2019-2020年高三数学一轮复习 解析几何练习1
高三数学复习专题之一解析几何
高三数学复习专题之一----解析几何高考题目的分析解析几何是历届高考的热点和重点,它的基本特点是数形结合,是代数、三角、几何知识的综合应用.一般以四个小题、一个大题的结构出现,且大题往往是压轴题.纵观近几年高考试题有如下特征:(1)考查直线的基本概念,求在不同条件下的直线方程,判定直线的位置关系等题目,多以选择题、填空题形式出现;(2)中心对称与轴对称、充要条件多为基本题目;(3)考查圆锥曲线的基本知识和基本方法也多以选择题、填空题形式出现;(4)有关直线与圆锥曲线等综合性试题,通常作为解答题形式出现,有一定难度.一般情况是:给出几何条件,求曲线(动点的轨迹)方程;或利用曲线方程来研究诸如几何量的计算、直线与曲线的位置关系、最近(或最远)问题.但近几年的高考解析几何试题类型比较分散,每年都有不同.解题过程中的运算量有逐年降低的趋势,而解题过程中的思维量在增加.但万变不离其宗,常用的解题规律与技巧不变. 例①求圆锥曲线的有关轨迹方程时,要注意运用平面几何的基本知识特别是圆的知识,便于简化运算和求解;②在直线与圆锥曲线的有关问题中,要注意韦达定理和判别式的运用;③要注意圆锥曲线定义的活用.另外,解析几何的解答题也常在知识网络的交汇处出题,它具有一定的综合性,重点考察数形结合、等价转换、分类讨论、逻辑推理等能力.解析几何常与函数、不等式等建立联系.., ),0,1()3 ,)2 )1 , ,)0,(1:.12222222中点的轨迹方程求、为轴的端点为左准线的椭圆,其短为左焦点,以经过点设双曲线的方程;求双曲线截得的弦长为被直线若双曲线的值;的离心率求双曲线为等边,且右焦点两点、与两条渐近线交于右准线的离心率为设双曲线例BF F B l F C C ae b b ax y C e C PQF F Q P l e b a by a x C +=∆∆>=-. ),3 , 2(21的轨迹方程顶点求:当椭圆移动时其下为离心率,且过点轴为准线,以练习:设椭圆恰以P A x .)2( )1( 41)0,4( 02010.2222的方程求双曲线的渐近线方程;求双曲线上,又满足在线段点,且点轴交于两点,和、交于和双曲线,使的直线做斜率为过点相切,近线与圆的中心在原点,它的渐双曲线例G G PCPB PA AB P C y B A G l l P x y x G =⋅-=+-+最大值为多少?,多少时矩形的面积最大,当矩形的长与宽各是若矩形内接于曲线的方程求抛物线顶点轨迹轴为准线且以已知抛物线经过例 )2( ;)1( ),4,3(.3l l y A .)2( )1( )0,6( 8)0(2.42面积的最大值求求抛物线方程的垂直平分线通过定点又线段为焦点,且,、上有两动点设抛物线例AQB Q AB BF AF F B A p px y ∆=+>=。
2020年人教版福建省高三数学专题练习-解析几何(附答案)
3.在平行四边形ABCD 60,AD ,若P 是平0xAB y AD PA ++=(,x y ∈在以A 为圆心,||BD 为半径的圆上时,实数.22421x y xy ++= 21xy -= 是椭圆的两个焦点,满足120MF MF =的点的直线与抛物线交于点,且在轴上截得弦长为4,设该动圆圆心的轨迹为曲线.(Ⅰ)求曲线C 方程;(Ⅱ)设点A 为直线l :20x y --=上任意一点,过A 作曲线C 的切线,切点分别为P ,Q ,求APQ △面积的最小值及此时点A 的坐标.8.如图,已知点1F ,2F 是椭圆1C :2212x y +=的两个焦点,椭圆2C :222x y λ+=经过点1F ,2F ,点P 是椭圆2C 上异于1F ,2F 的任意一点,直线1PF 和2PF 与椭圆1C 的交点分别是A ,B 和C ,D .设AB ,CD 的斜率分别为k ,k '.(Ⅰ)求证kk '为定值; (Ⅱ)求||||AB CD 的最大值.9.在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段,D 为垂足,点M 在线段PD 上,且||2||DP DM =,点P 在圆上运动.(1)求点M 的轨迹方程;(2)过定点(1,0)C -的直线与点M 的轨迹交于A ,B 两点,在x 轴上是否存在N ,使NA NB 为常数,若存在,求出点N 的坐标;若不存在,请说明理由.121244x x kx x b+==-,且112k y ==01)(1)y x - 是椭圆2C 上的点,故212()x x +4[4|||CD =当且仅当k =±|||CD 的最大值等于00(,)P x y 2x y ∴+(Ⅱ)假设存在.当直线1+212212k x x k -=+1(NA NB x ∴=-412k+11NA NB 是与k 202n ∴+= 74n ∴=-即(4N -此时1516NA NB =-则1516NA NB =-综上所述,在x 轴上存在定点,使NA NB 为常数.。
2020届高三数学一轮复习 解析几何初步巩固与练习 精品
巩固1.条件p :“直线l 在y 轴上的截距是在x 轴上的截距的2倍”;条件q :“直线l 的斜率为-2”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分也非必要条件解析:选B.主要考虑直线l 在x 、y 轴上的截距都为0时,满足条件p 但不能推出q . 2.(原创题)过点A (4,a )和点B (5,b )的直线与直线y =x +m 平行,则|AB |的值为( ) A .6 B. 2C .2D .不确定解析:选B.由题意得k AB =b -a5-4=1,即b -a =1,所以|AB |=(5-4)2+(b -a )2= 2.3.已知直线l 1的方向向量为a =(1,3),直线l 2的方向向量为b =(-1,k ).若直线l 2经过点(0,5)且l 1⊥l 2,则直线l 2的方程为( )A .x +3y -5=0B .x +3y -15=0C .x -3y +5=0D .x -3y +15=0解析:选B.∵l 2经过(0,5)且方向向量b =(-1,k ),∴l 2的方程为y -5=-kx ,又∵l 1的方向向量a =(1,3),l 1⊥l 2,∴-k ·3=-1⇒k =13,即l 2为y -5=-13x ,∴x +3y -15=0.4.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线方程是________.解析:圆x 2+2x +y 2=0可化为(x +1)2+y 2=1, ∴C (-1,0).∵直线x +y =0的斜率为-1, ∴所求直线斜率为1,∴所求直线方程为y =x +1,即x -y +1=0. 答案:x -y +1=05.若直线l 经过点(a -2,-1)和(-a -2,1),且与经过点(-2,1),斜率为-23的直线垂直,则实数a 的值为________.解析:直线l 的斜率k =2-a -2-a +2=-1a(a ≠0),∴-1a ·(-23)=-1,∴a =-23.答案:-236.△ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求: (1)BC 所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边上的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0. (2)设BC 中点D 的坐标为(x ,y ),则 x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2,由斜截式得直线DE 的方程为y =2x +2.练习1.与直线x +4y -4=0垂直,且与抛物线y =2x 2相切的直线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .4x -y -2=0 D .4x -y +2=0 答案:C2.直线2x cos α-y -3=0(α∈[π6,π3])的倾斜角的变化范围是( )A .[π6,π3] B. [π4,π3]C .[π4,π2)D .[π4,2π3]解析:选B.直线2x cos α-y -3=0的斜率k =2cos α,由于α∈[π6,π3],所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3],由于θ∈[0,π),所以θ∈[π4,π3],即倾斜角的变化范围是[π4,π3].3.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( ) A .1 B .2C .-12D .2或-12解析:选D.当2m 2+m -3≠0时,在x 轴上截距为4m -12m 2+m -3=1,即2m 2-3m -2=0,∴m =2或m =-12.4.若点A (a,0),B (0,b ),C (1,-1)(a >0,b <0)三点共线,则a -b 的最小值等于( ) A .4 B .2 C .1 D .0 解析:选A.∵A 、B 、C 三点共线,∴k AB =k AC ,即b -00-a =-1-01-a ,∴1a -1b =1,∴a -b =(a -b )(1a -1b )=2-b a -ab =2+[(-b a )+(-ab)]≥2+2=4.(当a =-b =2时取等号)5.已知直线l 1,l 2的方程分别为x +ay +b =0,x +cy +d =0,其图象如图所示,则有( )A .ac <0B .a <cC .bd <0D .b >d 解析:选C.直线方程化为l 1:y =-1a x -b a,l 2:y =-1c x -dc.由图象知,-1c <-1a <0,-b a >0>-dc,∴a >c >0,b <0,d >0.6.设点A (-2,3),B (3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是( )A .(-∞,-52]∪[43,+∞)B .(-43,52)C .[-52,43]D .(-∞,-43]∪[52,+∞)解析:选B.直线ax +y +2=0恒过点M (0,-2), 且斜率为-a ,∵k MA =3-(-2)-2-0=-52,k MB =2-(-2)3-0=43,由图可知:-a >-52且-a <43,∴a ∈(-43,52),故选B.7.已知a =(6,2),b =(-4,12),直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的一般方程是____________________.解析:a +2b =(-2,3),设P (x ,y )为直线l 上任意一点,由(a +2b )⊥PA →,得直线l 的一般方程是2x -3y -9=0.答案:2x -3y -9=08.从点(2,3)射出的光线沿与直线x -2y =0平行的直线射到y 轴上,则经y 轴反射的光线所在的直线方程为________________.解析:由题意得,射出的光线方程为y -3=12(x -2),即x -2y +4=0,与y 轴交点为(0,2),又(2,3)关于y 轴对称点为(-2,3), ∴反射光线所在直线过(0,2),(-2,3),故方程为y -2=3-2-2x ,即x +2y -4=0.答案:x +2y -4=0 9.与直线3x +4y +12=0平行,且与坐标轴构成的三角形的面积是24的直线l 的方程是____________________.解析:设直线l 的方程为3x +4y =a (a ≠0),则直线l 与两坐标轴的交点分别为(a 3,0),(0,a4),∴12×|a 3|·|a4|=24,解得a =±24, ∴直线l 的方程为3x +4y =±24.答案:3x +4y +24=0或3x +4y -24=010.(1)求经过点A (-5,2)且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程. (2)过点A (8,6)引三条直线l 1,l 2,l 3,它们的倾斜角之比为1∶2∶4,若直线l 2的方程是y =34x ,求直线l 1,l 3的方程.解:(1) ①当横截距、纵截距都为零时,设所求的直线方程为y =kx ,将(-5,2)代入y=kx 中,得k =-25,此时,直线方程为y =-25x ,即2x +5y =0.②当横截距、纵截距都不是零时,设所求直线方程为x 2a +ya=1, 将(-5,2)代入所设方程, 解得a =-12,此时,直线方程为x +2y +1=0. 综上所述,所求直线方程为 x +2y +1=0或2x +5y =0.(2)设直线l 2的倾斜角为α,则tan α=34.于是tan α2=1-cos αsin α=1-4535=13,tan2α=2tan α1-tan 2α=2×341-(34)2=247, 所以所求直线l 1的方程为y -6=13(x -8),即x -3y +10=0,l 3的方程为y -6=247(x -8),即24x -7y -150=0.11.在△ABC 中,已知A (5,-2)、B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求:(1)顶点C 的坐标; (2)直线MN 的方程.解:(1)设C (x ,y ),M (0,b ),N (a,0),则⎩⎪⎪⎨⎪⎪⎧x +52=0y -22=b x +72=a y +32=0,解得x =-5,y =-3,a =1,b =-52.∴C (-5,-3).(2)由(1)知M (0,-52),N (1,0),∴k MN =52,∴MN 的方程为y =52(x -1),即5x -2y -5=0.12.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16.解:(1)设直线l 的方程是y =k (x +3)+4,它在x 轴、y 轴上的截距分别是-4k-3,3k +4,由已知,得|(3k +4)(-4k-3)|=6,解得k 1=-23或k 2=-83.所以直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.。
高三数学习题集:解析几何与立体几何综合练习
高三数学习题集:解析几何与立体几何综合练
习
解析几何与立体几何是高中数学中的重要内容之一,对于高三学生来说,掌握这两个领域的知识和技巧至关重要。
为了帮助同学们更好地复习与训练,以下是一些解析几何与立体几何综合练习题。
一、解析几何部分
1. 已知点A(2,3)、B(5,7),求直线AB的斜率和方程。
2. 设直线L1过点A(1,2),斜率为1,求L1与x轴、y轴的交点坐标。
3. 已知直线L2的方程为y=2x-3,求L2与y轴的交点坐标。
4. 设四边形ABCD的顶点分别为A(1,2)、B(4,5)、C(6,1)、D(3,-2),求四边形ABCD的周长和面积。
二、立体几何部分
1. 已知圆柱体的高为8cm,底面直径为6cm,求圆柱体的表面积和体积。
2. 设正方体的边长为3cm,求正方体的表面积和体积。
3. 设棱长为5cm的正六面体A,另有一条边长为4cm的直线段BC平行于A的一条棱,求BC与正六面体A的交点坐标。
4. 已知圆锥的高为12cm,底面半径为4cm,求圆锥的表面积和体积。
以上是一些解析几何与立体几何的综合练习题,希望同学们能够认真思考并灵活运用所学知识来解答这些问题。
通过不断练习,相信你们对解析几何与立体几何的理解和掌握会更上一层楼,为应对高考数学提供有力的支持。
加油!。
高三数学一轮复习【解析几何】练习题
高三数学一轮复习【解析几何】练习题1.已知圆O1的方程为x2+y2=4,圆O2的方程为(x-a)2+y2=1,如果这两个圆有且只有一个公共点,那么实数a的值可以是()A.-1B.1C.3D.5答案ABC解析由题意得两圆内切或外切,∴|O1O2|=2+1或|O1O2|=2-1,∴|a|=3或|a|=1,∴a=±3,或a=±1.故选ABC.2.设椭圆C:x28+y24=1的左、右焦点分别为F1,F2,P是椭圆C上任意一点,则下列结论正确的是() A.|PF1|+|PF2|=4 2B.离心率e=6 2C.△PF1F2面积的最大值为4 2D.以线段F1F2为直径的圆与直线x+y-22=0相切答案AD解析依题意知a=22,b=2,c=2.对于A,由椭圆的定义可知|PF1|+|PF2|=2a=42,所以A正确;对于B,e=ca =222=22,所以B不正确;对于C,|F1F2|=2c=4,当P为椭圆短轴的端点时,△PF1F2的面积取得最大值,最大值为12×2c·b=c·b=4,所以C错误;对于D,以线段F1F2为直径的圆的圆心为(0,0),半径为2,圆心到直线x+y-22=0的距离为222=2,也即圆心到直线的距离等于半径,所以以线段F1F2为直径的圆与直线x+y-22=0相切,所以D正确.故选AD.3.已知双曲线C :x 29-y 216=1,过其右焦点F 的直线l 与双曲线交于两点A ,B ,则( )A.若A ,B 同在双曲线的右支,则l 的斜率大于43 B.若A 在双曲线的右支,则|FA |的最短长度为2 C.|AB |的最短长度为323 D.满足|AB |=11的直线有4条 答案 BD解析 易知双曲线C 的右焦点为F (5,0).设点A (x 1,y 1),B (x 2,y 2),直线l 的方程为x =my +5. 当m ≠0时,直线l 的斜率为k =1m . 联立得方程组⎩⎪⎨⎪⎧x =my +5,16x 2-9y 2=144.消去x 并整理,得(16m 2-9)y 2+160my +256=0,则⎩⎪⎨⎪⎧16m 2-9≠0,Δ=1602m 2-4×256(16m 2-9)=962(m 2+1)>0,解得m ≠34.对于A 选项,当m =0时,直线l ⊥x 轴,则A ,B 两点都在双曲线的右支上,此时直线l 的斜率不存在,A 选项错误;对于B 选项,|FA |min =c -a =5-3=2,B 选项正确;对于C 选项,当直线l 与x 轴重合时,|AB |=2a =6<323,C 选项错误; 对于D 选项,当A ,B 两点在双曲线右支上,且直线与x 轴垂直时,|AB |=323.∵323<11,∴过F 的直线有两条;当A ,B 两点分别在双曲线的两个分支上时,∵a +c =8<11,∴过F 的直线有两条.故满足|AB |=11的直线有4条,D 选项正确.故选BD. 4.已知点O 为坐标原点,直线y =x -1与抛物线C :y 2=4x 相交于A ,B 两点,则( ) A.|AB |=8 B.OA ⊥OBC.△AOB 的面积为2 2D.线段AB 的中点到直线x =0的距离为2 答案 AC解析 设A (x 1,y 1),B (x 2,y 2). 联立⎩⎪⎨⎪⎧y =x -1,y 2=4x ,得y 2-4y -4=0,所以y 1+y 2=4,y 1y 2=-4,所以x 1+x 2=y 1+1+y 2+1=6,x 1x 2=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1=-4+4+1=1.对于A ,直线AB 过抛物线的焦点,故|AB |=x 1+x 2+p =6+2=8,故A 正确; 对于B ,OA →·OB →=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=1+(-4)=-3≠0,故B 不正确;对于C ,点O 到直线AB 的距离d =|-1|12+12=22,所以S △AOB =12·|AB |·d =12×8×22=22,故C 正确; 对于D ,线段AB 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,即(3,2),所以线段AB 的中点到直线x =0的距离为3,故D 不正确.选AC.5.已知曲线C :y 2=m (x 2-a 2),其中m 为非零常数且a >0,则下列结论正确的是( )A.当m =-1时,曲线C 是一个圆B.当m =-2时,曲线C 的离心率为22 C.当m =2时,曲线C 的渐近线方程为y =±22xD.当m >-1且m ≠0时,曲线C 的焦点坐标分别为(-a 1+m ,0)和(a 1+m ,0)答案 ABD解析 对于A ,当m =-1时,曲线方程为y 2=-(x 2-a 2),即x 2+y 2=a 2,其是圆心为(0,0),半径为a 的圆,故A 正确;对于B ,当m =-2时,曲线方程为y 2=-2(x 2-a 2),即x 2a 2+y 22a 2=1,其为焦点在y 轴上的椭圆,且长半轴长为2a ,短半轴长为a ,则半焦距为a ,所以离心率e =a 2a =22,故B 正确;对于C ,当m =2时,曲线方程为y 2=2(x 2-a 2),即x 2a 2-y 22a 2=1,其为焦点在x轴上的双曲线,且实半轴长为a ,虚半轴长为2a ,所以渐近线方程为y =±2aa x =±2x ,故C 不正确;对于D ,当-1<m <0时,曲线方程为x 2a 2+y 2-ma 2=1,其为焦点在x 轴上的椭圆,且长半轴长为a , 短半轴长为a-m ,则半焦距为a1+m , 所以焦点坐标为(-a1+m ,0)和(a1+m ,0);当m >0时,曲线方程为x 2a 2-y 2ma 2=1,其为焦点在x 轴上的双曲线,且实半轴长为a ,虚半轴长为a m ,则半焦距为a1+m ,所以焦点坐标为(-a 1+m ,0)和(a 1+m ,0),故D 正确.综上所述,选ABD.6.已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2,过点F 的直线与抛物线交于P ,Q 两点,M 为线段PQ 的中点,O 为坐标原点,则( ) A.C 的准线方程为y =1 B.线段PQ 长度的最小值为4 C.M 的坐标可能为(3,2) D.OP →·OQ→=-3答案 BCD解析 对于A ,因为焦点F 到准线的距离为2,即p =2,所以抛物线C 的焦点为F (1,0),准线方程为x =-1,故A 错误;对于B ,由抛物线性质知当PQ 垂直于x 轴时,|PQ |取得最小值,此时可取P (1,2),Q (1,-2),所以|PQ |=4,故B 正确;对于C ,设P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为x =my +1,则由⎩⎪⎨⎪⎧y 2=4x ,x =my +1消去x ,得y 2-4my -4=0,Δ=16m 2+16>0,所以y 1+y 2=4m ,x 1+x 2=m (y 1+y 2)+2=4m 2+2,当m =1时,可得M (3,2),故C 正确;对于D ,因为y 1y 2=-4,x 1x 2=(my 1+1)(my 2+1)=m (y 1+y 2)+m 2y 1y 2+1=1,所以OP →·OQ →=x 1x 2+y 1y 2=-3,故D 正确.综上所述,选BCD.7.已知双曲线C :y 2a 2-x 2=1(a >0),其上、下焦点分别为F 1,F 2,O 为坐标原点.过双曲线上一点M (x 0,y 0)作直线l ,分别与双曲线的渐近线交于点P ,Q ,且点M 为PQ 中点,则下列说法正确的是( ) A.若l ⊥y 轴,则|PQ |=2B.若点M 的坐标为(1,2),则直线l 的斜率为14 C.直线PQ 的方程为y 0ya 2-x 0x =1D.若双曲线的离心率为52,则三角形OPQ 的面积为2 答案 ACD解析由题意知双曲线C的虚轴长为2b=2,半焦距为c=a2+1,双曲线的渐近线方程为y=±ax.A项,当l⊥y轴时,M是双曲线的顶点,从而|PQ|=2b=2,A项正确;将(1,2)代入双曲线方程,得a2=2.设P(x1,y1),Q(x2,y2),且P在直线y=ax 上,则y1=ax1,y2=-ax2,y1-y2=a(x1+x2),易知x1+x2=2,则y1-y2=22,又y1+y2=4,则y1=2+2,x1=2+1,所以k l=y1-2x1-1=1,B错误;C项,易得l的方程为y-y0x-x0·y0x0=a2,整理可得y0ya2-x0x=1,C正确;D项,由e=1+1a2=52,得a=2,所以双曲线方程为y24-x2=1,由C项可知l是双曲线的切线,因为双曲线的切线与两条渐近线相交所成三角形的面积为定值ab,所以三角形OPQ的面积为2,D正确.8.已知抛物线E:y2=4x的焦点为F,准线l交x轴于点C,直线m过C且交E 于不同的A,B两点,B在线段AC上,点P为A在l上的射影.下列命题正确的是()A.若AB⊥BF,则|AP|=|PC|B.若P,B,F三点共线,则|AF|=4C.若|AB|=|BC|,则|AF|=2|BF|D.对于任意直线m,都有|AF|+|BF|>2|CF|答案BCD解析法一如图,由已知条件可得F(1,0),C(-1,0).由抛物线的对称性,不妨设直线m 的方程为y =k (x +1)(k >0),A (x 1,y 1),B (x 2,y 2).依题意x 1>x 2>0,y 1>0,y 2>0, 由⎩⎪⎨⎪⎧y =k (x +1),y 2=4x消y 整理,得k 2x 2+(2k 2-4)x +k 2=0.当Δ=(2k 2-4)2-4k 4=16-16k 2>0, 即0<k <1时,由根与系数的关系, 得x 1+x 2=4-2k 2k 2,x 1x 2=1.对于A 选项,因为直线BF 的斜率为y 2x 2-1,AB ⊥BF ,所以k ·y 2x 2-1=-1,即y 2x 2-1·y 2x 2+1=-1. 又y 22=4x 2,所以x 22+4x 2-1=0,解得x 2=5-2(负值舍去),所以x 1=5+2. 所以|AP |=|AF |=5+3,|PC |=y 1=8+45,故|AP |≠|PC |,故A 错误; 对于B 选项,易得P (-1,y 1), 所以FB →=(x 2-1,y 2),FP →=(-2,y 1).当P ,B ,F 三点共线时,y 1(x 2-1)+2y 2=0, 所以k (x 1+1)(x 2-1)+2k (x 2+1)=0, 两边同时除以k ,得x 1x 2+3x 2-x 1+1=0, 又x 1x 2=1,故可得x 1=3, 所以|AF |=x 1+1=4,故B 正确;对于C 选项,过B 作BQ ⊥l ,垂足为Q ,由已知可得AP ∥BQ ,所以|BQ ||AP |=|BC ||AC |. 又|AB |=|BC |,所以|AP |=2|BQ |.由抛物线的定义,得|AF |=|AP |,|BF |=|BQ |, 因此|AF |=2|BF |,故C 正确;对于D 选项,因为|AF |=x 1+1,|BF |=x 2+1, 所以|AF |+|BF |=x 1+x 2+2≥2x 1x 2+2=4,又x 1≠x 2,|CF |=2,故|AF |+|BF |>2|CF |成立,故D 正确.法二 对于选项A ,假设|AP |=|PC |成立,则△APC 为等腰直角三角形,∠ACP =45°,∠ACF =45°,又AB ⊥BF ,所以△BCF 为等腰直角三角形,则点B 在y 轴上,这与已知条件显然矛盾,故|AP |≠|PC |,故A 错误.其他选项同法一进行判断.9.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,A 为左顶点,P 为双曲线右支上一点.若|PF 1|=2|PF 2|,且△PF 1F 2的最小内角为30°,则( ) A.双曲线的离心率为 3B.双曲线的渐近线方程为y =±2xC.∠PAF 2=45°D.直线x +2y -2=0与双曲线有两个公共点 答案 ABD解析 因为|PF 1|=2|PF 2|,|PF 1|-|PF 2|=2a ,所以|PF 1|=4a ,|PF 2|=2a .又因为2c >2a ,4a >2a ,所以∠PF 1F 2=30°,所以cos ∠PF 1F 2=16a 2+4c 2-4a 22·4a ·2c =32,解得c =3a ,所以e =3,故A 正确;e 2=c 2a 2=a 2+b 2a 2=3,所以b 2a 2=2,即b a =±2,所以渐近线方程为y =±2x ,故B 正确;因为2c =23a ,所以|PF 1|2=|PF 2|2+|F 1F 2|2,所以∠PF 2F 1=90°,又因为|AF 2|=c +a =(3+1)a ,|PF 2|=2a ,所以|AF 2|≠|PF 2|,所以∠PAF 2≠45°,故C 错误;联立直线方程与双曲线方程⎩⎨⎧x +2y -2=0,x 2a 2-y 22a 2=1,化简得7y 2-16y +8-2a 2=0,Δ=(-16)2-4×7×(8-2a 2)=32+56a 2>0,所以直线x +2y -2=0与双曲线有两个公共点,故D 正确.故选ABD. 10.已知{a n }是公比为q 的等比数列,且a 1=1,曲线C n :x 2a n +y 2a n +1=1,n ∈N *,则下列说法中正确的是( ) A.若q >0且q ≠1,则C n 是椭圆B.若存在n ∈N *,使得C n 表示离心率为12的椭圆,则q =43C.若存在n ∈N *,使得C n 表示渐近线方程为x ±2y =0的双曲线,则q =-14 D.若q =-2,b n 表示双曲线C n 的实轴长,则b 1+b 2+…+b 20=6 138 答案 ACD解析 若q >0且q ≠1,则a n >0,a n +1>0且a n +1≠a n ,所以C n 表示椭圆,A 正确;当C n 表示椭圆时,显然q >0且q ≠1,若q >1,则a n +1>a n ,e =a n +1-a na n +1=1-a na n +1=1-1q ,令1-1q =12,解得q =43;若0<q <1,则a n >a n +1,e =a n -a n +1a n =1-a n +1a n=1-q ,令1-q =12,解得q =34,故B 错误;若C n 表示双曲线,显然q <0,故双曲线C n 的一条渐近线方程为y =-a n +1a nx=-qx ,令-q =12,解得q =-14,C 正确;若q =-2,则当n 为偶数时,a n <0,a n +1>0,双曲线C n 的焦点在y 轴上,则b n =2a n +1;当n 为奇数时,则a n >0,a n +1<0,双曲线C n 的焦点在x 轴上,则b n=2a n .所以b 1+b 2+…+b 20=2(a 1+a 3+…+a 19)+2(a 3+a 5+…+a 21)=4(a 1+a 3+…+a 19)-2+2a 21=4×1-2101-2-2+2×1×210=3×211-6=6138,D 正确.。
