{}n b 的公差为d ,因为23a =,所以123b b +=.因为221n n b b =+,所以1n =时,2121b b =+,解得123b =,273b =,所以53d =,所以533n n b -=,满足221n n b b =+,所以533n n n b n a -=,所以12123122712533333n n nn b b b n S a a a -=+++=++++,所以2341127125853333333n n n n n S +--=+++++,两式相减,得23111122111532515533109533333336233223n n n n n n n n n S ++++--+⎛⎫=++++-=+--=- ⎪⨯⨯⎝⎭,所以9109443n n n S +=-⨯.方案二:选②③.设数列{}n b 的公差为d ,因为2133a a ==,所以123b b +=,即123b d +=.因为1b ,2b ,4b 成等比数列,所以2214b b b =,即()()21113b d b b d +=+,化简得21d b d =.因为0d ≠,所以11d b ==,所以n b n =,所以13n n n b n a -=,所以120121121233333n n n n b b b n S a a a -=+++=++++,所以123111231333333n n nn n S --=+++++,两式相减,得1231211113132311333333233223n n n n n n n n n S -+⎛⎫=+++++-=--=- ⎪⨯⎝⎭,所以1923443n n n S -+=-⨯.方案三:选①③.设数列{}n b 的公差为d ,因为221n n b b =+,所以1n =时,2121b b =+,所以11d b =+.又1b ,2b ,4b 成等比数列,所以2214b b b =,即()()21113b d b b d +=+,化简得21d b d =.因为0d ≠,所以1b d =,此式与11d b =+矛盾.所以等差数列{}n b 不存在,故不符合题意.。

(江苏专版)2019年高考数学二轮复习 6个解答题专项强化练(四)数列

(江苏专版)2019年高考数学二轮复习 6个解答题专项强化练(四)数列

(江苏专版)2019年高考数学二轮复习 6个解答题专项强化练(四)数列1.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n.由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n. (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n -1)×4n +1=-4n1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.2.已知数列{a n }满足:a 1=12,a n +1-a n =p ·3n -1-nq ,n ∈N *,p ,q ∈R.(1)若q =0,且数列{a n }为等比数列,求p 的值;(2)若p =1,且a 4为数列{a n }的最小项,求q 的取值范围. 解:(1)∵q =0,a n +1-a n =p ·3n -1,∴a 2=a 1+p =12+p ,a 3=a 2+3p =12+4p ,由数列{a n }为等比数列,得⎝ ⎛⎭⎪⎫12+p 2=12⎝ ⎛⎭⎪⎫12+4p ,解得p =0或p =1. 当p =0时,a n +1=a n ,∴a n =12,符合题意;当p =1时,a n +1-a n =3n -1,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)=12+1-3n -11-3=12·3n -1, ∴a n +1a n=3.符合题意. ∴p 的值为0或1.(2)法一:若p =1,则a n +1-a n =3n -1-nq ,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)-[1+2+…+(n-1)]q =12[3n -1-n (n -1)q ].∵数列{a n }的最小项为a 4,∴对任意的n ∈N *,有12[3n -1-n (n -1)q ]≥a 4=12(27-12q )恒成立,即3n -1-27≥(n 2-n -12)q 对任意的n ∈N *恒成立.当n =1时,有-26≥-12q ,∴q ≥136;当n =2时,有-24≥-10q ,∴q ≥125;当n =3时,有-18≥-6q ,∴q ≥3; 当n =4时,有0≥0,∴q ∈R ;当n ≥5时,n 2-n -12>0,所以有q ≤3n -1-27n 2-n -12恒成立,令c n =3n -1-27n 2-n -12(n ≥5,n ∈N *),则c n +1-c n =n 2-2n -n -1+54nn 2-n 2->0,即数列{c n }为递增数列,∴q ≤c 5=274.综上所述,q 的取值范围为⎣⎢⎡⎦⎥⎤3,274.法二:∵p =1,∴a n +1-a n =3n -1-nq ,又a 4为数列{a n }的最小项, ∴⎩⎪⎨⎪⎧a 4-a 3≤0,a 5-a 4≥0,即⎩⎪⎨⎪⎧9-3q ≤0,27-4q ≥0,∴3≤q ≤274.此时a 2-a 1=1-q <0,a 3-a 2=3-2q <0, ∴a 1>a 2>a 3≥a 4.当n ≥4时,令b n =a n +1-a n ,b n +1-b n =2·3n -1-q ≥2·34-1-274>0, ∴b n +1>b n ,∴0≤b 4<b 5<b 6<…, 即a 4≤a 5<a 6<a 7<….综上所述,当3≤q ≤274时,a 4为数列{a n }的最小项,即q 的取值范围为⎣⎢⎡⎦⎥⎤3,274.3.数列{a n }的前n 项和为S n ,a 1=2,S n =a n ⎝ ⎛⎭⎪⎫n3+r (r ∈R ,n ∈N *).(1)求r 的值及数列{a n }的通项公式; (2)设b n =n a n(n ∈N *),记{b n }的前n 项和为T n .①当n ∈N *时,λ<T 2n -T n 恒成立,求实数λ的取值范围;②求证:存在关于n 的整式g (n ),使得∑i =1n -1(T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N*都成立.解:(1)当n =1时,S 1=a 1⎝ ⎛⎭⎪⎫13+r ,∴r =23, ∴S n =a n ⎝ ⎛⎭⎪⎫n 3+23.当n ≥2时,S n -1=a n -1⎝ ⎛⎭⎪⎫n 3+13. 两式相减,得a n =n +23a n -n +13a n -1,∴a n a n -1=n +1n -1(n ≥2). ∴a 2a 1·a 3a 2·…·a n a n -1=31×42×53×…×n n -2×n +1n -1,即a n a 1=n n +2.∴a n =n (n +1)(n ≥2), 又a 1=2适合上式. ∴a n =n (n +1). (2)①∵a n =n (n +1), ∴b n =1n +1,T n =12+13+…+1n +1. ∴T 2n =12+13+…+12n +1,∴T 2n -T n =1n +2+1n +3+…+12n +1. 令B n =T 2n -T n =1n +2+1n +3+…+12n +1. 则B n +1=1n +3+1n +4+…+12n +3. ∴B n +1-B n =12n +2+12n +3-1n +2=3n +4n +n +n +>0.∴B n +1>B n ,∴B n 单调递增, 故(B n )min =B 1=13,∴λ<13.∴实数λ的取值范围为⎝ ⎛⎭⎪⎫-∞,13.②证明:∵T n =12+13+…+1n +1,∴当n ≥2时,T n -1=12+13+…+1n ,∴T n -T n -1=1n +1, 即(n +1)T n -nT n -1=T n -1+1.∴当n ≥2时,∑i =1n -1(T n +1)=(3T 2-2T 1)+(4T 3-3T 2)+(5T 4-4T 3)+…+[(n +1)T n -nT n-1]=(n +1)T n -2T 1=(n +1)T n -1.∴存在关于n 的整式g (n )=n +1,使得∑i =1n -1(T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N*都成立.4.已知数列{a n }满足a 1=12,对任意的正整数m ,p ,都有a m +p =a m ·a p .(1)证明:数列{a n }是等比数列;(2)若数列{b n }满足a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n2n+1,求数列{b n }的通项公式;(3)在(2)的条件下,设c n =2n+λb n ,则是否存在实数λ,使得数列{c n }是单调递增数列?若存在,求出实数λ的取值范围;若不存在,请说明理由.解:(1)证明:∵对任意的正整数m ,p ,都有a m +p =a m ·a p ,∴令m =n ,p =1,得a n +1=a 1·a n ,从而a n +1a n =a 1=12, ∴数列{a n }是首项和公比都为12的等比数列.(2)由(1)可知,a n =12n .由a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n2n+1得, a n -1=b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n·b n -12n -1+1(n ≥2), 故a n -a n -1=(-1)n +1b n2n+1(n ≥2),故b n =(-1)n ⎝ ⎛⎭⎪⎫12n +1(n ≥2).当n =1时,a 1=b 12+1,解得b 1=32,不符合上式.∴b n=⎩⎪⎨⎪⎧32,n =1,-n⎝ ⎛⎭⎪⎫12n+1,n ≥2,n ∈N *.(3)∵c n =2n+λb n ,∴当n ≥2时,c n =2n +(-1)n ⎝ ⎛⎭⎪⎫12n +1λ,当n ≥3时,c n -1=2n -1+(-1)n -1⎝ ⎛⎭⎪⎫12n -1+1λ,根据题意,当n ≥3时,c n -c n -1=2n -1+(-1)nλ·⎝ ⎛⎭⎪⎫2+32n >0,即(-1)nλ>-2n -132n +2. ①当n 为大于等于4的偶数时,有λ>-2n -132n +2恒成立,又2n -132n +2随着n 的增大而增大,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =12835,即λ>-12835, 故λ的取值范围为⎝ ⎛⎭⎪⎫-12835,+∞. ②当n 为大于等于3的奇数时,有λ<2n -132n +2恒成立,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =3219,即λ<3219. 故λ的取值范围为⎝⎛⎭⎪⎫-∞,3219;③当n =2时,由c 2-c 1=⎝ ⎛⎭⎪⎫22+54λ-⎝ ⎛⎭⎪⎫2+32λ>0,得λ<8.综上可得,实数λ的取值范围为⎝ ⎛⎭⎪⎫-12835,3219. 5.已知各项不为零的数列{a n }的前n 项和为S n ,且a 1=1,S n =pa n a n +1(n ∈N *),p ∈R. (1)若a 1,a 2,a 3成等比数列,求实数p 的值; (2)若a 1,a 2,a 3成等差数列, ①求数列{a n }的通项公式;②在a n 与a n +1间插入n 个正数,共同组成公比为q n 的等比数列,若不等式(q n )(n +1)(n +a )≤e(e 为自然对数的底数)对任意的n ∈N *恒成立,求实数a 的最大值. 解:(1)当n =1时,a 1=pa 1a 2,a 2=1p;当n =2时,a 1+a 2=pa 2a 3,a 3=a 1+a 2pa 2=1+1p. 由a 22=a 1a 3,得1p 2=1+1p,即p 2+p -1=0,解得p =-1±52.(2)①因为a 1,a 2,a 3成等差数列,所以2a 2=a 1+a 3,得p =12,故a 2=2,a 3=3,所以S n =12a n a n +1.当n ≥2时,a n =S n -S n -1=12a n a n +1-12a n -1a n ,因为a n ≠0,所以a n +1-a n -1=2.故数列{a n }的所有奇数项组成以1为首项,2为公差的等差数列, 其通项公式a n =1+⎝⎛⎭⎪⎫n +12-1×2=n , 同理,数列{a n }的所有偶数项组成以2为首项,2为公差的等差数列,其通项公式是a n =2+⎝ ⎛⎭⎪⎫n2-1×2=n , 所以数列{a n }的通项公式是a n =n .②由①知,a n =n ,在n 与n +1间插入n 个正数,组成公比为q n 的等比数列,故有n +1=nq n +1n ,即q n =⎝⎛⎭⎪⎫n +1n 1n +1,所以(q n )(n +1)(n +a )≤e,即⎝⎛⎭⎪⎫n +1n n +a ≤e,两边取对数得(n +a )ln ⎝ ⎛⎭⎪⎫n +1n ≤1,分离参数得a ≤1ln ⎝ ⎛⎭⎪⎫n +1n -n 恒成立 . 令n +1n =x ,x ∈(1,2],则a ≤1ln x -1x -1,x ∈(1,2], 令f (x )=1ln x -1x -1,x ∈(1,2],则f ′(x )=x 2-x -2xx 2x -2,下证ln x ≤x -1x,x ∈(1,2], 令g (x )=x -1x -2ln x ,x ∈[1,+∞), 则g ′(x )=x -2x2>0,所以g (x )>g (1)=0,即2ln x <x -1x,用x 替代x 可得ln x <x -1x,x ∈(1,2],所以f ′(x )=x 2-x -2x x 2x -2<0,所以f (x )在(1,2]上递减,所以a ≤f (2)=1ln 2-1. 所以实数a 的最大值为1ln 2-1.6.设三个各项均为正整数的无穷数列{a n },{b n },{c n }.记数列{b n },{c n }的前n 项和分别为S n ,T n ,若对任意的n ∈N *,都有a n =b n +c n ,且S n >T n ,则称数列{a n }为可拆分数列.(1)若a n =4n,且数列{b n },{c n }均是公比不为1的等比数列,求证:数列{a n }为可拆分数列;(2)若a n =5n ,且数列{b n },{c n }均是公差不为0的等差数列,求所有满足条件的数列{b n },{c n }的通项公式;(3)若数列{a n },{b n },{c n }均是公比不为1的等比数列,且a 1≥3,求证:数列{a n }为可拆分数列.解:(1)证明:由a n =4n=4·4n -1=3·4n -1+4n -1,令b n =3·4n -1,c n =4n -1.则{b n }是以3为首项,4为公比的等比数列,{c n }是以1为首项,4为公比的等比数列, 故S n =4n-1,T n =4n-13.所以对任意的n ∈N *,都有a n =b n +c n ,且S n >T n . 所以数列{a n }为可拆分数列.(2)设数列{b n },{c n }的公差分别为d 1,d 2. 由a n =5n ,得b 1+(n -1)d 1+c 1+(n -1)d 2=(d 1+d 2)n +b 1+c 1-d 1-d 2=5n 对任意的n ∈N *都成立.所以⎩⎪⎨⎪⎧d 1+d 2=5,b 1+c 1-d 1-d 2=0,即⎩⎪⎨⎪⎧d 1+d 2=5,b 1+c 1=5,①由S n >T n ,得nb 1+n n -2d 1>nc 1+n n -2d 2,则⎝ ⎛⎭⎪⎫d 12-d 22n 2+⎝⎛⎭⎪⎫b 1-c 1-d 12+d 22n >0.由n ≥1,得⎝ ⎛⎭⎪⎫d 12-d 22n +⎝⎛⎭⎪⎫b 1-c 1-d 12+d 22>0对任意的n ∈N *成立.则d 12-d 22≥0且⎝ ⎛⎭⎪⎫d 12-d 22+⎝ ⎛⎭⎪⎫b 1-c 1-d 12+d 22>0即d 1≥d 2且b 1>c 1. ② 由数列{b n },{c n }各项均为正整数,则b 1,c 1,d 1,d 2均为正整数,当d 1=d 2时,由d 1+d 2=5,得d 1=d 2=52∉N *,不符合题意,所以d 1>d 2. ③联立①②③,可得⎩⎪⎨⎪⎧d 1=4,d 2=1,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=4,d 2=1,b 1=3,c 1=2或⎩⎪⎨⎪⎧d 1=3,d 2=2,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=3,d 2=2,b 1=3,c 1=2.所以⎩⎪⎨⎪⎧ b n =4n ,c n =n 或⎩⎪⎨⎪⎧b n =4n -1,c n =n +1或⎩⎪⎨⎪⎧b n =3n +1,c n =2n -1或⎩⎪⎨⎪⎧b n =3n ,c n =2n .(3)证明:设a n =a 1qn -1,a 1∈N *,q >0,q ≠1,则q ≥2.当q 为无理数时,a 2=a 1q 为无理数,与a n ∈N *矛盾. 故q 为有理数,设q =ba(a ,b 为正整数,且a ,b 互质).此时a n =a 1·b n -1an -1.则对任意的n ∈N *,an -1均为a 1的约数,则an -1=1,即a =1,故q =b a=b ∈N *,所以q ∈N *,q ≥2. 所以a n =a 1qn -1=(a 1-1)qn -1+qn -1,令b n =(a 1-1)·q n -1,c n =qn -1.则{b n },{c n }各项均为正整数.因为a 1≥3, 所以a 1-1≥2>1,则S n >T n , 所以数列{a n }为可拆分数列.。

高中数学理科专题讲解高考大题专项(三)《数列》教学课件

高中数学理科专题讲解高考大题专项(三)《数列》教学课件

典例剖析
对点训练3(2019四川泸州二模,17)已知数列{an}的前n项和Sn满足2an=2+Sn.(1)求证:数列{an}是等比数列;(2)设bn=log2a2n+1,求数列{bn}的前n项和Tn.
(1)证明: 数列{an}的前n项和Sn满足2an=2+Sn,当n=1时,可得2a1=2+S1=2+a1,解得a1=2,当n≥2时,2an-1=2+Sn-1,又2an=2+Sn,相减可得2an-2an-1=2+Sn-2-Sn-1=an,即an=2an-1,检验a2=2a1, 所以数列{an}是首项为2,公比为2的等比数列.
解题心得求解数列中的存在性问题,先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,即不存在.若推不出矛盾,即得到存在的结果.
典例剖析
对点训练6已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(2)是否存在λ,使得{an}为等差数列?并说明理由.
典例剖析
典例剖析
题型五 数列中的存在性问题例6已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.(1)求数列{an}的通项公式;(2)是否存在正整数n,使得Sn≥2 017?若存在,求出符合条件的所有n的集合;若不存在,请说明理由.
典例剖析
典例剖析
典例剖析典例剖析源自典例剖析典例剖析典例剖析
解题心得如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,即和式两边同乘以等比数列{bn}的公比,然后作差求解.