高三第一轮复习解析几何练习题含答案
第九章 解析几何第1讲 直线方程和两直线的位置关系一、选择题1.已知直线l 的倾斜角α满足条件sinα+cosα=15,则l 的斜率为( )A.43B.34 C .-43 D .-34 解析 α必为钝角,且sinα的绝对值大,故选C. 答案 C2.经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =( ). A .-1 B .-3 C .0 D .2 解析 由2y +1--34-2=2y +42=y +2,得:y +2=tan 3π4=-1.∴y =-3.答案 B3.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ).A.⎣⎢⎡⎭⎪⎫π6,π3 B.⎝ ⎛⎭⎪⎫π6,π2 C.⎝ ⎛⎭⎪⎫π3,π2D.⎣⎢⎡⎦⎥⎤π6,π2 解析 如图,直线l :y =kx -3,过定点P (0,-3),又A (3,0),∴k PA =33,则直线PA 的倾斜角为π6,满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2.答案 B4.过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ). A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0D .x -2y +5=0解析 由题意可设所求直线方程为:x -2y +m =0,将A (2,3)代入上式得2-2×3+m =0,即m =4,所以所求直线方程为x -2y +4=0. 答案 A5.设直线l 的方程为x +y cos θ+3=0(θ∈R ),则直线l 的倾斜角α的范围是( ). A .[0,π) B.⎣⎢⎡⎭⎪⎫π4,π2C. ⎣⎢⎡⎦⎥⎤π4,3π4D.⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4解析 (直接法或筛选法)当cos θ=0时,方程变为x +3=0,其倾斜角为π2; 当cos θ≠0时,由直线方程可得斜率k =-1cos θ. ∵cos θ∈[-1,1]且cos θ≠0, ∴k ∈(-∞,-1]∪[1,+∞). ∴tan α∈(-∞,-1]∪[1,+∞), 又α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4.综上知,倾斜角的范围是⎣⎢⎡⎦⎥⎤π4,3π4.答案 C6.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =( ).A .4B .6C.345D.365解析 由题可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315.故m +n =345.答案 C 二、填空题7.若A (-2,3),B (3,-2),C (12,m )三点共线,则m 的值为________.解析 由k AB =k BC ,即-2-33+2=m +212-3,得m =12.答案 128.直线过点(2,-3),且在两个坐标轴上的截距互为相反数,则这样的直线方程是________.解析 设直线方程为为x a -ya =1或y =kx 的形式后,代入点的坐标求得a =5和k =-32.答案 y =-32x 或x 5-y5=19.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =________.解析 由两直线垂直的条件得2a +3(a -1)=0,解得a =35. 答案 3510.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c +2a 的值为________.解析 由题意得,36=-2a ≠-1c ,∴a =-4且c ≠-2, 则6x +ay +c =0可化为3x -2y +c2=0, 由两平行线间的距离,得21313=⎪⎪⎪⎪⎪⎪c 2+113,解得c =2或c =-6,所以c +2a =±1. 答案 ±1 三、解答题11.已知直线l 过点M (2,1),且分别与x 轴、y 轴的正半轴交于A 、B 两点,O 为原点,是否存在使△ABO 面积最小的直线l ?若存在,求出;若不存在,请说明理由.解 存在.理由如下.设直线l 的方程为y -1=k (x -2)(k <0),则A ⎝ ⎛⎭⎪⎫2-1k ,0,B (0,1-2k ),△ AOB 的面积S =12(1-2k )⎝⎛⎭⎪⎫2-1k =12⎣⎢⎡⎦⎥⎤4+-4k+⎝ ⎛⎭⎪⎫-1k ≥12(4+4)=4. 当且仅当-4k =-1k ,即k =-12时,等号成立,故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.12.已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解 (1)经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, ∴|10+5λ-5|(2+λ)2+(1-2λ)2=3.解得λ=2或λ=12. ∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎨⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离, 则d ≤|PA |(当l ⊥PA 时等号成立). ∴d max =|PA |=10.13.已知直线l 过点P (2,3),且被两条平行直线l 1:3x +4y -7=0,l 2:3x +4y +8=0截得的线段长为d . (1)求d 的最小值;(2)当直线l 与x 轴平行,试求d 的值.解 (1)因为3×2+4×3-7>0,3×2+4×3+8>0,所以点P 在两条平行直线l 1,l 2外.过P 点作直线l ,使l ⊥l 1,则l ⊥l 2,设垂足分别为G ,H ,则|GH |就是所求的d 的最小值.由两平行线间的距离公式,得d 的最小值为|GH |=|8-(-7)|32+42=3.(2)当直线l 与x 轴平行时,l 的方程为y =3,设直线l 与直线l 1,l 2分别交于点A (x 1,3),B (x 2,3),则3x 1+12-7=0,3x 2+12+8=0,所以3(x 1-x 2)=15,即x 1-x 2=5,所以d =|AB |=|x 1-x 2|=5.14.已知直线l 1:x -y +3=0,直线l :x -y -1=0.若直线l 1关于直线l 的对称直线为l 2,求直线l 2的方程. 解 法一 因为l 1∥l ,所以l 2∥l , 设直线l 2:x -y +m =0(m ≠3,m ≠-1). 直线l 1,l 2关于直线l 对称, 所以l 1与l ,l 2与l 间的距离相等. 由两平行直线间的距离公式得|3-(-1)|2=|m -(-1)|2, 解得m =-5或m =3(舍去). 所以直线l 2的方程为x -y -5=0.法二 由题意知l 1∥l 2,设直线l 2:x -y +m =0(m ≠3,m ≠-1). 在直线l 1上取点M (0,3),设点M 关于直线l 的对称点为M ′(a ,b ), 于是有⎩⎪⎨⎪⎧b -3a ×1=-1,a +02-b +32-1=0,解得⎩⎨⎧a =4,b =-1,即M ′(4,-1).把点M ′(4,-1)代入l 2的方程,得m =-5, 所以直线l 2的方程为x -y -5=0.第2讲 圆的方程一、选择题1.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ). A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4解析 AB 的中点坐标为:(0,0), |AB |=[1--1]2+-1-12=22,∴圆的方程为:x 2+y 2=2. 答案 A2.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是( ).A .原点在圆上B .原点在圆外C .原点在圆内D .不确定解析 将圆的一般方程化为标准方程(x +a )2+(y +1)2=2a ,因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0,所以原点在圆外. 答案 B3.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( ) A .(x +2)2+(y -2)2=1 B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析 只要求出圆心关于直线的对称点,就是对称圆的圆心,两个圆的半径不变.设圆C 2的圆心为(a ,b ),则依题意,有⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎨⎧a =2,b =-2,对称圆的半径不变,为1.答案 B4.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( ).A .(4,6)B .[4,6)C .(4,6]D .[4,6] 解析 因为圆心(3,-5)到直线4x -3y -2=0的距离为5,所以当半径r =4 时,圆上有1个点到直线4x -3y -2=0的距离等于1,当半径r =6时,圆上有3个点到直线4x -3y -2=0的距离等于1,所以圆上有且只有两个点到直线4x -3y -2=0的距离等于1时,4<r <6. 答案 A5.已知圆C :x 2+y 2+mx -4=0上存在两点关于直线x -y +3=0对称,则实数m 的值为( ). A .8B .-4C .6D .无法确定解析 圆上存在关于直线x -y +3=0对称的两点,则x -y +3=0过圆心⎝ ⎛⎭⎪⎫-m 2,0,即-m 2+3=0,∴m =6.答案 C6.圆心为C ⎝ ⎛⎭⎪⎫-12,3的圆与直线l :x +2y -3=0交于P ,Q 两点,O 为坐标原点,且满足OP →·OQ →=0,则圆C 的方程为( ).A.⎝ ⎛⎭⎪⎫x -122+(y -3)2=52B.⎝ ⎛⎭⎪⎫x -122+(y +3)2=52C.⎝ ⎛⎭⎪⎫x +122+(y -3)2=254D.⎝ ⎛⎭⎪⎫x +122+(y +3)2=254 解析 法一 ∵圆心为C ⎝ ⎛⎭⎪⎫-12,3,∴设圆的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=r 2.设P (x 1,y 1),Q (x 2,y 2).由圆方程与直线l 的方程联立得:5x 2+10x +10-4r 2=0, ∴x 1+x 2=-2,x 1x 2=10-4r 25. 由OP →·OQ →=0,得x 1x 2+y 1y 2=0,即: 54x 1x 2-34(x 1+x 2)+94=10-4r 24+154=0, 解得r 2=254,经检验满足判别式Δ>0. 故圆C 的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=254.法二 ∵圆心为C ⎝ ⎛⎭⎪⎫-12,3,∴设圆的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=r 2,在所给的四个选项中只有一个方程所写的圆心是正确的,即⎝ ⎛⎭⎪⎫x +122+(y -3)2=254,故选C. 答案 C 二、填空题7.过两点A (0,4),B (4,6),且圆心在直线x -2y -2=0上的圆的标准方程是________.解析 设圆心坐标为(a ,b ),圆半径为r ,则圆方程为(x -a )2+(y -b )2=r 2, ∵圆心在直线x -2y -2=0上,∴a -2b -2=0,①又∵圆过两点A (0,4),B (4,6),∴(0-a )2+(4-b )2=r 2,②且(4-a )2+(6-b )2=r 2,③由①②③得:a =4,b =1,r =5,∴圆的方程为(x -4)2+(y -1)2=25. 答案 (x -4)2+(y -1)2=258.已知圆C :(x -3)2+(y -4)2=1,点A (0,-1),B (0,1).P 是圆C 上的动点,当|PA |2+|PB |2取最大值时,点P 的坐标是________.解析 设P (x 0,y 0),则|PA |2+|PB |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2,显然x 20+y 20的最大值为(5+1)2,∴d max =74,此时OP →=-6PC →,结合点P 在圆上,解得点P 的坐标为⎝ ⎛⎭⎪⎫185,245.答案 ⎝ ⎛⎭⎪⎫185,2459.已知平面区域⎩⎨⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________.解析 由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆,又△OPQ 为直角三角形,故其圆心为斜边PQ 的中点(2,1),半径为|PQ |2=5,∴圆C 的方程为(x -2)2+(y -1)2=5. 答案 (x -2)2+(y -1)2=510.已知圆C :(x -3)2+(y -4)2=1,点A (-1,0),B (1,0),点P 是圆上的动点,则d =|PA |2+|PB |2的最大值为________,最小值为________.解析 设点P (x 0,y 0),则d =(x 0+1)2+y 20+(x 0-1)2+y 20=2(x 20+y 20)+2,欲求d 的最值,只需求u =x 20+y 20的最值,即求圆C 上的点到原点的距离平方的最值.圆C 上的点到原点的距离的最大值为6,最小值为4,故d 的最大值为74,最小值为34. 答案 74 34 三、解答题11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解 (1)直线AB 的斜率k =1,AB 的中点坐标为(1,2), ∴直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.①又直径|CD |=410,∴|PA |=210, ∴(a +1)2+b 2=40,②由①②解得⎩⎨⎧ a =-3,b =6或⎩⎨⎧a =5,b =-2. ∴圆心P (-3,6)或P (5,-2),∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.12.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点,求四边形PAMB 面积的最小值.解 (1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0),根据题意得:⎩⎨⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4. (2)因为四边形PAMB 的面积S =S △PAM +S △PBM =12|AM |·|PA |+12|BM |·|PB |,又|AM |=|BM |=2,|PA |=|PB |,所以S =2|PA |, 而|PA |=|PM |2-|AM |2=|PM |2-4, 即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =|3×1+4×1+8|32+42=3, 所以四边形PAMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.13.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称. (1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ →·MQ→的最小值. 解(1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎨⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2.(2)设Q (x ,y ),则x 2+y 2=2,且PQ →·MQ →=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2, 令x =2cos θ,y =2sin θ,∴PQ →·MQ →=x +y -2=2(sin θ+cos θ)-2 =2sin ⎝ ⎛⎭⎪⎫θ+π4-2,所以PQ →·MQ→的最小值为-4. 14.已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值. 解 (1)设点P 的坐标为(x ,y ), 则x +32+y 2=2x -32+y 2.化简可得(x -5)2+y 2=16,此即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图, 由直线l 2是此圆的切线,连接CQ ,则|QM|=|CQ|2-|CM|2=|CQ|2-16,当CQ⊥l1时,|CQ|取最小值,|CQ|=|5+3|2=42,此时|QM|的最小值为32-16=4.第3讲直线与圆、圆与圆的位置关系一、选择题1.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为( ).A.4 B.3 C.2 D.1解析法一(直接法)集合A表示圆,集合B表示一条直线,又圆心(0,0)到直线x+y=1的距离d=12=22<1=r,所以直线与圆相交,故选C.法二(数形结合法)画图可得,故选C.答案 C2.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是().A.[-3,-1] B.[-1,3]C.[-3,1] D.(-∞,-3]∪[1,+∞)解析由题意可得,圆的圆心为(a,0),半径为2,∴|a-0+1|12+(-1)2≤2,即|a+1|≤2,解得-3≤a≤1.答案 C3.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b满足的关系是( )A.a2+2a+2b-3=0B.a2+b2+2a+2b+5=0C.a2+2a+2b+5=0D .a 2-2a -2b +5=0解析 即两圆的公共弦必过(x +1)2+(y +1)2=4的圆心, 两圆相减得相交弦的方程为-2(a +1)x -2(b +1)y +a 2+1=0, 将圆心坐标(-1,-1)代入可得a 2+2a +2b +5=0. 答案 C4.若圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by -1+b 2=0(b ∈R )恰有三条切线,则a +b 的最大值为( ).A .-3 2B .-3C .3D .3 2解析 易知圆C 1的圆心为C 1(-a,0),半径为r 1=2; 圆C 2的圆心为C 2(0,b ),半径为r 2=1. ∵两圆恰有三条切线,∴两圆外切,∴|C 1C 2|=r 1+r 2,即a 2+b 2=9.∵⎝⎛⎭⎪⎫a +b 22≤a 2+b 22, ∴a +b ≤32(当且仅当a =b =32时取“=”), ∴a +b 的最大值为3 2. 答案 D5.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( ).A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-33,0∪⎝ ⎛⎭⎪⎫0,33C.⎣⎢⎡⎦⎥⎤-33,33D.⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞解析 C 1:(x -1)2+y 2=1,C 2:y =0或y =mx +m =m (x +1).当m =0时,C 2:y =0,此时C 1与C 2显然只有两个交点;当m ≠0时,要满足题意,需圆(x -1)2+y 2=1与直线y =m (x +1)有两交点,当圆与直线相切时,m =±33,即直线处于两切线之间时满足题意,则-33<m<0或0<m<33.综上知-33<m<0或0<m<33.答案 B6.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是().解析如图,建立直角坐标系,由题意可知,小圆O1总与大圆O相内切,且小圆O1总经过大圆的圆心O.设某时刻两圆相切于点A,此时动点M所处位置为点M′,则大圆圆弧的长与小圆圆弧的长之差为0或2π.切点A在三、四象限的差为0,在一、二象限的差为2π.以切点A在第三象限为例,记直线OM与此时小圆O1的交点为M1,记∠AOM=θ,则∠OM1O1=∠M1OO1=θ,故∠M1O1A=∠M1OO1+∠OM1O1=2θ.大圆圆弧的长为l1=θ×2=2θ,小圆圆弧的长为l2=2θ×1=2θ,则l1=l2,即小圆的两段圆弧与的长相等,故点M1与点M′重合.即动点M在线段MO上运动,同理可知,此时点N在线段OB上运动.点A在其他象限类似可得,故M,N的轨迹为相互垂直的线段.观察各选项知,只有选项A符合.故选A.答案 A二、填空题7.直线y=x被圆x2+(y-2)2=4截得的弦长为________.解析 由题意得,圆x 2+(y -2)2=4的圆心为(0,2),半径为2,圆心到直线x -y =0的距离d =22= 2. 设截得的弦长为l ,则由⎝ ⎛⎭⎪⎫l 22+(2)2=22,得l =2 2.答案 2 28.设集合A =(x ,y )⎪⎪⎪m2≤(x -2)2+y 2≤m 2,x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m+1,x ,y ∈R },若A ∩B =∅,则实数m 的取值范围是________. 解析 ∵A ∩B ≠∅,∴A ≠∅, ∴m 2≥m 2.∴m ≥12或m ≤0.显然B ≠∅.要使A ∩B ≠∅,只需圆(x -2)2+y 2=m 2(m ≠0)与x +y =2m 或x +y =2m +1有交点,即|2-2m |2≤|m |或|1-2m |2≤|m |,∴2-22≤m ≤2+ 2.又∵m ≥12或m ≤0,∴12≤m ≤2+ 2. 当m =0时,(2,0)不在0≤x +y ≤1内.综上所述,满足条件的m 的取值范围为⎣⎢⎡⎦⎥⎤12,2+2.答案 ⎣⎢⎡⎦⎥⎤12,2+29.从原点向圆x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为________.解析 (数形结合法)如图,圆x 2+y 2-12y +27=0 可化为x 2+(y -6)2=9,圆心坐标为(0,6),半径为3. 在Rt △OBC 中可得:∠OCB =π3,∴∠ACB =2π3, ∴所求劣弧长为2π. 答案 2 π10.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.解析 画图可知,圆上有且只有四个点到直线12x -5y +c =0的距离为1,该圆半径为2即圆心O (0,0)到直线12x -5y +c =0的距离d <1,即0<|c |13<1,∴-13<c <13. 答案 (-13,13) 三、解答题11.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程. 