2020江苏高考理科数学二轮专题强化:专题三第2讲 数列的求解与综合创新 Word版含解析

2020江苏高考理科数学二轮专题强化:专题三第2讲 数列的求解与综合创新 Word版含解析

1.已知数列{a n }的前n 项和S n 满足S n +S m =S n +m (n ,m ∈N *)且a 1=5,则a 8=________. [解析] 数列{a n }的前n 项和S n 满足S n +S m =S n +m (n ,m ∈N *)且a 1=5,令m =1,则S n +1=S n +S 1=S n +5,即S n +1-S n =5,所以a n +1=5,所以a 8=5.[答案] 52.(2019·江苏省名校高三入学摸底卷)已知公差不为0的等差数列{a n }的前n 项和为S n ,若a 1,a 3,a 4成等比数列,则S 3S 7-S 4的值为________.[解析] 法一:设等差数列{a n }的公差为d ,因为a 1,a 3,a 4成等比数列,所以a 23=a 1a 4,所以(a 1+2d )2=a 1(a 1+3d ),因为d ≠0,所以a 1=-4d ,所以S 3S 7-S 4=3a 1+3×22d7a 1+7×62d -⎝⎛⎭⎫4a 1+4×32d =3a 1+3d 3a 1+15d =-9d 3d=-3.法二:设等差数列{a n }的公差为d ,因为a 1,a 3,a 4成等比数列,所以a 23=a 1a 4,所以(a 1+2d )2=a 1(a 1+3d ),因为d ≠0,所以a 1=-4d ,所以S 3S 7-S 4=3a 23a 6=a 1+d a 1+5d =-3d d =-3.[答案] -33.(2019·泰州市高三模拟)设f (x )是R 上的奇函数,当x >0时,f (x )=2x +ln x4,记a n =f (n-5),则数列{a n }的前8项和为________.[解析] 数列{a n }的前8项和为a 1+a 2+…+a 8=f (-4)+f (-3)+…+f (3)=f (-4)+[f (-3)+f (3)]+[f (-2)+f (2)]+[f (-1)+f (1)]+f (0)=f (-4)=-f (4)=-(24+ln 1)=-16.[答案] -164.(2019·日照模拟改编)已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =________.[解析] 由S n =n 2-6n 可得,当n ≥2时,a n =S n -S n -1=n 2-6n -(n -1)2+6(n -1)=2n -7. 当n =1时,S 1=-5=a 1,也满足上式, 所以a n =2n -7,n ∈N *.所以n ≤3时,a n <0;n ≥4时,a n >0,所以T n =⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n ≥4.[答案] ⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n ≥45.已知等差数列{a n }的前n 项和为S n ,并且S 10>0,S 11<0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的值为________.[解析] 由S 10>0,S 11<0知a 1>0,d <0,并且a 1+a 11<0,即a 6<0,又a 5+a 6>0,所以a 5>0,即数列的前5项都为正数,第5项之后的都为负数,所以S 5最大,则k =5.[答案] 56.(2019·南京高三模拟)若等比数列{a n }的各项均为正数,且a 3-a 1=2,则a 5的最小值为________.[解析] 设等比数列{a n }的公比为q (q >0且q ≠1),则由a 3-a 1=2,得a 1=2q 2-1.因为a 3-a 1=2>0,所以q >1,所以a 5=a 1q 4=2q 4q 2-1.令q 2-1=t >0,所以a 5=2⎝⎛⎭⎫t +1t +2≥8,当且仅当t =1,即q =2时,等号成立,故a 5的最小值为8.[答案] 87.(2019·江苏名校高三入学摸底)定义实数a ,b 之间的运算⊕如下:a ⊕b =⎩⎪⎨⎪⎧a (a ≥b )b (a <b ),已知数列{a n }满足:a 1=a 2=1,a n +2=2(a n +1⊕2)a n (n ∈N *),若a 2 017=1,记数列{a n }的前n项和为S n ,则S 2 017的值为________.[解析] 因为a 1=1,a 2=1,所以a 3=4,a 4=8,a 5=4, a 6=1,a 7=1,a 8=4,…即此时{a n }是周期数列,且周期为5, 所以a 2 017=a 2=1,a 1+a 2+a 3+a 4+a 5=18, 故S 2 017=403×18+a 1+a 2=7 256. [答案] 7 2568.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =________.[解析] 因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n .所以S n =2-2n +11-2=2n +1-2.[答案] 2n +1-29.(2019·徐州调研)设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为________.[解析] 设等差数列{a n }的公差为d ,因为a 3+a 7=36, 所以a 4+a 6=36,与a 4a 6=275,联立,解得⎩⎪⎨⎪⎧a 4=11,a 6=25或⎩⎪⎨⎪⎧a 4=25,a 6=11,当⎩⎪⎨⎪⎧a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,所以a 2a 3=-12为a n a n +1的最小值;当⎩⎪⎨⎪⎧a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,所以a 7a 8=-12为a n a n +1的最小值. 综上,a n a n +1的最小值为-12. [答案] -1210.(2019·昆明调研)将数列{a n }中的所有项按每一行比上一行多1项的规则排成如下数阵:a 1a 2,a 3a 4,a 5,a 6a 7,a 8,a 9,a 10……记数阵中的第1列数a 1,a 2,a 4,…构成的数列为{b n },S n 为数列{b n }的前n 项和.若S n=2b n -1,则a 56=________.[解析] 当n ≥2时,因为S n =2b n -1,所以S n -1=2b n -1-1,所以b n =2b n -2b n -1,所以b n =2b n -1(n ≥2且n ∈N *),因为b 1=2b 1-1,所以b 1=1,所以数列{b n }是首项为1,公比为2的等比数列,所以b n =2n -1.设a 1,a 2,a 4,a 7,a 11,…的下标1,2,4,7,11,…构成数列{c n },则c 2-c 1=1,c 3-c 2=2,c 4-c 3=3,c 5-c 4=4,…,c n -c n -1=n -1,累加得,c n -c 1=1+2+3+4+…+(n -1),所以c n =n (n -1)2+1,由c n =n (n -1)2+1=56,得n =11,所以a 56=b 11=210=1 024.[答案] 1 02411.(2019·江苏名校高三入学摸底)构造数组,规则如下:第一组是两个1,即(1,1),第二组是(1,2a ,1),第三组是(1,a (1+2a ),2a ,a (2a +1),1),…,在每一组的相邻两个数之间插入这两个数的和的a 倍得到下一组,其中a ∈⎝⎛⎭⎫0,14.设第n 组中有a n 个数,且这a n 个数的和为S n (n ∈N *).(1)求a n 和S n ;(2)求证:a 1-1S 1+a 2-1S 2+…+a n -1S n ≥n2.[解] (1)由题意可得a 1=2,a n +1=a n +(a n -1)=2a n -1,所以a n +1-1=2(a n -1),又a 1-1=1,则a n -1=2n -1,所以a n =2n -1+1.又S 1=2,且S n +1=S n +2a (S n -1)=(2a +1)S n -2a ,则S n +1-1=(2a +1)(S n -1),又S 1-1=1,所以S n -1=(2a +1)n -1,所以S n =(2a +1)n -1+1. (2)证明:令b n =a n -1S n ,则b n =2n -1(2a +1)n -1+1. 下面用分析法证明数列{b n }为单调递增数列.要证b n <b n +1,即证2n -1(2a +1)n -1+1<2n(2a +1)n +1,又a ∈⎝⎛⎭⎫0,14,故即证2(2a +1)n -1+2>(2a +1)n +1,只需证2(2a +1)n -1≥(2a +1)n ,即证2≥2a +1,显然成立,则数列{b n }为单调递增数列.所以a 1-1S 1+a 2-1S 2+…+a n -1S n ≥n⎝⎛⎭⎫a 1-1S 1=n2.12.(2019·江苏名校高三入学摸底)已知各项均为正数的数列{a n }满足:a 1=a ,a 2=b ,a n+1=a n a n +2+m (n ∈N *),其中m ,a ,b 均为实常数. (1)若m =0,且a 4,3a 3,a 5成等差数列. ①求ba的值;②若a =2,令b n =⎩⎪⎨⎪⎧a n ,n 为奇数2log 2a n -1,n 为偶数,求数列{b n }的前n 项和S n ;(2)是否存在常数λ,使得a n +a n +2=λa n +1对任意的n ∈N *都成立?若存在,求出实数λ的值(用m ,a ,b 表示);若不存在,请说明理由.[解] (1)①因为m =0,所以a 2n +1=a n a n +2,所以正项数列{a n }是等比数列,不妨设其公比为q .又a 4,3a 3,a 5成等差数列, 所以q 2+q =6,解得q =2或q =-3(舍去), 所以ba=2.②当a =2时,数列{a n }是首项为2、公比为2的等比数列,所以a n =2n ,所以b n =⎩⎪⎨⎪⎧2n ,n 为奇数,2n -1,n 为偶数,即数列{b n }的奇数项依次构成首项为2、公比为4的等比数列,偶数项依次构成首项为3、公差为4的等差数列.当n 为偶数时,S n =2(1-4n2)1-4+n2(3+2n -1)2=2n +13+n 2+n 2-23;当n 为奇数时,S n =2(2n +1-1)3+(n +1)(n +1+1)2-(2n +1)=2n +23+n 2-n 2-23.所以S n =⎩⎨⎧2n +13+n 2+n 2-23,n 为偶数2n +23+n 2-n 2-23,n 为奇数.(2)存在常数λ=a 2+b 2-mab,使得a n +a n +2=λa n +1对任意的n ∈N *都成立.证明如下:因为a 2n +1=a n a n +2+m (n ∈N *), 所以a 2n =a n -1a n +1+m ,n ≥2,n ∈N *, 所以a 2n +1-a 2n =a n a n +2-a n -1a n +1, 即a 2n +1+a n -1a n +1=a n a n +2+a 2n .由于a n >0,此等式两边同时除以a n a n +1,得a n +a n +2a n +1=a n -1+a n +1a n ,所以a n +a n +2a n +1=a n -1+a n +1a n =…=a 1+a 3a 2,即当n ≥2,n ∈N *时,都有a n +a n +2=a 1+a 3a 2a n +1.因为a 1=a ,a 2=b ,a 2n +1=a n a n +2+m ,所以a 3=b 2-ma,所以a 1+a 3a 2=a +b 2-m a b =a 2+b 2-mab,所以当λ=a 2+b 2-m ab时,对任意的n ∈N *都有a n +a n +2=λa n +1成立.13.(2019·泰州市高三模拟)已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和.(1)若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式;(2)若b n =n ,a 2=3,求数列{a n }的通项公式;(3)在(2)的条件下,设c n =a nb n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积.[解] (1)因为a n =23⎝⎛⎭⎫-13n -1=-2⎝⎛⎭⎫-13n ,S n =23⎣⎡⎦⎤1-⎝⎛⎭⎫-13n 1-⎝⎛⎭⎫-13=12⎣⎡⎦⎤1-⎝⎛⎭⎫-13n ,所以b n =2S n a n +2=1-⎝⎛⎭⎫-13n-2⎝⎛⎭⎫-13n+2=12. (2)若b n =n ,则2S n =na n +2n ,① 所以2S n +1=(n +1)a n +1+2(n +1),② ②-①得2a n +1=(n +1)a n +1-na n +2, 即na n =(n -1)a n +1+2,③当n ≥2时,(n -1)a n -1=(n -2)a n +2,④ ④-③得(n -1)a n -1+(n -1)a n +1=2(n -1)a n , 即a n -1+a n +1=2a n ,由2S 1=a 1+2,得a 1=2,又a 2=3,所以数列{a n }是首项为2,公差为3-2=1的等差数列, 故数列{a n }的通项公式是a n =n +1. (3)证明:由(2)得c n =n +1n,对于给定的n ∈N *,若存在k ≠n ,t ≠n ,k ,t ∈N *,使得c n =c k ·c t ,只需n +1n =k +1k ·t +1t ,即1+1n =⎝⎛⎭⎫1+1k ·⎝⎛⎭⎫1+1t ,即1n =1k +1t +1kt ,则t =n (k +1)k -n , 取k =n +1,则t =n (n +2),所以对数列{c n }中的任意一项c n =n +1n ,都存在c n +1=n +2n +1和c n 2+2n =n 2+2n +1n 2+2n ,使得c n=c n +1·c n 2+2n .14.(2019·盐城高三模拟)已知数列{a n }满足a 1=m ,a n +1=⎩⎪⎨⎪⎧2a n ,n =2k -1a n +r ,n =2k (k ∈N *,r ∈R ),其前n 项和为S n .(1)当m 与r 满足什么关系时,对任意的n ∈N *,数列{a n }都满足a n +2=a n?(2)对任意的实数m ,r ,是否存在实数p 与q ,使得{a 2n +1+p }与{a 2n +q }是同一个等比数列?若存在,请求出p ,q 满足的条件;若不存在,请说明理由;(3)当m =r =1时,若对任意的n ∈N *,都有S n ≥λa n ,求实数λ的最大值.[解] (1)由题意,得a 1=m ,a 2=2a 1=2m ,a 3=a 2+r =2m +r ,由a 3=a 1,得m +r =0.当m +r =0时,因为a n +1=⎩⎪⎨⎪⎧2a n ,n =2k -1a n -m ,n =2k (k ∈N *),所以a 1=a 3=…=m ,a 2=a 4=…=2m , 故对任意的n ∈N *,数列{a n }都满足a n +2=a n . 即当实数m ,r 满足m +r =0时,题意成立. (2)依题意,a 2n +1=a 2n +r =2a 2n -1+r ,则 a 2n +1+r =2(a 2n -1+r ),因为a 1+r =m +r ,所以当m +r ≠0时,{a 2n +1+r }是等比数列,且a 2n +1+r =(a 1+r )2n =(m +r )2n .为使{a 2n +1+p }是等比数列,则p =r .同理,当m +r ≠0时,a 2n +2r =(m +r )2n ,则为使{a 2n +q }是等比数列,则q =2r . 综上所述,①若m +r =0,则不存在实数p ,q ,使得{a 2n +1+p }与{a 2n +q }是等比数列;②若m +r ≠0,则当p ,q 满足q =2p =2r 时,{a 2n +1+p }与{a 2n +q }是同一个等比数列. (3)当m =r =1时,由(2)可得a 2n -1=2n -1,a 2n =2n +1-2, 当n =2k 时,a n =a 2k =2k +1-2,S n =S 2k =(21+22+…+2k )+(22+23+…+2k +1)-3k =3(2k +1-k -2), 所以S na n =3⎝⎛⎭⎫1-k 2k +1-2.令c k =k 2k +1-2,则c k +1-c k =k +12k +2-2-k2k +1-2=(1-k )2k +1-2(2k +2-2)(2k +1-2)<0, 所以S n a n ≥32,λ≤32.当n =2k -1时,a n =a 2k -1=2k -1,S n =S 2k -a 2k =3(2k +1-k -2)-(2k +1-2)=2k +2-3k -4, 所以S n a n =4-3k2k -1,同理可得S na n≥1,λ≤1.综上所述,实数λ的最大值为1.。

高考数学第二轮复习数列典型例题3

高考数学第二轮复习数列典型例题3

1已知数列{n a }中的相邻两项21k a -、2k a 是关于x 的方程2(32)320kkx k x k -++⋅= 的两个根,且21k a -≤2k a (k =1,2,3,…). (I)求1357,,,a a a a 及2n a (n ≥4)(不必证明); (Ⅱ)求数列{n a }的前2n 项和S 2n .〖解析〗 (I)方程2(32)320k k x k x k -++⋅=的两个根为123, 2k x k x ==.当k =1时,123,2x x ==,所以12a =;当k =2时,126,4x x ==,所以34a =;当k =3时,129,8x x ==,所以58a =; 当k =4时,1212,16x x ==,所以712a =; 因为n ≥4时,23n n >,所以22 (4)n n a n =≥(Ⅱ)22122(363)(222)n n n S a a a n =+++=+++++++=2133222n n n +++-. 2.设数列{}n a 满足211233333n n n a a a a -++++=…,a ∈*N . (Ⅰ)求数列{}n a 的通项; (Ⅱ)设n nnb a =,求数列{}n b 的前n 项和n S . 〖解析〗(I)2112333...3,3n n n a a a a -+++=221231133...3(2),3n n n a a a a n ---+++=≥1113(2)333n n n n a n --=-=≥,1(2)3n n a n =≥.验证1n =时也满足上式,*1()3n n a n N =∈.(II) 3n n b n =⋅, 23132333...3n n S n =⋅+⋅+⋅+⋅,23413132333...3n n S n +=⋅+⋅+⋅++⋅,则231233333n n n S n +-=+++-⋅,11332313n n n S n ++--=-⋅-,所以111333244n n n n S ++=⋅-⋅+.3数列{}n a 中,12a =,1n n a a cn +=+(c 是不为零的常数,123n = ,,,),且123a a a ,,成等比数列. (1)求c 的值;(2)求{}n a 的通项公式; (3)求数列}{nn c n ca ⋅-的前n 项之和n T . 〖解析〗(1)12a =,22a c =+,323a c =+, 因为1a ,2a ,3a 成等比数列,所以2(2)2(23)c c +=+, 解得0c =或2c =. ∵c≠0,∴2c =. (2)当2n ≥时,由于21a a c -=,322a a c -=, 1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=. 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+= ,,. 当1n =时,上式也成立,所以22(12)n a n n n =-+= ,,. (3)令nnn n n cn c a b )21)(1(-=⋅-=n n b b b b T +++=321n n )21)(1()21(3)21(2)21(0432-++++= ……①143)21)(1()21)(2()21(2)21(021+-+-++++=n n n n n T ……② ①-②得:n n n n T 21)21(11---=-4已知数列{n a }中,111,22n n a n a a +=-,点()在直线y=x 上,其中n=1,2,3…. (1)令11n n n b a a ,+=--求证数列{}n b 是等比数列; (2)求数列{}n a 的通项;⑶ 设分别为数列、n n T S {}、n a {}n b 的前n 项和,是否存在实数λ,使得数列n n S T n λ+⎧⎫⎨⎬⎩⎭为等差数列?若存在,试求出λ.若不存在,则说明理由.〖解析〗(I )由已知得 111,2,2n n a a a n +==+ 2213313,11,4424a a a =--=--=-又11,n n n b a a +=--1211,n n n b a a +++=--11112111(1)111222.1112n n n n n n n n n n n n n n a n a n a a b a a b a a a a a a +++++++++++-----∴====------{}n b ∴是以34-为首项,以12为公比的等比数列. (II )由(I )知,13131(),4222n n n b -=-⨯=-⨯1311,22n n n a a +∴--=-⨯21311,22a a ∴--=-⨯322311,22a a --=-⨯⋅⋅⋅⋅⋅⋅11311,22n n n a a --∴--=-⨯将以上各式相加得:1213111(1)(),2222n n a a n -∴---=-++⋅⋅⋅+11111(1)31313221(1)(1) 2.12222212n n n n a a n n n ---∴=+--⨯=+---=+--32.2n n a n ∴=+-(III )解法一:存在2λ=,使数列{}n nS T nλ+是等差数列. 12121113()(12)2222n n n S a a a n n =++⋅⋅⋅+=++⋅⋅⋅++++⋅⋅⋅+-11(1)(1)2232212n n n n -+=⨯+--2213333(1) 3.2222n n n n n n --=-+=-++ 12131(1)313342(1).1222212n n n n n T b b b +--=++⋅⋅⋅+==--=-+- 数列{}nn S T n λ+是等差数列的充要条件是,(n nS T An B A nλ+=+、B 是常数) 即2,n n S T An Bn λ+=+又2133333()2222n n n n n n S T λλ+-+=-+++-+2313(1)(1)222n n n λ-=+-- ∴当且仅当102λ-=,即2λ=时,数列{}n nS T nλ+为等差数列. 4.已知函数()21f x x =-,设曲线()y f x =在点(),n n x y 处的切线与x 轴的交点为()1,0n x +,其中1x 为正实数(1)用n x 表示1n x +; (2)12x =,若1lg1n n n x a x +=-,试证明数列{}n a 为等比数列,并求数列{}n a 的通项公式; (3)若数列{}n b 的前n 项和()12n n n S +=,记数列{}n n a b ⋅的前n 项和n T ,求n T . 〖解析〗(1)由题可得()2f x x '=,所以在曲线上点()(),n n x f x 处的切线方程为()()()n n n y f x f x x x '-=-,即()()212nn n y x x x x --=- 令0y =,得()()2112n n n n x x x x +--=-,即2112n n n x x x ++=由题意得0n x ≠,所以2112n n nx x x ++=(2)因为2112n n n x x x ++=,所以2211221111221lg lg lg 112112n n n n n n n n n n nx x x x x a x x x x x ++++++++===+--+-()()2211lg 2lg211nn n n n x x a x x ++===-- 即12n n a a +=,所以数列{}n a 为等比数列故11111112lg 22lg31n n n n x a a x ---+==⋅=- ---8分 (3)当1n =时,111b S == 当2n ≥时,()()11122n n n n n n n b S S n -+-=-=-= 所以数列{}n b 的通项公式为n b n =,故数列{}n n a b 的通项公式为12lg3n n n a b n -=⋅()21122322lg 3n n T n -∴=+⨯+⨯++⋅ ①①2⨯的()2212322lg 3nn T n =⨯+⨯++⋅ ② ①②得()2112222lg 3n nn T n --=++++-⋅故()221lg 3n nn T n =⋅-+ .5.已知x x f m log )(=(m 为常数,m>0且1≠m ),设))((,),(),(21+∈N n a f a f a f n 是首项为4,公差为2的等差数列.(1)求证:数列{a n }是等比数列;(2)若b n =a n ·)(n a f ,且数列{b n }的前n 项和S n ,当2=m 时,求S n ;(3)若c n =lg n n a a ,问是否存在m ,使得{c n }中每一项恒小于它后面的项?若存在,求出m 的范围;若不存在,说明理由.〖解析〗(1)由题意,22)1(24)(+=-+=n n a f n 即,22log +=n a n m∴22+=n n m a∴2222)1(21m mm a a n n n n ==++++ ∵m>0且1≠m ,∴m 2为非零常数, ∴数列{a n }是以m 4为首项,m 2为公比的等比数列 (2)由题意222222)22(log )(+++⋅+===n n m n n n n m n m m a f a b , 当212)1(2)22(2++⋅+=⋅+==n n n n n b m 时,∴25432)1(242322+⋅+++⋅+⋅+⋅=n n n S ①①式两端同乘以2,得326542)1(22423222++⋅++⋅++⋅+⋅+⋅=n n n n n S ②②-①并整理,得3265432)1(222222++⋅++-----⋅-=n n n n S3254332)1(]2222[2++⋅++++++--=n n n=3332)1(21]21[22+⋅++----n n n 3332)1()21(22+⋅++-+-=n n n n n ⋅=+32…10分(3)由题意 22lg (22)lg n n n n c a a n m m +==+⋅要使n n c c <-1对一切2≥n 成立,即 m m n m n lg )1(lg 2⋅⋅+<对一切 2≥n 成立, ①当m>1时, 2)1(2≥+<n m n n 对成立; ②当0<m<1时,2)1(m n n +>∴221m m n ->对一切 2≥n 成立,只需2122<-m m , 解得 3636<<-m , 考虑到0<m<1, ∴0<m<.36 综上,当0<m<36或m>1时,数列{c n }中每一项恒小于它后面的项. 6.在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠). (Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的*n N ∈,n a 是3n a +与6n a +的等差中项.〖解析〗(Ⅰ)证明:由题设11(1)n n n a q a qa +-=+-(2n ≥),得11()n n n n a a q a a +--=-,即1n n b qb -=,2n ≥.又1211b a a =-=,0q ≠,所以{}n b 是首项为1,公比为q 的等比数列. (Ⅱ)解法:由(Ⅰ) 211a a -=, 32a a q -=, ……21n n a a q --=,(2n ≥).将以上各式相加,得211n n a a q q --+++= (2n ≥).所以当2n ≥时,11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩上式对1n =显然成立.(Ⅲ)解:由(Ⅱ),当1q =时,显然3a 不是6a 与9a 的等差中项,故1q ≠. 由3693a a a a -=-可得5228q q q q -=-,由0q ≠得3611q q -=-, ① 整理得323()20q q +-=,解得32q =-或31q =(舍去).于是q =另一方面,21133(1)11n n n n n q q q a a q q q +--+--==---,15166(1)11n n n n n q q q a a q q q-+-+--==---.由①可得36n n n n a a a a ++-=-,*n N ∈.所以对任意的*n N ∈,n a 是3n a +与6n a +的等差中项.7.在数列||n a ,||n b 中,a 1=2,b 1=4,且1n n n a b a +,,成等差数列,11n n n b a b ++,,成等比数列(n ∈*N )(Ⅰ)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测||n a ,||n b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512n n a b a b a b +++<+++…. 〖解析〗(Ⅰ)由条件得21112n n n n n n b a a a b b +++=+=,由此可得2233446912162025a b a b a b ======,,,,,.猜测2(1)(1)n n a n n b n =+=+,. 用数学归纳法证明:①当n =1时,由上可得结论成立. ②假设当n =k 时,结论成立,即2(1)(1)k k a k k b k =+=+,,那么当n =k +1时,22221122(1)(1)(1)(2)(2)kk k k k ka ab a k k k k k b k b +++=-=+-+=++==+,.所以当n =k +1时,结论也成立.由①②,可知2(1)(1)n n a n n b n =++,对一切正整数都成立. 8、数列{}n a 的前n 项和为n S ,已知()211,1,1,2,2n n a S n a n n n ==--=⋅⋅⋅ (Ⅰ)写出n S 与1n S -的递推关系式()2n ≥,并求n S 关于n 的表达式; (Ⅱ)设()()()1/,n n n n n S f x x b f p p R n+==∈,求数列{}n b 的前n 项和n T 。