解 将圆C 的方程x 2+y 2-8y +12=0化成标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2. (1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2,解得a =-34. (2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.12.已知与圆C :x 2+y 2-2x -2y +1=0相切的直线l 交x 轴,y 轴于A ,B 两点,|OA |=a ,|OB |=b (a >2,b >2). (1)求证:(a -2)(b -2)=2; (2)求线段AB 中点的轨迹方程; (3)求△AOB 面积的最小值.解 (1)证明:圆的标准方程是(x -1)2+(y -1)2=1,设直线方程为x a +y b=1,即bx +ay -ab =0,圆心到该直线的距离d =|a +b -ab |a 2+b2=1, 即a 2+b 2+a 2b 2+2ab -2a 2b -2ab 2=a 2+b 2,即a 2b 2+2ab -2a 2b -2ab 2=0, 即ab +2-2a -2b =0,即(a -2)(b -2)=2.(2)设AB 中点M (x ,y ),则a =2x ,b =2y ,代入(a -2)(b -2)=2, 得(x -1)(y -1)=12(x >1,y >1).(3)由(a -2)(b -2)=2得ab +2=2(a +b )≥4ab , 解得ab ≥2+2(舍去ab ≤2-2), 当且仅当a =b 时,ab 取最小值6+42, 所以△AOB 面积的最小值是3+2 2.13.设直线l 的方程为y =kx +b (其中k 的值与b 无关),圆M 的方程为x 2+y 2-2x -4=0.(1)如果不论k 取何值,直线l 与圆M 总有两个不同的交点,求b 的取值范围; (2)b =1时,l 与圆交于A ,B 两点,求|AB |的最大值和最小值. 解 圆M 的标准方程为(x -1)2+y 2=5, ∴圆心M 的坐标为(1,0),半径为r = 5. (1)∵不论k 取何值,直线l 总过点P (0,b ),∴欲使l 与圆M 总有两个不同的交点,必须且只需点P 在圆M 的内部,即|MP |<5,即1+b 2<5,∴-2<b <2,即b 的取值范围是(-2,2).(2)当l 过圆心M 时,|AB |的值最大,最大值为圆的直径长2 5.当l ⊥MP 时,此时|MP |最大,|AB |的值最小,|MP |2=⎝ ⎛⎭⎪⎫k +1k 2+12=k 2+2k +1k 2+1=1+2k +1k≤1+22k ·1k=2,当且仅当k =1时取等号.最小值为2r 2-|MP |2=25-2=2 3.14.已知圆M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程; (2)求四边形QAMB 面积的最小值; (3)若|AB |=423,求直线MQ 的方程.解 (1)设过点Q 的圆M 的切线方程为x =my +1,则圆心M 到切线的距离为1, ∴|2m +1|m 2+1=1,∴m =-43或0, ∴QA ,QB 的方程分别为3x +4y -3=0和x =1. (2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA |·|QA |=|QA |=|MQ |2-|MA |2=|MQ |2-1≥|MO |2-1= 3.∴四边形QAMB 面积的最小值为 3.(3)设AB 与MQ 交于P ,则MP ⊥AB ,MB ⊥BQ , ∴|MP |=1-⎝⎛⎭⎪⎫2232=13. 在Rt △MBQ 中,|MB |2=|MP ||MQ |, 即1=13|MQ |,∴|MQ |=3,∴x 2+(y -2)2=9. 设Q (x,0),则x 2+22=9,∴x =±5,∴Q (±5,0), ∴MQ 的方程为2x +5y -25=0或2x -5y +25=0.第4讲 椭 圆一、选择题1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ). A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1解析 依题意知:2a =18,∴a =9,2c =13×2a ,∴c =3,∴b 2=a 2-c 2=81-9=72,∴椭圆方程为x 281+y 272=1.答案 A2.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为 ( ). A.14B.55C.12D.5-2解析 因为A ,B 为左、右顶点,F 1,F 2为左、右焦点,所以|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c .又因为|AF 1|,|F 1F 2|,|F 1B |成等比数列, 所以(a -c )(a +c )=4c 2,即a 2=5c 2. 所以离心率e =c a =55,故选B. 答案 B3.已知椭圆x 2+my 2=1的离心率e ∈⎝ ⎛⎭⎪⎫12,1,则实数m 的取值范围是 ( ).A.⎝ ⎛⎭⎪⎫0,34B.⎝ ⎛⎭⎪⎫43,+∞ C.⎝ ⎛⎭⎪⎫0,34∪⎝ ⎛⎭⎪⎫43,+∞D.⎝ ⎛⎭⎪⎫34,1∪⎝ ⎛⎭⎪⎫1,43 解析 椭圆标准方程为x 2+y 21m=1.当m >1时,e 2=1-1m ∈⎝ ⎛⎭⎪⎫14,1,解得m >43;当0<m <1时,e 2=1m -11m =1-m ∈⎝ ⎛⎭⎪⎫14,1,解得0<m <34,故实数m 的取值范围是⎝ ⎛⎭⎪⎫0,34∪⎝ ⎛⎭⎪⎫43,+∞. 答案 C4.设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,P 是第一象限内该椭圆上的一点,且PF 1⊥PF 2,则点P 的横坐标为( ).A .1 B.83 C .2 2 D.263解析 由题意知,点P 即为圆x 2+y 2=3与椭圆x 24+y 2=1在第一象限的交点,解方程组⎩⎨⎧x 2+y 2=3,x24+y 2=1,得点P 的横坐标为263.答案 D5.椭圆x 2a 2+y 2b 2=1(a >b >0)的两顶点为A (a,0),B (0,b ),且左焦点为F ,△FAB 是以角B 为直角的直角三角形,则椭圆的离心率e 为( ) A.3-12 B.5-12C.1+54 D.3+14解析 根据已知a 2+b 2+a 2=(a +c )2,即c 2+ac -a 2=0,即e 2+e -1=0,解得e =-1±52,故所求的椭圆的离心率为5-12.答案 B6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ).A.x 28+y 22=1B.x 212+y 26=1 C.x 216+y 24=1D.x 220+y 25=1解析 因为椭圆的离心率为32,所以e =c a =32,c 2=34a 2,c 2=34a 2=a 2-b 2,所以b 2=14a 2,即a 2=4b 2.双曲线的渐近线方程为y =±x ,代入椭圆方程得x 2a 2+x 2b 2=1,即x 24b 2+x 2b 2=5x 24b 2=1,所以x 2=45b 2,x =±25b ,y 2=45b 2,y =±25b ,则在第一象限双曲线的渐近线与椭圆C 的交点坐标为⎝ ⎛⎭⎪⎫25b ,25b ,所以四边形的面积为4×25b ×25b =165b 2=16,所以b 2=5,所以椭圆方程为x 220+y25=1.答案 D二、填空题7.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为________.解析 由题意知|OM |=12|PF 2|=3,∴|PF 2|=6.∴|PF 1|=2×5-6=4.答案 48.在等差数列{a n }中,a 2+a 3=11,a 2+a 3+a 4=21,则椭圆C :x 2a 6+y 2a 5=1的离心率为________.解析 由题意,得a 4=10,设公差为d ,则a 3+a 2=(10-d )+(10-2d )=20-3d =11,∴d =3,∴a 5=a 4+d =13,a 6=a 4+2d =16>a 5,∴e =16-134=34.答案 349. 椭圆31222y x =1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的_____倍.解析 不妨设F 1(-3,0),F 2(3,0)由条件得P (3,±23),即|PF 2|=23,|PF 1|=2147,因此|PF 1|=7|PF 2|. 答案 710.如图,∠OFB =π6,△ABF 的面积为2-3,则以OA 为长半轴,OB 为短半轴,F 为一个焦点的椭圆方程为________.解析 设标准方程为x 2a 2+y 2b 2=1(a >b >0), 由题可知,|OF |=c ,|OB |=b ,∴|BF |=a , ∵∠OFB =π6,∴b c =33,a =2b .S △ABF =12·|AF |·|BO |=12(a -c )·b =12(2b -3b )b =2-3,∴b 2=2,∴b =2,∴a =22,∴椭圆的方程为x 28+y 22=1.答案 x 28+y 22=1 三、解答题11.如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程; (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.解 (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎨⎧x P =x ,y P=54y ,∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2), 将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1,即x 2-3x -8=0. ∴x 1=3-412,x 2=3+412. ∴线段AB 的长度为|AB |=x 1-x 22+y 1-y 22=⎝⎛⎭⎪⎫1+1625x 1-x 22=4125×41=415. 12.设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3. (1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.解 (1)设椭圆C 的焦距为2c ,由已知可得F 1到直线l 的距离3c =23,故c =2.所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2),由AF 2→=2F 2B →及l 的倾斜角为60°,知y 1<0,y 2>0, 直线l 的方程为y =3(x -2). 由⎩⎪⎨⎪⎧y =3(x -2),x 2a 2+y 2b 2=1消去x ,整理得(3a 2+b 2)y 2+43b 2y -3b 4=0. 解得y 1=-3b 2(2+2a )3a 2+b 2,y 2=-3b 2(2-2a )3a 2+b 2.因为AF 2→=2F 2B →,所以-y 1=2y 2,即3b 2(2+2a )3a 2+b 2=2·-3b 2(2-2a )3a 2+b 2,解得a =3.而a 2-b 2=4,所以b 2=5.故椭圆C 的方程为x 29+y 25=1. 13. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2).设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T .求证:点T 在椭圆C 上. (1)解 由题意知,b =22= 2. 因为离心率e =c a =32,所以ba =1-⎝ ⎛⎭⎪⎫c a 2=12. 所以a =2 2.所以椭圆C 的方程为x 28+y 22=1.(2)证明 由题意可设M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0), 则直线PM 的方程为y =y 0-1x 0x +1,① 直线QN 的方程为y =y 0-2-x 0x +2.②法一 联立①②解得x =x 02y 0-3,y =3y 0-42y 0-3,即T ⎝ ⎛⎭⎪⎫x 02y 0-3,3y 0-42y 0-3.由x 208+y 202=1,可得x 20=8-4y 20.因为18⎝ ⎛⎭⎪⎫x 02y 0-32+12⎝ ⎛⎭⎪⎫3y 0-42y 0-32=x 20+4(3y 0-4)28(2y 0-3)2=8-4y 20+4(3y 0-4)28(2y 0-3)2=32y 20-96y 0+728(2y 0-3)2=8(2y 0-3)28(2y 0-3)2=1,所以点T 的坐标满足椭圆C 的方程,即点T 在椭圆C 上. 法二 设T (x ,y ),联立①②解得x 0=x 2y -3,y 0=3y -42y -3.因为x 208+y 22=1,所以18⎝ ⎛⎭⎪⎫x 2y -32+12⎝⎛⎭⎪⎫3y -42y -32=1. 整理得x 28+(3y -4)22=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y 22=1. 所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上. 14.如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形. (1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程. 解 (1) 如图,设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F 2(c,0). 因△AB 1B 2是直角三角形, 又|AB 1|=|AB 2|, 故∠B 1AB 2为直角, 因此|OA |=|OB 2|,得b =c2. 结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =25 5.在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2.由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为:x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意知直线l 的倾斜角不为0,故可设直线l 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0. 设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根, 因此y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5,又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2), 所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16(m 2+1)m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5,由PB 2⊥QB 2,得B 2P →·B 2Q →=0, 即16m 2-64=0,解得m =±2.所以满足条件的直线有两条,其方程分别为x +2y +2=0和x -2y +2=0.第5讲 双曲线一、选择题1.设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( ).A .4B .3C .2D .1解析 双曲线x 2a 2-y 29=1的渐近线方程为3x ±ay =0与已知方程比较系数得a=2. 答案 C2.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( ).A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1D.x 220-y 280=1解析 不妨设a >0,b >0,c =a 2+b 2. 据题意,2c =10,∴c =5.① 双曲线的渐近线方程为y =±b a x ,且P (2,1)在C 的渐近线上,∴1=2ba . ②由①②解得b 2=5,a 2=20,故正确选项为A. 答案 A3.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为 ( ).A .-2B .-8116C .1D .0解析 设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),则有y 23=x 2-1,y 2=3(x 2-1),PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+3(x 2-1)-x -2=4x 2-x -5=4⎝ ⎛⎭⎪⎫x -182-8116,其中x ≥1.因此,当x =1时,PA 1→·PF 2→取得最小值-2,选A. 答案 A4.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)(c >0)作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若OF →+OP →=2OE →,则双曲线的离心率为( ).A. 2B.105C.102D.10解析 设双曲线的右焦点为A ,则OF→=-OA →,故OF →+OP →=OP →-OA →=AP →=2OE→,即OE =12AP .所以E 是PF 的中点,所以AP =2OE =2×a 2=a .所以PF =3a .在Rt △APF 中,a 2+(3a )2=(2c )2,即10a 2=4c 2,所以e 2=52,即离心率为e=52=102,选C.答案 C5.已知双曲线x 24-y 2b 2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ).A. 5B .4 2C .3D .5解析 易求得抛物线y 2=12x 的焦点为(3,0),故双曲线x 24-y 2b 2=1的右焦点为(3,0),即c =3,故32=4+b 2,∴b 2=5,∴双曲线的渐近线方程为y =±52x ,∴双曲线的右焦点到其渐近线的距离为⎪⎪⎪⎪⎪⎪52×31+54= 5.答案 A6.如图,已知点P 为双曲线x 216-y 29=1右支上一点,F 1、F 2分别为双曲线的左、右焦点,I 为△PF 1F 2的内心,若S △IPF 1=S △IPF 2+λS △IF 1F 2成立,则λ的值为()A.58B.45C.43D.34解析 根据S △IPF 1=S △IPF 2+λS △IF 1F 2,即|PF 1|=|PF 2|+λ|F 1F 2|,即2a =λ2c ,即λ=a c =45.答案 B 二、填空题7.双曲线x 23-y 26=1的右焦点到渐近线的距离是________.解析 由题意得:双曲线x 23-y 26=1的渐近线为y =±2x .∴焦点(3,0)到直线y =±2x 的距离为322+1= 6. 答案 68.在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.解析 由题意得m >0,∴a =m ,b =m 2+4. ∴c =m 2+m +4,由e =ca =5,得m 2+m +4m=5,解得m =2. 答案 29.如图,已知双曲线以长方形ABCD 的顶点A 、B 为左、右焦点,且双曲线过C 、D 两顶点.若AB =4,BC =3,则此双曲线的标准方程为________.解析 设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).由题意得B (2,0),C (2,3),∴⎩⎨⎧4=a 2+b 2,4a 2-9b 2=1,解得⎩⎨⎧a 2=1,b 2=3,∴双曲线的标准方程为x 2-y 23=1.答案 x 2-y 23=110.如图,双曲线x 2a 2-y 2b 2=1(a ,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D .则 (1)双曲线的离心率e =________; (2)菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值S 1S 2=________.解析 (1)由题意可得ab 2+c 2=bc ,∴a 4-3a 2c 2+c 4=0,∴e 4-3e 2+1=0,∴e 2=3+52,∴e =1+52.(2)设sin θ=b b 2+c 2,cos θ=c b 2+c 2,S 1S 2=2bc 4a 2sin θcos θ=2bc4a 2bc b 2+c 2=b 2+c 22a 2=e 2-12=2+52.答案 (1)1+52 (2)2+52 三、解答题11.中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴与双曲线半实轴之差为4,离心率之比为3∶7. (1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解 (1)由已知:c =13,设椭圆长、短半轴长分别为a ,b ,双曲线半实、虚轴长分别为m ,n ,则⎩⎨⎧a -m =4,7·13a =3·13m .解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.(2)不妨设F 1,F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,所以|PF 1|=10,|PF 2|=4.又|F 1F 2|=213, ∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=102+42-(213)22×10×4=45.12.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0; (3)求△F 1MF 2的面积.(1)解 ∵e =2,∴设双曲线方程为x 2-y 2=λ. 又∵双曲线过(4,-10)6,∴双曲线方程为x 2-y 2=6.(2)证明 法一 由(1)知a =b∴F 1(-23,0),F 2(23,0), ∴kMF 1=m 3+23,kMF 2=m3-23,∴kMF 1·kMF 2=m 29-12=m 2-3,又点(3,m )在双曲线上,∴m 2=3,∴kMF 1·kMF 2=-1,MF 1⊥MF 2,MF 1→·MF 2→=0.法二 ∵MF 1→=(-3-23,-m ),MF 2→=(23-3,-m ), ∴MF 1→·MF 2→=(3+23)(3-23)+m 2=-3+m 2. ∵M 在双曲线上,∴9-m 2=6, ∴m 2=3,∴MF 1→·MF 2→=0.(3)解 ∵在△F 1MF 2中,|F 1F 2|=43,且|m |=3, ∴S △F 1MF 2=12·|F 1F 2|·|m |=12×43×3=6.13.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点分别为F 1,F 2,点P 在双曲线上,且PF 1⊥PF 2,|PF 1|=8,|PF 2|=6. (1)求双曲线的方程;(2)设过双曲线左焦点F 1的直线与双曲线的两渐近线交于A ,B 两点,且F 1A →=2F 1B →,求此直线方程.解 (1)由题意知,在Rt △PF 1F 2中, |F 1F 2|=|PF 1|2+|PF 2|2, 即2c =82+62=10,所以c =5.由椭圆的定义,知2a =|PF 1|-|PF 2|=8-6=2,即a =1. 所以b 2=c 2-a 2=24,故双曲线的方程为x 2-y 224=1.(2)左焦点为F 1(-5,0),两渐近线方程为y =±26x . 由题意得过左焦点的该直线的斜率存在.设过左焦点的直线方程为y =k (x +5),则与两渐近线的交点为⎝ ⎛⎭⎪⎫5k 26-k ,106k 26-k 和⎝ ⎛⎭⎪⎫-5k k +26,106k k +26.由F 1A →=2F 1B →,得⎝ ⎛⎭⎪⎫5k 26-k +5,106k 26-k =2⎝ ⎛⎭⎪⎫-5k k +26+5,106k k +26或者⎝ ⎛⎭⎪⎫-5k k +26+5,106k k +26=2⎝ ⎛⎭⎪⎫5k 26-k +5,106k 26-k ,解得k =±263.故直线方程为y =±263(x +5).14. P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)上一点,M ,N 分别是双曲线E 的左,右顶点,直线PM ,PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC→=λOA →+OB →,求λ的值.解 (1)由点P (x 0,y 0)(x 0≠±a )在双曲线x 2a 2-y 2b 2=1上,有x 20a 2-y 20b 2=1. 由题意有y 0x 0-a ·y 0x 0+a=15, 可得a 2=5b 2,c 2=a 2+b 2=6b 2,e =c a =305. (2)联立⎩⎨⎧x 2-5y 2=5b 2,y =x -c ,得4x 2-10cx +35b 2=0.设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧x 1+x 2=5c2,x 1x 2=35b 24.①设OC →=(x 3,y 3),OC →=λOA →+OB →,即⎩⎨⎧x 3=λx 1+x 2,y 3=λy 1+y 2.又C 为双曲线上一点,即x 23-5y 23=5b 2,有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2.化简得λ2(x 21-5y 21)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2.②又A (x 1,y 1),B (x 2,y 2)在双曲线上,所以x 21-5y 21=5b 2,x 22-5y 22=5b 2.由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2,②式可化为λ2+4λ=0,解得λ=0或λ=-4.第6讲 抛物线一、选择题1.抛物线x 2=(2a -1)y 的准线方程是y =1,则实数a =( ) A.52 B.32 C .-12 D .-32解析 根据分析把抛物线方程化为x 2=-2⎝ ⎛⎭⎪⎫12-a y ,则焦参数p =12-a ,故抛物线的准线方程是y =p 2=12-a 2,则12-a2=1,解得a =-32.答案 D 2.若抛物线y 2=2px (p >0)的焦点在圆x 2+y 2+2x -3=0上,则p =( ) A.12 B .1 C .2D .3解析 ∵抛物线y 2=2px (p >0)的焦点为(p 2,0)在圆x 2+y 2+2x -3=0上,∴p 24+p -3=0,解得p =2或p =-6(舍去). 答案 C3.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB = ( ). A.45B.35C .-35D .-45解析 由⎩⎨⎧y 2=4xy =2x -4,得x 2-5x +4=0,∴x =1或x =4.不妨设A (4,4),B (1,-2),则|FA →|=5,|FB →|=2,FA →·FB →=(3,4)·(0,-2)=-8,∴cos ∠AFB =FA →·FB →|FA →||FB →|=-85×2=-45.故选D. 答案 D4.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ).A .x 2=833y B .x 2=1633y C .x 2=8yD .x 2=16y解析 ∵x 2a 2-y 2b 2=1的离心率为2,∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴ba = 3.x 2=2py 的焦点坐标为⎝⎛⎭⎪⎫0,p 2,x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,即y =±3x .由题意,得p21+(3)2=2,∴p =8.故C 2:x 2=16y ,选D.答案 D5.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( ). A .18 B .24 C .36 D .48 解析 如图,设抛物线方程为y 2=2px (p >0). ∵当x =p2时,|y |=p ,∴p =|AB |2=122=6. 又P 到AB 的距离始终为p ,∴S△ABP=12×12×6=36.答案 C6.已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和y轴的距离之和的最小值是().A. 3B. 5 C.2 D.5-1解析由题意知,抛物线的焦点为F(1,0).设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1.易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为|2+3|22+(-1)2=5,所以d+|PF|-1的最小值为5-1.答案 D二、填空题7.已知动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为________.解析设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与其到直线x=-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x.答案y2=4x8.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且满足|NF|=32|MN|,则∠NMF=________.解析过N作准线的垂线,垂足是P,则有PN=NF,∴PN=32MN,∠NMF=∠MNP.又cos∠MNP=3 2,∴∠MNP=π6,即∠NMF=π6.答案π69.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.。