高考数学二轮复习数列多选题练习题及答案

高考数学二轮复习数列多选题练习题及答案

高考数学二轮复习数列多选题练习题及答案一、数列多选题1.设{}n a 是无穷数列,若存在正整数()2k k ≥,使得对任意n *∈N ,均有n k n a a +>,则称{}n a 是“间隔递增数列”,k 是{}n a 的“间隔数”,下列说法正确的是( ) A .公比大于1的等比数列一定是“间隔递增数列” B .若()21nn a n =+-,则{}n a 是“间隔递增数列”C .若(),2n ra n r r n*=+∈≥N ,则{}n a 是“间隔递增数列”且“间隔数”的最小值为r D .已知22021n a n tn =++,若{}n a 是“间隔递增数列”且“间隔数”的最小值为3,则54t -<≤-【答案】BCD 【分析】利用新定义,逐项验证是否存在正整数()2k k ≥,使得0n k n a a +->,即可判断正误. 【详解】选项A 中,设等比数列{}n a 的公比是()1q q >,则()1111111n k n n n k k n a a a a q q q a q +---+=-=--,其中1k q >,即()110n k q q -->,若10a <,则0n k n a a +-<,即n k n a a +<,不符合定义,故A 错误;选项B 中,()()()()()21212111n kn n k n k n a a n k n k ++⎡⎤⎡⎤⎡⎤++--+-=+---⎣⎦-=⎣⎦⎣⎦,当n 是奇数时,()211kn k n a a k +=---+,则存在1k时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义;当n 是偶数时,()211kn k n a a k +-=+--,则存在2k ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义.综上,存在2k ≥时,对任意n *∈N ,均有n k n a a +>,符合定义,故B 正确;选项C 中,()()1n k n r r kr r a a n k n k k n k n n k n n k n +⎡⎤-⎛⎫⎛⎫++-+=+=-⎢⎥ ⎪ ⎪+++⎝⎭⎝⎭⎢⎣-⎦=⎥()2n kn r k n k n +-=⋅+,令2()f n n kn r =+-,开口向上,对称轴02k -<,故2()f n n kn r =+-在n *∈N 时单调递增,令最小值(1)10f k r =+->,得1k r >-,又k *∈N ,2k ≥,,2r r *∈≥N ,故存在k r ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义,“间隔数”的最小值为r ,故C 正确;选项D 中,因为22021n a n tn =++,是“间隔递增数列”,则()()()2222021202012n k n a a n k t n k kn k t n n k t +⎡⎤-=-=++>⎣++++⎦++,即20k n t ++>,对任意n *∈N 成立,设()2g n k n t =++,显然在n *∈N 上()g n 递增,故要使()20g n k n t =++>,只需(1)20g k t =++>成立,即2t k --<. 又“间隔数”的最小值为3,故存在3k ≥,使2t k --<成立,且存在k 2≤,使2t k --≥成立,故23t --<且22t --≥,故54t -<≤-,故D 正确. 故选:BCD. 【点睛】本题的解题关键在于读懂题中“间隔递增数列”的定义,判断是否存在正整数()2k k ≥,使0n k n a a +->对于任意的n *∈N 恒成立,逐项突破难点即可.2.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+【答案】CD 【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确; 故选:CD 【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题.3.已知数列{}n a 的前n 项和为n S ,则下列说法正确的是( ) A .若21,n S n =-则{}n a 是等差数列B .若21,nn S =-则{}n a 是等比数列C .若{}n a 是等差数列,则995099S a =D .若{}n a 是等比数列,且10,0,a q >>则221212n n n S S S -+⋅>【答案】BC 【分析】由n S 求n a ,根据通项公式可判断AB 是否正确,由等差数列的性质可判断C ,取1n =时,结合等比数列求和公式作差比较13S S ⋅与22S 大小即可判断D. 【详解】对于A 选项,若21n S n =-,当2n ≥时,21n a n =-,10a =不满足21n a n =-,故A错误;对于B 选项,若21nn S =-,则1112,21,1n n n n S S n a S n --⎧-=≥=⎨==⎩,由于11a =满足12n n a -=,所以{}n a 是等比数列,故B 正确;对于C 选项,若{}n a 是等差数列,则()199995099992a a S a +==,故C 正确. 对于D 选项,当1n =时,()()222222132111110S S S a q qa q a q ⋅-=++-+=-<,故当1n =时不等式不等式,故221212n n n S S S -+⋅>不成立,所以D 错误.故选:BC【点睛】本题考查数列的前n 项和为n S 与n a 之间的关系,等差数列的性质,等比数列的前n 项和为n S 的公式等,考查运算求解能力.本题D 选项解题的关键将问题特殊化,讨论1n =时,13S S ⋅与22S 大小情况.此外还需注意一下公式:11,2,1n n n S S n a S n --≥⎧=⎨=⎩;若{}n a 是等差数列,则()2121n n S n a -=-.4.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( ) A.若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】 对于A,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB 【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.5.下列说法正确的是( )A .若{}n a 为等差数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,…仍为等差数列()k N *∈B .若{}n a 为等比数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,仍为等比数列()k N *∈C .若{}n a 为等差数列,10a >,0d <,则前n 项和n S 有最大值D .若数列{}n a 满足21159,4n n n a a a a +=-+=,则121111222n a a a +++<--- 【答案】ACD 【分析】根据等差数列的定义,可判定A 正确;当1q =-时,取2k =,得到20S =,可判定B 错误;根据等差数列的性质,可判定C 正确;化简得到1111233n n n a a a +=----,利用裂项法,可判定D 正确. 【详解】对于A 中,设数列{}n a 的公差为d , 因为12k k S a a a =+++,2122k k k k k S S a a a ++-=+++,3221223k k k k k S S a a a ++-=+++,,可得()()()()22322k k k k k k k S S S S S S S k d k N *--=---==∈,所以k S ,2k k S S -,32k k S S -,构成等差数列,故A 正确;对于B 中,设数列{}n a 的公比为()0q q ≠,当1q =-时,取2k =,此时2120S a a =+=,此时不成等比数列,故B 错误; 对于C 中,当10a >,0d <时,等差数列为递减数列, 此时所有正数项的和为n S 的最大值,故C 正确;对于D 中,由2159n nn a a a +=-+,可得()()2135623n n n n n a a a a a +-=-+=-⋅-, 所以2n a ≠或3n a ≠, 则()()1111132332n n n n n a a a a a +==------,所以1111233n n n a a a +=----, 所以1212231111111111222333333n n n a a a a a a a a a ++++=-+-++---------- 1111111333n n a a a ++=-=----. 因为14a =,所以2159n nn n a a a a +=-+>,可得14n a +>,所以11113n a +-<-,故D 正确.故选:ACD 【点睛】方法点睛:由2159n nn a a a +=-+,得到()()2135623n n n n n a a a a a +-=-+=-⋅-,进而得出1111233n n n a a a +=----,结合“裂项法”求解是解答本题的难点和关键.6.已知数列{}n a 满足11a =,()111n n na n a +-+=,*n N ∈,其前n 项和为n S ,则下列选项中正确的是( )A .数列{}n a 是公差为2的等差数列B .满足100n S <的n 的最大值是9C .n S 除以4的余数只能为0或1D .2n n S na = 【答案】ABC 【分析】根据题意对()111n n na n a +-+=变形得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得()*21n a n n N =-∈,再依次讨论各选项即可得答案.【详解】解:因为()111n n na n a +-+=,故等式两边同除以()1n n +得:()1111111n n a a n n n n n n +=-+-=++, 所以()1111111n n a a n n n n n n -=-----=,()()12111221211n n a a n n n n n n --=------=--,,2111121122a a =-⨯-=故根据累加法得:()11121n a a n nn =-≥-, 由于11a =,故()212n a n n =-≥,检验11a =满足, 故()*21n a n n N=-∈所以数列{}n a 是公差为2的等差数列,故A 选项正确; 由等差数列前n 项和公式得:()21212n n n S n +-==,故2100n n S =<,解得:10n <,故满足100n S <的n 的最大值是9,故B 选项正确; 对于C 选项,当*21,n k k N =-∈时,22441n n k S k ==-+,此时n S 除以4的余数只能为1;当*2,n k k N =∈时,224n n k S ==,此时n S 除以4的余数只能0,故C 选项正确;对于D 选项,222n S n =,()2212n n n n n n a =-=-,显然2n n S na ≠,故D 选项错误.故选:ABC 【点睛】本题考查累加法求通项公式,裂项求和法,等差数列的相关公式应用,考查运算求解能力,是中档题.本题解题的关键在于整理变形已知表达式得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得通项公式.7.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .18181103354kk i a =⨯+=∑C .(31)3ij ja i =-⨯ D .()1(31)314n S n n =+- 【答案】ABD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,进而可得ii a ,根据错位相减法可求得181kki a=∑,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去),A 正确; ∴()()11113213313j j j ij i a a i m i ---⎡⎤=⋅=+-⨯⋅=-⋅⎣⎦,C 错误; ∴()1313i ii a i -=-⋅,0171811223318182353533S a a a a =+++⋯+=⨯+⨯+⋯+⨯① 12181832353533S =⨯+⨯+⋯+⨯②,①-②化简计算可得:1818103354S ⨯+=,B 正确;S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )()()()11211131313131313nnnn a a a ---=+++---()()231131.22nn n +-=- ()1=(31)314n n n +-,D 正确; 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.8.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,其通项公式1122n nn a ⎡⎤⎛⎛-⎢⎥=- ⎢⎥⎝⎭⎝⎭⎣⎦,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .10711S a =B .2021201920182a a a =+C .202120202019S S S =+D .201920201S a =-【答案】AB 【分析】选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可判断.选项D.由()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.【详解】因为10143S =,711143a =,所以10711S a =,则A 正确;由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,所以2021202020191S S S =++,所以C 错误; 因为()()()()()123324354652122n n n n n S a a a a a a a a a a a a a a a a +++=++++=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.故选:AB. 【点睛】关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.二、平面向量多选题9.已知a ,b 是平面上夹角为23π的两个单位向量,c 在该平面上,且()()·0a c b c --=,则下列结论中正确的有( )A .||1a b +=B .||3a b -=C .||3<cD .a b +,c 的夹角是钝角【答案】ABC 【分析】在平面上作出OA a =,OB b=,1OA OB ==,23AOB π∠=,作OC c =,则可得出C 点在以AB 为直径的圆上,这样可判断选项C 、D . 由向量加法和减法法则判断选项A 、B .【详解】 对于A :()2222+2||+cos13a b a ba b a b π+=+=⨯⨯=,故A 正确; 对于B :设OA a =,OB b =,1OA OB ==,23AOB π∠=,则2222+c 32os3AB O OA O A O B B π-⋅==,即3a b -=,故B 正确; OC c =,由(a ﹣c )·(b ﹣c )=0得BC AC ⊥,点C 在以AB 直径的圆上(可以与,A B 重合).设AB 中点是M ,c OC =的最大值为13+32222+A b B O MC a M +==+<,故C 正确; a b +与OM 同向,由图,OM 与c 的夹角不可能为钝角.故D 错误. 故选:ABC .【点睛】思路点睛:本题考查向量的线性运算,考查向量数量积.解题关键是作出图形,作出OA a =,OB b =,OC c =,确定C 点轨迹,然后由向量的概念判断.10.如图,A 、B 分别是射线OM 、ON 上的点,下列以O 为起点的向量中,终点落在阴影区域内的向量是( )A .2OA OB +B .1123OA OB +C .3143OA OB + D .3145OA OB + 【答案】AC【分析】利用向量共线的条件可得:当点P 在直线AB 上时,等价于存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1.可以证明点P 位于阴影区域内等价于:OP uOA vOB =+,且u >0,v >0,u +v >1.据此即可判断出答案.【详解】由向量共线的条件可得:当点P 在直线AB 上时,存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1.可以证明点P 位于阴影区域内等价于: OP uOA vOB =+,且u >0,v >0,u +v >1. 证明如下:如图所示,点P 是阴影区域内的任意一点,过点P 作PE //ON ,PF //OM ,分别交OM ,ON 于点E ,F ;PE 交AB 于点P ′,过点P ′作P ′F ′//OM 交ON 于点F ′,则存在唯一一对实数(x ,y ),(u ′,v ′),使得OP xOE yOF u OA v OB ''''=+=+,且u ′+v ′=1,u ′,v ′唯一;同理存在唯一一对实数x ′,y ′使得OP x OE y OF uOA vOB =+=+'',而x ′=x ,y ′>y ,∴u =u ′,v >v ′,∴u +v >u ′+v ′=1,对于A ,∵1+2>1,根据以上结论,∴点P 位于阴影区域内,故A 正确;对于B ,因为11123+<,所以点P 不位于阴影区域内,故B 不正确; 对于C ,因为311314312+=>,所以点P 位于阴影区域内,故C 正确; 对于D ,因为311914520+=<,所以点P 不位于阴影区域内,故D 不正确; 故选:AC.【点睛】关键点点睛:利用结论:①点P 在直线AB 上等价于存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1;②点P 位于阴影区域内等价于OP uOA vOB =+,且u >0,v >0,u +v >1求解是解题的关键.。

2025年高考数学二轮复习-3.1-等差数列、等比数列-专项训练【含答案】

2025年高考数学二轮复习-3.1-等差数列、等比数列-专项训练【含答案】

2025年高考数学二轮复习-3.1-等差数列、等比数列-专项训练一、基本技能练1.已知等比数列{a n}满足a1=2,a3a5=4a26,则a3的值为()A.1B.2C.1或-1D.122.设数列{a n}是等差数列,S n是数列{a n}的前n项和,a3+a5=10,S5=15,则S6=()A.18B.24C.30D.363.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块.向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块4.若等差数列{a n}的前n项和为S n,则“S2022>0,S2023<0”是“a1011a1012<0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(多选)已知等比数列{a n}的公比为q,且a5=1,则下列选项正确的是()A.a3+a7≥2B.a4+a6≥2C.a7-2a6+1≥0D.a3-2a4-1≥06.(多选)已知数列{a n}的前n项和为S n,下列说法正确的是()A.若S n=n2+1,则{a n}是等差数列B.若S n=3n-1,则{a n}是等比数列C.若{a n}是等差数列,则S9=9a5D.若{a n}是等比数列,且a1>0,q>0,则S1·S3>S227.写出一个公差为2,且前3项和小于第3项的等差数列a n=________.8.已知数列{a n}的前n项和是S n,且S n=2a n-1,若a n∈(0,2022),则称项a n为“和谐项”,则数列{a n}的所有“和谐项”的和为________.9.已知数列{a n}满足a1=1,(a n+a n+1-1)2=4a n a n-1,且a n+1>a n(n∈N*),则数列{a n}的通项公式a n=________.10.已知数列{a n}是各项均为正数的等比数列,S n为数列{a n}的前n项和,若S2+a2=S3-3,则a4+3a2的最小值为________.11.设等比数列{a n}满足a1+a2=4,a3-a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1=S m+3(m∈N*),求m.12.已知{a n}是等差数列,{b n}是公比为2的等比数列,且a2-b2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素的个数.二、创新拓展练13.(多选)在等比数列{a n}中,公比为q,其前n项积为T n,并且满足a1>1,a99·a100-1>0,a99-1a100-1<0,下列结论中正确的是()A.0<q<1B.a99·a101-1<0C.T100的值是T n中最大的D.使T n>1成立的最大自然数n值等于19814.(多选)已知数列{a n}满足a1=10,a5=2,且a n+2-2a n+1+a n=0(n∈N*),则下列结论正确的是()A.a n=12-2nB.|a1|+|a2|+|a3|+…+|a n|,n≤5,2+5,n>5C.|a n|的最小值为0D.当且仅当n=5时,a1+a2+a3+…+a n取得最大值3015.(多选)已知S n是数列{a n}的前n项和,且a1=a2=1,a n=a n-1+2a n-2(n≥3),则下列结论正确的是()A.数列{a n+1+a n}为等比数列B.数列{a n+1-2a n}为等比数列C.a n=2n+1+(-1)n3(410-1)D.S20=2316.已知数列{a n}的前n项和为S n,a1=1·(2-S n)=1.2,S n+1(1)(2)2023的数.参考答案与解析一、基本技能练1.答案A解析由题意得a3a5=a24=4a26,又在等比数列中偶数项同号,∴a4=2a6,∴q2=12,∴a3=a1q2=1,故选A.2.答案B解析由等差数列的性质知a4=a3+a52=5,而S5=a1+a52×5=5a3=15,则a3=3,等差数列{a n}的公差d=a4-a3=2,所以a1=a3-2d=-1,则S6=6a1+6×(6-1)2·d=-6+30=24.3.答案C解析设每一层有n环,由题意可知,从内到外每环之间构成公差为d=9,首项为a1=9的等差数列.由等差数列的性质知S n,S2n-S n,S3n-S2n成等差数列,且(S3n-S2n)-(S2n-S n)=n2d,则9n2=729,解得n=9,则三层共有扇面形石板S3n=S27=27×9+27×262×9=3402(块).4.答案B解析因为S2022>0,S2023<0,所以(a1+a2022)×20222>0,(a1+a2023)×20232<0,即a1+a2022=a1011+a1012>0,a1+a2023=2a1012<0,所以a 1011>0,a 1012<0,且a 1011>|a 1012|,所以a 1011a 1012<0,充分性成立;而当a 1011a 1012<0时,a 1011>0,a 1012<0或a 1011<0,a 1012>0,则S 2022>0,S 2023<0不一定成立.故“S 2022>0,S 2023<0”可以推出“a 1011a 1012<0”,但“a 1011a 1012<0”不能推出“S 2022>0,S 2023<0”,所以“S 2022>0,S 2023<0”是“a 1011a 1012<0”的充分不必要条件.故选B.5.答案AC解析因为等比数列{a n }的公比为q ,且a 5=1,所以a 3=1q 2,a 4=1q ,a 6=q ,a 7=q 2,因为a 3+a 7=1q2+q 2≥2,当且仅当q 2=1时等号成立,故A 正确;因为a 4+a 6=1q+q ,当q <0时式子为负数,故B 错误;因为a 7-2a 6+1=q 2-2q +1=(q -1)2≥0,故C 正确;因为a 3-2a 4-1=1q 2-2q-1-2,则a 3-2a 4-1≥0不成立,故D 错误.6.答案BC解析若S n =n 2+1,当n ≥2时,a n =2n -1,a 1=2不满足a n =2n -1,故A 错误;若S n =3n -1,当n ≥2时,a n =S n -S n -1=2·3n -1,由于a 1=S 1=31-1=2,满足a n =2·3n -1,所以{a n }是等比数列,故B 正确;若{a n }是等差数列,则S 9=9(a 1+a 9)2=9a 5,故C 正确;当q =1时,S 1·S 3-S 22=a 21(1+q +q 2)-a 21(1+q )2=-a 21q <0,故D 错误,综上,选BC.7.答案2n-4(n∈N*)(答案不唯一)解析1+a2+a3<a3,=2,解得a1<-1,不妨令a1=-2,∴a n=2n-4.8.答案2047解析当n≥2时,a n=S n-S n-1=2a n-1-(2a n-1-1)=2a n-2a n-1,∴a n=2a n-1,又由a1=S1=2a1-1,得a1=1,∴{a n}是公比为2,首项为1的等比数列,∴a n=2n-1,由a n=2n-1<2022,得n-1≤10,即n≤11,∴所求和为S11=1-2111-2=2047.9.答案n2解析因为a1=1,a n+1>a n≥a1>0,所以a n+1>a n.由(a n+a n+1-1)2=4a n a n+1得a n+1+a n-1=2a n a n+1,所以(a n+1-a n)2=1,所以a n+1-a n=1,所以数列{a n}是首项为1,公差为1的等差数列,所以a n=n,即a n=n2.10.答案18解析由S2+a2=S3-3得a2=S3-S2-3=a3-3,所以a1q=a1q2-3⇒a1=3q2-q>0⇒q>1,所以a4+3a2=a1q3+3a1q=3(q3+3q)q2-q=3(q2+3)q-1=3×(q-1)2+2(q-1)+4q-1=3(q-1)+4q-1+6≥3×2(q-1)·4q-1+6=18,当且仅当q-1=4q-1,即q=3时等号成立,故a4+3a2的最小值为18.11.解(1)设{a n}的公比为q,则a n=a1q n-1.1+a1q=4,1q2-a1=8,1=1,=3.所以{a n}的通项公式为a n=3n-1(n∈N*).(2)由(1)知log3a n=n-1,故S n=n(n-1)2(n∈N*).由S m+S m+1=S m+3,得m(m-1)+(m+1)m=(m+3)(m+2),即m2-5m-6=0.解得m=-1(舍去)或m=6.12.(1)证明设等差数列{a n}的公差为d,由a2-b2=a3-b3得a1+d-2b1=a1+2d-4b1,即d=2b1,由a2-b2=b4-a4得a1+d-2b1=8b1-(a1+3d),即a1=5b1-2d,将d=2b1代入,得a1=5b1-2×2b1=b1,即a1=b1.(2)解由(1)知a n=a1+(n-1)d=a1+(n-1)×2b1=(2n-1)a1,b n=b1·2n-1,由b k=a m+a1,得b1·2k-1=(2m-1)a1+a1,由a1=b1≠0得2k-1=2m,由题知1≤m≤500,所以2≤2m≤1000,所以k=2,3,4,…,10,共9个数,即集合{k|b k=a m+a1,1≤m≤500}={2,3,4,…,10}中元素的个数为9.二、创新拓展练13.答案ABD解析对于A,∵a99·a100-1>0,∴a21·q197>1,∴(a1·q98)2·q>1.∵a1>1,∴q>0.又∵a99-1a100-1<0,∴a99>1,且a100<1,∴0<q<1,故A正确;对于B,∵a2100=a99·a101,a100<1,∴0<a99·a101<1,即a99·a101-1<0,故B正确;对于C,由于T100=T99·a100,而0<a100<1,故有T100<T99,故C错误;对于D,T198=a1·a2·…·a198=(a1·a198)(a2·a197)·…·(a99·a100)=(a99·a100)99>1,T199=a1·a2·…·a199=(a1·a199)·(a2·a198)…(a99·a101)·a100=(a100)100<1,故D正确.故选ABD.14.答案AC解析由a n+2-2a n+1+a n=0,可得a n+2-a n+1=a n+1-a n,所以数列{a n}是等差数列,设公差为d,因为a1=10,a5=2,所以d=a5-a15-1=-2,所以a n=10-2(n-1)=12-2n,故A正确;当n=6时,a n=0,所以当n≤5时,a n>0,当n>5时,a n≤0,所以当n≤5时,|a1|+|a2|+|a3|+…+|a n|=a1+a2+a3+…+a n=n(10+12-2n)2=11n-n2.当n>5时,|a1|+|a2|+|a3|+…+|a n|=a1+a2+…+a5-a6-…-a n=-(a1+a2+a3+…+a n)+2(a1+a2+…+a5)=-S n+2S5=-(11n-n2)+60=n2-11n+60,所以|a1|+|a2|+|a3|+…+|a n|n-n2,n≤5,2-11n+60,n>5,故B错误;|a n|=|12-2n|,当n=6时,|a n|取得最小值为0,故C正确;当n=5或n=6时,a1+a2+a3+…+a n取最大值30,故D错误.15.答案ABD解析因为a n=a n-1+2a n-2(n≥3),所以a n+a n-1=2a n-1+2a n-2=2(a n-1+a n-2),又a1+a2=2≠0,所以{a n+a n+1}是等比数列,A正确;同理a n-2a n-1=a n-1+2a n-2-2a n-1=-a n-1+2a n-2=-(a n-1-2a n-2),而a2-2a1=-1,所以{a n+1-2a n}是等比数列,B正确;若a n=2n+1+(-1)n3,则a2=23+(-1)23=3,但a2=1≠3,C错误;由A知{a n+a n+1}是等比数列,且公比为2,因此数列a1+a2,a3+a4,a5+a6,…仍然是等比数列,公比为4,其前10项和为T10,则S20=T10=2(1-410)1-4=23(410-1),故D正确.16.(1)证明1S 1-1=1a 1-1=-2.由S n +1·(2-S n )=1,得S n +1=12-S n.因为1S n +1-1-1S n -1=112-S n -1-1S n-1=2-S n S n -1-1S n -1=-1,2为首项,-1为公差的等差数列.(2)解由(1)得1S n -1=-2+(n -1)×(-1)=-(n +1),即S n =n n +1,则a n =S n -S n -1=n n +1-n -1n =1n (n +1)(n ≥2),当n =1时,a 1=12满足上式,所以a n =1n (n +1)(n ∈N *),则1a n =n (n +1).由f (x )=x (x +1)-14在(0,+∞)上单调递增,当n =44时,1a 44=44×45=1980;当n =45时,1a 45=45×46=2070.2023的数是1980.。

高考数学(江苏专版)二轮专题:第一部分-专题10-数列(Ⅱ)省公开课获奖课件市赛课比赛一等奖课件

高考数学(江苏专版)二轮专题:第一部分-专题10-数列(Ⅱ)省公开课获奖课件市赛课比赛一等奖课件
返回
[解] (1)设数列{bn}的公差为d, 则bb11+ +d4= d=4, 10, 解得bd1==22,, 所以bn=2n. (2)①设每一行组成的等比数列的公比为q. 由于前n行共有1+3+5+…+(2n-1)=n2个数,且 32<13<42, 所以a10=b4=8. 所以a13=a10q3=8q3.又a13=1,解得q=12.
即an=13×2n-1-23×(-1)n.
返回
1.求数列通项公式的方法:(1)公式法;(2)根据递推关系求 通项公式有:①叠加法;②叠乘法;③转化法;(3)已知前 n 项和 公式用 an=SS1n,-nS=n-11,,n≥2 求解.
2.数列求和的基本方法:(1)公式法;(2)分组法;(3)裂项相 消法;(4)错位相减法;(5)倒序相加法.
预测在2023年旳高考题中,数列旳考察变化不大: (1)填空题依然是考察等差、等比数列旳基本性质. (2)在解答题中,依然是考察等差、等比数列旳综合问题,可能会涉及恒等关系 论证和不等关系旳论证.
返回
返回
1.在等差数列{an}中,公差d=12,前100项的和S100=45,则a1 +a3+a5+…+a99=________. 解析:S100=1020(a1+a100)=45,a1+a100=190, a1+a99=a1+a100-d=25. a1+a3+a5+…+a99=520(a1+a99)=520×25=10. 答案:10
(1)已知正数数列{an}对任意p,q∈N*,都有ap+q=ap·aq,若 a2=4,则an=________.
(2)数列{an}为正项等比数列,若a2=1,且an+an+1=6an-1(n ∈N,n≥2),则此数列的前n项和Sn=________.
[解析] (1)由ap+q=ap·aq,a2=4,可得a2=a21=4⇒a1=2,所

高三数学高考大题专项训练全套(15个专项)(典型例题)(含答案)

高三数学高考大题专项训练全套(15个专项)(典型例题)(含答案)

⾼三数学⾼考⼤题专项训练全套(15个专项)(典型例题)(含答案)1、函数与导数(1)2、三⾓函数与解三⾓形3、函数与导数(2)4、⽴体⼏何5、数列(1)6、应⽤题7、解析⼏何8、数列(2)9、矩阵与变换10、坐标系与参数⽅程11、空间向量与⽴体⼏何12、曲线与⽅程、抛物线13、计数原理与⼆项式分布14、随机变量及其概率分布15、数学归纳法⾼考压轴⼤题突破练 (⼀)函数与导数(1)1.已知函数f (x )=a e xx+x .(1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极⼤值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2,∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线⽅程为 y -(a e +1)=x -1,⼜直线过点(0,-1),∴-1-(a e +1)=-1,解得a =-1e.(2)若a <0,f ′(x )=a e x (x -1)+x 2x 2,当x ∈(-∞,0)时,f ′(x )>0恒成⽴,函数在(-∞,0)上⽆极值;当x ∈(0,1)时,f ′(x )>0恒成⽴,函数在(0,1)上⽆极值.⽅法⼀当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极⼤值f (x 0),则x 0>1,f (x 0)>0,f ′(x 0)=0,则00000200201,e 0,e (1)0,x x x a x x a x x x ?> +> -+ = ?①②③由③得0e x a =-x 20x 0-1,代⼊②得-x 0x 0-1+x 0>0,结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x ,设h (x )=-x 2e x ,则h ′(x )=x (x -2)e x ,当x >2时,h ′(x )>0,即h (x )是增函数,∴a >h (x 0)>h (2)=-4e2.⼜a <0,故当极⼤值为正数时,a ∈-4e 2,0,从⽽不存在负整数a 满⾜条件.⽅法⼆当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2,则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e ,+∞),∵a 为负整数,∴a ≤-1,∴a e x ≤a e ≤-e ,∴a e x +2<0,∴H ′(x )<0,∴H (x )在(1,+∞)上单调递减.⼜H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0,∴?x 0∈(1,2),使得H (x 0)=0,且当10,即f ′(x )>0;当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极⼤值f (x 0)=0e x a x +x 0.(*)⼜H (x 0)=0e x a (x 0-1)+x 20=0,∴00e x a x =-x 0x 0-1,代⼊(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0,∴不存在负整数a 满⾜条件.2.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=f (x ),f (x )≥g (x ),g (x ),f (x )(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且?x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围.解 (1)∵函数f (x )=ax 3-3x 2+1,∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a ,∵a >0,∴x 1当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极⼤值为f (0)=1,极⼩值为f 2a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∵?x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在[1,2]上有解,即不等式2a ≤1x 3+3x在[1,2]上有解,设y =1x 3+3x =3x 2+1x3(x ∈[1,2]),∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成⽴,∴y =1x 3+3x 在[1,2]上单调递减,∴当x =1时,y =1x 3+3x 的最⼤值为4,∴2a ≤4,即a ≤2.⾼考中档⼤题规范练 (⼀)三⾓函数与解三⾓形1.(2017·江苏宿迁中学质检)已知函数f (x )=sin 2x +23sin x cos x +sin x +π4sin x -π4,x ∈R . (1)求f (x )的最⼩正周期和值域;(2)若x =x 00≤x 0≤π2为f (x )的⼀个零点,求sin 2x 0的值.解 (1)易得f (x )=sin 2x +3sin 2x +12(sin 2x -cos 2x )=1-cos 2x 2+3sin 2x -12cos 2x =3sin 2x -cos 2x +12=2sin 2x -π6+12,所以f (x )的最⼩正周期为π,值域为-32,52. (2)由f (x 0)=2sin 2x 0-π6+12=0,得 sin 2x 0-π6=-14<0,⼜由0≤x 0≤π2,得-π6≤2x 0-π6≤5π6,所以-π6≤2x 0-π6<0,故cos 2x 0-π6=154,此时sin 2x 0=sin 2x 0-π6+π6 =sin 2x 0-π6cos π6+cos 2x 0-π6sin π6 =-14×32+154×12=15-38.2.(2017·江苏南通四模)已知向量m =sin x 2,1,n =1,3cos x2,函数f (x )=m ·n . (1)求函数f (x )的最⼩正周期;(2)若f α-2π3=23,求f 2α+π3的值.解 (1)f (x )=m ·n =sin x 2+3cos x2=212sin x 2+32cos x2=2sin x 2cos π3+cos x 2sin π3 =2sin x 2+π3,所以函数f (x )的最⼩正周期为T =2π12=4π.(2)由f α-2π3=23,得2sin α2=23,即sin α2=13. 所以f 2α+π3=2sin α+π2=2cos α=2?1-2sin 2α2=149. 3.(2017·江苏南师⼤考前模拟)已知△ABC 为锐⾓三⾓形,向量m =cos A +π3,sin A +π3,n =(cos B ,sin B ),并且m ⊥n . (1)求A -B ;(2)若cos B =35,AC =8,求BC 的长.解 (1)因为m ⊥n ,所以m ·n =cos A +π3cos B +sinA +π3sin B=cosA +π3-B =0. 因为0所以A +π3-B =π2,即A -B =π6.(2)因为cos B =35,B ∈0,π2,所以sin B =45,所以sin A =sin B +π6=sin B cos π6+cos B sin π6 =45×32+35×12=43+310,由正弦定理可得BC =sin A sin B×AC =43+3.4.(2017·江苏镇江三模)在△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且(a -c )(sin A +sin C )=(b -3c )sin B . (1)求⾓A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间.解 (1)由(a -c )(sin A +sin C )=(b -3c )sin B 及正弦定理,得(a -c )(a +c )=(b -3c )b ,即a 2=b 2+c 2-3bc . 由余弦定理,得cos A =32,因为06.(2)f (x )=cos 2(x +A )-sin 2(x -A ) =cos 2x +π6-sin 2x -π6 =1+cos 2x +π32-1-cos ?2x -π32=12cos 2x ,令π+2k π≤2x ≤2π+2k π,k ∈Z ,得π2+k π≤x ≤π+k π,k ∈Z . 则f (x )的单调增区间为π2+k π,π+k π,k ∈Z .(⼆)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的⼀条切线. (1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2. ①试求b 的取值范围;②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12.解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0),则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点. h ′(x )=1x -1x-b =-bx +x -1x ,令h ′(x )=0,得bx -x +1=0(x >0).令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b>0,解得04.当04时,设h ′(x )=0的两正根为x 1,x 2,且x 1则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2).当x ∈(0,x 1)时,h ′(x )<0;当x ∈(x 1,x 2)时,h ′(x )>0;当x ∈(x 2,+∞)时,h ′(x )<0.所以x 1,x 2是h (x )=f (x )-g (x )的极值点,∴b 的取值范围是0,14. ②由①知x 1x 2=x 1+x 2=1 b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b ,所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b .记k (b )=12-b ln b -b 0令k ′(b )=0,得b =1e 2∈0,14,且当b ∈0,1e 2时,k ′(b )>0,k (b )单调递增;当b ∈1e 2,14时,k ′(b )<0,k (b )单调递减,且当b =1e 2时,k (b )取最⼤值1e 2+12,所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12.2.设函数f (x )=2ax +bx+c ln x .(1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1解 (1)f (x )=2ax +bx+c ln x ,x >0,f ′(x )=2a -b x 2+c x =2ax 2+cx -bx 2.当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x >0恒成⽴,所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a ;令f ′(x )=2ax +1x <0,解得x >-12a,所以,函数f (x )在0,-12a 上单调递增,在-12a ,+∞上单调递减.综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在? 0,-12a上单调递增,在-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6,所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3,所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-ax 2,函数f (x )有两个极值点x 1,x 2,x 1则⽅程2ax 2-ax +3-a =0有两个⼤于0的解,Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a2a >0,解得83所以a 的取值范围是83,3. ②2ax 22-ax 2+3-a =0, x 2=a +9a 2-24a 4a =141+9-24a ,由832x 22-x 2-1.f (x 2)=2ax 2+a -3x 2-a ln x 2=a 2x 2+1x 2-ln x 2-3x 2 =-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t2t 2-t -1-3t,t ∈14,12,φ′(t )=-32-1t 2-1t (2t 2-t -1)-2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+32t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=32t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在14,12上单调递增,φ(t )∈163ln 2,3+3ln 2,所以f (x 2)的取值范围是163ln 2,3+3ln 2. (⼆)⽴体⼏何1.(2017·江苏扬州调研)如图,在四棱锥P -ABCD 中,底⾯ABCD 为梯形,CD ∥AB ,AB =2CD ,AC 交BD 于O ,锐⾓△P AD 所在平⾯⊥底⾯ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证:(1)P A ∥平⾯QBD ; (2)BD ⊥AD .证明 (1)如图,连结OQ ,因为AB ∥CD ,AB =2CD ,所以AO =2OC . ⼜PQ =2QC ,所以P A ∥OQ . ⼜OQ ?平⾯QBD ,P A ?平⾯QBD ,所以P A ∥平⾯QBD .(2)在平⾯P AD 内过P 作PH ⊥AD 于点H ,因为侧⾯P AD ⊥底⾯ABCD ,平⾯P AD ∩平⾯ABCD =AD ,PH ?平⾯P AD ,所以PH ⊥平⾯ABCD .⼜BD ?平⾯ABCD ,所以PH ⊥BD .⼜P A ⊥BD ,P A ∩PH =P ,所以BD ⊥平⾯P AD . ⼜AD ?平⾯P AD ,所以BD ⊥AD .2.如图,在四棱锥P -ABCD 中,底⾯ABCD 是正⽅形,AC 与BD 交于点O ,PC ⊥底⾯ABCD ,E 为PB 上⼀点,G 为PO 的中点.(1)若PD∥平⾯ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平⾯PBD.证明(1)连结OE,由四边形ABCD是正⽅形知,O为BD的中点,因为PD∥平⾯ACE,PD?平⾯PBD,平⾯PBD∩平⾯ACE=OE,所以PD∥OE. 因为O为BD的中点,所以E为PB的中点.(2)在四棱锥P-ABCD中,AB=2PC,因为四边形ABCD是正⽅形,所以OC=22AB,所以PC=OC.因为G为PO的中点,所以CG⊥PO.⼜因为PC⊥底⾯ABCD,BD?底⾯ABCD,所以PC⊥BD.⽽四边形ABCD是正⽅形,所以AC⊥BD,因为AC,PC?平⾯P AC,AC∩PC=C,所以BD⊥平⾯P AC,因为CG?平⾯P AC,所以BD⊥CG.因为PO,BD?平⾯PBD,PO∩BD=O,所以CG⊥平⾯PBD.3.(2017·江苏怀仁中学模拟)如图,在四棱锥E-ABCD中,△ABD为正三⾓形,EB=ED,CB=CD.(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平⾯DMN∥平⾯BCE.证明(1)取BD的中点O,连结EO,CO.∵CD=CB,EB=ED,∴CO⊥BD,EO⊥BD.⼜CO∩EO=O,CO,EO?平⾯EOC,∴BD⊥平⾯EOC.⼜EC?平⾯EOC,∴BD⊥EC.(2)∵N是AB的中点,△ABD为正三⾓形,∴DN⊥AB,∵BC⊥AB,∴DN∥BC.⼜BC?平⾯BCE,DN?平⾯BCE,∴DN∥平⾯BCE.∵M为AE的中点,N为AB的中点,∴MN∥BE,⼜MN?平⾯BCE,BE?平⾯BCE,∴MN∥平⾯BCE.∵MN∩DN=N,∴平⾯DMN∥平⾯BCE.4.(2017·江苏楚⽔中学质检)如图,在三棱锥P-ABC中,点E,F分别是棱PC,AC的中点.(1)求证:P A∥平⾯BEF;(2)若平⾯P AB⊥平⾯ABC,PB⊥BC,求证:BC⊥P A.证明(1)在△P AC中,E,F分别是棱PC,AC的中点,所以P A∥EF.⼜P A?平⾯BEF,EF?平⾯BEF,所以P A∥平⾯BEF.(2)在平⾯P AB内过点P作PD⊥AB,垂⾜为D.因为平⾯P AB ⊥平⾯ABC ,平⾯P AB ∩平⾯ABC =AB ,PD ?平⾯P AB ,所以PD ⊥平⾯ABC ,因为BC ?平⾯ABC ,所以PD ⊥BC ,⼜PB ⊥BC ,PD ∩PB =P ,PD ?平⾯P AB ,PB ?平⾯P AB ,所以BC ⊥平⾯P AB ,⼜P A ?平⾯P AB ,所以BC ⊥P A .(三)数列(1)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由.(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=12n -n +22成⽴,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4,两式相减,得2a n =a n -1,所以a n a n -1=12,数列{a n }是以2为⾸项,公⽐为12的等⽐数列,所以a n =22-n (n ∈N *).(2)解由于数列{d n }是常数列, d n =c n +log C a n =2n +3+(2-n )log C 2 =2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数,则2-log C 2=0,解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1 =12n -n +22,①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=12n -1-n +12,②②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=12n -n +14,③由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,⼜b 1=-12=-18-38,所以数列{b n }是以-12为⾸项,公差为-18的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3n a n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p ""(1)证明因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2.⼜因为a 1=13,所以31·a 1=1,所以{3n a n }是⾸项为1,公差为-2的等差数列. (2)解由(1)知3n a n =1+(n -1)·(-2)=3-2n ,所以a n =(3-2n )13n ,所以S n =1·131+(-1)·132+(-3)·133+…+(3-2n )·13n ,所以13S n =1·132+(-1)·133+…+(5-2n )·13n +(3-2n )·13n +1,两式相减,得23S n =13-2132+133+…+13n -(3-2n )·13n +1=13-219×1-13n -11-13+(2n -3)·13n +1=2n ·13n +1,所以S n =n3n .(3)解假设存在正整数p ,q ,r (p ""3q =p 3p +r 3r. 当n ≥2时,a n =(3-2n )13n<0,所以数列{S n }单调递减.⼜p ""①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,⼜r 3r >0,所以p 3p +r 3r >2q3q ,等式不成⽴.②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解惟⼀确定).综上可知,p ,q ,r 的值为1,2,3.(三)应⽤题1.已知某⾷品⼚需要定期购买⾷品配料,该⼚每天需要⾷品配料200千克,配料的价格为1.8元/千克,每次购买配料需⽀付运费236元.每次购买来的配料还需⽀付保管费⽤,其标准如下:7天以内(含7天),⽆论重量多少,均按10元/天⽀付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克⽀付.(1)当9天购买⼀次配料时,求该⼚⽤于配料的保管费⽤P 是多少元?(2)设该⼚x 天购买⼀次配料,求该⼚在这x 天中⽤于配料的总费⽤y (元)关于x 的函数关系式,并求该⼚多少天购买⼀次配料才能使平均每天⽀付的费⽤最少?解 (1)当9天购买⼀次时,该⼚⽤于配料的保管费⽤ P =70+0.03×200×(1+2)=88(元).。

高考数学二轮复习专题三数列第2讲数列的求和及综合应

高考数学二轮复习专题三数列第2讲数列的求和及综合应
第2讲 数列的求和及综合应用
高考定位 1.高考对数列求和的考查主要以解答题的形式出 现,通过分组转化、错位相减、裂项相消等方法求数列的和, 难度中档偏下;2.在考查数列运算的同时,将数列与不等式、 函数交汇渗透.
真题感悟 1.(2017·全国Ⅲ卷)设数列{an}满足 a1+3a(2n+1)(b21+b2n+1)=(2n+1)bn+1, 又 S2n+1=bnbn+1,bn+1≠0,所以 bn=2n+1. 令 cn=bann,则 cn=2n2+n 1, 因此 Tn=c1+c2+…+cn=32+252+273+…+22nn--11+2n2+n 1, 又12Tn=232+253+274+…+2n2-n 1+22nn++11, 两式相减得12Tn=32+12+212+…+2n1-1-22nn++11, 所以 Tn=5-2n2+n 5.
温馨提醒 (1)裂项求和时,易把系数写成它的倒数或忘记系数导 致错误. (2)an=SS1n,-nS=n-11,,n≥2,忽略 n≥2 的限定,忘记第一项单独求解 与检验.
2.数列与函数、不等式的交汇 数列与函数的综合问题一般是利用函数作为背景,给出数列所 满足的条件,通常利用点在曲线上给出Sn的表达式,还有以曲 线上的切点为背景的问题,解决这类问题的关键在于利用数列 与函数的对应关系,将条件进行准确的转化.数列与不等式的 综合问题一般以数列为载体,考查最值问题、不等关系或恒成 立问题.
热点一 数列的求和问题 命题角度1 分组转化求和 【例 1-1】 (2017·郑州质检)已知数列{an}的前 n 项和 Sn=n2+2 n,
n∈N*. (1)求数列{an}的通项公式; (2)设 bn=2an+(-1)nan,求数列{bn}的前 2n 项和.
解 (1)当 n=1 时,a1=S1=1; 当 n≥2 时,an=Sn-Sn-1=n2+2 n-(n-1)2+2 (n-1)=n. 而 a1 也满足 an=n,故数列{an}的通项公式为 an=n. (2)由(1)知 an=n,故 bn=2n+(-1)nn. 记数列{bn}的前 2n 项和为 T2n, 则 T2n=(21+22+…+22n)+(-1+2-3+4-…+2n). 记 A=21+22+…+22n,B=-1+2-3+4-…+2n, 则 A=2(11--222n)=22n+1-2, B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n. 故数列{bn}的前 2n 项和 T2n=A+B=22n+1+n-2.