高三数学一轮复习 解析几何单元练习题
高三数学一轮复习 解析几何单元练习题第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分). 1.圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是( )A .相交B .相切C .相离D .不确定的2.下列方程的曲线关于x =y 对称的是 ( )A .x 2-x +y 2=1B .x 2y +xy 2=1C .x -y =1D .x 2-y 2=13.设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是 ( ) A .圆 B .两条平行直线 C .抛物线 D .双曲线4.已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为 ( )A .23B .23 C .26 D .332 5.当θ是第四象限时,两直线0cos 1sin =-++a y x θθ和0cos 1=+-+b y x θ的位置关系是( )A .平行B .垂直C .相交但不垂直D .重合6.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )A .2B .3C .4D .57.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是( )A .1±B .21±C .33±D .3±8.设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为 ( )A .1B .2C .3D .4 9.直线3+=x y 与曲线1492=-x x y 的公共点的个数是 ( )A .1B .2C .3D .410.已知x ,y 满足0))(1(≤+--y x y x ,则22)1()1(+++y x 的最小值是( )A .0B .21C .22D .211.已知P 是椭圆192522=+y x 上的点,Q 、R 分别是圆41)4(22=++y x 和圆41)4(22=+-y x 上的点,则|PQ|+|PR|的最小值是 ( )A .89B .85C .10D .912.动点P (x ,y )是抛物线y =x 2-2x -1上的点,o 为原点,op 2当x=2时取得极小值,求,op 2的最小值 ( ) A.43116- B.43611+ C.43611- D.43116+第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分). 13.将直线220x y +-=绕原点逆时针旋转90︒所得直线方程是 . 14.圆心为(1,2)且与直线51270x y --=相切的圆的方程为_____________.15.已知⊙M :,1)2(22=-+y x Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,求动弦AB 的中点P 的轨迹方程为 .16.如图把椭圆2212516x y +=的长轴AB 分成8分,过每个 作x轴的垂线交椭圆的上半部分于1P ,2P ,……7P 七个点, F 是椭圆的一个焦点,则127......PF P F P F +++=______.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。
2019-2020年高三数学一轮复习 解析几何练习7
2019-2020年高三数学一轮复习 解析几何练习7一、选择题1.已知抛物线x 2=ay 的焦点恰好为双曲线y 2-x 2=2的上焦点,则a 等于 ( ) A .1 B .4 C .8D .16解析:根据抛物线方程可得其焦点坐标为(0,a4),双曲线的上焦点为(0,2),依题意则有a4=2, 解得a =8. 答案:C2.抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( ) A .-1716B .-1516C.716D.1516解析:抛物线方程可化为x 2=-y 4,其准线方程为y =116.设M (x 0,y 0),则由抛物线的定义,可知116-y 0=1⇒y 0=-1516.答案:B3.(辽宁高考)已知F 是拋物线y 2=x 的焦点,A ,B 是该拋物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为 ( )A.34 B .1 C.54D.74解析:根据拋物线定义与梯形中位线定理,得线段AB 中点到y 轴的距离为: 12(|AF |+|BF |)-14=32-14=54. 答案:C4.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是 ( ) A .相离 B .相交 C .相切D .不确定解析:设抛物线焦点弦为AB ,中点为M ,准线l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |=半径,故相切.答案:C5.(宜宾检测)已知F 为抛物线y 2=8x 的焦点,过F 且斜率为1的直线交抛物线于A 、B 两点,则||FA |-|FB ||的值等于 ( )A .4 2B .8C .8 2D .16解析:依题意F (2,0),所以直线方程为y =x -2由⎩⎪⎨⎪⎧y =x -2,y 2=8x,消去y 得x 2-12x+4=0.设A (x 1,y 1),B (x 2,y 2),则||FA |-|FB ||=|(x 1+2)-(x 2+2)|=|x 1-x 2|=x 1+x 22-4x 1x 2=144-16=8 2.答案:C6.已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线的距离之和的最小值是 ( )A .5B .8 C.17-1D.5+2解析:抛物线y 2=4x 的焦点为F (1,0),圆x 2+(y -4)2=1的圆心为C (0,4),设点P 到抛物线的准线的距离为d ,根据抛物线的定义有d =|PF |,∴|PQ |+d =|PQ |+|PF |≥(|PC |-1)+|PF |≥|CF |-1=17-1.答案:C 二、填空题7.(永州模拟)以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=648.已知抛物线的顶点在原点,对称轴为y 轴,抛物线上一点Q (-3,m )到焦点的距离是5,则抛物线的方程为________.解析:设抛物线方程为x 2=ay (a ≠0), 则准线为y =-a4.∵Q (-3,m )在抛物线上, ∴9=am .而点Q 到焦点的距离等于点Q 到准线的距离,∴|m -(-a 4)|=5.将m =9a代入,得|9a +a4|=5,解得,a =±2,或a =±18, ∴所求抛物线的方程为x 2=±2y ,或x 2=±18y . 答案:x 2=±2y 或x 2=±18y9.给出抛物线y 2=4x ,其焦点为F ,坐标原点为O ,则在抛物线上使得△MOF 为等腰三角形的点M 有________个.解析:当MO =MF 时,△MOF 为等腰三角形,这样的M 点有两个,是线段OF 的垂直平分线与抛物线的交点;当OM =OF 时,△MOF 也为等腰三角形,这样的M 点也有两个;而使得OF =MF 的点M 不存在,所以符合题意的点M 有4个.答案:4 三、解答题10.根据下列条件求抛物线的标准方程:(1)抛物线的焦点是双曲线 16x 2-9y 2=144的左顶点; (2)过点P (2,-4).解:双曲线方程化为x 29-y 216=1,左顶点为(-3,0), 由题意设抛物线方程为y 2=-2px (p >0),则-p2=-3,∴p =6,∴抛物线方程为y 2=-12x .(2)由于P (2,-4)在第四象限且抛物线对称轴为坐标轴,可设抛物线方程为y 2=mx 或x 2=ny ,代入P 点坐标求得m =8,n =-1,∴所求抛物线方程为y 2=8x 或x 2=-y .11.已知点A (-1,0),B (1,-1),抛物线C :y 2=4x ,O 为坐标原点,过点A 的动直线l 交抛物线C 于M ,P 两点,直线MB 交抛物线C 于另一点Q .若向量与的夹角为π4,求△POM的面积.解:设点M (y 214,y 1),P (y 224,y 2),∵P ,M ,A 三点共线, ∴k AM =k PM ,即y 1y 214+1=y 1-y 2y 214-y 224, 即y 1y 21+4=1y 1+y 2, ∴y 1y 2=4.∴ · =y 214·y 224+y 1y 2=5.∵向量 与 的夹角为π4,∴| |·| |·cos π4=5.∴S △POM =12| | ·| | ·sin π4=52.12.(新课标全国卷)在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足 ∥ , · = · ,M 点的轨迹为曲线C .(1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值. 解:(1)设M (x ,y )由已知得B (x ,-3),A (0,-1). 所以 =(-x ,-1-y ), =(0,-3-y ), =(x ,-2).再由题意可知(+ )·=0,即(-x ,-4-2y )·(x ,-2)=0. 所以曲线C 的方程为y =14x 2-2.(2)设P (x 0,y 0)为曲线C :y =14x 2-2上一点,因为y ′=12x ,所以l 的斜率为12x 0.因此曲线l 的方程为y -y 0=12x 0(x -x 0),即x 0x -2y +2y 0-x 20=0.则O 点到l 的距离d =|2y 0-x 20|x 20+4.又y 0=14x 20-2, 所以d =12x 20+4x 20+4=12(x 20+4+4x 20+4)≥2, 当x 0=0时取等号,所以O 点到l 距离的最小值为2.2019-2020年高三数学一轮复习随机事件的概率学案文新人教版一、知识整理1.事件的分类2.频率和概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A 出现的次数n A为事件A出现的频数,称事件A出现的比例为事件A出现的频率. (2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的稳定在某个常数上,把这个常数记为_______,叫事件A发生的概率.特别提示:频率随着试验次数的变化而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.特别提示:互斥事件和对立事件都是针对两个事件而言的.在一次试验中,两个互斥的事件有可能都不发生,也可能有一个发生;而两个对立的事件则必有一个发生,但不可能同时发生.所以,两个事件互斥,他们未必对立;反之,两个事件对立,它们一定互斥.也就是说,两个事件对立是这两个事件互斥的充分而不必要条件.4.概率的几个基本性质(1)概率的取值范围: .(2)必然事件的概率P(E)= .(3)不可能事件的概率P(F)= .(4)互斥的和.事件..概率的加法公式.①如果事件A与事件B互斥,则P(A∪B)=.②若事件B与事件A互为对立事件,则P(A)=.(5)相互独立同时发生的积事件...概率的乘法公式若事件A与事件B相互独立,则=_________________二、基础训练A 组1.从6个男生、2个女生中任选3人,则下列事件中必然事件是( )A.3个都是男生B.至少有1个男生C.3个都是女生 D.至少有1个女生2.下列说法中,正确的是 ( )①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n次随机试验,事件A发生m次,则事件A发生的频率就是事件的概率;③百分率是频率,但不是概率;④频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.A.①②③④ B.①④⑤ C.①②③④⑤ D.②③3.从某班学生中任意找出一人,如果该同学的身高小于160cm的概率为0.2,该同学的身高在[160,175]的概率为0.5,那么该同学的身高超过175 cm的概率为( ) A.0.2 B.0.3 C.0.7 D.0.84.某人打靶,连续射击2次,事件“至少有1次中靶”的对立事件是( )A.至多有1次中靶 B.2次都中靶C.2次都不中靶 D.只有1次中5.(xx·马鞍山模拟)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是红球6.向三个相邻的军火库投一枚炸弹,击中第一个军火库的概率是0.025,击中另两个军火库的概率各为0.1,并且只要击中一个,另两个也爆炸,则军火库爆炸的概率为_____.7.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________.8.袋中装有100个大小相同的红球、白球、黑球,从中任取一球,摸出红球、白球的概率分别为0.40和0.35,那么黑球共有________个.9. 一盒中装有12个球,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.10. (xx·福建高考)(12分)袋中有大小、形状相同的红、黑球各一个,现依次有放回地随机摸取3次,每次摸取一个球.(1)试问:一共有多少种不同的结果?请列出所有可能的结果;(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.B 组1.下列事件中,随机事件的个数为 ( ) ①物体在只受重力的作用下会自由下落; ②方程x 2+2x +8=0有两个实根;③某信息台每天的某段时间收到信息咨询的请求次数超过10次; ④下周六会下雨. A .1 B .2 C .3 D .42.掷一枚均匀的硬币两次,事件M :一次正面朝上,一次反面朝上;事件N :至少一 次正面朝上,则下列结果正确的是 ( )A .P(M)=13,P(N)=12B .P(M)=12,P(N)=12C .P(M)=13,P(N)=34D .P(M)=12,P(N)=343.甲、乙二人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙二人下成和 棋的概率( ) A .60% B .30% C .10% D .50%4.(xx·汕头模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生 产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为 ( ) A .0.95 B .0.97 C .0.92 D .0.085.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的 概率为 ( ) A.15B.25C.35D.456.某家庭电话,打进的电话响第一声时被接的概率为110,响第二声时被接的概率为310, 响第三声时被接的概率为25,响第四声时被接的概率为110,则电话在响前四声内被接的概率为__________.7.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的 概率为13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、得到黄球、得到绿球的概率各是多少?高三文科数学随机事件的概率学案参考答案二、基础训练A组1、B2、B3、B4、C5、C6、0.2257、0.58、259、(1)(2) 10、(1)红红红,红红黑,红黑红,黑红红,红黑黑,黑红黑,黑红黑,黑黑黑(2)B组1、B2、D3、 D4、C5、C6、7、。
高三数学解析几何练习及答案解析
高三数学解析几何练习及答案解析1.圆x2+y2+Dx+Ey=0的圆心在直线x+y=1上,那么D与E的关系是()A.D+E=2 B.D+E=1C.D+E=-1 D.D+E=-2[来X k b 1 . c o m解析 D 依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E=-2.2.以线段AB:x+y-2=0(02)为直径的圆的方程为()A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8解析 B 直径的两端点为(0,2),(2,0),圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2.3.F1、F2是椭圆x24+y2=1的两个焦点,P为椭圆上一动点,那么使|PF1||PF2|取最大值的点P为()A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1)解析 D 由椭圆定义,|PF1|+|PF2|=2a=4,|PF1||PF2||PF1|+|PF2|22=4,当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”.4.椭圆x216 +y225=1的焦点分别是F1、F2,P是椭圆上一点,假设连接F1、F2、P三点恰好能构成直角三角形,那么点P到y轴的间隔是()A.165 B.3 C.163 D.253解析 A 椭圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得F1PF22,PF1F2=2或PF2F1=2,点P到y轴的间隔d= |xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,应选A.5.假设曲线y=x2的一条切线l与直线x+4y-8=0垂直,那么l的方程为()A.4x+y+4=0 B.x-4y-4=0C.4x-y-12=0 D.4x-y-4=0解析 D 设切点为(x0,y0),那么y|x=x0=2x0, 2x0=4,即x0=2,切点为(2,4),方程为y-4=4(x-2),即4x-y-4=0.6.“m0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析 C 方程可化为x21m+y21n=1,假设焦点在y轴上,那么1n0,即m0.7.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,那么双曲线的离心率为()A.54 B.5 C.52 D.5解析 D 双曲线的渐近线为y=bax,由对称性,只要与一条渐近线有一个公共点即可由y=x2+1,y=bax,得x2-bax+1=0.=b2a2-4=0,即b2=4a2,e=5.8.P为椭圆x24+y23=1上一点,F1、F2为该椭圆的两个焦点,假设F1PF2=60,那么PF1PF2=()A.3 B.3C.23 D.2解析D ∵S△PF1F2=b2tan602=3tan 30=3=12|PF1||PF2|sin 60,|PF1||PF2|=4,PF1PF2=412=2.9.设椭圆x2m2+y2n2=1(m0,n0)的右焦点与抛物线y2=8x 的焦点相同,离心率为12,那么此椭圆的方程为()A.x212+y216=1B.x216+y212=1C.x248+y264=1D.x264+y248=1解析 B 抛物线的焦点为(2,0),由题意得c=2,cm=12,m=4,n2=12,方程为x216+y212=1.10.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,那么C的离心率为()A.2B.3C.2 D.3解析 B 设双曲线C的方程为x2a2-y2b2=1,焦点F(-c,0),将x=-c代入x2a2-y2b2=1可得y2=b4a2,|AB|=2b2a=22a,b2=2a2,c2=a2+b2=3a2,e=ca=3.11.抛物线y2=4x的准线过双曲线x2a2-y2b2=1(a0,b0)的左顶点,且此双曲线的一条渐近线方程为y=2x,那么双曲线的焦距为()A.5 B.25C.3 D.23解析B ∵抛物线y2=4x的准线x=-1过双曲线x2a2-y2b2=1(a0,b0)的左顶点,a=1,双曲线的渐近线方程为y=bax=bx.∵双曲线的一条渐近线方程为y=2x,b=2,c=a2+b2=5,双曲线的焦距为25.12.抛物线y2=2px(p0)上一点M(1,m)(m0)到其焦点的间隔为5,双曲线x2a-y2=1的左顶点为 A,假设双曲线的一条渐近线与直线AM平行,那么实数a的值为()A.19B.14C.13D.12解析 A 由于M(1,m)在抛物线上,m2=2p,而M到抛物线的焦点的间隔为5,根据抛物线的定义知点M到抛物线的准线x=-p2的间隔也为5,1+p2=5,p=8,由此可以求得m=4,双曲线的左顶点为A(-a,0),kAM=41+a,而双曲线的渐近线方程为y=xa,根据题意得,41+a=1a,a=19.13.直线l1:ax-y+2a+1=0和l2:2x-(a-1)y+2=0(aR),那么l1l2的充要条件是a=.解析 l1l2a2a-1=-1,解得a=13.【答案】 1314.直线l:y=k(x+3)与圆O:x2+y2=4交于A,B两点,|AB|=22,那么实数k=.解析∵|AB|=22,圆O半径为2,O到l的间隔d=22-2=2.即|3k|k2+1=2,解得k= 147.【答案】 14715.过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为P、Q,那么线段的长为.解析如图,圆的方程可化为(x-3)2+(y-4)2=5,|OM|=5,|OQ|=25-5=25.在△OQM中,12|QA||OM|=12|OQ||QM|,|AQ|=2555=2,||=4.【答案】 416.在△ABC中,|BC|=4,△ABC的内切圆切BC于D点,且|BD|-|CD|=22,那么顶点A的轨迹方程为.解析以BC的中点为原点,中垂线为y轴建立如下图的坐标系,E、F分别为两个切点.那么|BE|=|BD|,|CD|=|CF|,|AE|=|AF|.|AB|-|AC|=22,点A的轨迹为以B,C为焦点的双曲线的右支(y0),且a=2,c =2,b=2,方程为x22-y22=1(x2).【答案】 x22-y22=1(x2)17.(10分)在平面直角坐标系中,圆心在直线y=x+4上,半径为22的圆C经过原点O.(1)求圆C的方程;(2)求经过点(0,2)且被圆C所截得弦长为4的直线方程.解析 (1)设圆心为(a,b),那么b=a+4,a2+b2=22,解得a=-2,b=2,故圆的方程为(x+2)2+(y-2)2=8.(2)当斜率不存在时,x=0,与圆的两个交点为(0,4),(0,0),那么弦长为4,符合题意;当斜率存在时,设直线为y-2=kx,那么由题意得,8=4+-2k1+k22,无解.综上,直线方程为x=0.18.(12分)(xx合肥一模)椭圆的两个焦点坐标分别为F1(-3,0)和F2(3,0),且椭圆过点1,-32.(1)求椭圆方程;(2)过点-65,0作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断MAN的大小是否为定值,并说明理由.