2025高考数学二轮复习数列解答题

2025高考数学二轮复习数列解答题

解 (1)设数列{an}的公差为 d,数列{bn}的公比为 q(q>0).
1 + 2 = 21 ,
2 + 2 = 2,
= 2,
由题意得
5×4
3 即 10 + 10 = + 3 ,解得 = 3.
51 + 2 = 1 + 1 ,
∴an=2+2(n-1)=2n,bn=1×3n-1=3n-1.
,为偶数,
和.
2.错位相减法
一般地,数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,
可采用错位相减法,一般是和式两边同乘等比数列{bn}的公比,然后作差求
解.
3.裂项相消法
实质是将数列的通项分解为两项之差,求和时能消去中间的一些项,最终达
到求和的目的,其解题的关键是准确地裂项和消项.
3 + 2, = 2,∈N* ,
所以bn+1=a2n+1=3a2n+2=3(2a2n-1+1)+2=6a2n-1+5=6bn+5.
因为b1+1=a1+1=2≠0,且bn+1+1=6(bn+1),所以数列{bn+1}是首项为2,公比
为6的等比数列.
所以bn+1=2·
6n-1,则bn=2·
6n-1-1.
3
1
①Sn= +m(m∈R),②Sn= an+1+m(m∈R),且 a1=1.请在这两个条件中选一个
2
2
补充在下面的横线上并解答.

,
(1)求m的值及数列{an}的通项公式;