解析 (1)设椭圆方程为x2a2+y2b2=1(a0),由c=3,椭圆过点1,-32可得a2-b2=3,1a2+34b2=1,解得a2=4,b2=1,所以可得椭圆方程为x24+y2=1.(2)由题意可设直线MN的方程为:x=ky-65,联立直线MN和椭圆的方程:x=ky-65,x24+y2=1,化简得(k2+4)y2-125ky-6425=0.设M(x1,y1),N(x2,y2),那么y1y2=-6425k2+4,y1+y2=12k5k2+4,又A(-2,0),那么AMAN=(x1+2,y1)(x2+2,y2)=(k2+1)y1y2+45k(y1+y2)+1625=0,所以MAN=2.19.(12分)椭圆C的中心为直角坐标系xOy的原点,焦点在x 轴上,它的一个顶点到两个焦点的间隔分别为7和1.(1)求椭圆C的方程;(2)假设P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,|OP||OM|=e(e为椭圆离心率),求点M的轨迹方程,并说明轨迹是曲线.解析 (1)设椭圆长半轴长及半焦距分别为a,c,由,得a-c=1,a+c=7,解得a=4,c=3.椭圆方程为x216+y27=1.(2)设M(x,y),P(x,y1),其中x[-4,4],由得x2+y21x2+y2=e2,而e=34,故16(x2+y21)=9(x2+y2),①由点P在椭圆C上,得y21=112-7x216,代入①式并化简,得9y2=112.点M的轨迹方程为y=473(-44),轨迹是两条平行于x轴的线段.20.(12分)给定抛物线y2=2x,设A(a,0),a0,P是抛物线上的一点,且|PA|=d,试求d的最小值.解析设P(x0,y0)(x00),那么y20=2x0,d=|PA|=x0-a2+y20=x0-a2+2x0=[x0+1-a]2+2a-1.∵a0,x00,(1)当01时,1-a0,此时有x0=0时,dmin=1-a2+2a-1=a;(2)当a1时,1-a0,此时有x0=a-1时,dmin=2a-1.21.(12分)双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为2,且过点(4,-10),点M(3,m)在双曲线上.(1)求双曲线方程;(2)求证:点M在以F1F2为直径的圆上;(3)求△F1MF2的面积.解析(1)∵双曲线离心率e=2,设所求双曲线方程为x2-y2=(0),那么由点(4,-10)在双曲线上,知=42-(-10)2=6,双曲线方程为x2-y2=6.(2)假设点M(3,m)在双曲线上,那么32-m2=6,m2=3,由双曲线x2-y2=6知F1(23,0),F2(-23,0),MF1MF2=(23-3,-m)(-23- 3,-m)=m2-3=0,MF1MF2,故点M在以F1F2为直径的圆上.(3)S△F1MF2=12|F1F2||m|=233=6.22.(12分)实数m1,定点A(-m,0),B(m,0),S为一动点,点S与A,B两点连线斜率之积为-1m2.(1)求动点S的轨迹C的方程,并指出它是哪一种曲线;(2)当m=2时,问t取何值时,直线l:2x-y+t=0(t0)与曲线C有且只有一个交点?(3)在(2)的条件下,证明:直线l上横坐标小于2的点P到点(1,0)的间隔与到直线x=2的间隔之比的最小值等于曲线C的离心率.解析 (1)设S(x,y),那么kSA=y-0x+m,kSB=y-0x-m.由题意,得y2x2-m2=-1m2,即x2m2+y2=1(xm).∵m1,轨迹C是中心在坐标原点,焦点在x轴上的椭圆(除去x轴上的两顶点),其中长轴长为2m,短轴长为2.(2)当m=2时,曲线C的方程为x22+y2=1(x2).由2x-y+t=0,x22+y2=1,消去y,得9x2+8tx+2t2-2=0.令=64t2-362(t2-1)=0,得t=3.∵t0,t=3.此时直线l与曲线C有且只有一个公共点.(3)由(2)知直线l的方程为2x-y+3=0,设点P(a,2a+3)(a2),d1表示P到点(1,0)的间隔,d2表示P 到直线x=2的间隔,那么d1=a-12+2a+32=5a2+10a+10,d2=2-a,d1d2=5a2+10a+102-a=5a2+2a+2a-22.令f(a)=a2+2a+2a-22,那么f(a)=2a+2a-22-2a2+2a+2a-2a-24=-6a+8a-23.令f(a)=0,得a=-43.∵当a-43时,f(a)0;当-432时,f(a)0.f(a)在a=-43时取得最小值,即d1d2取得最小值,d1d2min=5f-43=22,又椭圆的离心率为22,d1d2的最小值等于椭圆的离心率.。
(新课标)2020高考数学大一轮复习 解析几何题组层级快练-圆的方程及直线与圆的位置关系(文)(含解析)
题组层级快练(五十五)1.如果圆的方程为x 2+y 2+kx +2y +k 2=0,那么当圆面积最大时,圆心坐标为( ) A .(-1,1) B .(1,-1) C .(-1,0) D .(0,-1)答案 D解析 r =12k 2+4-4k 2=124-3k 2,当k =0时,r 最大.2.(2019·贵州贵阳一模)圆C 与x 轴相切于T(1,0),与y 轴正半轴交于A ,B 两点,且|AB|=2,则圆C 的标准方程为( ) A .(x -1)2+(y -2)2=2 B .(x -1)2+(y -2)2=2 C .(x +1)2+(y +2)2=4 D .(x -1)2+(y -2)2=4答案 A解析 由题意得,圆C 的半径为1+1=2,圆心坐标为(1,2),∴圆C 的标准方程为(x -1)2+(y -2)2=2,故选A.3.已知圆C :x 2+y 2+Dx +Ey +F =0,则“E=F =0且D<0”是“圆C 与y 轴相切于原点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 圆C 与y 轴相切于原点⇔圆C 的圆心在x 轴上(设坐标为(a ,0)),且半径r =|a|.∴当E =F =0且D<0时,圆心为(-D 2,0),半径为|D 2|,圆C 与y 轴相切于原点;圆(x +1)2+y 2=1与y 轴相切于原点,但D =2>0,故选A.4.(2019·重庆一中一模)直线mx -y +2=0与圆x 2+y 2=9的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定答案 A解析 方法一:圆x 2+y 2=9的圆心为(0,0),半径为3,直线mx -y +2=0恒过点A(0,2),而02+22=4<9,所以点A 在圆的内部,所以直线mx -y +2=0与圆x 2+y 2=9相交.故选A. 方法二:求圆心到直线的距离,从而判定.5.(2015·山东)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34答案 D解析 由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k(x -2)即kx -y -2k -3=0,又因为反射光线与圆相切,所以|-3k -2-2k -3|k 2+1=1⇒12k 2+25k +12=0⇒k =-43,或k =-34,故选D 项. 6.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( ) A .x 2+(y±33)2=43B .x 2+(y±33)2=13C .(x±33)2+y 2=43D .(x±33)2+y 2=13答案 C解析 方法一:(排除法)由圆心在x 轴上,则排除A ,B ,再由圆过(0,1)点,故圆的半径大于1,排除D ,选C.方法二:(待定系数法)设圆的方程为(x -a)2+y 2=r 2,圆C 与y 轴交于A(0,1),B(0,-1),由弧长之比为2∶1,易知∠OCA=12∠ACB =12×120°=60°,则tan60°=|OA||OC|=1|OC|,所以a =|OC|=33,即圆心坐标为(±33,0),r 2=|AC|2=12+(33)2=43.所以圆的方程为(x±33)2+y 2=43,选C. 7.(2019·保定模拟)过点P(-1,0)作圆C :(x -1)2+(y -2)2=1的两条切线,设两切点分别为A ,B ,则过点A ,B ,C 的圆的方程是( ) A .x 2+(y -1)2=2 B .x 2+(y -1)2=1 C .(x -1)2+y 2=4 D .(x -1)2+y 2=1答案 A解析 P ,A ,B ,C 四点共圆,圆心为PC 的中点(0,1),半径为12|PC|=12(1+1)2+22=2,则过点A ,B ,C 的圆的方程是x 2+(y -1)2=2.8.直线xsinθ+ycosθ=2+sinθ与圆(x -1)2+y 2=4的位置关系是( ) A .相离 B .相切 C .相交 D .以上都有可能答案 B解析 圆心到直线的距离d =|sinθ-2-sinθ|sin 2θ+cos 2θ=2. 所以直线与圆相切.9.(2013·山东,理)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0答案 A解析 如图,圆心坐标为C(1,0),易知A(1,1).又k AB ·k PC =-1,且k PC =1-03-1=12,∴k AB =-2.故直线AB 的方程为y -1=-2(x -1),即2x +y -3=0,故选A.另解:易知P ,A ,C ,B 四点共圆,其方程为(x -1)(x -3)+(y -0)(y -1)=0,即x 2+y 2-4x -y +3=0.又已知圆为x 2+y 2-2x =0, ∴切点弦方程为2x +y -3=0,选A.10.(2019·湖南师大附中月考)已知圆x 2+(y -1)2=2上任一点P(x ,y),其坐标均使得不等式x +y +m≥0恒成立,则实数m 的取值范围是( ) A .[1,+∞) B .(-∞,1] C .[-3,+∞) D .(-∞,-3]答案 A解析 如图,圆应在直线x +y +m =0的右上方,圆心C(0,1)到l 的距离为|1+m|2,切线l 1应满足|1+m|2=2,∴|1+m|=2,m =1或m =-3(舍去).从而-m≤-1,∴m ≥1.11.(2019·福建福州质检)若直线x -y +2=0与圆C :(x -3)2+(y -3)2=4相交于A ,B 两点,则CA →·CB →的值为( ) A .-1 B .0 C .1 D .6答案 B解析 联立⎩⎪⎨⎪⎧(x -3)2+(y -3)2=4,x -y +2=0,消去y ,得x 2-4x +3=0.解得x 1=1,x 2=3. ∴A(1,3),B(3,5).又C(3,3),∴CA →=(-2,0),CB →=(0,2). ∴CA →·CB →=-2×0+0×2=0.12.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为( ) A .1 B .2 2 C.7 D .3答案 C解析 设直线上一点P ,切点为Q ,圆心为M , 则|PQ|即为切线长,MQ 为圆M 的半径,长度为1,|PQ|=|PM|2-|MQ|2=|PM|2-1,要使|PQ|最小,即求|PM|最小,此题转化为求直线y =x +1上的点到圆心M 的最小距离,设圆心到直线y =x +1的距离为d ,则d =|3-0+1|12+(-1)2=22,∴|PM|最小值为22,|PQ|=|PM|2-1=(22)2-1=7,选C.13.以直线3x -4y +12=0夹在两坐标轴间的线段为直径的圆的方程为________.答案 (x +2)2+(y -32)2=254解析 对于直线3x -4y +12=0,当x =0时,y =3;当y =0时,x =-4.即以两点(0,3),(-4,0)为端点的线段为直径,则r =32+422=52,圆心为(-42,32),即(-2,32).∴圆的方程为(x +2)2+(y -32)2=254.14.从原点O 向圆C :x 2+y 2-6x +274=0作两条切线,切点分别为P ,Q ,则圆C 上两切点P ,Q 间的劣弧长为________. 答案 π解析 如图,圆C :(x -3)2+y 2=94,所以圆心C(3,0),半径r =32.在Rt△P OC 中,∠POC =π6.则劣弧PQ 所对圆心角为2π3.弧长为23π×32=π.15.若直线l :4x -3y -12=0与x ,y 轴的交点分别为A ,B ,O 为坐标原点,则△AOB 内切圆的方程为________. 答案 (x -1)2+(y +1)2=1解析 由题意知,A(3,0),B(0,-4),则|AB|=5.∴△AOB 的内切圆半径r =3+4-52=1,内切圆的圆心坐标为(1,-1).∴内切圆的方程为(x -1)2+(y +1)2=1.16.一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求此圆的方程.答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0解析 方法一:∵所求圆的圆心在直线x -3y =0上,且与y 轴相切, ∴设所求圆的圆心为C(3a ,a),半径为r =3|a|.又圆在直线y =x 上截得的弦长为27, 圆心C(3a ,a)到直线y =x 的距离为d =|3a -a|12+12. ∴有d 2+(7)2=r 2.即2a 2+7=9a 2,∴a =±1. 故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 方法二:设所求的圆的方程是(x -a)2+(y -b)2=r 2, 则圆心(a ,b)到直线x -y =0的距离为|a -b|2.∴r 2=(|a -b|2)2+(7)2.即2r 2=(a -b)2+14.①由于所求的圆与y 轴相切,∴r 2=a 2.② 又因为所求圆心在直线x -3y =0上, ∴a -3b =0.③ 联立①②③,解得a =3,b =1,r 2=9或a =-3,b =-1,r 2=9. 故所求的圆的方程是(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 方法三:设所求的圆的方程是x 2+y 2+Dx +Ey +F =0, 圆心为(-D 2,-E 2),半径为12D 2+E 2-4F.令x =0,得y 2+Ey +F =0.由圆与y 轴相切,得Δ=0,即E 2=4F.④又圆心(-D 2,-E2)到直线x -y =0的距离为|-D 2+E2|2,由已知,得⎝⎛⎭⎪⎪⎫|-D 2+E 2|22+(7)2=r 2,即(D -E)2+56=2(D 2+E 2-4F).⑤ 又圆心(-D 2,-E2)在直线x -3y =0上,∴D -3E =0.⑥ 联立④⑤⑥,解得D =-6,E =-2,F =1或D =6,E =2,F =1.故所求圆的方程是x 2+y 2-6x -2y +1=0 或x 2+y 2+6x +2y +1=0.17.(2019·杭州学军中学月考)已知圆C :x 2+y 2+2x +a =0上存在两点关于直线l :mx +y +1=0对称. (1)求实数m 的值;(2)若直线l 与圆C 交于A ,B 两点,OA →·OB →=-3(O 为坐标原点),求圆C 的方程. 答案 (1)m =1 (2)x 2+y 2+2x -3=0解析 (1)圆C 的方程为(x +1)2+y 2=1-a ,圆心C(-1,0). ∵圆C 上存在两点关于直线l :mx +y +1=0对称, ∴直线l :mx +y +1=0过圆心C. ∴-m +1=0,解得m =1.(2)联立⎩⎪⎨⎪⎧x 2+y 2+2x +a =0,x +y +1=0,消去y ,得2x 2+4x +a +1=0. 设A(x 1,y 1),B(x 2,y 2), Δ=16-8(a +1)>0,∴a<1. 由x 1+x 2=-2,x 1x 2=a +12,得y 1y 2=(-x 1-1)(-x 2-1)=a +12-1. ∴OA →·OB →=x 1x 2+y 1y 2=a +1-1=a =-3. ∴圆C 的方程为x 2+y 2+2x -3=0.。
2020届高三数学一轮复习测试:解析几何
2020届高三数学一轮复习测试:解析几何数学试卷〔解析几何综合卷〕时刻:90分钟,总分值:120分一、选择题〔共60分,每题5分,讲明:选做题3选2〕1. 从集合{1,2,3…,11}中任选两个元素作为椭圆方程22221x y m n +=中的m 和n,那么能组成落在矩形区域{(,)|||11,||9}B x y x y =<<且内的椭圆个数为A.43B. 72C. 86D. 902. 假设抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,那么p 的值为 A .2- B .2 C .4- D .43. 短轴长为5,离心率32=e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,那么△ABF 2的周长为〕 A .3 B .6C .12D .244. 以双曲线1322=-x y 的一个焦点为圆心,离心率为半径的圆的方程是A .4)2(22=+-y xB .2)2(22=-+y xC .2)2(22=+-y xD .4)2(22=-+y x 5. 抛物线241x y =的焦点坐标是A .〔161,0〕B .〔0,161〕C .〔0,1〕D .〔1,0〕6. 双曲线的中心在原点,焦点在x 轴上,它的一条渐近线与x 轴的夹角为α,且34παπ<<,那么双曲线的离心率的取值范畴是A .)2,1(B .)2,2(C .〔1,2〕D .)2,1(7.〔选作〕 设21,F F 分不是双曲线1922=-y x 的左右焦点.假设点P 在双曲线上,且021=•PF PF =+A .10B .102C .5D .528. 直线422=+=+y x a y x 与圆交于A 、B 两点,O 是坐标原点,向量、满足||||-=+,那么实数a 的值是A .2B .-2C .6或-6D .2或-29. 直角坐标平面内,过点P 〔2,1〕且与圆 224x y +=相切的直线A .有两条B .有且仅有一条C .不存在D .不能确定10. 双曲线24x -212y =1的焦点到渐近线的距离为A .23B .2C .3D .111. 〔选作〕点P 在直线:1l y x =-上,假设存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,那么称点P 为〝点〞,那么以下结论中正确的选项是 A .直线l 上的所有点差不多上〝点〞 B .直线l 上仅有有限个点是〝点〞 C .直线l 上的所有点都不是〝点〞D .直线l 上有无穷多个点〔点不是所有的点〕是〝点〞12. 以下曲线中离心率为62A .22124x y -= B .22142x y -= C .22146x y -= D .221410x y -= 13. 通过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为 A .30x y -+= B .30x y --= C .10x y +-=D .30x y ++=二、填空题〔共30分,每题5分,讲明:选作题4选2,注明所选题号。
2023年新高考数学大一轮复习专题六解析几何第1讲直线与圆(含答案)
新高考数学大一轮复习专题:第1讲 直线与圆[考情分析] 1.和导数、圆锥曲线相结合,求直线的方程,考查点到直线的距离公式,多以选择题、填空题形式出现,中低难度.2.和圆锥曲线相结合,求圆的方程或弦长、面积等,中高难度.考点一 直线的方程 核心提炼1.已知直线l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为零),直线l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为零),则l 1∥l 2⇔A 1B 2-A 2B 1=0,且A 1C 2-A 2C 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0. 2.点P (x 0,y 0)到直线l :Ax +By +C =0(A ,B 不同时为零)的距离d =|Ax 0+By 0+C |A 2+B 2.3.两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0(A ,B 不同时为零)间的距离d =|C 1-C 2|A 2+B 2.例1 (1)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( )A.2B.823C.3D.833答案 B解析 由l 1∥l 2得(a -2)a =1×3,且a ×2a ≠3×6, 解得a =-1,∴l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪6-2312+-12=823. (2)直线ax +y +3a -1=0恒过定点N ,则直线2x +3y -6=0关于点N 对称的直线方程为( )A .2x +3y -12=0B .2x +3y +12=0C .2x -3y +12=0D .2x -3y -12=0答案 B解析 由ax +y +3a -1=0可得a (x +3)+y -1=0,令⎩⎪⎨⎪⎧x +3=0,y -1=0,可得x =-3,y =1,∴N (-3,1).设直线2x +3y -6=0关于点N 对称的直线方程为2x +3y +c =0(c ≠-6). 则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去). ∴所求直线方程为2x +3y +12=0. 易错提醒 解决直线方程问题的三个注意点(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.(2)要注意直线方程每种形式的局限性,点斜式、两点式、斜截式要求直线不能与x 轴垂直,而截距式方程即不能表示过原点的直线,也不能表示垂直于坐标轴的直线. (3)讨论两直线的位置关系时,要注意直线的斜率是否存在.跟踪演练1 (1)已知直线l 经过直线l 1:x +y =2与l 2:2x -y =1的交点,且直线l 的斜率为-23,则直线l 的方程是( )A .-3x +2y +1=0B .3x -2y +1=0C .2x +3y -5=0D .2x -3y +1=0答案 C解析 解方程组⎩⎪⎨⎪⎧x +y =2,2x -y =1,得⎩⎪⎨⎪⎧x =1,y =1,所以两直线的交点为(1,1). 因为直线l 的斜率为-23,所以直线l 的方程为y -1=-23(x -1),即2x +3y -5=0.(2)已知直线l 1:kx -y +4=0与直线l 2:x +ky -3=0(k ≠0)分别过定点A ,B ,又l 1,l 2相交于点M ,则|MA |·|MB |的最大值为________. 答案252解析 由题意可知,直线l 1:kx -y +4=0经过定点A (0,4),直线l 2:x +ky -3=0经过定点B (3,0).易知直线l 1:kx -y +4=0和直线l 2:x +ky -3=0始终垂直,又M 是两条直线的交点,所以MA ⊥MB ,所以|MA |2+|MB |2=|AB |2=25,故|MA |·|MB |≤252⎝ ⎛⎭⎪⎫当且仅当|MA |=|MB |=522时取“=”.考点二 圆的方程 核心提炼 1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2. 2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆.例2 (1)(2018·天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为____________. 答案 x 2+y 2-2x =0解析 方法一 设圆的方程为x 2+y 2+Dx +Ey +F =0. ∵圆经过点(0,0),(1,1),(2,0),∴⎩⎪⎨⎪⎧F =0,2+D +E +F =0,4+2D +F =0.解得⎩⎪⎨⎪⎧D =-2,E =0,F =0.∴圆的方程为x 2+y 2-2x =0. 方法二 画出示意图如图所示,则△OAB 为等腰直角三角形, 故所求圆的圆心为(1,0),半径为1, ∴所求圆的方程为(x -1)2+y 2=1, 即x 2+y 2-2x =0.(2)已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.则圆C 的标准方程为________________________. 答案 (x -1)2+(y -2)2=2 解析 设圆心C (a ,b ),半径为r , ∵圆C 与x 轴相切于点T (1,0), ∴a =1,r =|b |.又圆C 与y 轴正半轴交于两点, ∴b >0,则b =r ,∵|AB |=2,∴2=2r 2-1, ∴r =2,故圆C 的标准方程为(x -1)2+(y -2)2=2. 规律方法 解决圆的方程问题一般有两种方法(1)几何法:通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程. (2)代数法:即用待定系数法先设出圆的方程,再由条件求得各系数.跟踪演练2 (1)(2020·全国Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55B.255 C.355 D.455答案 B解析 由题意可知圆心在第一象限,设为(a ,b ). ∵圆与两坐标轴都相切, ∴a =b ,且半径r =a ,∴圆的标准方程为(x -a )2+(y -a )2=a 2. ∵点(2,1)在圆上,∴(2-a )2+(1-a )2=a 2, ∴a 2-6a +5=0,解得a =1或a =5. 当a =1时,圆心坐标为(1,1), 此时圆心到直线2x -y -3=0的距离为d =|2×1-1-3|22+-12=255; 当a =5时,圆心坐标为(5,5), 此时圆心到直线2x -y -3=0的距离为d =|2×5-5-3|22+-12=255. 综上,圆心到直线2x -y -3=0的距离为255.(2)已知A ,B 分别是双曲线C :x 2m -y 22=1的左、右顶点,P (3,4)为C 上一点,则△PAB 的外接圆的标准方程为________________. 答案 x 2+(y -3)2=10解析 ∵P (3,4)为C 上一点,∴9m -162=1,解得m =1,则B (1,0),∴k PB =42=2,PB 的中点坐标为(2,2),PB 的中垂线方程为y =-12(x -2)+2,令x =0,则y =3, 设外接圆圆心为M (0,t ),则M (0,3),r =|MB |=1+32=10, ∴△PAB 外接圆的标准方程为x 2+(y -3)2=10. 考点三 直线、圆的位置关系 核心提炼1.直线与圆的位置关系:相交、相切和相离,判断的方法 (1)点线距离法.