《创新设计》2021届高考数学(理)二轮复习(江苏专用)习题:专题三 数 列

《创新设计》2021届高考数学(理)二轮复习(江苏专用)习题:专题三 数 列

第1讲 等差数列、等比数列的基本问题高考定位 高考对本内容的考查主要有:(1)数列的概念是A 级要求,了解数列、数列的项、通项公式、前n 项和等概念,一般不会单独考查;(2)等差数列、等比数列是两种重要且特殊的数列,要求都是C 级.真 题 感 悟1.(2022·江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解析 设等差数列{a n }公差为d ,由题意可得:⎩⎨⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20. 答案 202.(2021·江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析 ∵a 1=1,a n +1-a n =n +1,∴a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,将以上n -1个式子相加得a n -a 1=2+3+…+n =(2+n )(n -1)2,即a n =n (n +1)2,令b n =1a n,故b n =2n (n +1)=2⎣⎢⎡⎦⎥⎤1n-1n +1,故S 10=b 1+b 2+…+b 10 =2⎣⎢⎡⎦⎥⎤1-12+12-13+…+110-111=2011. 答案 20113.(2010·江苏卷)函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=________.解析 在点(a k ,a 2k )处的切线方程为:y -a 2k =2a k (x -a k ),当y =0时,解得x =a k 2,所以a k +1=a k 2,故{a n }是a 1=16,q =12的等比数列,即a n =16×⎝ ⎛⎭⎪⎫12n -1,∴a 1+a 3+a 5=16+4+1=21.答案 214.(2021·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析 设数列{a n }的公比为q (q >0),由已知条件得12q +12q 2=3,即q 2+q -6=0,解得q =2,或q =-3(舍去),a n =a 5q n -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1), a 1a 2…a n=2-52-42-3…2n -6=2n 2-11n 2,由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>2n (n -11)2,由2n -5-2-5>2n (n -11)2,可求得n 的最大值为12,而当n =13时,28-2-5<213,所以n 的最大值为12. 答案 12 考 点 整 合 1.等差数列(1)通项公式:a n =a 1+(n -1)d , (2)求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d , (3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②a n =a m +(n -m )d ;③S m ,S 2m -S m ,S 3m -S 2m ,…,成等差数列. 2.等比数列(1)通项公式:a n =a 1q n -1(q ≠0);(2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1-q n )1-q =a 1-a n q1-q ;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ; ②a n =a m ·q n -m ;③S m ,S 2m -S m ,S 3m -S 2m ,…,(S m ≠0)成等比数列. 3.求通项公式的常见类型(1)观看法:利用递推关系写出前几项,依据前几项的特点观看、归纳、猜想出a n 的表达式,然后用数学归纳法证明.(2)利用前n 项和与通项的关系a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).(3)公式法:利用等差(比)数列求通项公式.(4)累加法:在已知数列{a n }中,满足a n +1=a n +f (n ),把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解.(5)叠乘法:在已知数列{a n }中,满足a n +1=f (n )a n ,把原递推公式转化为a n +1a n =f (n ),再利用叠乘法(逐商相乘法)求解.(6)构造等比数列法:在已知数列{a n }中,满足a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p,再利用换元法转化为等比数列求解.热点一 等差、等比数列的基本运算【例1】 (1)(2022·全国Ⅰ卷改编)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=________. (2)(2022·连云港调研)在等差数列{a n }中,a 5=3,a 6=-2,则a 3+a 4+…+a 8=________. (3)(2021·湖南卷)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析 (1)由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98.(2)依据等差数列性质计算.由于{a n }是等差数列,所以a 3+a 4+…+a 8=3(a 5+a 6)=3.(3)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3,可得a 3=3a 2,∴公比q =3,故等比数列通项a n =a 1q n -1=3n -1.答案 (1)98 (2)3 (3)3n -1探究提高 (1)等差、等比数列的基本运算是利用通项公式、求和公式求解首项a 1和公差d (公比q ),在列方程组求解时,要留意整体计算,以削减计算量.(2)在解决等差、等比数列的运算问题时,经常接受“巧用性质、整体考虑、削减运算量”的方法.【训练1】 (1)(2022·江苏卷)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.(2)(2022·北京东城区模拟)设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于________.(3)(2021·潍坊模拟)在等比数列{a n }中,公比q =2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87=________.解析 (1)由于a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,a 6=a 2q 4=1×22=4.(2)由已知得S m -S m -1=a m =-16,S m +1-S m =a m +1=32,故公比q =-2,又S m =a 1-a m q 1-q =-11,故a 1=-1,又a m =a 1q m -1=-16,代入可求得m =5.(3)法一 a 3+a 6+a 9+…+a 87=a 3(1+q 3+q 6+…+q 84)=a 1q 2·1-(q 3)291-q 3=q 21+q +q 2·a 1(1-q 87)1-q =47×140=80. 法二 设b 1=a 1+a 4+a 7+…+a 85,b 2=a 2+a 5+a 8+…+a 86,b 3=a 3+a 6+a 9+…+a 87, 由于b 1q =b 2,b 2q =b 3,且b 1+b 2+b 3=140, 所以b 1(1+q +q 2)=140,而1+q +q 2=7, 所以b 1=20,b 3=q 2b 1=4×20=80. 答案 (1)4 (2)5 (3)80热点二 等差、等比数列的判定与证明【例2】 (2022·南师附中月考)已知数列{a n }的前n 项和为S n ,a 1=14,且S n =S n -1+a n -1+12(n ∈N *,且n ≥2),数列{b n }满足:b 1=-1194,且3b n -b n -1=n (n ≥2,且n ∈N *). (1)求数列{a n }的通项公式; (2)求证:数列{b n -a n }为等比数列.(1)解 由S n =S n -1+a n -1+12,得S n -S n -1=a n -1+12, 即a n -a n -1=12(n ∈N *,n ≥2),则数列{a n }是以12为公差的等差数列,又a 1=14, ∴a n =a 1+(n -1)d =12n -14. (2)证明 ∵3b n -b n -1=n (n ≥2), ∴b n =13b n -1+13n (n ≥2), ∴b n -a n =13b n -1+13n -12n +14=13b n -1-16n +14=13⎝ ⎛⎭⎪⎫b n -1-12n +34(n ≥2).b n -1-a n -1=b n -1-12(n -1)+14=b n -1-12n +34(n ≥2), ∴b n -a n =13(b n -1-a n -1)(n ≥2),∵b 1-a 1=-30≠0,∴b n -a n b n -1-a n -1=13(n ≥2).∴数列{b n -a n }是以-30为首项,13为公比的等比数列. 探究提高 推断和证明数列是等差(比)数列的两种方法(1)定义法:对于n ≥1的任意自然数,验证a n +1-a n ⎝ ⎛⎭⎪⎫或a n +1a n 为同一常数. (2)中项公式法:①若2a n =a n -1+a n +1(n ∈N *,n ≥2),则{a n }为等差数列;②若a 2n =a n -1·a n +1(n ∈N *,n ≥2),则{a n }为等比数列.【训练2】 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. (1)证明 由题设,a n a n +1=λS n -1,① 知a n +1a n +2=λS n +1-1,② ②-①得:a n +1(a n +2-a n )=λa n +1. ∵a n +1≠0,∴a n +2-a n =λ.(2)解 由题设可求a 2=λ-1,∴a 3=λ+1, 令2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4.由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列. 热点三 求数列的通项[微题型1] 由S n 与a n 的关系求a n【例3-1】 (1)已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2,n ∈N *),a 1=12.求数列{a n }的通项公式.(2)(2022·岳阳二模节选)设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3, n ∈N *.证明:a n +2=3a n ;并求a n .解 (1)由a n +2S n ·S n -1=0(n ≥2,n ∈N *), 得S n -S n -1+2S n ·S n -1=0,所以1S n -1S n -1=2(n ≥2,n ∈N *),故⎩⎨⎧⎭⎬⎫1S n 是等差数列.又1S 1=2,所以1S n=2n ,故S n =12n ,a n =S n -S n -1=12n -12(n -1)=-12n (n -1)(n ≥2,n ∈N *),所以a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.(2)由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3, 因而对任意n ∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1, 即a n +2=3a n ,n ≥2.又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n ∈N *,a n +2=3a n .又∵a n ≠0,所以a n +2a n =3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列.因此a 2n -1=3n -1,a 2n =2×3n -1. ∴a n =⎩⎪⎨⎪⎧3n -12,n 为奇数,2×3n -22,n 为偶数.探究提高 给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .[微题型2] 已知a n 与a n +1的递推关系式求a n【例3-2】 (1)在数列{a n }中,a 1=1,a n +1=⎝ ⎛⎭⎪⎫1+1n a n +n +12n ,求数列{a n }的通项公式;(2)已知正项数列{a n }满足a 1=1,(n +2)a 2n +1-(n +1)a 2n +a n a n +1=0,求通项a n ;(3)已知a 1=4,a n +1=2a n 2a n +1,求通项a n .解 (1)由已知得a 1=1,且a n +1n +1=a n n +12n,∴a 22=a 11+121,a 33=a 22+122,…,a n n =a n -1n -1+12n -1,∴a n n =1+12+122+…+12n -1=2-12n -1(n ≥2).∴a n =2n -n2n -1(n ≥2),又a 1=1适合上式,∴a n =2n -n2n -1.(2)由(n +2)a 2n +1-(n +1)a 2n +a n a n +1=0,得(n +2)⎝ ⎛⎭⎪⎫a n +1a n 2+a n +1a n =n +1,所以a n +1a n =n +1n +2. 又a 1=1,则a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n n +1·n -1n ·…·23·1=2n +1. 故数列{a n }的通项公式a n =2n +1.(3)∵a n +1=2a n 2a n +1,两边取倒数得1a n +1=12a n +1,设b n =1a n ,则b n +1=12b n +1,则b n +1-2=12(b n-2),∴b n +1-2b n -2=12,故{b n -2}是以b 1-2=1a 1-2=-74为首项,12为公比的等比数列.∴b n -2=⎝ ⎛⎭⎪⎫-74⎝ ⎛⎭⎪⎫12n -1, 即1a n-2=⎝ ⎛⎭⎪⎫-74⎝ ⎛⎭⎪⎫12n -1,得a n =2n +12n +2-7.探究提高 (1)形如b n +1-b n =f (n ),其中f (n )=k 或多项式(一般不高于三次),用累加法即可求得数列的通项公式;(2)形如a n +1=a n ·f (n ),可用累乘法;(3)形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列;(4)形如a n +1=qa n +q n (q 为常数,且q ≠0,q ≠±1),解决方法是在递推公式两边同除以q n +1. 【训练3】 (1)设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *. ①求a 2的值;②求数列{a n }的通项公式.(2)已知正项数列{a n }的前n 项和为S n ,且a 1=1,S n +1+S n =a 2n +1,数列{b n }满足b n ·b n +1=3a n ,且b 1=1.求数列{a n }、{b n }的通项公式.解 (1)①依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4. ②当n ≥2时,2S n =na n +1-13n 3-n 2-23n , 2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),以上两式相减得,2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23. 整理得(n +1)a n =na n +1-n (n +1), 即a n +1n +1-a n n =1,又a 22-a 11=1, 故数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差为1的等差数列,所以a nn =1+(n -1)×1=n ,所以a n =n 2.(2)∵S n +1+S n =a 2n +1,① S n +S n -1=a 2n (n ≥2),②①-②得a n +1+a n =a 2n +1-a 2n ,∴(a n +1+a n )(a n +1-a n -1)=0, ∵a n +1>0,a n >0,∴a n +1+a n ≠0, ∴a n +1-a n =1(n ≥2), 又由S 2+S 1=a 22,得2a 1+a 2=a 22,即a 22-a 2-2=0,∴a 2=2,a 2=-1(舍去),∴{a n }是以1为首项,1为公差的等差数列, ∴a n =n .又b n ·b n +1=3a n =3n ,③ b n -1b n =3n -1(n ≥2),④ ③④得b n +1b n -1=3(n ≥2), 又由b 1=1,可求b 2=3.故b 1,b 3,…,b 2n -1是首项为1,公比为3的等比数列;b 2,b 4,…,b 2n 是首项为3,公比为3的等比数列.∴b 2n -1=3n -1,b 2n =3·3n -1=3n . ∴b n =⎩⎪⎨⎪⎧3n -12,n 为奇数,3n 2,n 为偶数.1.在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算.2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又便利的工具,应有意识地去应用.但在应用性质时要留意性质的前提条件,有时需要进行适当变形.3.应用关系式a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2时,肯定要留意分n =1,n ≥2两种状况,在求出结果后,看看这两种状况能否整合在一起.一、填空题1.(2021·南通模拟)在等差数列{a n }中,a 1+3a 3+a 15=10,则a 5的值为________. 解析 设数列{a n }的公差为d ,∵a 1+a 15=2a 8,∴2a 8+3a 3=10,∴2(a 5+3d )+3(a 5-2d )=10,∴5a 5=10,∴a 5=2.答案 22.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=________. 解析 设等比数列{a n }的公比为q ,由已知,得⎩⎪⎨⎪⎧a 1+a 1q 2=8,a 1q 4+a 1q 6=4,解得q 4=12.又a 9+a 11=a 1q 8+a 3q 8=(a 1+a 3)q 8=8×⎝ ⎛⎭⎪⎫122=2,a 13+a 15=a 1q 12+a 3q 12=(a 1+a 3)q 12=8×⎝ ⎛⎭⎪⎫123=1,所以a 9+a 11+a 13+a 15=2+1=3. 答案 33.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 解析 依据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大. 答案 84.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n 等于________. 解析 由a 2,a 4,a 8成等比数列,得a 24=a 2a 8, 即(a 1+6)2=(a 1+2)(a 1+14),∴a 1=2. ∴S n =2n +n (n -1)2×2=2n +n 2-n =n (n +1). 答案 n (n +1)5.(2022·宿迁调研)设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于________.解析 依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30.又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,则S 40=S 30+(S 30-S 20)2S 20-S 10=70+40220=150.答案 1506.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q =________.解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的状况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的状况有:a ,-2,b ;b ,-2,a . ∴⎩⎪⎨⎪⎧ab =4,2b =a -2或⎩⎪⎨⎪⎧ab =4,2a =b -2 解之得:⎩⎪⎨⎪⎧a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4.∴p =5,q =4,∴p +q =9. 答案 97.(2022·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为__________.解析 设等比数列{a n }的公比为q ,∴⎩⎪⎨⎪⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎨⎧a 1=8,q =12,∴a 1a 2…a n =⎝ ⎛⎭⎪⎫12(-3)+(-2)+…+(n -4)=⎝ ⎛⎭⎪⎫1212n (n -7)=⎝ ⎛⎭⎪⎫1212⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫n -722-494, 当n =3或4时,12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫n -722-494取到最小值-6,此时⎝ ⎛⎭⎪⎫1212⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n -722-494取到最大值26,所以a 1a 2…a n 的最大值为64. 答案 648.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________. 解析 设数列{a n }的首项和公差分别为a 1,d , 则⎩⎪⎨⎪⎧10a 1+45d =0,15a 1+105d =25,⎩⎨⎧a 1=-3,d =23, 则nS n =n ⎣⎢⎡⎦⎥⎤-3n +n (n -1)3=n 33-103n 2. 设函数f (x )=x 33-103x 2,则f ′(x )=x 2-203x , 当x ∈⎝ ⎛⎭⎪⎫0,203时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫203,+∞时,f ′(x )>0,所以函数f (x )min =f ⎝ ⎛⎭⎪⎫203,但6<203<7,且f (6)=-48,f (7)=-49, 由于-48>-49,所以最小值为-49. 答案 -49 二、解答题9.(2022·全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1, 得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0, 所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)解 由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n. 由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝⎛⎭⎪⎫λλ-15=132. 解得λ=-1.10.已知数列{a n }满足a 1=1,a n +1=3a n +1, (1)证明{a n +12}是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n<32.证明 (1)由a n +1=3a n +1, 得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12.又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列. a n +12=3n 2,因此{a n }的通项公式为a n =3n -12. (2)由(1)知1a n =23n -1.由于当n ≥1时,3n -1≥2×3n -1, 所以13n -1≤12×3n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32. 所以1a 1+1a 2+…+1a n<32.11.数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上. (1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由题意,可得2a n +1+S n -2=0.① 当n ≥2时,2a n +S n -1-2=0.②①-②,得2a n +1-2a n +a n =0,所以a n +1a n =12(n ≥2).由于a 1=1,2a 2+a 1=2,所以a 2=12. 所以{a n }是首项为1,公比为12的等比数列. 所以数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知,S n =1-12n1-12=2-12n -1. 若⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列,则S 1+λ+λ2,S 2+2λ+λ22,S 3+3λ+λ23成等差数列,则2⎝ ⎛⎭⎪⎫S 2+9λ4=S 1+3λ2+S 3+25λ8,即2⎝ ⎛⎭⎪⎫32+9λ4=1+3λ2+74+25λ8,解得λ=2.又λ=2时,S n +2n +22n =2n +2, 明显{2n +2}成等差数列,故存在实数λ=2, 使得数列{S n +λn +λ2n }成等差数列.第2讲 数列的综合应用高考定位 高考对本内容的考查主要有:(1)通过适当的代数变形后,转化为等差数列或等比数列的问题;(2)求数列的前n 项和的几种方法;(3)数列与函数、不等式、数论等学问结合的综合问题.题型一般为解答题,且为压轴题.真 题 感 悟(2022·江苏卷)记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =∅,定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1)求数列{a n }的通项公式;(2)对任意正整数k (1≤k ≤100),若T ⊆{1,2,…,k },求证:S T <a k +1; (3)设C ⊆U ,D ⊆U ,S C ≥S D ,求证:S C +S C ∩D ≥2S D . (1)解 当T ={2,4}时,S T =a 2+a 4=a 2+9a 2=30, ∴a 2=3,a 1=a 23=1, 故a n =a 1q n -1=3n -1.(2)证明 对任意正整数k (1≤k ≤100). 由于T ⊆{1,2,…,k },则S T ≤a 1+a 2+a 3+…+a k =1+3+32+…+3k -1=3k -12<3k =a k +1.因此,S T <a k +1.(3)证明 设A =∁C (C ∩D ),B =∁D (C ∩D ), 则A ∩B =∅,S C =S A +S C ∩D ,S D =S B +S C ∩D ,S C +S C ∩D -2S D =S A -2S B , ∴S C +S C ∩D ≥2S D 等价于S A ≥2S B . 由条件S C ≥S D 可得S A ≥S B . ①若B =∅,则S B =0, 所以S A ≥2S B 成立,②若B ≠∅,由S A ≥S B 可知A ≠∅,设A 中的最大元素为I ,B 中的最大元素为m , 若m ≥I +1,则由(2)得S A <S I +1≤a m ≤S B ,冲突. 又∵A ∩B =∅,∴I ≠m ,∴I ≥m +1, ∴S B ≤a 1+a 2+…+a m =1+3+32+…+3m -1<a m +12≤a I 2≤S A2,即S A >2S B 成立.综上所述,S A ≥2S B .故S C +S C ∩D ≥2S D 成立. 考 点 整 合 1.数列求和常用方法(1)分组转化求和:把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简洁的数列,最终分别求和.(2)错位相减法:适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n 两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.2.数列中的不等式问题主要有证明数列不等式、比较大小或恒成立问题,解决方法如下: (1)利用数列(或函数)的单调性;(2)放缩法:①先求和后放缩;②先放缩后求和,包括放缩后成等差(或等比)数列再求和,或者放缩后成等差比数列再求和,或者放缩后裂项相消法求和.热点一 数列求和与不等式的结合问题【例1】 (2022·泰州调研)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n-1b n(n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *均有S k ≥S n . 解 (1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去), 所以数列{a n }的通项为a n =2n (n ∈N *). 所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). (2)①由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *),所以S n =1n +1-12n (n ∈N *).②由于c 1=0,c 2>0,c 3>0,c 4>0; 当n ≥5时,c n =1n (n +1)⎣⎢⎡⎦⎥⎤n (n +1)2n -1,而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0, 得n (n +1)2n ≤5·(5+1)25<1, 所以,当n ≥5时,c n <0.综上,对任意n ∈N *,恒有S 4≥S n ,故k =4.探究提高 (1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最终利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系式时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【训练1】 (2022·洛阳二模)已知数列{a n }中,a 2=2,S n 是其前n 项和,且S n =na n2. (1)求数列{a n }的通项公式;(2)若正项数列{b n }满足a n =log 2⎝ ⎛⎭⎪⎫b n 22,设数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和为T n ,求使得n +12-T n >30成立的正整数n 的最小值. 解 (1)令n =1,得a 1=0.当n ≥2时,a n =S n -S n -1=na n 2-(n -1)a n -12.可得(n -2)a n =(n -1)a n -1, 当n ≥3时,a n a n -1=n -1n -2, 所以a n =a n a n -1×a n -1a n -2×…×a 3a 2×a 2=2(n -1),明显当n =1,2时,满足上式.所以a n =2(n -1). (2)由于a n =log 2⎝ ⎛⎭⎪⎫b n 22,所以2(n -1)=log 2⎝ ⎛⎭⎪⎫b n 22=log 2b 2n -log 24=2log 2b n -2,即2n =2log 2b n ,∴b n =2n , a n b n =2(n -1)2n =n -12n -1,所以T n =020+121+222+323+…+n -12n -1,12T n =021+122+223+…+n -22n -1+n -12n , 作差得12T n =12+122+…+12n -1-n -12n =1-12n -1-n -12n =1-n +12n .∴T n =2-n +12n -1.所以n +12-T n=2n -1>30, 当n ≥6时,不等式恒成立,所以正整数n 的最小值为6. 热点二 有关数列中计算的综合问题【例2】 (2022·镇江期末)已知数列{a n }的各项都为自然数,前n 项和为S n ,且存在整数λ,使得对任意正整数n 都有S n =(1+λ)a n -λ恒成立.(1)求λ的值,使得数列{a n }为等差数列,并求数列{a n }的通项公式;(2)若数列{a n }为等比数列,此时存在正整数k ,当1≤k <j 时,有∑i =k ja i =2 016,求k .解 (1)法一 由于S n =(1+λ)a n -λ,① 所以S n +1=(1+λ)a n +1-λ,② 由②-①得λa n +1=(1+λ)a n ,③当λ=0时,a n =0,数列{a n }是等差数列.当λ≠0时,a 1=(1+λ)a 1-λ,a 1=1,且a n +1-a n =1λa n ,④ 要使数列{a n }是等差数列,则④式右边1λa n 为常数,即a n +1-a n 为常数,④式左边a n +1-a n =0,a n =0,与a 1=1冲突.综上可得,当λ=0时,数列{a n }为等差数列,且a n =0. 法二 若数列{a n }是等差数列,必有2a 2=a 1+a 3, 当λ=0时,a 1=a 2=a 3=0,满足2a 2=a 1+a 3,此时S n =a n ,则S n +1=a n +1,故a n =0, 当λ≠0时,a 1=1,a 2=1+1λ,a 3=⎝ ⎛⎭⎪⎫1+1λ2,由2a 2=a 1+a 3,得2⎝ ⎛⎭⎪⎫1+1λ=1+⎝ ⎛⎭⎪⎫1+1λ2,该方程无解,综上可得,当λ=0时,数列{a n }为等差数列,其中a n =0. (2)由(1)可得,当λ=0时,数列{a n }不是等比数列, 当λ=-1时,由①得S n =1,则a 1=S 1=1, a n =S n -S n -1=0(n ≥2),不是等比数列.当λ≠0,且λ≠-1时,得a n +1a n =1+1λ,{a n }为公比为1+1λ的等比数列,又对任意n ,a n ∈N ,则q =1+1λ∈N ,故仅有λ=1,q =2时,满足题意, 又由(1)得a 1=1,故a n =2n -1. 由于∑i =kja i =2k -1(2j -k +1-1)2-1=2 016,所以2k -1(2j -k +1-1)=2 016=25×32×7,由题意j -k +1≥2,2j -k +1-1为大于1的奇数,所以2k -1=25,k =6, 则2j -5-1=32×7,2j -5=64,j =11, 故仅存在k =6时,j =11,∑i =k ja i =2 016.探究提高 此类问题看似简洁,实际简单,思维量和计算量较大,难度较高.【训练2】 (2011·江苏卷)设M 为部分正整数组成的集合,数列{a n }的首项a 1=1,前n 项的和为S n ,已知对任意的整数k ∈M ,当整数n >k 时,S n +k +S n -k =2(S n +S k )都成立.(1)设M ={1},a 2=2,求a 5的值; (2)设M ={3,4},求数列{a n }的通项公式.解 (1)由题设知,当n ≥2时,S n +1+S n -1=2(S n +S 1),即(S n +1-S n )-(S n -S n -1)=2S 1,从而a n +1-a n =2a 1=2.又a 2=2,故当n ≥2时,a n =a 2+2(n -2)=2n -2.所以a 5的值为8.(2)由题设知,当k ∈M ={3,4}且n >k 时,S n +k +S n -k =2S n +2S k 且S n +1+k +S n +1-k =2S n +1+2S k ,两式相减得a n +1+k +a n +1-k =2a n +1,即a n +1+k -a n +1=a n +1-a n +1-k ,所以当n ≥8时,a n -6,a n -3,a n ,a n +3,a n +6成等差数列,且a n -6,a n -2,a n +2,a n +6也成等差数列.从而当n ≥8时,2a n =a n +3+a n -3=a n +6+a n -6,(*)且a n +6+a n -6=a n +2+a n -2.所以当n ≥8时,2a n =a n +2+a n -2,即a n +2-a n =a n -a n -2.于是当n ≥9时,a n -3,a n -1,a n +1,a n +3成等差数列,从而a n +3+a n -3=a n +1+a n -1,故由(*)式知2a n =a n +1+a n -1,即a n +1-a n =a n -a n -1.当n ≥9时,设d =a n -a n -1.当2≤m ≤8时,m +6≥8,从而由(*)式知2a m +6=a m +a m +12,故2a m +7=a m +1+a m +13.从而2(a m +7-a m +6)=a m +1-a m +(a m +13-a m +12),于是a m +1-a m =2d -d =d .因此,a n +1-a n =d 对任意n ≥2都成立.又由S n +k +S n -k -2S n =2S k (k ∈{3,4})可知,(S n +k -S n )-(S n -S n -k )=2S k ,故9d =2S 3且16d =2S 4.解得a 4=72d ,从而a 2=32d ,a 3=52d ,又由S 3=92d =a 1+a 2+a 3,故a 1=d2.因此,数列{a n }为等差数列,由a 1=1知d =2,所以数列{a n }的通项公式为a n =2n -1. 热点三 有关数列中证明的综合问题【例3】 (2022·南通、扬州、泰州调研)已知数列{a n },{b n }均为各项都不相等的数列,S n 为{a n }的前n 项和,a n +1b n =S n +1(n ∈N *). (1)若a 1=1,b n =n2,求a 4的值;(2)若{a n }是公比为q 的等比数列,求证:存在实数λ,使得{b n +λ}为等比数列;(3)若{a n }的各项都不为零,{b n }是公差为d 的等差数列,求证:a 2,a 3,…,a n ,…成等差数列的充要条件是d =12.(1)解 由a 1=1,b n =n2知a 2=4,a 3=6,a 4=8. (2)证明 由于a n +1b n =S n +1,① 所以当n ≥2时,a n b n -1=S n -1+1,②由①-②得,当n ≥2时,a n +1b n -a n b n -1=a n ,③ 由③得,当n ≥2时,b n =a n a n +1b n -1+a n a n +1=1q b n -1+1q ,所以b n +11-q =1q ⎝ ⎛⎭⎪⎫b n -1+11-q .又由于b n +11-q ≠0(否则{b n }为常数数列与题意不符),所以存在实数λ=11-q,使得{b n +λ}为等比数列. (3)证明 由于{b n }为公差为d 的等差数列, 所以由③得,当n ≥2时,a n +1b n -a n (b n -d )=a n , 即(a n +1-a n )b n =(1-d )a n ,由于{a n },{b n }各项均不相等,所以a n +1-a n ≠0,1-d ≠0, 所以当n ≥2时,b n 1-d =a na n +1-a n,④ 当n ≥3时,b n -11-d =a n -1a n -a n -1,⑤ 由④-⑤得,当n ≥3时,a n a n +1-a n -a n -1a n -a n -1=b n -b n -11-d =d 1-d,⑥先证充分性,即由d =12证明a 2,a 3,…,a n ,…成等差数列. 由于d =12,由⑥得a na n +1-a n -a n -1a n -a n -1=1,所以当n ≥3时,a n a n +1-a n =1+a n -1a n -a n -1=a na n -a n -1,又a n ≠0,所以a n +1-a n =a n -a n -1, 即a 2,a 3,…,a n ,…成等差数列.再证必要性,即由a 2,a 3,…,a n ,…成等差数列证明d =12. 由于a 2,a 3,…,a n ,…成等差数列, 所以当n ≥3时,a n +1-a n =a n -a n -1, 所以由⑥得a n a n +1-a n -a n -1a n -a n -1=a n a n -a n -1-a n -1a n -a n -1=1=d1-d,解得d =12.所以a 2,a 3,…,a n ,…成等差数列的充要条件是a =12.探究提高 分析已知条件和求解目标,确定最终解决问题需要首先求解的中间问题,如为求和需要先求出通项、为求出通项需要先求出首项和公差(公比)证明数列为等差或等比数列需要先证任意两项的差或比值为定值,证明充要条件需要证明充分性与必要性等,确定解题的规律次序. 【训练3】 (2022·江苏卷)设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)设{a n }是等差数列,其首项a 1=1,公差d <0.若{a n }是“H 数列”,求d 的值;(3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.(1)证明 由已知,当n ≥1时,a n +1=S n +1-S n =2n +1-2n =2n.于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n=a m .所以{a n }是“H 数列”.(2)解 由已知,得S 2=2a 1+d =2+d .由于{a n }是“H 数列”,所以存在正整数m ,使得S 2=a m ,即2+d =1+(m -1)d ,于是(m -2)d =1.由于d <0,所以m -2<0,故m =1.从而d =-1.当d =-1时,a n =2-n ,S n =n (3-n )2是小于2的整数,n ∈N *,于是对任意的正整数n ,总存在正整数m =2-S n =2-n (3-n )2,使得S n =2-m =a m ,所以{a n }是“H 数列”.因此d 的值为-1.(3)证明 设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *). 令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *). 下证{b n }是“H 数列”.设{b n }的前n 项和为T n ,则T n =n (n +1)2a 1(n ∈N *),于是对任意的正整数n ,总存在正整数m =n (n +1)2,使得T n =b m ,所以{b n }是“H 数列”.同理可证{c n }也是“H 数列”.所以,对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立. 热点四 数列中的探究性问题【例4】 设数列{a n }的前n 项积为T n ,已知对∀n ,m ∈N *,当n >m 时,总有T nT m =T n -m ·q (n -m )m (q>0是常数).(1)求证:数列{a n }是等比数列;(2)设正整数k ,m ,n (k <m <n )成等差数列,试比较T n ·T k 和(T m )2的大小,并说明理由; (3)探究:命题p :“对∀n ,m ∈N *,当n >m 时,总有T nT m=T n -m ·q (n -m )m (q >0是常数)”是命题t :“数列{a n }是公比为q (q >0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.(1)证明 设m =1,则有T n T 1=T n -1·q n -1,由于T i ≠0(i ∈N *),所以有T nT n -1=a 1·q n -1,即a n =a 1·q n-1,所以当n ≥2时a na n -1=q , 所以数列{a n }是等比数列.(2)解 当q =1时,a n =a 1(n ∈N *),所以T n =a n 1,所以T n ·T k =a n 1·a k 1=a n +k 1=a 2m 1=T 2m ,当q ≠1时,a n =a 1·q n -1,T n =a 1·a 2…a n =a n1·q 1+2+…+(n -1)=a n1·qn (n -1)2,所以T n ·T k =a n 1·qn (n -1)2·a k 1·q k (k -1)2=a n +k1·qn 2-n +k 2-k2,T 2m =a 2m 1·qm (m -1).由于n +k =2m 且k <m <n ,所以a n +k1=a 2m1,n 2+k 2-n -k 2=n 2+k 22-m >⎝ ⎛⎭⎪⎫n +k 22-m =m 2-m ,所以若q >1,则T n ·T k>T 2m ;若q <1,则T n ·T k <T 2m .(3)解 由(1)知,充分性成立;必要性:若数列{a n }成等比数列,则a n =a 1·q n -1,所以当q ≠1时,T n =a n 1·qn (n -1)2,则T n T m=a n 1·qn (n -1)2a m 1·q m (m -1)2=a n -m 1·q n 2-n -m 2+m 2=a n -m 1·q (n -m )(n +m -1)2,T n -m ·q (n-m )m=a n -m1·q(n -m )(n -m -1)2·q(n -m )·m=a n -m1·q(n -m )(n -m -1)+2(n -m )m2=a n -m1·q(n -m )(n +m -1)2.所以,“对∀n ,m ∈N *,当n >m 时总有T n T m=T n -m ·q (n -m )m 成立;同理可证当q =1时也成立.所以命题p 是命题t 的充要条件.探究提高 数列中的比较大小与其它比较大小的方法类似,也是差比法或商比法.另外探究充要条件要从充分性、必要性两个方面推断与查找.【训练4】 (2022·南京调研)已知等差数列{a n }的前n 项和为S n ,且2a 5-a 3=13,S 4=16.(1)求数列{a n }的前n 项和S n ;(2)设T n =∑i =1n(-1)i a i ,若对一切正整数n ,不等式λT n <[a n +1+(-1)n +1a n ]·2n -1恒成立,求实数λ的取值范围;(3)是否存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列?若存在,求出全部的m ,n ;若不存在,请说明理由. 解 (1)设数列{a n }的公差为d . 由于2a 5-a 3=13,S 4=16,所以⎩⎨⎧2(a 1+4d )-(a 1+2d )=13,4a 1+6d =16,解得a 1=1,d =2,所以a n =2n -1,S n =n 2.(2)①当n 为偶数时,设n =2k ,k ∈N *,则T 2k =(a 2-a 1)+(a 4-a 3)+…+(a 2k -a 2k -1)=2k , 代入不等式λT n <[a n +1+(-1)n +1a n ]·2n -1得λ·2k <4k ,从而λ<4k2k .设f (k )=4k 2k ,则f (k +1)-f (k )=4k +12(k +1)-4k 2k =4k (3k -1)2k (k +1).由于k ∈N *,所以f (k +1)-f (k )>0,所以f (k )是递增的,所以f (k )min =2,所以λ<2. ②当n 为奇数时,设n =2k -1,k ∈N *, 则T 2k -1=T 2k -(-1)2k a 2k =2k -(4k -1)=1-2k , 代入不等式λT n <[a n +1+(-1)n +1a n ]·2n -1, 得λ·(1-2k )<(2k -1)4k ,从而λ>-4k .由于k ∈N *,所以-4k 的最大值为-4,所以λ>-4. 综上所述,λ的取值范围为(-4,2).(3)假设存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列, 则(S m -S 2)2=S 2·(S n -S m ),即(m 2-4)2=4(n 2-m 2), 所以4n 2=(m 2-2)2+12,即4n 2-(m 2-2)2=12, 即(2n -m 2+2)(2n +m 2-2)=12.由于n >m >2,所以n ≥4,m ≥3,所以2n +m 2-2≥15.由于2n -m 2+2是整数,所以等式(2n -m 2+2)(2n +m 2-2)=12不成立,故不存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列.1.数列与不等式综合问题(1)假如是证明不等式,常转化为数列和的最值问题,同时要留意比较法、放缩法、基本不等式的应用;(2)假如是解不等式,留意因式分解的应用. 2.数列与函数的综合问题(1)函数条件的转化:直接利用函数与数列的对应关系,把函数解析式中的自变量x 换为n 即可. (2)数列向函数的转化:可将数列中的问题转化为函数问题,但要留意函数定义域. 3.数列中的探究性问题处理探究性问题的一般方法是:假设题中的数学对象存在或结论成立或其中的一部分结论成立,然后在这个前提下进行规律推理.若由此导出冲突,则否定假设,否则,给出确定结论,其中反证法在解题中起着重要的作用.还可以依据已知条件建立恒等式,利用等式恒成立的条件求解.一、填空题1.(2021·全国Ⅱ卷)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________. 解析 由题意,得S 1=a 1=-1,又由a n +1=S n S n +1,得S n +1-S n =S n S n +1,所以S n ≠0,所以S n +1-S nS n S n +1=1,即1S n +1-1S n=-1,故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列,得1S n =-1-(n -1)=-n ,所以S n =-1n . 答案 -1n2.(2022·江苏卷改编)各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,若函数f (x )=a 1x +a 2x 2+a 3x 3+…+a 10x 10的导数为f ′(x ),则f ′⎝ ⎛⎭⎪⎫12=________.解析 由于各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,所以a 4=2,q =2,故a n =2n -3,又f ′(x )=a 1+2a 2x +3a 3x 2+…+10a 10x 9,所以f ′⎝ ⎛⎭⎪⎫12=2-2+2×2-2+3×2-2+…+10×2-2=2-2×10×112=554.答案 5543.已知数列{a n }满足a 1=0,a 2=1,a n +2=3a n +1-2a n ,则{a n }的前n 项和S n =________. 解析 ∵a n +2=3a n +1-2a n ,∴a n +2-a n +1=2(a n +1-a n ), ∴a n +2-a n +1a n +1-a n=2, ∴数列{a n +1-a n }是以1为首项,2为公比的等比数列, ∴a n +1-a n =2n -1,∴a 2-a 1=20,a 3-a 2=21,a 4-a 3=22,…,a n -a n -1=2n -2, ∴a n -a 1=20+21+…+2n -2=1-2n -11-2=2n -1-1,∴a n =2n -1-1,∴S n =(20+21+…+2n -1)-n =1-2n1-2-n =2n -n -1.答案 2n -n -14.(2021·南京、盐城模拟)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n≤B 对n ∈N *恒成立,则B -A 的最小值为________.解析 依题意得S n =43⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n 1-⎝ ⎛⎭⎪⎫-13=1-⎝ ⎛⎭⎪⎫-13n,当n 为奇数时,S n =1+⎝ ⎛⎭⎪⎫13n ∈⎝ ⎛⎦⎥⎤1,43;当n 为偶数时,S n =1-⎝ ⎛⎭⎪⎫13n ∈⎣⎢⎡⎭⎪⎫89,1.由函数y =x -1x 在(0,+∞)上是增函数得S n -1S n的取值范围是⎣⎢⎡⎭⎪⎫-1772,0∪⎝ ⎛⎦⎥⎤0,712,因此有A ≤-1772,B ≥712,B -A ≥712+1772=5972,即B -A 的最小值是5972. 答案 59725.数列{a n }的通项a n =n 2⎝ ⎛⎭⎪⎫cos 2n π3-sin 2n π3,其前n 项和为S n ,则S 30为________.解析 由于a n =n 2⎝⎛⎭⎪⎫cos2n π3-sin 2 n π3=n 2cos 2n π3, 由于cos 2n π3以3为周期,且cos 2π3=-12,cos 4π3=-12, cos 6π3=1,所以S 30=(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 28+a 29+a 30) =⎝ ⎛⎭⎪⎫-12+222+32+⎝ ⎛⎭⎪⎫-42+522+62+…+⎝ ⎛⎭⎪⎫-282+2922+302=∑k =110⎣⎢⎡⎦⎥⎤-(3k -2)2+(3k -1)22+(3k )2=∑k =110⎝ ⎛⎭⎪⎫9k -52=470.答案 470 二、解答题6.数列{a n }满足a n =2a n -1+2n +1(n ∈N *,n ≥2),a 3=27. (1)求a 1,a 2的值;(2)是否存在一个实数t ,使得b n =12n (a n +t )(n ∈N *),且数列{b n }为等差数列?若存在,求出实数t ;若不存在,请说明理由; (3)求数列{a n }的前n 项和S n .解 (1)由a 3=27,得27=2a 2+23+1,∴a 2=9,∵9=2a 1+22+1,∴a 1=2. (2)假设存在实数t ,使得{b n }为等差数列,则2b n =b n -1+b n +1,(n ≥2且n ∈N *)∴2×12n (a n +t )=12n -1(a n -1+t )+12n +1(a n +1+t ),∴4a n =4a n -1+a n +1+t ,∴4a n =4×a n -2n -12+2a n +2n +1+1+t ,∴t =1. 即存在实数t =1,使得{b n }为等差数列. (3)由(1),(2)得b 1=32,b 2=52,∴b n =n +12, ∴a n =⎝⎛⎭⎪⎫n +12·2n -1=(2n +1)2n -1-1, S n =(3×20-1)+(5×21-1)+(7×22-1)+…+[(2n +1)×2n -1-1] =3+5×2+7×22+…+(2n +1)×2n -1-n ,① ∴2S n =3×2+5×22+7×23+…+(2n +1)×2n -2n ,② 由①-②得-S n =3+2×2+2×22+2×23+…+2×2n -1-(2n +1)×2n+n =1+2×1-2n1-2-(2n+1)×2n +n=(1-2n )×2n +n -1, ∴S n =(2n -1)×2n -n +1.7.(2022·江苏卷)已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b na 2n +b 2n,n ∈N *. (1)设b n +1=1+b n a n ,n ∈N *,求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎝ ⎛⎭⎪⎫b n a n 2是等差数列;(2)设b n +1=2·b na n,n ∈N *,且{a n }是等比数列,求a 1和b 1的值.(1)证明 由题设知a n +1=a n +b na 2n +b 2n=1+b n an1+⎝ ⎛⎭⎪⎫b n a n 2=b n +11+⎝ ⎛⎭⎪⎫b n a n 2,所以b n +1a n +1=1+⎝ ⎛⎭⎪⎫b n a n 2,从而⎝ ⎛⎭⎪⎫b n +1a n +12-⎝ ⎛⎭⎪⎫b n a n 2=1(n ∈N *),所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎝ ⎛⎭⎪⎫b n a n 2是以1为公差的等差数列.(2)解 由于a n >0,b n >0,所以(a n +b n )22≤a 2n +b 2n <(a n +b n )2, 从而1<a n +1=a n +b na 2n +b 2n≤ 2.(*) 设等比数列{a n }的公比为q ,由a n >0知q >0.下证q =1.若q >1,则a 1=a 2q <a 2≤2,故当n >log q 2a 1时,a n +1=a 1q n >2,与(*)冲突;若0<q <1,则a 1=a 2q >a 2>1,故当n >log q 1a 1时,a n +1=a 1q n <1,与(*)冲突.综上,q =1,故a n =a 1(n ∈N *), 所以1<a 1≤ 2.又b n +1=2·b n a n =2a 1·b n (n ∈N *),所以{b n }是公比为2a 1的等比数列.若a 1≠2,则2a 1>1,于是b 1<b 2<b 3.又由a 1=a 1+b n a 21+b 2n得b n =a 1±a 212-a 21a 21-1(n ∈N *),所以b 1,b 2,b 3中至少有两项相同,冲突,所以a 1=2,从而b n =a 1±a 212-a 21a 21-1= 2.所以a 1=b 1= 2.8.(2021·江苏卷)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c ,n ∈N *,其中c 为实数.(1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0. 证明 由题设,S n =na +n (n -1)2d . (1)由c =0,得b n =S n n =a +n -12d .又b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d ,化简得d 2-2ad =0.由于d ≠0,所以d =2a . 因此,对于全部的m ∈N *,有S m =m 2a .从而对于全部的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .(2)设数列{b n }的公差为d 1,则b n =b 1+(n -1)d 1,即nS nn 2+c =b 1+(n -1)d 1,n ∈N *,代入S n 的表达式,整理得,对于全部的n ∈N *,有⎝ ⎛⎭⎪⎫d 1-12d n 3+(b 1-d 1-a +12d )n 2+cd 1n =c (d 1-b 1).。

2019届江苏高考数学二轮复习第二篇第25练数列的综合问题试题理

2019届江苏高考数学二轮复习第二篇第25练数列的综合问题试题理

(2) 若存在
k∈
*
N
,使得
Sk+1, Sk, Sk+2 成等差数列,试判断:对于任意的
m∈
*
N
,且
m≥2, am
+1, am, am+2 是否成等差数列,并证明你的结论 .
解 (1) 由已知 an +1= rSn,可得 an+2= rSn+1,两式相减可得 an+2- an+1= r ( Sn+1- Sn ) = ra , n+1
第 25 练 数列的综合问题
[ 明晰考情 ] 1. 命题角度:等差数列与等比数列的综合;等差数列、等比数列与其他知识的
综合 .2. 题目难度:数列在高考中一般是压轴题,高档难度
.
考点一 等差数列、等比数列的判定与证明
方法技巧 判断等差 ( 比 ) 数列的常用方法
an+1
(1) 定义法:若 an+1-an =d, d 为常数
3 / 11
2q 2+ d = 20, 所以 2q2 2+ 2d = 64,
因为 { an} 的各项为正数,所以
d=3, q= 2,
则 an=3n- 1, bn= 2n.
②因为 an= 3n-1,
bn=
n
2 ,所以2 ,
n
所以 Sn=∑ ci =2×2+5×22+8×23+…+ ( 3n- 1) ·2n, i =1
即 Sn=2Sn- 1+ 2n- 1,

Sn+1= 2Sn+ 2n+1,

由②-①得 an+1= 2an+ 2,
∴ an+1+ 2=2( an+ 2) ,
又 a2+2= 2( a1+ 2) ,
∴数列 { an+ 2} 是以 a1+ 2= 3 为首项, 2 为公比的等比数列,

江苏省2019高考数学二轮复习 专题四 数列 4.3 大题考法—数列的综合应用达标训练(含解析)

江苏省2019高考数学二轮复习 专题四 数列 4.3 大题考法—数列的综合应用达标训练(含解析)

数列的综合应用A组——大题保分练1.设数列{a n}的前n项和为S n,且(S n-1)2=a n S n.(1)求a1;(2)求证:数列错误!为等差数列;(3)是否存在正整数m,k,使错误!=错误!+19成立?若存在,求出m,k;若不存在,说明理由.解:(1)n=1时,(a1-1)2=a2,1,∴a1=错误!。

(2)证明:∵(S n-1)2=a n S n,∴n≥2时,(S n-1)2=(S n-S n-1)S n,∴-2S n+1=-S n-1S n,∴1-S n=S n(1-S n-1),∴错误!=错误!,∴错误!-错误!=错误!-错误!=错误!=-1为定值,∴{⎭⎬⎫1S n-1为等差数列.(3)∵错误!=-2,∴错误!=-2+(n-1)×(-1)=-n-1,∴S n=错误!,∴a n=错误!=错误!。

假设存在正整数m,k,使错误!=错误!+19,则(k+1)2=m(m+1)+19,∴4(k+1)2=4m(m+1)+76,∴[(2k+2)+(2m+1)][(2k+2)-(2m+1)]=75,∴(2k+2m+3)(2k-2m+1)=75=75×1=25×3=15×5,或错误!∴{2k+2m+3=75,2k-2m+1=1或错误!∴错误!或错误!或错误!2.已知常数λ≥0,设各项均为正数的数列{a n}的前n项和为S n,满足:a1=1,S n+1=错误!S n+(λ·3n +1)a n+1(n∈N*).(1)若λ=0,求数列{a n}的通项公式;(2)若a n+1〈错误!a n对一切n∈N*恒成立,求实数λ的取值范围.解:(1)λ=0时,S n+1=错误!S n+a n+1,∴S n=错误!S n,∵a n〉0,∴S n〉0,∴a n+1=a n.∵a1=1,∴a n=1。

(2)∵S n+1=错误!S n+(λ·3n+1)a n+1,a n>0,∴错误!-错误!=λ·3n+1,则错误!-错误!=λ·3+1,错误!-错误!=λ·32+1,…,错误!-错误!=λ·3n-1+1(n≥2)相加,得错误!-1=λ(3+32+…+3n-1)+n-1,则S n=错误!·a n(n≥2).上式对n=1也成立,∴S n=错误!·a n(n≥N*).③∴S n+1=错误!·a n+1(n≥N*).④④-③,得a n+1=错误!·a n+1-错误!·a n,即错误!·a n+1=错误!·a n.∵λ≥0,∴λ·错误!+n〉0,λ·错误!+n〉0。

南京市2019高考数学(文科)二轮复习解答题通关练2数列含答案

南京市2019高考数学(文科)二轮复习解答题通关练2数列含答案

2.数 列1.在等差数列{a n }中,a 1=-2,a 12=20.(1)求数列{a n }的通项a n ;(2)若b n =a 1+a 2+…+a n n ,求数列{3b n }的前n 项和S n .解 (1)因为a n =-2+(n -1)d ,所以a 12=-2+11d =20,于是d =2,所以a n =2n -4(n ∈N *).(2)因为a n =2n -4,所以a 1+a 2+…+a n =n (2n -6)2=n (n -3),于是b n =a 1+a 2+…+a n n =n -3,令c n =3b n ,则c n =3n -3, 显然数列{c n }是等比数列,且c 1=3-2,公比q =3,所以数列{3b n }的前n 项和S n =c 1()1-q n 1-q =3n-118(n ∈N *).2.(2018·巩义模拟)已知数列{a n }满足a 1=12,1a n +1=1a n+2(n ∈N *).(1)求数列{a n }的通项公式;(2)证明:a 21+a 22+a 23+…+a 2n <12.(1)解 由条件可知数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,且首项为2,公差为2,所以1a n=2+(n -1)×2=2n , 故a n =12n (n ∈N *).(2)证明 依题意可知a 2n =⎝ ⎛⎭⎪⎫12n 2=14·1n 2<14·1n ·1n -1=14⎝ ⎛⎭⎪⎫1n -1-1n ,n ≥2,n ∈N *.又因为a 21=14,所以a 21+a 22+a 23+…+a 2n <14⎝ ⎛⎭⎪⎫1+1-12+12-13+…+1n -1-1n =14⎝ ⎛⎭⎪⎫2-1n <14×2=12.故a 21+a 22+a 23+…+a 2n <12.3.(2018·衡水金卷模拟)已知等差数列{a n }的前n 项和为S n ,a 1=5,3a 5+a 9=S 6.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n +1=a n +1a n ,且b 1=a 6,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .解 (1)设等差数列{a n }的公差为d ,由a 1=5,3a 5+a 9=S 6,得3(5+4d )+(5+8d )=6×5+6×52d , 解得d =2.所以a n =a 1+(n -1)d =5+2(n -1)=2n +3(n ∈N *).(2)由(1)得,b 1=a 6=2×6+3=15.又因为b n +1=a n +1a n ,所以当n ≥2时,b n =a n a n -1=(2n +3)(2n +1), 当n =1时,b 1=5×3=15,符合上式, 所以b n =(2n +3)(2n +1)(n ∈N *).所以1b n =1(2n +3)(2n +1)=12⎝ ⎛⎭⎪⎫12n +1-12n +3. 所以T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3=12⎝ ⎛⎭⎪⎫13-12n +3=n 3(2n +3)(n ∈N *). 4.(2018·大庆模拟)已知S n 为等差数列{a n }的前n 项和,且a 1=1,S 9=81.记b n =[log 5a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[log 516]=1.(1)求b 1,b 14,b 61;(2)求数列{b n }的前200项和.解 (1)设等差数列{a n }的公差为d ,由已知S 9=81,根据等差数列的性质可知,S 9=9a 5=9(a 1+4d )=81, ∴a 1+4d =9.∵a 1=1,∴d =2,∴a n =2n -1,∴b 1=[log 51]=0,b 14=[log 527]=2,b 61=[log 5121]=2.(2)当1≤n ≤2时,1≤a n ≤3(a n ∈N *),b n =[log 5a n ]=0,共2项; 当3≤n ≤12时,5≤a n ≤23,b n =[log 5a n ]=1,共10项; 当13≤n ≤62时,25≤a n ≤123,b n =[log 5a n ]=2,共50项; 当63≤n ≤200时,125≤a n ≤399,b n =[log 5a n ]=3,共138项. ∴数列{b n }的前200项和为2×0+10×1+50×2+138×3=524.。