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0(A 2+B 2≠0),方程组⎩⎪⎨⎪⎧Ax +By +C =0,x -a 2+y -b2=r 2,消去y ,得到关于x 的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.例3 (1)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2B .42C .6D .210 答案 C解析 由题意,得圆C 的标准方程为(x -2)2+(y -1)2=4,知圆C 的圆心为C (2,1),半径为2.方法一 因为直线l 为圆C 的对称轴,所以圆心在直线l 上,则2+a -1=0,解得a =-1, 所以|AB |2=|AC |2-|BC |2=[(-4-2)2+(-1-1)2]-4=36,所以|AB |=6.方法二 由题意知,圆心在直线l 上,即2+a -1=0,解得a =-1,再由图知,|AB |=6.(2)(2020·全国Ⅰ)已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线PA ,PB ,切点为A ,B ,当|PM |·|AB |最小时,直线AB 的方程为( ) A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=0答案 D解析 ⊙M :(x -1)2+(y -1)2=4, 则圆心M (1,1),⊙M 的半径为2. 如图,由题意可知PM ⊥AB ,∴S 四边形PAMB =12|PM |·|AB |=|PA |·|AM |=2|PA |, ∴|PM |·|AB |=4|PA | =4|PM |2-4.当|PM |·|AB |最小时,|PM |最小,此时PM ⊥l . 故直线PM 的方程为y -1=12(x -1),即x -2y +1=0.由⎩⎪⎨⎪⎧x -2y +1=0,2x +y +2=0,得⎩⎪⎨⎪⎧x =-1,y =0,∴P (-1,0).又∵直线x =-1,即PA 与⊙M 相切, ∴PA ⊥x 轴,PA ⊥MA ,∴A (-1,1). 又直线AB 与l 平行,设直线AB 的方程为2x +y +m =0(m ≠2), 将A (-1,1)的坐标代入2x +y +m =0,得m =1. ∴直线AB 的方程为2x +y +1=0. 规律方法 直线与圆相切问题的解题策略直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.跟踪演练3 (1)已知点M 是抛物线y 2=2x 上的动点,以点M 为圆心的圆被y 轴截得的弦长为8,则该圆被x 轴截得的弦长的最小值为( ) A .10B .43C .8D .215答案 D解析 设圆心M ⎝ ⎛⎭⎪⎫a 22,a , 而r 2=⎝ ⎛⎭⎪⎫a 222+⎝ ⎛⎭⎪⎫822=a44+16,∵圆M 与x 轴交于A ,B 两点, ∴|AB |=2r 2-a 2=2a 44+16-a 2=a 4-4a 2+64=a 2-22+60≥60=215.(2)若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________. 答案102解析 联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为 |-5|a 2+4a2=5a(a >0).故222-⎝⎛⎭⎪⎫5a 2=22,解得a 2=52, 因为a >0,所以a =102. 专题强化练一、单项选择题1.过点A (1,2)的直线在两坐标轴上的截距之和为零,则该直线方程为( ) A .y -x =1B .y +x =3C .2x -y =0或x +y =3D .2x -y =0或y -x =1答案 D解析 当直线过原点时,可得斜率为2-01-0=2,故直线方程为y =2x ,即2x -y =0,当直线不过原点时,设方程为x a +y-a=1, 代入点(1,2)可得1a -2a=1,解得a =-1,方程为x -y +1=0,故所求直线方程为2x -y =0或y -x =1.2.若直线x +(1+m )y -2=0与直线mx +2y +4=0平行,则m 的值是( ) A .1B .-2C .1或-2D .-32答案 A解析 由两直线平行的条件可得-2+m +m 2=0, ∴m =-2(舍)或m =1.3.已知圆x 2+y 2+2k 2x +2y +4k =0关于y =x 对称,则k 的值为( ) A .-1B .1C .±1D.0 答案 A解析 化圆x 2+y 2+2k 2x +2y +4k =0为(x +k 2)2+(y +1)2=k 4-4k +1. 则圆心坐标为(-k 2,-1),∵圆x 2+y 2+2k 2x +2y +4k =0关于y =x 对称, ∴直线y =x 经过圆心, ∴-k 2=-1,得k =±1.当k =1时,k 4-4k +1<0,不合题意, ∴k =-1.4.(2020·厦门模拟)已知圆C :x 2+y 2-4x =0与直线l 相切于点P (3,3),则直线l 的方程为( ) A .3x -3y -6=0 B .x -3y -6=0 C .x +3y -4=0 D .x +3y -6=0 答案 D解析 圆C :x 2+y 2-4x =0可化为(x -2)2+y 2=4,则圆心C (2,0), 直线PC 的斜率为k PC =0-32-3=3,∵l ⊥PC ,则直线l 的斜率为k =-1k PC =-33,∴直线l 的点斜式方程为y -3=-33(x -3),化为一般式得x +3y -6=0. 5.(2020·长沙模拟)已知直线l 过点A (a,0)且斜率为1,若圆x 2+y 2=4上恰有3个点到l 的距离为1,则a 的值为( ) A .3 2 B .±3 2 C .±2 D .± 2答案 D解析 直线l 的方程为y =x -a ,即x -y -a =0.圆上恰有三个点到直线l 的距离为1,可知圆心到直线的距离等于半径的一半,即|a |2=1,a =± 2.6.已知点P 为圆C :(x -1)2+(y -2)2=4上一点,A (0,-6),B (4,0),则|PA →+PB →|的最大值为( ) A.26+2 B.26+4 C .226+4 D .226+2 答案 C解析 取AB 的中点D (2,-3), 则PA →+PB →=2PD →,|PA →+PB →|=|2PD →|,又由题意知,圆C 的圆心C 的坐标为(1,2),半径为2, |PD →|的最大值为圆心C (1,2)到D (2,-3)的距离d 再加半径r , 又d =1+25=26,∴d +r =26+2, ∴|2PD →|的最大值为226+4, 即|PA →+PB →|的最大值为226+4.7.(2020·北京市陈经纶中学月考)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A ,B 距离之比是常数λ(λ>0,λ≠1)的点M 的轨迹是圆,若两定点A ,B 的距离为3,动点M 满足|MA |=2|MB |,则M 点的轨迹围成区域的面积为( )A .πB.2πC.3πD.4π 答案 D解析 以A 为原点,直线AB 为x 轴建立平面直角坐标系(图略),则B (3,0).设M (x ,y ),依题意有,x 2+y 2x -32+y2=2,化简整理得,x 2+y 2-8x +12=0,即(x -4)2+y 2=4,则M 点的轨迹围成区域的面积为4π.8.(2020·辽宁省大连一中模拟)已知圆C :x 2+y 2=4,直线l :x -y +6=0,在直线l 上任取一点P 向圆C 作切线,切点为A ,B ,连接AB ,则直线AB 一定过定点( )A.⎝ ⎛⎭⎪⎫-23,23 B .(1,2)C .(-2,3) D.⎝ ⎛⎭⎪⎫-43,43 答案 A解析 设点P (x 0,y 0),则x 0-y 0+6=0.过点P 向圆C 作切线,切点为A ,B ,连接AB ,以CP 为直径的圆的方程为x (x -x 0)+y (y -y 0)=0,又圆C :x 2+y 2=4,作差可得直线AB 的方程为xx 0+yy 0=4,将y 0=x 0+6,代入可得(x +y )x 0+6y -4=0,满足⎩⎪⎨⎪⎧x +y =0,6y -4=0⇒⎩⎪⎨⎪⎧x =-23,y =23,故直线AB 过定点⎝ ⎛⎭⎪⎫-23,23.二、多项选择题9.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的值是( ) A .3B .5C .7D .9 答案 AC解析 圆x 2+y 2=4的圆心是O (0,0),半径为R =2,圆(x -3)2+(y -4)2=r 2的圆心是C (3,4),半径为r ,|OC |=5,当2+r =5,r =3时,两圆外切,当|r -2|=5,r =7时,两圆内切,它们都只有一个公共点,即集合A ∩B 中只有一个元素. 10.下列说法正确的是( )A .直线x -y -2=0与两坐标轴围成的三角形的面积是2B .点P (0,2)关于直线y =x +1的对称点为P ′(1,1)C .过P 1(x 1,y 1),P 2(x 2,y 2)两点的直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1D .经过点(1,1)且在x 轴和y 轴上截距都相等的直线方程为x +y -2=0 答案 AB解析 选项A 中直线x -y -2=0在两坐标轴上的截距分别为2,-2,所以围成的三角形的面积是2,所以A 正确;选项B 中PP ′的中点⎝⎛⎭⎪⎫0+12,2+12在直线y =x +1上,且P (0,2),P ′(1,1)两点连线的斜率为-1,所以B 正确;选项C 中需要条件y 2≠y 1,x 2≠x 1,所以C 错误;选项D 中还有一条截距都为0的直线y =x ,所以D 错误.11.已知圆C 1:(x +6)2+(y -5)2=4,圆C 2:(x -2)2+(y -1)2=1,M ,N 分别为圆C 1和C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的值可以是( ) A .6B .7C .10D .15 答案 BCD解析 圆C 2关于x 轴的对称圆C 3为(x -2)2+(y +1)2=1,圆心C 3(2,-1),r 3=1,点N 关于x 轴的对称点N ′在圆C 3上,又圆C 1的圆心C 1(-6,5),r 1=2,∴|PM |+|PN |=|PM |+|PN ′|≥|PC 1|-r 1+|PC 3|-r 3=|PC 1|+|PC 3|-3≥|C 1C 3|-3=2+62+-1-52-3=7,∴|PM |+|PN |的取值范围是[7,+∞).12.已知点A 是直线l :x +y -2=0上一定点,点P ,Q 是圆x 2+y 2=1上的动点,若∠PAQ 的最大值为90°,则点A 的坐标可以是( ) A .(0,2) B .(1,2-1) C .(2,0) D .(2-1,1)答案 AC 解析如图所示,坐标原点O 到直线l :x +y -2=0的距离d =212+12=1,则直线l 与圆x 2+y2=1相切,由图可知,当AP ,AQ 均为圆x 2+y 2=1的切线时,∠PAQ 取得最大值,连接OP ,OQ ,由于∠PAQ 的最大值为90°,且∠APO =∠AQO =90°,|OP |=|OQ |=1,则四边形APOQ为正方形,所以|OA |=2|OP |= 2.设A (t ,2-t ),由两点间的距离公式得|OA |=t 2+2-t2=2,整理得t 2-2t =0,解得t =0或t =2,因此,点A 的坐标为(0,2)或(2,0). 三、填空题13.若直线l :x a +y b=1(a >0,b >0)经过点(1,2),则直线l 在x 轴、y 轴上的截距之和的最小值是________. 答案 3+2 2解析 因为直线l :x a +y b=1(a >0,b >0)经过点(1,2),所以1a +2b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+b a+2ab≥3+22,当且仅当a =2+1,b =2+2时等号成立.所以直线在x 轴、y 轴上的截距之和的最小值是3+2 2.14.已知⊙O :x 2+y 2=1.若直线y =kx +2上总存在点P ,使得过点P 的⊙O 的两条切线互相垂直,则实数k 的取值范围是______________________. 答案 (-∞,-1]∪[1,+∞)解析 ∵⊙O 的圆心为(0,0),半径r =1, 设两个切点分别为A ,B ,则由题意可得四边形PAOB 为正方形, 故有|PO |=2r =2,∴圆心O 到直线y =kx +2的距离d ≤2, 即|2|1+k2≤2,即1+k 2≥2,解得k ≥1或k ≤-1.15.(2020·石家庄长安区期末)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,当△AOB 的面积达到最大时,k =________. 答案 ±1解析 由圆O :x 2+y 2=1,得到圆心坐标为O (0,0),半径r =1,把直线l 的方程y =kx +1(k ≠0),整理为一般式方程得l :kx -y +1=0,圆心O (0,0)到直线AB 的距离d =1k 2+1,弦AB 的长度|AB |=2r 2-d 2=2k 2k 2+1,S △AOB =12×2k 2k 2+1×1k 2+1=|k |k 2+1=1|k |+1|k |,又因为|k |+1|k |≥2|k |·1|k |=2,S △AOB ≤12,当且仅当|k |=1|k |,即k =±1时取等号,S △AOB 取得最大值,最大值为12,此时k =±1.16.已知圆C 1:x 2+y 2=r 2,圆C 2:(x -a )2+(y -b )2=r 2(r >0)交于不同的两点A (x 1,y 1),B (x 2,y 2),给出下列结论:①a (x 1-x 2)+b (y 1-y 2)=0;②2ax 1+2by 1=a 2+b 2;③x 1+x 2=a ,y 1+y 2=b .其中正确的结论是________.(填序号)答案 ①②③解析 公共弦所在直线的方程为2ax +2by -a 2-b 2=0, 所以有2ax 1+2by 1-a 2-b 2=0,②正确; 又2ax 2+2by 2-a 2-b 2=0,所以a (x 1-x 2)+b (y 1-y 2)=0,①正确;AB 的中点为直线AB 与直线C 1C 2的交点,又AB :2ax +2by -a 2-b 2=0,C 1C 2:bx -ay =0.由⎩⎪⎨⎪⎧2ax +2by -a 2-b 2=0,bx -ay =0得⎩⎪⎨⎪⎧x =a2,y =b2.。
高三数学一轮复习 解析几何练习1
海南华侨中学三亚学校高三年级第一轮复习(一)一、选择题1.已知过点A (-2,m )和B (m,4)的直线与直线2x +y -1=0平行,则m 的值为 ( ) A .0 B .-8 C .2D .10解析:由k =4-m m +2=-2,得m =-8.答案:B2.(宜宾模拟)直线x sin α+y +2=0的倾斜角的取值范围是 ( ) A .[0,π) B .[0,π4]∪[3π4,π)C .[0,π4]D .[0,π4]∪(π2,π)解析:设题中直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1]. 又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π答案:B3.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是 ( )A .x -2y +4=0B .x +2y -4=0C .x -2y -4=0D .x +2y +4=0解析:直线2x -y -2=0与y 轴的交点为A (0,-2), 所求直线过A 且斜率为-12,∴所求直线方程:y +2=-12(x -0),即x +2y +4=0.答案:D4.设点A (-2,3),B (3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是( )A .(-∞,-52]∪[43,+∞)B .(-43,52)C .[-52,43]D .(-∞,-43]∪[52,+∞)解析:直线ax +y +2=0恒过点M (0,-2),且斜率为-a , ∵k MA =3- -2-2-0=-52,k MB =2- -2 3-0=43,由图可知:-a >-52且-a <43,∴a ∈(-43,52).答案:B5. (皖南八校联考)已知直线a 2x +y +2=0与直线bx - (a 2+1)y -1=0互相垂直,则|ab |的最小值为 ( )A .5B .4C .2D .1解析:由题意知,a 2b -(a 2+1)=0且a ≠0,∴a 2b =a 2+1,∴ab =a 2+1a =a +1a,∴|ab |=|a +1a |=|a |+1|a |≥2.(当且仅当a =±1时取“=”).答案:C6.直线l 1:3x -y +1=0,直线l 2过点(1,0),且l 2的倾斜角是l 1的倾斜角的2倍,则直线l 2的方程为 ( )A .y =6x +1B .y =6(x -1)C .y =34(x -1)D .y =-34(x -1)解析:设直线l 1的倾斜角为α,则由tan α=3可求出直线l 2的斜率k =tan2α=2tan α1-tan 2α=-34,再由直线l 2过点(1,0)即可求得其方程. 答案:D 二、填空题7.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.解析:由题可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35n =315.故m +n =345. 答案:3458.(长沙模拟)已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________.解析:直线AB 的方程为x 3+y 4=1,P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3. 答案:39.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为________. 解析:由题意知截距均不为零.设直线方程为x a +y b=1,由⎩⎪⎨⎪⎧a +b =62a +1b=1,解得⎩⎪⎨⎪⎧a =3b =3或⎩⎪⎨⎪⎧a =4b =2.故所求直线方程为x +y -3=0或x +2y-4=0.答案:x +y -3=0或x +2y -4=0 三、解答题10.在△ABC 中,已知A (5,-2)、B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求:(1)顶点C 的坐标; (2)直线MN 的方程.解:(1)设点C 的坐标为(x ,y ),则有x +52=0,3+y2=0, ∴x =-5,y =-3.即点C 的坐标为(-5,-3).(2)由题意知,M (0,-52),N (1,0),∴直线MN 的方程为x -y52=1,即5x -2y -5=0.11.已知两点A (-1,2),B (m,3).(1)求直线AB 的方程; (2)已知实数m ∈[-33-1,3-1],求直线AB 的倾斜角α的取值范围. 解:(1)当m =-1时,直线AB 的方程为x =-1, 当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1). (2)①当m =-1时,α=π2;②当m ≠-1时,m +1∈[-33,0)∪(0,3], ∴k =1m +1∈(-∞,-3]∪[33,+∞), ∴α∈[π6,π2)∪(π2,2π3].综合①②知,直线AB 的倾斜角α的取值范围为[π6,23π].12.已知实数x ,y 满足y =x 2-2x +2(-1≤x ≤1).试求:y +3x +2的最大值与最小值.解:由y +3x +2的几何意义可知,它表示经过定点P (-2,-3)与曲线段AB 上任一点(x ,y )的直线的斜率k ,如图可知:k PA ≤k ≤k PB ,由已知可得: A (1,1),B (-1,5),∴43≤k ≤8, 故y +3x +2的最大值为8,最小值为43.。
高三数学一轮复习解析几何知识点突破训练含答案解析
第九章⎪⎪⎪解析几何 第一节 直线与方程突破点(一) 直线的倾斜角与斜率、两直线的位置关系基础联通 抓主干知识的“源”与“流” 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的范围是[0,π). 2.斜率公式(1)定义式:直线l 的倾斜角为α≠π2,则斜率k =tan_α.(2)两点式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 考点贯通 抓高考命题的“形”与“神”直线的倾斜角与斜率1.直线都有倾斜角,但不一定都有斜率,二者的关系具体如下:斜率k k =tan α>0 k =0 k =tan α<0 不存在 倾斜角α锐角0°钝角90°本节主要包括3个知识点:1.直线的倾斜角与斜率、两直线的位置关系; 2.直线的方程;3.直线的交点、距离与对称问题.2.在分析直线的倾斜角和斜率的关系时,要根据正切函数k =tan α的单调性,如图所示:当α取值在⎣⎡⎭⎫0,π2内,由0增大到π2⎝⎛⎭⎫α≠π2时,k 由0增大并趋向于正无穷大;当α取值在⎝⎛⎭⎫π2,π内,由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 由负无穷大增大并趋近于0.解决此类问题,常采用数形结合思想.[例1] (1)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π (2)已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.[解析] (1)因为直线x sin α+y +2=0的斜率k =-sin α,又-1≤sin α≤1,所以-1≤k ≤1.设直线x sin α+y +2=0的倾斜角为θ,所以-1≤tan θ≤1,而θ∈[0,π),故倾斜角的取值范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. (2)如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l =-1m .∴-1m ≤-2或-1m ≥32.解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为⎣⎡⎦⎤-23,12. [答案] (1)B (2)⎣⎡⎦⎤-23,12 [易错提醒]直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).两直线的位置关系两直线平行或垂直的判定方法 (1)已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等; ②两直线垂直⇔两直线的斜率之积为-1. (2)已知两直线的斜率不存在若两直线的斜率不存在,当两直线在x 轴上的截距不相等时,两直线平行;否则两直线重合.(3)已知两直线的一般方程设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.该方法可避免对斜率是否存在进行讨论.[例2] (1)若直线ax +2y -6=0与x +(a -1)y +a 2-1=0平行,则a =________. (2)已知经过点A (-2,0)和点B (1,3a )的直线l 1与经过点P (0,-1)和点Q (a ,-2a )的直线l 2互相垂直,则实数a 的值为________.[解析] (1)因为两直线平行,所以有a (a -1)-2=0,且2(a 2-1)+6(a -1)≠0,即a 2-a -2=0,且a 2+3a -4≠0,解得a =2或a =-1.(2)l 1的斜率k 1=3a -01-(-2)=a .当a ≠0时,l 2的斜率k 2=-2a -(-1)a -0=1-2aa .因为l 1⊥l 2,所以k 1k 2=-1,即a ·1-2aa =-1,解得a =1.当a =0时,P (0,-1),Q (0,0),这时直线l 2为y 轴,A (-2,0),B (1,0),直线l 1为x 轴,显然l 1⊥l 2.综上可知,实数a 的值为1或0. [答案] (1)2或-1 (2)1或0[易错提醒]当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.能力练通 抓应用体验的“得”与“失”1.[考点一]直线2x cos α-y -3=0(α∈[π6,π3])的倾斜角的取值范围是( )A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3解析:选B 直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎡⎦⎤π6,π3, 所以12≤cos α≤32,因此k =2·cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ]. 又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3, 即倾斜角的取值范围是⎣⎡⎦⎤π4,π3.2.[考点一]直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.3.[考点二]若直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,则实数m 的值为( )A .-1B .0C .1D .2解析:选C ∵直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,∴⎩⎪⎨⎪⎧-m +(2-m )=0,m +2(2-m )≠0,解得m =1.故选C. 4.[考点二]已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( )A .2或12B.13或-1 C.13D .-1解析:选B 因为直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或a =-1.故选B.5.[考点一]直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析:如图,∵k AP =1-02-1=1, k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞). 答案:(-∞,- 3 ]∪[1,+∞)6.[考点二](2016·苏北四市一模)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)-2b =0, 即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝⎛⎭⎫2a +3b =13+6a b +6b a≥13+2 6a b ·6ba =25,当且仅当a =b =5时取等号, 故2a +3b 的最小值为25. 答案:25突破点(二) 直线的方程基础联通 抓主干知识的“源”与“流”直线方程的五种形式 形式 几何条件 方程 适用范围 点斜式 过一点(x 0,y 0),斜率k y -y 0=k (x -x 0) 与x 轴不垂直的直线 斜截式 纵截距b ,斜率k y =kx +b 与x 轴不垂直的直线 两点式过两点(x 1,y 1),(x 2,y 2)y -y 1y 2-y 1=x -x 1x 2-x 1与x 轴、y 轴均不垂直的直线 截距式 横截距a ,纵截距bx a +y b =1 不含垂直于坐标轴和过原点的直线一般式Ax +By +C =0,A 2+B 2≠0平面直角坐标系内所有直线考点贯通 抓高考命题的“形”与“神”求直线方程[例1] (1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程.(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. (3)求过A (2,1),B (m,3)两点的直线l 的方程.[解] (1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. (3)①当m =2时,直线l 的方程为x =2; ②当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,代入方程2x -(m -2)y +m -6=0,即为x =2, 所以直线l 的方程为2x -(m -2)y +m -6=0.[易错提醒](1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应先判断截距是否为零).与直线方程有关的最值问题[例2] 过点P (4,1)作直线l 分别交x ,y 轴正半轴于A ,B 两点. (1)当△AOB 面积最小时,求直线l 的方程. (2)当|OA |+|OB |取最小值时,求直线l 的方程. [解] 设直线l :x a +yb =1(a >0,b >0), 因为直线l 经过点P (4,1), 所以4a +1b =1.(1)4a +1b =1≥24a ·1b =4ab, 所以ab ≥16,当且仅当a =8,b =2时等号成立,所以当a =8,b =2时,S △AOB =12ab 最小,此时直线l 的方程为x 8+y 2=1,即x +4y -8=0.(2)因为4a +1b =1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝⎛⎭⎫4a +1b =5+a b +4b a≥5+2 a b ·4ba=9, 当且仅当a =6,b =3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x +2y -6=0.[方法技巧]1.给定条件求直线方程的思路(1)考虑问题的特殊情况,如斜率不存在的情况,截距等于零的情况. (2)在一般情况下准确选定直线方程的形式,用待定系数法求出直线方程. (3)重视直线方程一般形式的应用,因为它具有广泛的适用性. 2.与直线有关的最值问题的解题思路 (1)借助直线方程,用y 表示x 或用x 表示y . (2)将问题转化成关于x (或y )的函数. (3)利用函数的单调性或基本不等式求最值.能力练通 抓应用体验的“得”与“失” 1.[考点一]倾斜角为135°,在y 轴上的截距为-1的直线方程是( ) A .x -y +1=0 B .x -y -1=0 C .x +y -1=0D .x +y +1=0解析:选D 直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0.2.[考点一]已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( )A .4x -3y -3=0B .3x -4y -3=0C .3x -4y -4=0D .4x -3y -4=0解析:选D 由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0.3.[考点二]若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·a b =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.4.[考点二]若ab >0,且A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 解析:根据A (a,0),B (0,b )确定直线的方程为x a +yb =1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0. 根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16.答案:165.[考点一]△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 所在直线的方程. 解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点, 由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点, 由截距式得AD 所在直线的方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.突破点(三) 直线的交点、距离与对称问题基础联通 抓主干知识的“源”与“流” 1.两条直线的交点2.三种距离类型 条件距离公式两点间的距离点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2 点到直线的距离点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2两平行直线间的距离 两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2考点贯通 抓高考命题的“形”与“神”直线的交点问题[例1] (1)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限(2)已知直线l 经过点P (3,1),且被两条平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段长为5,则直线l 的方程为________.[解析] (1)由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得⎩⎪⎨⎪⎧x =kk -1,y =2k -1k -1.又∵0<k <12,∴x =kk -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.(2)若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1,l 2的交点分别为A ′(3,-4),B ′(3,-9),截得的线段A ′B ′的长|A ′B ′|=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组⎩⎪⎨⎪⎧ y =k (x -3)+1,x +y +1=0,得A ⎝ ⎛⎭⎪⎫3k -2k +1,-4k -1k +1, 解方程组⎩⎪⎨⎪⎧y =k (x -3)+1,x +y +6=0,得B ⎝ ⎛⎭⎪⎫3k -7k +1,-9k -1k +1.由|AB |=5,得⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+⎝ ⎛⎭⎪⎫-4k -1k +1+9k -1k +12=52.解得k =0,即所求的直线方程为y =1.综上可知,所求直线l 的方程为x =3或y =1. [答案] (1)B (2)x =3或y =1 [方法技巧]1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程联立组成的方程组,得到的方程组的解,即交点的坐标.2.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程.距离问题[例2] (1)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A.95B.185C.2910D.295(2)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P 点坐标为________.[解析] (1)因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910,所以|PQ |的最小值为2910.(2)设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.① 又点P (a ,b )到直线l :4x +3y -2=0的距离为2, ∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎨⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝⎛⎭⎫277,-87. [答案] (1)C (2)(1,-4)或⎝⎛⎭⎫277,-87 [易错提醒](1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |; (2)利用两平行线间的距离公式要先把两直线方程中x ,y 的系数化为相等.对称问题1.中心对称问题的两种类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的两种类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称:①若直线与对称轴平行,则在直线上取一点,求出该点关于轴的对称点,然后用点斜式求解.②若直线与对称轴相交,则先求出交点,然后再取直线上一点,求该点关于轴的对称点,最后由两点式求解.[例3] (1)点P (3,2)关于点Q (1,4)的对称点M 为( ) A .(1,6) B .(6,1) C .(1,-6)D .(-1,6)(2)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( ) A .x -2y +3=0 B .x -2y -3=0 C .x +2y +1=0D .x +2y -1=0(3)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.[解析](1)设M (x ,y ),则⎩⎨⎧3+x2=1,2+y2=4,∴x =-1,y =6, ∴M (-1,6).(2)设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0.(3)设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.[答案] (1)D (2)A (3)6x -y -6=0[方法技巧]解决两类对称问题的关键点解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.能力练通 抓应用体验的“得”与“失”1.[考点三](2016·东城期末)如果平面直角坐标系内的两点A (a -1,a +1),B (a ,a )关于直线l 对称,那么直线l 的方程为( )A .x -y +1=0B .x +y +1=0C .x -y -1=0D .x +y -1=0解析:选A 因为直线AB 的斜率为a +1-aa -1-a=-1,所以直线l 的斜率为1,设直线l的方程为y =x +b ,由题意知直线l 过点⎝⎛⎭⎫2a -12,2a +12,所以2a +12=2a -12+b ,解得b =1,所以直线l 的方程为y =x +1,即x -y +1=0.选A.2.[考点二]若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =( )A .0B .1C .-1D .2解析:选A ∵直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离为5,∴⎩⎪⎨⎪⎧n =-2,|m +3|5=5,∴n =-2,m =2(负值舍去).∴m +n =0.3.[考点一]已知定点A (1,0),点B 在直线x -y =0上运动,当线段AB 最短时,点B 的坐标是( )A.⎝⎛⎭⎫12,12B.⎝⎛⎭⎫22,22C.⎝⎛⎭⎫32,32D.⎝⎛⎭⎫52,52 解析:选A 因为定点A (1,0),点B 在直线x -y =0上运动,所以当线段AB 最短时,直线AB 和直线x -y =0垂直,设直线AB 的方程为x +y +m =0,将A 点代入,解得m =-1,所以直线AB 的方程为x +y -1=0,它与x -y =0联立解得x =12,y =12,所以B 的坐标是⎝⎛⎭⎫12,12.4.[考点三]若m >0,n >0,点(-m ,n )关于直线x +y -1=0的对称点在直线x -y +2=0上,那么1m +4n的最小值等于________.解析:由题意知(-m ,n )关于直线x +y -1=0的对称点为(1-n,1+m ).则1-n -(1+m )+2=0,即m +n =2.于是1m +4n =12(m +n )⎝⎛⎭⎫1m +4n =12×⎝⎛⎭⎫5+n m +4m n ≥12×(5+2×2)=92,当且仅当m =23,n =43时等号成立. 答案:925.[考点一]经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________________.解析:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2). ∵l ⊥l 3,直线l 3的斜率为34,∴直线l 的斜率k 1=-43,∴直线l 的方程为y -2=-43x ,即4x +3y -6=0.答案:4x +3y -6=0 6.[考点二]已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程.(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0. 由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图.由l ⊥OP ,得k l k OP =-1,因为k OP =-12,所以k l =-1k OP =2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C. 3 D .2解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax+y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.2.(2013·新课标全国卷Ⅱ)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫1-22,12 C.⎝⎛⎦⎤1-22,13 D.⎣⎡⎭⎫13,12解析:选B 法一:(1)当直线y =ax +b 与AB ,BC 相交时,如图①所示.易求得:x M =-ba ,y N =a +b a +1.由已知条件得:⎝⎛⎭⎫1+b a ·a +b a +1=1,∴a =b 21-2b.∵点M 在线段OA 上,∴-1<-ba <0,∴0<b <a .∵点N 在线段BC 上,∴0<a +ba +1<1,∴b <1.由⎩⎨⎧b 21-2b>b ,b21-2b >0,b >0,解得13<b <12.(2)当直线y =ax +b 与AC ,BC 相交时,如图②所示.设MC =m ,NC =n ,则S △MCN =12mn =12,∴mn =1.显然,0<n <2,∴m =1n >22.又0<m ≤2且m ≠n .∴22<m ≤2且m ≠1.设D 到AC ,BC 的距离为t ,则t m =DN MN ,t n =DM MN ,∴t m +t n =DN MN +DM MN =1.∴t =mn m +n ,∴1t =1m +1n =1m +m .而f (m )=m +1m ⎝⎛⎭⎫22<m ≤2且m ≠1的值域为⎝⎛⎦⎤2,322,即2<1t ≤322,∴23≤t <12.∵b =1-CD =1-2t ,∴1-22<b ≤13.综合(1)、(2)可得:1-22<b <12. 法二:由⎩⎪⎨⎪⎧x +y =1,y =ax +b消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝⎛⎭⎫-b a ,0,结合图形知12×a +b a +1×⎝⎛⎭⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b.∵a >0,∴b 21-2b>0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故答案为B.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.直线x +3y +1=0的倾斜角是( ) A.π6 B.π3 C.2π3D.5π6解析:选D 由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,所以α=5π6.2.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32B .m ≠0C .m ≠0且m ≠1D .m ≠1解析:选D 由⎩⎪⎨⎪⎧2m 2+m -3=0,m 2-m =0,解得m =1,故m ≠1时方程表示一条直线.3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选A 依题意,设所求的直线方程为x -2y +a =0,由于点(1,0)在所求直线上,则1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.4.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A.1710 B.175C .8D .2解析:选D ∵63=m 4≠14-3,∴m =8,直线6x +8y +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.5.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析:由⎩⎪⎨⎪⎧ y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.所以点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,所以m =-9.答案:-9[练常考题点——检验高考能力]一、选择题1.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:选D 由题意可知a ≠0.当x =0时,y =a +2.当y =0时,x =a +2a .故a +2a =a +2,解得a =-2或a =1.2.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0D .ab <0,bc <0解析:选A 由于直线ax +by +c =0同时经过第一、第二、第四象限,所以直线斜率存在,将方程变形为y =-a b x -c b .易知-a b <0且-cb >0,故ab >0,bc <0.3.两直线x m -y n =a 与x n -ym =a (其中a 是不为零的常数)的图象可能是( )解析:选B 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =mn x -ma ,由此可知两条直线的斜率同号,故选B.4.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1:x -y -5=0,l 2:x -y -15=0上移动,则P 1P 2的中点P 到原点的距离的最小值是( )A.522 B .5 2 C.1522D .15 2解析:选B 由题意得P 1P 2的中点P 的轨迹方程是x -y -10=0,则原点到直线x -y -10=0的距离为d =|-10|2=52,即P 到原点距离的最小值为5 2. 5.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎫0,10a ,则线段AB 的长为( ) A .11 B .10 C .9D .8解析:选B 依题意,a =2,P (0,5),设A (x,2x ),B (-2y ,y ),故⎩⎨⎧x -2y2=0,2x +y2=5,解得⎩⎪⎨⎪⎧x =4,y =2,所以A (4,8),B (-4,2),∴|AB |=(4+4)2+(8-2)2=10. 6.设A ,B 是x 轴上的两点,点P 的横坐标为3,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .x -2y +4=0D .x +y -7=0解析:选D 由|PA |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且PA 的方程为x -y +1=0,得P (3,4).直线PA ,PB 关于直线x =3对称,直线PA 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,所以直线PB 的方程为x +y -7=0.二、填空题7.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为________. 解析:因为l 1,l 2关于直线y =-x 对称,所以l 2的方程为-x =-2y +3,即y =12x +32,即直线l 2的斜率为12.答案:128.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是__________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.答案:x +2y -3=09.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].答案:[-2,2]10.如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.解析:从特殊位置考虑.如图,∵点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4), ∴kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,∴k FD >kA 1F ,即k FD ∈(4,+∞).答案:(4,+∞)三、解答题11.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程.解:点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离 d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 12.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1)由已知可得l 2的斜率存在, ∴k 2=1-a .若k 2=0,则1-a =0,a =1. ∵l 1⊥l 2,直线l 1的斜率k 1必不存在,∴b =0.又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在. ∵k 2=1-a ,k 1=ab ,l 1⊥l 2,∴k 1k 2=-1,即ab (1-a )=-1.① 又∵l 1过点(-3,-1), ∴-3a +b +4=0.②由①②联立,解得a =2,b =2. (2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即ab =1-a .③又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .④联立③④,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.∴a =2,b =-2或a =23,b =2.第二节 圆的方程突破点(一) 圆的方程基础联通 抓主干知识的“源”与“流” 1.圆的定义及方程 定义 平面内到定点的距离等于定长的点的轨迹叫做圆 标准方程(x -a )2+(y -b )2=r 2(r >0)圆心:(a ,b ) 半径:r 一般方程 x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)圆心:⎝⎛⎭⎫-D 2,-E 2 半径:r =D 2+E 2-4F22.点与圆的位置关系点M (x 0,y 0),圆的标准方程(x -a )2+(y -b )2=r 2.理论依据点与圆心的距离与半径的大小关系 三种情况(x 0-a )2+(y 0-b )2=r 2⇔点在圆上(x 0-a )2+(y 0-b )2>r 2⇔点在圆外 (x 0-a )2+(y 0-b )2<r 2⇔点在圆内考点贯通 抓高考命题的“形”与“神”本节主要包括2个知识点: 1.圆的方程;2.与圆的方程有关的综合问题.求圆的方程1.求圆的方程的两种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择设圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心位置的三种方法(1)圆心在过切点且与切线垂直的直线上. (2)圆心在圆的任意弦的垂直平分线上. (3)两圆相切时,切点与两圆圆心共线.[例1] (1)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________.