江苏专用2019高考数学二轮复习解答题专项练6数列理

江苏专用2019高考数学二轮复习解答题专项练6数列理

6.数 列1.已知从数列{a n }中取出部分项,并按原来的顺序组成一个新的数列1n a ,2n a ,3n a …,称为数列{a n }的一个子数列,若该子数列为等比数列,则称为数列{a n }的等比子数列.(1)设数列{a n }是一个公差不为0的等差数列,若a 1=1,a 3=6,且a 1,a 3,1n a ,2n a ,3n a ,…,k n a 为数列{a n }的等比子数列,求数列{n k }的通项公式;(2)是否存在一个等差数列{a n },使得{b n }是数列{a n }的一个等比子数列?其中数列{b n }的公比为q ,同时满足b 1=a ,b 2=a ,b 3=a (a 1<a 2),b 1=(1+)(1-q ).若存在,求出数列212232{a n }的通项公式;若不存在,请说明理由.解 (1)因为数列{a n }是等差数列,且a 1=1,a 3=6,则等差数列{a n }的公差d =,52所以a n =n -(n ∈N *),k n a =n k -.52325232又a 1,a 3,1n a ,2n a ,3n a ,…,k n a 为数列{a n }的等比子数列,且=6,a 3a 1所以k n a =6k +1,即6k +1=n k -,5232故n k =(k ∈N *).2×6k +1+35(2)设数列{a n }的公差为d ,因为a 1<a 2,所以d >0.由题意得a (a 1+2d )2=(a 1+d )4,21化简得2a +4a 1d +d 2=0,21所以d =(-2±)a 1,而-2±<0,故a 1<0.22若d =(-2-)a 1,则q ===(+1)2,2b 2b 1a 2a 212故b 1=a =(1+)(1-q )=(1+)(-2-2)<0,故舍去.21222若d =(-2+)a 1,则q ===(-1)2,2b 2b 1a 2a 212从而b 1=a =(1+)(1-q )=(2-2)(1+)=2,21222所以a 1=-,d =(-2+)a 1=2-2,222所以a n =(2-2)n -3+2.22又b 1=2,令(2-2)n -3+2=2,22故n =不是整数,即b 1不是数列{a n }中的项.32+62故不存在满足条件的等差数列{a n }.2.设等比数列{a n }的首项为a 1=2,公比为q (q 为正整数),且满足3a 3是8a 1与a 5的等差中项;数列{b n }满足2n 2-(t +b n )n +b n =0(t ∈R ,n ∈N *).32(1)求数列{a n }的通项公式;(2)试确定t 的值,使得数列{b n }为等差数列;(3)当{b n }为等差数列时,对每个正整数k ,在a k 与a k +1之间插入b k 个2,得到一个新数列{c n }.设T n 是数列{c n }的前n 项和,试求满足T m =2c m +1的所有正整数m .解 (1)由题意6a 3=8a 1+a 5,则6q 2=8+q 4,解得q 2=4或q 2=2(舍),则q =2,又a 1=2,所以a n =2n .(2)当n =1时,2-(t +b 1)+b 1=0,得b 1=2t -4,32当n =2时,2×22-(t +b 2)×2+b 2=0,得b 2=16-4t ,32当n =3时,2×32-(t +b 3)×3+b 3=0,得b 3=12-2t ,32则由b 1+b 3=2b 2,得t =3,而当t =3时,2n 2-(3+b n )n +b n =0,得b n =2n ,32由b n +1-b n =2(常数)知,此时数列{b n }为等差数列,故t =3.(3)由(1)(2)知,a n =2n ,b k =2k .由题意知,c 1=a 1=2,c 2=c 3=2,c 4=a 2=4,c 5=c 6=c 7=c 8=2,c 9=a 3=8,…,则当m =1时,T 1≠2c 2,不合题意,当m =2时,T 2=2c 3,适合题意.当m ≥3时,若c m +1=2,则T m ≠2c m +1,一定不适合题意,从而c m +1必是数列{a n }中的某一项a k +1,则T m =a 1+122b +⋅⋅⋅+ 个+a 2+222b +⋅⋅⋅+ 个+a 3+322b +⋅⋅⋅+ 个+a 4+…+a k +22k b +⋅⋅⋅+个,=(2+22+23+…+2k )+2(b 1+b 2+b 3+…+b k )=2×(2k -1)+2×=2k +1+2k 2+2k -2,(2+2k )k22c m +1=2a k +1=2×2k +1,所以2k +1+2k 2+2k -2=2×2k +1,即2k -k 2-k +1=0,所以2k +1=k 2+k .2k +1(k ∈N *)为奇数,而k 2+k =k (k +1)为偶数,所以上式无解.即当m ≥3时,T m ≠2c m +1.综上知,满足题意的正整数仅有m =2.3.(2018·江苏省邗江中学期中)已知各项均为正数的数列满足a =2a +a n a n +1,且{an }2n +12n a 2+a 4=2a 3+4,其中n ∈N *.(1)求数列的通项公式;{an }(2)设数列{b n }满足b n =,是否存在正整数m ,n (1<m <n ),使得b 1,b m ,b n 成等nan(2n +1)·2n 比数列?若存在,求出所有的m ,n 的值;若不存在,请说明理由.(3)令c n =,记数列{c n }的前n 项和为S n ,其中n ∈N *,证明:≤S n <.(n +1)2+1n (n +1)an +251612(1)解 ∵a =2a +a n a n +1,2n +12n ∴(a n +1+a n )(2a n -a n +1)=0,又a n >0,∴2a n -a n +1=0,即2a n =a n +1,∴数列{a n }是公比为2的等比数列.由a 2+a 4=2a 3+4,得2a 1+8a 1=8a 1+4,解得a 1=2.∴数列{a n }的通项公式为a n =2n ,n ∈N *.(2)解 b n ==,若b 1,b m ,b n 成等比数列,则2=,nan(2n +1)·2n n2n +1(m2m +1)13(n2n +1)即=.m 24m 2+4m +1n 6n +3由=,得=,m 24m 2+4m +1n 6n +33n -2m 2+4m +1m 2∴-2m 2+4m +1>0,解得1-<m <1+.6262又m ∈N *,且m >1,∴m =2,此时n =12.故存在正整数m =2,n =12,使得b 1,b m ,b n 成等比数列.(3)证明 c n ==·(n +1)2+1n (n +1)·2n +212n 2+2n +2n (n +1)·2n +1=12[n 2+n n (n +1)·2n +1+n +2n (n +1)·2n +1]=,12[12n +1+1n ·2n -1(n +1)·2n +1]∴S n =+Error!12(122+…+12n +1)12Error!Error!=·+12122(1-12n)1-1212[12-1(n +1)·2n +1]=,n ∈N *.12[1-(12)n +1·n +2n +1]∵n +1·递减,(12)n +2n +1∴0<n +1·≤1+1·=,(12)n +2n +1(12)1+21+138∴≤<,∴≤S n <.51612[1-(12)n +1·n +2n +1]12516124.(2018·江苏省扬州树人学校模拟)已知无穷数列的各项都不为零,其前n 项和为S n ,{an }且满足a n ·a n +1=S n (n ∈N *),数列满足b n =,其中t 为正整数.{bn }anan +t (1)求a 2 018;(2)若不等式a +a <S n +S n +1对任意的n ∈N *都成立,求首项a 1的取值范围;2n 2n +1(3)若首项a 1是正整数,则数列中的任意一项是否总可以表示为数列中的其他两项{bn }{bn }之积?若是,请给出一种表示方式;若不是,请说明理由.解 (1)令n =1,则a 1a 2=S 1,即a 1a 2=a 1,又a 1≠0,所以a 2=1.由a n ·a n +1=S n ,得a n +1·a n +2=S n +1,两式相减得(a n +2-a n )a n +1=a n +1,又a n +1≠0,故a n +2-a n =1,所以a 2 018=a 2+×1=1 009.(2 0182-1)(2)由(1)知数列是首项为a 2=1,公差为1的等差数列,数列是首项为a 1,公{a 2n }{a 2n -1}差为1的等差数列.故a n =Error!所以S n =Error!①当n 是奇数时,a +a <S n +S n +1,2n 2n +1即2+2<+,(a 1+n -12)(n +12)(n +12a 1+n 2-14)[n +12a 1+(n +1)24]即a -2a 1<对任意正奇数n 恒成立,21n -12所以a -2a 1<0,21解得0<a 1<2.②当n 是偶数时,a +a <S n +S n +1,2n 2n +1即2+2<(n2)(a 1+n2)(n2a 1+n 24)+,[n +22a 1+(n +1)2-14]即a -a 1<对任意正偶数n 恒成立,21n2所以a -a 1<1,21解得<a 1<.1-521+52综合①②得0<a 1<.1+52(3)由数列是首项为1,公差为1的等差数列,数列是首项为正整数a 1,公差{a 2n }{a 2n -1}为1的等差数列知,数列的各项都是正整数.{an }设b n =b m b k ,即=·,an an +t am am +t akak +t 所以a m =,取k =n +2,则a k -a n =1,an (ak +t )ak -an 故a m =a n (a n +2+t ),不妨设m 是偶数,则=a n (a n +2+t )一定是整数,m2故当n 是偶数时,方程b n =b m b k 的一组解是Error!当n 是奇数时,方程b n =b m b k 的一组解是Error!所以数列中的任意一项总可以表示为数列中的其他两项之积.{bn }{bn }5.已知等差数列{a n }的前n 项和为S n ,且2a 5-a 3=13,S 4=16.(1)求数列{a n }的前n 项和S n ;(2)设T n =(-1)i a i ,若对一切正整数n ,不等式λT n <[a n +1+(-1)n +1a n ]2n -1恒成立,∑ni =1求实数λ的取值范围;(3)是否存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列?若存在,求出所有的m ,n ;若不存在,请说明理由.解 (1)设数列{a n }的公差为d .因为2a 5-a 3=13,S 4=16,所以Error!解得Error!所以a n =2n -1,S n =n 2.(2)①当n 为偶数时,设n =2k ,k ∈N *,则T 2k =(a 2-a 1)+(a 4-a 3)+…+(a 2k -a 2k -1)=2k .代入不等式λT n <[a n +1+(-1)n +1a n ]·2n -1,得λ·2k <4k ,从而λ<.4k2k 设b k =,k ∈N *,则b k +1-b k =-=.因为k ∈N *,所以b k +1-b k >0,4k2k 4k +12(k +1)4k 2k 4k (3k -1)2k (k +1)所以数列{b k }是递增的,所以(b k )min =2,所以λ<2.②当n 为奇数时,设n =2k -1,k ∈N *,则T 2k -1=T 2k -(-1)2k a 2k =2k -(4k -1)=1-2k .代入不等式λT n <[a n +1+(-1)n +1a n ]2n -1,得λ(1-2k )<(2k -1)4k ,从而λ>-4k .因为k ∈N *,所以-4k 的最大值为-4,所以λ>-4.综上,λ的取值范围为(-4,2).(3)假设存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列,则(S m -S 2)2=S 2(S n -S m ),即(m 2-4)2=4(n 2-m 2),所以4n 2=(m 2-2)2+12,即4n 2-(m 2-2)2=12,即(2n -m 2+2)(2n +m 2-2)=12.因为n >m >2,所以n ≥4,m ≥3,所以2n +m 2-2≥15.因为2n -m 2+2是整数,所以等式(2n -m 2+2)(2n +m 2-2)=12不成立,故不存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列.6.(2018·南京模拟)若数列满足:对于任意n ∈N *,a n +均为数列中{an }|an +1-an +2|{an }的项,则称数列为“T 数列”.{an }(1)若数列的前n 项和S n =2n 2,n ∈N *,求证:数列为“T 数列”;{an }{an }(2)若公差为d 的等差数列为“T 数列”,求d 的取值范围;{an }(3)若数列为“T 数列”,a 1=1,且对于任意n ∈N *,均有a n <a -a <a n +1,求数列{an }2n +12n 的通项公式.{an }(1)证明 当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2,又a 1=S 1=2=4×1-2,所以a n =4n -2.所以a n +|a n +1-a n +2|=4n -2+4=4(n +1)-2为数列{a n }的第n +1项,因此数列{a n }为“T 数列”.(2)解 因为数列{a n }是公差为d 的等差数列,所以a n +|a n +1-a n +2|=a 1+(n -1)d +|d |.因为数列{a n }为“T 数列”,所以任意n ∈N *,存在m ∈N *,使得a 1+(n -1) d +|d |=a m ,即有(m -n )d =|d |. ①若d ≥0,则存在m =n +1∈N *,使得(m -n )d =|d |,②若d <0,则m =n -1.此时,当n =1时,m =0不为正整数,所以d <0不符合题意. 综上,d ≥0.(3)解 因为a n <a n +1,所以a n +|a n +1-a n +2|=a n +a n +2-a n +1,又因为a n <a n +a n +2-a n +1=a n +2-(a n +1-a n )<a n +2,且数列{a n }为“T 数列”,所以a n +a n +2-a n +1=a n +1,即a n +a n +2=2a n +1,所以数列{a n }为等差数列.设数列{a n }的公差为t (t >0),则有a n =1+(n -1)t ,由a n <a -a <a n +1,2n +12n 得1+(n -1)t <t [2+(2n -1)t ]<1+nt ,整理得n (2t 2-t )>t 2-3t +1,①n (t -2t 2)>2t -t 2-1.②若2t 2-t <0,取正整数N 0>,t 2-3t +12t 2-t 则当n >N 0时,n (2t 2-t )<(2t 2-t )N 0<t 2-3t +1,与①式对于任意n ∈N *恒成立相矛盾,因此2t 2-t ≥0.同样根据②式可得t -2t 2≥0,所以2t 2-t =0.又t >0,所以t =.12经检验当t =时,①②两式对于任意n ∈N *恒成立,12所以数列{a n }的通项公式为a n =1+(n -1)=.12n +12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏2019高考数学二轮专项练习练习:专项三 数列第10讲等差数列与等比数列1.在等差数列{a n }中,a 3=7,a 5=a 2+6,那么a 6=________.2.等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,那么a 4=________.3.{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,那么使得S n 达到最大值时的n 值是________、4.等比数列{a n }的公比q>0,a 2=1,a n +2+a n +1=6a n ,那么{a n }的前4项和S 4=________.5.设等比数列{a n }的公比q =12,前n 项和为S n ,那么S 4a 4=________.6.设等差数列{a n }的前n 项和为S n ,假设S 4≥10,S 5≤15,那么a 4的最大值为________、7.数列{a n }满足a 1=33,a n +1-a n =2n ,那么a nn 的最小值为________.8.假设数列⎩⎨⎧⎭⎬⎫nn +4⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,那么k =________.9.{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16. (1)求数列{a n }的通项公式;(2)假设数列{a n }和数列{b n }满足等式:a n =b 12+b 222+…+b n2n ,求数列{b n }的前n 项和S n . 10.数列{a n }和{b n }满足:a 1=1,a 2=2,a n >0,b n =a n a n +1(n ∈N *),且{b n }是以q 为公比的等比数列、(1)证明:a n +2=a n q 2;(2)假设c n =a 2n -1+2a 2n ,证明:数列{c n }是等比数列;(3)求和:1a 1+1a 2+1a 3+1a 4+…+1a 2n -1+1a 2n .第11讲数列求和及其综合应用1.数列1+(1+2)+(1+2+4)+…+(1+2+…+2n -1)的前n 项和为________、2.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,那么a n =________.3.设等差数列{a n }的前n 项和为S n ,那么S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列、类比以上结论有:设等比数列{b n }的前n 项积为T n ,那么T 4,________,________T 16T 12成等比数列、4.等差数列前p 项的和为q ,前q 项的和为p ,(p ≠q)那么前p +q 项的和为________、5.数列{a n }满足a 1=2,a n +1=2a n +1,b n =⎪⎪⎪⎪⎪⎪a n +2a n -1,n ∈N *,那么数列{b n }的通项公式b n=________.6.设a 1,a 2,…,a 50是从-1,0,1这三个整数中取值的数列,假设a 1+a 2+a 3+…+a 50=9,且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,那么a 1,a 2,…,a 50中数字0的个数为________、7.数列{a n }的通项公式a n =3n 2-(9+a)n +6+2a(其中a 为常数),假设a 6与a 7两项中至少有一项为哪一项a n 的最小值,那么实数a 的取值范围是________、8.数列{a n }的通项a n =n 2⎝ ⎛⎭⎪⎫cos 2n π3-sin 2n π3,其前n 项和为S n ,那么S 30=________.9.设数列{a n }的前n 项和为S n ,且S n =(1+λ)-λa n ,其中λ≠-1,0. (1)证明:数列{a n }是等比数列;(2)设数列{a n }的公比q =f(λ),数列{b n }满足b 1=12,b n =f(b n -1)(n ∈N *,n ≥2),求数列{b n }的通项公式;(3)记λ=1,c n =a n ⎝ ⎛⎭⎪⎫1b n -1,求数列{c n }的前n 项和T n .10.数列{a n }的首项为a(a ≠0),前n 项和为S n ,且有S n +1=tS n +a(t ≠0),b n =S n +1.(1)求数列{a n }的通项公式;(2)当t =1时,假设对任意n ∈N *,都有|b n |≥|b 5|,求实数a 的取值范围;(3)当t ≠1时,假设c n =2+∑i =1nb i ,求能够使数列{c n }为等比数列的所有数对(a ,t)、滚动练习(三)1.设集合U ={1,2,3,4,5},A ={1,2},B ={1,3},那么(A ∪B)=________.2.设△ABC 的三个内角A 、B 、C 所对边的长分别是a 、b 、c ,且a cosA =csinC ,那么∠A =________.3.在等差数列{a n }中,a 1+3a 8+a 15=60,那么2a 9-a 10的值为________、4.假设函数f(x)=3sin(ωx +φ)(ω>0)的图象的相邻两条对称轴的距离是2π,那么ω的值为________.5.假设函数f(x)=xmx 2+mx +1的定义域为R ,那么实数m 的取值范围是________、 6.变量x 、y 满足条件⎩⎪⎨⎪⎧x ≥1,x -y ≤0,x +2y -9≤0,那么z =x +y 的最大值是________、7.函数y =x -2cosx 在(0,2π)内的单调减区间为________.8.假设△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,向量m =(a +c ,b -a),n =(a -c ,b),假设m ⊥n ,那么∠C 等于________、9.函数f(x)是R 上的减函数,A(0,-2),B(-3,2)是其图象上的两点,那么不等式|f(x -2)|>2的解集是________、10.数列{a n }(n ∈N *)满足a n +1=⎩⎪⎨⎪⎧a n -t a n ≥t ,t +2-a n a n <t ,且t<a 1<t +1,其中t>2,a n +k =a n (k ∈N *),那么实数k 的最小值是________、11.设函数f(x)=sinxcosx -3cos(x +π)cosx(x ∈R )、 (1)求f(x)的最小正周期;(2)假设函数y =f(x)的图象向右平移π4个单位后再向上平移32个单位得到函数y =g(x)的图象,求y =g(x)在⎣⎢⎡⎦⎥⎤0,π4上的最大值、12.某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少,从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a nn ,假设A n 大于80万元,那么M 接着使用,否那么须在第n 年初对M 进行更新,证明:须在第9年初对M 进行更新、13.函数f(x)=x 3+ax 2+bx +c ,假设x =23时,y =f(x)有极值、y =f(x)在(1,f(1))处的切线l 只是第四象限且斜率为3,又坐标原点到切线l 的距离为1010.(1)求a ,b ,c 的值;(2)求y =f(x)在[-4,1]上的最大值和最小值14.数列{a n }的前n 项和为S n ,且-1,S n ,a n +1成等差数列,n ∈N *,a 1=1.函数f(x)=log 3x.(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =1n +3[f a n +2],记数列{b n }的前n 项和为T n ,试比较T n 与512-2n +5312的大小、专题三数列第10讲等差数列与等比数列1.13解析:a 3=7,a 5=a 2+6,∴3d =6,∴a 6=a 3+3d =13.2.13解析:6S 5-5S 3=5,∴6(5a 1+10d)-5(3a 1+3d)=5,得a 1+3d =13. 3.20解析:a n =41-2n ,a 20>0,a 21<0.4.152解析:a 2=1,a n +2+a n +1=6a n ,∴q 2+q =6(q >0),∴q =2,那么S 4=152.5.15解析:S 4a 4=a 11-q41-q a 1q3=1-q41-q q 3=15. 6.4解析:设公差为d ,那么⎩⎪⎨⎪⎧4a 1+4×32d ≥10,5a 1+5×42d ≤15.即⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3.又a 4=a 1+3d ,由线性规划可知a 1=1,d =1时,a 4取最大值4.7.212解析:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=33+2(1+2+…+(n -1))=n 2-n +33,a n n =n +33n -1,数列⎩⎨⎧⎭⎬⎫a n n 在1≤n ≤6,n ∈N *时单调减,在n ≥7,n ∈N *时单调增,∴n =6时,a nn 取最小值、8.4解析:⎩⎪⎨⎪⎧kk +4⎝ ⎛⎭⎪⎫23k≥k -1k +3⎝ ⎛⎭⎪⎫23k -1,kk +4⎝ ⎛⎭⎪⎫23k ≥k +1k +5⎝ ⎛⎭⎪⎫23k +1,10≤k ≤1+10,k ∈N *,∴k =4.9.解:(1)设公差为d ,那么⎩⎪⎨⎪⎧a 1+2d a 1+5d =55,2a 1+7d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2.或⎩⎪⎨⎪⎧a 1=15,d =-2.(舍去)∴a n =2n -1(n ∈N *)、(2)n =1时,a 1=b 12,a 1=1,∴b 1=2,n ≥2时,a n -1=b 12+b 222+…+b n -12n -1,2=a n -a n -1=b n2n (n ≥2),b n =2n +1(n ≥2),∴b n =⎩⎪⎨⎪⎧2n =1,2n +1n ≥2,n ∈N *,S n =2n +2-6(n ∈N *)、10.(解法1)(1)证明:由b n +1b n =q ,有a n +1a n +2a n a n +1=a n +2a n =q ,∴a n +2=a n q 2(n ∈N *)、(2)证明:∵a n =a n -2q 2(n ≥3,n ∈N *),∴a 2n -1=a 2n -3q 2=…=a 1q 2n -2,a 2n =a 2n -2q 2=…=a 2q 2n -2,∴c n =a 2n -1+2a 2n =a 1q 2n -2+2a 2q 2n -2=(a 1+2a 2)q 2n -2=5q 2n -2.∴{c n }是首项为5,以q 2为公比的等比数列、(3)解:由(2)得1a 2n -1=1a 1q 2-2n ,1a 2n =1a 2q 2-2n,因此 1a 1+1a 2+…+1a 2n =⎝ ⎛⎭⎪⎫1a 1+1a 3+…+1a 2n -1+⎝ ⎛⎭⎪⎫1a 2+1a 4+…+1a 2n=1a 1⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2+1a 2⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2=32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2. 当q =1时,1a 1+1a 2+…+1a 2n =32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2=32n. 当q ≠1时,1a 1+1a 2+…+1a 2n =32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2= 32⎝ ⎛⎭⎪⎫1-q -2n1-q -2=32⎣⎢⎡⎦⎥⎤q 2n-1q2n -2q 2-1. 故1a 1+1a 2+…+1a 2n=⎩⎪⎨⎪⎧32n ,q =1,32⎣⎢⎡⎦⎥⎤q 2n-1q 2n -2q 2-1,q ≠1.(解法2)(1)证明:同解法1(1)、(2)证明:c n +1c n =a 2n +1+2a 2n +2a 2n -1+2a 2n =q 2a 2n -1+2q 2a 2na 2n -1+2a 2n =q 2(n ∈N *),又c 1=a 1+2a 2=5,∴{c n }是首项为5,以q 2为公比的等比数列、(3)解:由(2)的类似方法得a 2n -1+a 2n =(a 1+a 2)q 2n -2=3q 2n -2,1a 1+1a 2+…+1a 2n =a 1+a 2a 1a 2+a 3+a 4a 3a 4+…+a 2n -1+a 2n a 2n -1a 2n ,∵a 2k -1+a 2k a 2k -1a 2k =3q 2k -22q 4k -4=32q -2k +2,k =1,2,…,n.∴1a 1+1a 2+…+1a 2k =32(1+q 2+…+q -2n +2)、下同解法1.第11讲数列求和及其综合应用1.2n +1-n -2解析:a n =2n -1,1+(1+2)+(1+2+4)+…+(1+2+…+2n -1)=(2+22+23+…+2n )-n =2(2n -1)-n =2n +1-n -22.2+lnn 解析:累加可得、3.T 8T 4T 12T 84.-p -q 解析:由求和公式知q =pa 1+pp -12d ,p =qa 1+qq -12d ,因为p ≠q ,两式相减得到-1=a 1+p +q -12d ,两边同时乘以p +q ,那么-(p +q)=(p +q)a 1+p +qp +q -12d ,即S p +q =-(p +q)、5.2n +1解析:由条件得b n +1=a n +1+2a n +1-1=2a n +1+22a n +1-1=2a n +2a n -1=2b n 且b 1=4,因此数列{b n }是首项为4,公比为2的等比数列,那么b n =4·2n -1=2n +1.6.11解析:(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,那么(a 21+a 22+…+a 250)+2(a 1+a 2+…+a 50)+50=107,∴a 21+a 22+…+a 250=39,故a 1,a 2,…,a 50中数字0的个数为50-39=11.7.[24,36]解析:a n =6n -(9+a),由题知5.5≤9+a6≤7.5,∴24≤a ≤36.8.470解析:由于⎩⎨⎧⎭⎬⎫cos 2n π3-sin 2n π3以3为周期,故S 30=⎝ ⎛⎭⎪⎫-12+222+32+⎝ ⎛⎭⎪⎫-42+522+62+…+⎝ ⎛⎭⎪⎫-282+2922+302=∑k =110 ⎣⎢⎡⎦⎥⎤-3k -22+3k -122+3k2=∑k =110 ⎣⎢⎡⎦⎥⎤9k -52=9×10×112-25=470,分组求和是解决此题的关键、9.解:(1)由S n =(1+λ)-λa nS n -1=(1+λ)-λa n -1(n ≥2)、相减得:a n =-λa n +λa n -1,∴a n a n -1=λ1+λ(n ≥2),∴数列{a n }是等比数列、 (2)f(λ)=λ1+λ,∴b n =b n -11+b n -11b n =1b n -1+1,∴⎩⎨⎧⎭⎬⎫1b n 是首项为1b 1=2,公差为1的等差数列,∴1b n =2+(n -1)=n +1.∴b n =1n +1.(n ∈N *)(3)λ=1时,a n =⎝ ⎛⎭⎪⎫12n -1,∴c n =a n ⎝ ⎛⎭⎪⎫1b n -1=⎝ ⎛⎭⎪⎫12n -1n , ∴T n =1+2⎝ ⎛⎭⎪⎫12+3⎝ ⎛⎭⎪⎫122+…+n ⎝ ⎛⎭⎪⎫12n -1,①12T n =⎝ ⎛⎭⎪⎫12+2⎝ ⎛⎭⎪⎫122+3⎝ ⎛⎭⎪⎫123+…+n ⎝ ⎛⎭⎪⎫12n,②①-②得:12T n =1+⎝ ⎛⎭⎪⎫12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n -1-n ⎝ ⎛⎭⎪⎫12n∴12T n =1+⎝ ⎛⎭⎪⎫12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n -1-n ⎝ ⎛⎭⎪⎫12n=2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -n ⎝ ⎛⎭⎪⎫12n,因此:T n =4-⎝ ⎛⎭⎪⎫12n -2-2n ⎝ ⎛⎭⎪⎫12n=4-n +22n -1.10.解:(1)n =1时,由S 2=tS 1+a ,解得a 2=at ,当n ≥2时,S n =tS n -1+a ,因此S n +1-S n =t(S n -S n -1),即a n +1=a n t , 当n =1时,由S 2=tS 1+a 得a 2=ta 1,又因为a 1=a ≠0,综上,有a n +1a n =t(n ∈N *),因此{a n }是首项为a ,公比为t 的等比数列, 因此a n =at n -1.(2)当t =1时,S n =na ,b n =na +1,b n +1-b n =[(n +1)a +1]-[na +1]=a , 如今{b n }为等差数列;当a >0时,{b n }为单调递增数列,且对任意n ∈N *,a n >0恒成立,不合题意;当a <0时,{b n }为单调递减数列,由题意知b 4>0,b 6<0,且有⎩⎪⎨⎪⎧b 4≥|b 5|,-b 6≥|b 5|,即⎩⎪⎨⎪⎧|5a +1|≤4a +1,|5a +1|≤-6a -1,解得-29≤a ≤-211.综上,a 的取值范围是⎣⎢⎡⎦⎥⎤-29,-211.(3)因为t ≠1,b n =1+a 1-t -at n1-t ,因此c n =2+⎝ ⎛⎭⎪⎫1+a 1-t n -a 1-t (t +t 2+…+t n )=2+⎝ ⎛⎭⎪⎫1+a 1-t n -a t -t n +11-t2=2-at 1-t 2+1-t +a 1-t ·n +atn +11-t2,由题设知{c n }是等比数列,因此有⎩⎪⎨⎪⎧2-at1-t2=0,1-t +a1-t =0,解得⎩⎪⎨⎪⎧a =1,t =2,即满足条件的数对是(1,2)、(或通过{c n }的前3项成等比数列先求出数对(a ,t),再进行证明)滚动练习(三)1.{4,5}解析:A ∪B ={1,2,3}、2.π4解析:由正弦定理a sinA =csinC ,∴sinA =cosA ,∴tanA =1,∵0<A <π, ∴A =π4.3.12解析:由a 1+3a 8+a 15=60得5a 1+35d =60,a 8=12,2a 9-a 10=a 8=12.4.12解析:周期是4π,∴ω=2π4π=12.5.[0,4)解析:mx 2+mx +1≠0x ∈R 恒成立、当m =0时,成立;当m ≠0时,Δ=m 2-4m <0,∴0<m <4.综上,0≤m <4.6.6解析:此题考查线性规划内容、7.⎝ ⎛⎭⎪⎫7π6,11π6解析:y ′=1+2sinx <0,∴sinx <-12,∴7π6<x <11π6. 8.π3解析:∵m ⊥n ,∴(a +c)(a -c)+b(b -a)=0,∴a 2+b 2-c 22ab =12, ∴cosC =12,∴C =π3.9.(-∞,-1)∪(2,+∞)解析:画出符合题意的草图,那么x -2<-3或x -2>0. 10.4解析:此题事实上是关于最小正周期问题、a 2=a 1-t ,a 3=t +2-a 1+t =2t +2-a 1,a 4=a 3-t =t +2-a 1,a 5=t +2-a 4=a 1,故实数k 的最小值是4.11.解:(1)f(x)=12sin2x +3cos 2x =12sin2x +32(1+cos2x) =sin ⎝ ⎛⎭⎪⎫2x +π3+32,∴f(x)的最小正周期为T =2π2=π.(2)依题意得g(x)=f ⎝ ⎛⎭⎪⎫x -π4+32=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π3+32+32=sin ⎝ ⎛⎭⎪⎫2x -π6+3,当x ∈⎣⎢⎡⎦⎥⎤0,π4时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,π3,∴-12≤sin ⎝ ⎛⎭⎪⎫2x -π6≤32,∴23-12≤g(x)≤332,∴g(x)在⎣⎢⎡⎦⎥⎤0,π4的最大值为332.12.解:(1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列、a n =120-10(n -1)=130-10n ;当n ≥7时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,因此a n =70×⎝ ⎛⎭⎪⎫34n -6,因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,n ∈N *,70×⎝ ⎛⎭⎪⎫34n -6,n ≥7,n ∈N *.(2)设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得当1≤n ≤6时,S n =120n -5n(n -1),A n =120-5(n -1)=125-5n >80;当n ≥7时,S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫34n -6=780-210×⎝ ⎛⎭⎪⎫34n-6,A n =780-210×⎝ ⎛⎭⎪⎫34n -6n.因为{a n }是递减数列,因此{A n }是递减数列,又A 8=780-210×⎝ ⎛⎭⎪⎫348-68=824764>80,A 9=780-210×⎝ ⎛⎭⎪⎫349-69=767996<80,因此须在第9年初对M 进行更新、13.解:(1)f ′(x)=3x 2+2ax +b.由题意得⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23+b =0,f ′1=3×12+2a ×1+b =3.解得⎩⎪⎨⎪⎧a =2,b =-4.设切线l 的方程为y =3x +m(m>0),由原点到切线l 的距离为1010,有|m|32+1=1010,解得m =1.∵切线l 只是第四象限,∴m =1,m =-1(舍),∴切线l 的方程为y =3x +1,由于切点的横坐标为x =1,∴切点坐标为(1,4),∵f(1)=1+a +b +c =4,∴c =5.(2)由(1)知f(x)=x 3+2x 2-4x +5,因此f ′(x)=3x 2+4x -4=(x +2)(3x -2),令f ′(x)=0,得x 1=-2,x 2=23.14.解:(1)∵-1,S n ,a n +1成等差数列,∴2S n =a n +1-1,① 当n ≥2时,2S n -1=a n -1,②①-②得:2(S n -S n -1)=a n +1-a n ,∴3a n =a n +1,∵a 1=1≠0,∴a n ≠0, ∴a n +1a n =3.当n =1时,由①得∴2S 1=2a 1=a 2-1,又a 1=1,∴a 2=3, ∴a 2a 1=3,∴{a n }是以3为公比的等比数列,∴a n =3n -1. (2)∵f(x)=log 3x ,∴f(a n )=log 33n -1=n -1,b n =1n +3[f a n +2]=1n +1n +3=12⎝ ⎛⎭⎪⎫1n +1-1n +3,∴T n =1212-14+13-15+14-16+15-17+…+1n -1n +2+1n +1-1n +3=1212+13-1n +2-1n +3=512-2n +52n +2n +3,比较T n 与512-2n +5312的大小,只需比较2(n +2)(n +3)与312的大小即可、又2(n +2)(n +3)-312=2(n 2+5n +6-156)=2(n 2+5n -150)=2(n +15)(n -10),∵n ∈N *,∴当1≤n ≤9时n ∈N *,2(n +2)(n +3)<312,即T n<512-2n+5312;∴当n=10时,2(n+2)(n+3)=312,即T n=512-2n+5312;当n>10且n∈N*时,2(n+2)(n+3)>312,即T n>512-2n+5312;当n=10时,2(n+2)(n+3)=312,即T n=512-2n+5312;当n>10且n∈N*时,2(n+2)(n+3)>312,即T n>512-2n+5312.。

相关文档
最新文档