(2)已知圆心在直线y =-4x 上,且圆与直线l :x +y -1=0相切于点P (3,-2),则该圆的方程是________________.(3)经过三点(2,-1),(5,0),(6,1)的圆的一般方程为________________. [解析] (1)依题意,设圆心坐标为C (a,0), 则|CA |=|CB |,即(a -5)2+(0-1)2=(a -1)2+(0-3)2,则a =2. 故圆心为(2,0),半径为10, 所以圆C 的方程为(x -2)2+y 2=10.(2)过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).所以半径r =(3-1)2+(-2+4)2=22, 故所求圆的方程为(x -1)2+(y +4)2=8.(3)设所求圆的一般方程为x 2+y 2+Dx +Ey +F =0, 则⎩⎪⎨⎪⎧22+(-1)2+2D -E +F =0,52+02+5D +0+F =0,62+12+6D +E +F =0,解得⎩⎪⎨⎪⎧D =-4,E =-8,F =-5,故所求圆的一般方程为x 2+y 2-4x -8y -5=0.[答案] (1)(x -2)2+y 2=10 (2)(x -1)2+(y +4)2=8 (3)x 2+y 2-4x -8y -5=0 [方法技巧]1.确定圆的方程必须有三个独立条件不论圆的标准方程还是一般方程,都有三个字母(a ,b ,r 或D ,E ,F )的值需要确定,因此需要三个独立的条件.利用待定系数法得到关于a ,b ,r (或D ,E ,F )的三个方程组成的方程组,解之得到待定字母系数的值,从而确定圆的方程.2.几何法在圆中的应用在一些问题中借助平面几何中关于圆的知识可以简化计算,如已知一个圆经过两点时,其圆心一定在这两点连线的垂直平分线上,解题时要注意平面几何知识的应用.3.A (x 1,y 1),B (x 2,y 2),以AB 为直径的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.与圆有关的对称问题1.圆的轴对称性圆关于直径所在的直线对称. 2.圆关于点对称(1)求已知圆关于某点对称的圆,只需确定所求圆的圆心位置. (2)两圆关于某点对称,则此点为两圆圆心连线的中点. 3.圆关于直线对称(1)求已知圆关于某条直线对称的圆,只需确定所求圆的圆心位置. (2)两圆关于某条直线对称,则此直线为两圆圆心连线的垂直平分线.[例2] 已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1[解析] 圆C 1的圆心坐标为(-1,1),半径为1, 设圆C 2的圆心坐标为(a ,b ),由题意得⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2,所以圆C 2的圆心坐标为(2,-2),又两圆的半径相等,故圆C 2的方程为(x -2)2+(y +2)2=1. [答案] B能力练通 抓应用体验的“得”与“失”1.[考点一]已知点A (-1,3),B (1,-3),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4解析:选D 由题意知,AB 的中点为(0,0), 即所求圆的圆心坐标为(0,0), 设圆的方程为x 2+y 2=r 2,因为|AB |=[1-(-1)]2+(-3-3)2=4, 所以圆的半径为2, 所以圆的方程为x 2+y 2=4.2.[考点一]若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+()y -12=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D.()x -32+(y -1)2=1解析:选A 由于圆心在第一象限且与x 轴相切,故设圆心为(a,1)(a >0),又由圆与直线4x -3y =0相切可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1. 3.[考点二]已知圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R)对称,则ab 的取值范围是( )A.⎝⎛⎦⎤-∞,14B.⎝⎛⎭⎫0,14 C.⎝⎛⎭⎫-14,0 D.⎣⎡⎭⎫-14,+∞ 解析:选A 将圆的方程化成标准形式得(x +1)2+(y -2)2=4,若圆关于已知直线对称,则圆心(-1,2)在直线上,代入整理得a +b =1,故ab =a (1-a )=-⎝⎛⎭⎫a -122+14≤14,故选A. 4.[考点二]若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.解析:根据题意得,点(1,0)关于直线y =x 对称的点(0,1)为圆心,又半径r =1,所以圆C 的标准方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=15.[考点二]若圆(x +1)2+(y -3)2=9上的相异两点P ,Q 关于直线kx +2y -4=0对称,则k的值为________.解析:圆是轴对称图形,过圆心的直线都是它的对称轴.已知圆的圆心为(-1,3),由题设知,直线kx+2y-4=0过圆心,则k×(-1)+2×3-4=0,解得k=2.答案:26.[考点一]求圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的方程.解:设点C为圆心,因为点C在直线x-2y-3=0上,所以可设点C的坐标为(2a+3,a).又该圆经过A,B两点,所以|CA|=|CB|,即(2a+3-2)2+(a+3)2=(2a+3+2)2+(a+5)2,解得a=-2,所以圆心C的坐标为(-1,-2),半径r=10.故所求圆的方程为(x+1)2+(y+2)2=10.突破点(二)与圆的方程有关的综合问题圆的方程是高中数学的一个重要知识点,高考中,除了圆的方程的求法外,圆的方程与其他知识的综合问题也是高考考查的热点,常涉及轨迹问题和最值问题.解决此类问题的关键是数形结合思想的运用.考点贯通抓高考命题的“形”与“神”与圆有关的轨迹问题[例1]已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.[解](1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y).在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,。
2019-2020年高考数学大一轮总复习 第十章 解析几何同步训练 理
2019-2020年高考数学大一轮总复习 第十章 解析几何同步训练 理1.直线x sin 2-y cos 2=0的倾斜角的大小是( )A .-12B .-2 C.12D .2 2.下列四个命题:①经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示;②经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)表示;③不经过原点的直线都可以用方程x a +y b=1表示; ④经过定点A (0,b )的直线都可以用方程y =kx +b 表示.其中真命题的个数是( )A .0B .1C .2D .33.已知直线l 经过点P (-2,5),且斜率为-34.则直线l 的方程为( ) A .3x +4y -14=0 B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=04.直线y =1与直线y =3x +3的夹角为 60° .5.直线l 1:3x -y +1=0,直线l 2过点(1,0),且它的倾斜角是l 1的倾斜角的2倍,则直线l 2的方程为____________.6.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为 4 .7.已知直线l 方程为y =2x -2.直线l 分别与x 轴、y 轴交于A 、B 两点.(1)求点A 、B 的坐标;(2)若点C (-2,2),求△ABC 的面积.B 级训练(完成时间:18分钟)1.[限时2分钟,达标是( )否( )]若点A (2,-3)是直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的公共点,则相异两点(a 1,b 1)和(a 2,b 2)所确定的直线方程是( )A .2x -3y +1=0B .3x -2y +1=0C .2x -3y -1=0D .3x -2y -1=02.[限时2分钟,达标是( )否( )]设直线的方程是Ax +By =0,从1,2,3,4,5这五个数中每次取两个不同的数作为A 、B 的值,则所得不同直线的条数是( )A .20B .19C .18D .163.[限时2分钟,达标是( )否( )]设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围是[0,π4],则点P 横坐标的取值范围是( ) A .[-1,-12] B .[-1,0] C .[0,1] D .[12,1] 4.[限时2分钟,达标是( )否( )]已知点A (-2,0),B (1,3)是圆x 2+y 2=4上的定点,经过点B 的直线与该圆交于另一点C ,当△ABC 面积最大时,直线BC 的方程是 x =1 .5.[限时5分钟,达标是( )否( )]在△ABC 中,已知点A (5,-2)、B (7,3),且边AC 的中点M 在y 轴上,边BC 的中点N在x 轴上.(1)求点C 的坐标;(2)求直线MN 的方程.[限时5分钟,达标是( )否( )]已知直线l:kx-y+1+2k=0.(1)证明l经过定点;(2)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;(3)若直线不经过第四象限,求k的取值范围.C级训练(完成时间:6分钟)1.[限时3分钟,达标是()否()]过点(1,3)作直线l,若经过点(a,0)和(0,b),且a∈N*,b∈N*,则可作出的l的条数为() A.1 B.2C.3 D.42.[限时3分钟,达标是()否()]已知两点A(-1,-5),B(3,-2),直线l的倾斜角是直线AB倾斜角的一半,则直线l 的斜率为________.第2讲两直线的位置关系A级训练(完成时间:15分钟)1.过点A(1,2)且垂直于直线2x+y-5=0的直线方程为()A.x-2y+4=0 B.2x+y-7=0C.x-2y+3=0 D.x-2y+5=02.以A(-2,1)、B(4,3)为端点的线段的垂直平分线的方程是()A.3x-y+5=0 B.3x-y-5=0C.3x+y-5=0 D.3x+y+5=03.已知p:直线l1:x-y-1=0与直线l2:x+ay-2=0平行,q:a=-1,则p是q 的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.点P(-1,3)到直线l:y=k(x-2)的距离的最大值等于()A.2 B.3C.3 2 D.235.设直线l经过点(-1,1),则当点(2,-1)与直线l的距离最大时,直线l的方程为3x -2y+5=0.6.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为4x-y-3=0.7.求过直线l1:3x+2y-7=0与l2:x-y+1=0的交点,且平行于直线5x-y+3=0的直线方程.B 级训练(完成时间:25分钟)1.[限时2分钟,达标是( )否( )]已知0<k <12,直线l 1:kx -y -k +1=0,l 2:x -ky +2k =0的交点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.[限时2分钟,达标是( )否( )]已知直线l 1:y =x sin α和直线l 2:y =2x +c ,则直线l 1与l 2( )A .通过平移可以重合B .不可能垂直C .可能与x 轴围成等腰直角三角形D .通过绕l 1上某点旋转可以重合3.[限时2分钟,达标是( )否( )]若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点( )A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)4.[限时2分钟,达标是( )否( )]三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0构成一个三角形,则k 的取值范围是( )A .k ∈RB .k ∈R 且k ≠±1,k ≠0C .k ∈R 且k ≠±5,k ≠-10D .k ∈R 且k ≠±5,k ≠15.[限时2分钟,达标是( )否( )]点P (0,1)在直线ax +y -b =0上的射影是点Q (1,0),则直线ax +y -b =0关于直线x +y-1=0对称的直线方程为 x -y -1=0 .6.[限时5分钟,达标是( )否( )]已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a 、b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.7.[限时5分钟,达标是( )否( )]已知点P (2,-1).(1)求过点P 且与原点距离为2的直线l 的方程;(2)求过点P 且与原点距离最大的直线l 的方程,最大距离是多少?8.[限时5分钟,达标是()否()]已知点A(-2,2)及点B(-8,0),试在直线l:2x-y+1=0上,求出符合下列条件的点P:(1)使|P A|+|PB|为最小;(2)使|P A|2+|PB|2为最小.C级训练(完成时间:7分钟)1.[限时3分钟,达标是()否()]已知P(x0,y0)是直线L:Ax+By+C=0外一点,则方程Ax+By+C+(Ax0+By0+C)=0表示()A.过点P且与L垂直的直线B.过点P且与L平行的直线C.不过点P且与L垂直的直线D.不过点P且与L平行的直线2.[限时4分钟,达标是()否()](xx·四川)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|P A|+|PB|的取值范围是()A.[5,25] B.[10,25]C.[10,45] D.[25,45]第3讲圆的方程A 级训练(完成时间:15分钟)1.方程为x 2+y 2+2x -2y =0表示的图形是( )A .圆心为(1,-1),半径为2的圆B .圆心为(-1,1),半径为2的圆C .圆心为(1,-1),半径为2的圆D .圆心为(-1,1),半径为2的圆2.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( )A .x 2+y 2=2B .x 2+y 2=2C .x 2+y 2=1D .x 2+y 2=43.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴相切,则该圆的标准方程是( )A .(x -3)2+(y -73)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1 D .(x -32)2+(y -1)2=1 4.已知圆C 经过点A (0,3)和B (3,2),且圆心C 在直线y =x 上,则圆C 的方程为__________________.5.经过三点(2,-1)、(5,0)、(6,1)的圆的一般方程为__________________.6.圆心在原点且与直线x +2y =4相切的圆的方程是____________________.7.已知圆心为C 的圆经过点A (1,1)和B (2,-2),且圆心C 在直线l :x -y +1=0上,求圆心为C 的圆的标准方程.B 级训练(完成时间:17分钟)1.[限时2分钟,达标是( )否( )]已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=12.[限时2分钟,达标是( )否( )]以(1,0)为圆心,且与直线x -y +3=0相切的圆的方程是( )A .(x -1)2+y 2=8B .(x +1)2+y 2=8C .(x -1)2+y 2=16D .(x +1)2+y 2=163.[限时2分钟,达标是( )否( )]若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( )A .-1<a <1B .0<a <1C .a >1或a <-1D .a =±14.[限时2分钟,达标是( )否( )]圆心在y 轴上且通过点(3,1)的圆与x 轴相切,则该圆的方程是( )A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =05.[限时2分钟,达标是( )否( )](xx·江西)若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是 .6.[限时2分钟,达标是( )否( )]已知两点A (0,-3),B (4,0),若点P 是圆x 2+y 2-2y =0上的动点,则△ABP 面积的最小值为________.7.[限时5分钟,达标是( )否( )]已知直线l :y =-13x +2和圆x 2+y 2-2x -4=0. (1)求圆心到直线l 的距离;(2)判断直线l 与圆的位置关系,如果相交,求出两交点的坐标.C级训练(完成时间:10分钟)1.[限时4分钟,达标是()否()]设过点(0,b)且斜率为1的直线与圆x2+y2-2x=0相切,则b的值为() A.2±2 B.2±22C.-1±2 D.2±12.[限时6分钟,达标是()否()]已知圆C经过A(5,2),B(3-2,2-2),且圆心C在直线x=3上.(1)求圆C的方程;(2)求过D(0,1)点且与圆C相切的两条切线方程.第4讲直线与圆、圆与圆的位置关系A 级训练(完成时间:15分钟)1.直线3x +4y -9=0与圆(x -1)2+y 2=1的位置关系是( )A .相离B .相切C .直线与圆相交且过圆心D .直线与圆相交但不过圆心2.直线y =k (x +1)与圆(x +1)2+y 2=1相交于A ,B 两点,则|AB |的值为( )A .2B .1C.12D .与k 有关的数值 3.(xx·福建)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l的方程是( )A .x +y -2=0B .x -y +2=0C .x +y -3=0D .x -y +3=04.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a = 1 .5.过P (-2,4)及Q (3,-1)两点,且在x 轴上截得的弦长为6的圆方程是____________________.6.已知圆C 1:(x -2)2+(y -1)2=10与圆C 2:(x +6)2+(y +3)2=50交于A 、B 两点,则AB 所在直线的方程是 2x +y =0 .7.已知圆C :(x -1)2+(y -2)2=2,P 点的坐标为(2,-1),过点P 作圆C 的切线,切点为A 、B .(1)求直线P A 、PB 的方程;(2)求过P 点的圆的切线长;(3)求直线AB 的方程.B 级训练(完成时间:21分钟)1.[限时2分钟,达标是( )否( )](xx·天津)已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =( )A .-12B .1C .2 D.122.[限时2分钟,达标是( )否( )]与直线x -y -4=0和圆x 2+y 2+2x -2y =0都相切的半径最小的圆的方程是( )A .(x +1)2+(y +1)2=2B .(x +1)2+(y +1)2=4C .(x -1)2+(y +1)2=2D .(x -1)2+(y +1)2=43.[限时2分钟,达标是( )否( )]过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线,设切点分别为P 、Q ,则线段PQ 的长为______.4.[限时2分钟,达标是( )否( )](xx·山东)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为______________.5.[限时2分钟,达标是( )否( )](xx·湖北)直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2= 2 .6.[限时5分钟,达标是( )否( )]已知定点A (2,0),P 点在圆x 2+y 2=1上运动,∠AOP 的平分线交P A 于Q 点,其中O为坐标原点,求Q 点的轨迹方程.7.[限时6分钟,达标是( )否( )]设圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1,在满足条件①②的所有圆中,求圆心到直线l :x -2y =0的距离最小的圆的方程.C 级训练(完成时间:3分钟)1.[限时3分钟,达标是( )否( )](xx·安徽)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .(0,π6]B .(0,π3]C .[0,π6]D .[0,π3] 第5讲 椭 圆A 级训练(完成时间:15分钟)1.一动点P 到两定点F 1、F 2的距离之和为2a (2a ≥|F 1F 2|),则动点P 的轨迹为( )A .椭圆B .线段F 1F 2C .不存在D .椭圆或线段F 1F 22.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A.12B.22C. 2D.32 3.椭圆x 225+y 29=1的左焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则|PF 1|=( )A.415B.95C .6D .7 4.(xx·广东)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 5.(xx·上海)设AB 是椭圆Γ的长轴,点C 在Γ上,且∠CBA =π4,若AB =4,BC =2,则Γ的两个焦点之间的距离为__________.6.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1、F 2,b =4,椭圆的离心率为35,过F 1的直线交椭圆于A 、B 两点,则△ABF 2的周长为 20 .7.如图,F 1、F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.B 级训练(完成时间:26分钟)1.[限时2分钟,达标是( )否( )]已知椭圆C 的短轴长为6,离心率为45,则椭圆C 的焦点F 到长轴的一个端点的距离为( )A .9B .1C .1或9D .以上都不对 2.[限时2分钟,达标是( )否( )]中心在原点,焦点在x 轴上,且长轴长为4,离心率为12的椭圆的方程为( ) A.x 24+y 23=1 B.x 23+y 24=1 C.x 24+y 2=1 D .x 2+y 24=1 3.[限时2分钟,达标是( )否( )](xx·大纲)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 4.[限时2分钟,达标是( )否( )]椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,P 是椭圆上任一点,则|PF 1→|·|PF 2→|的取值范围是( )A .(0,4]B .(0,3]C .[3,4)D .[3,4]5.[限时2分钟,达标是( )否( )](xx·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+2C .7+ 2D .626.[限时3分钟,达标是( )否( )] (xx·江西)过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于__________. 7.[限时5分钟,达标是( )否( )]已知椭圆y 225+x 29=1的上、下焦点分别为F 2和F 1,点A (1,-3), (1)在椭圆上有一点M ,使|F 2M |+|MA |的值最小,求最小值;(2)当|F 2M |+|MA |取最小值时,求三角形AMF 2的周长.8.[限时8分钟,达标是( )否( )](xx·广东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53. (1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P的轨迹方程.C级训练(完成时间:15分钟)1.[限时7分钟,达标是()否()](xx·广东梅州一模)已知椭圆C 的中心在原点,一个焦点F (-2,0),且长轴长与短轴长的比是2∶ 3.(1)求椭圆C 的方程;(2)设点M (m,0)在椭圆C 的长轴上,点P 是椭圆上任意一点.当|MP →|最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围.[限时8分钟,达标是( )否( )](xx·广东广州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,F 1、F 2分别为椭圆C 的左、右焦点,若椭圆C 的焦距为2.(1)求椭圆C 的方程;(2)设M 为椭圆上任意一点,以M 为圆心,MF 1为半径作圆M ,当圆M 与直线l :x =a 2c有公共点时,求△MF 1F 2面积的最大值.第6讲 双曲线A 级训练(完成时间:15分钟)1.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m =( )A .-14B .-4C .4 D.142.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( )A.x 24-y 212=1B.x 212-y 24=1 C.x 210-y 26=1 D.x 26-y 210=1 3.下列曲线中离心率为62的是( ) A.x 22-y 24=1 B.x 24-y 22=1 C.x 24-y 26=1 D.x 24-y 210=1 4.已知点F 1(-3,0)和F 2(3,0),动点P 到F 1、F 2的距离之差为4,则点P 的轨迹方程为( )A.x 24-y 25=1(y >0)B.x 24-y 25=1(x >0) C.y 24-x 25=1(y >0) D.y 24-x 25=1(x >0) 5.(xx·北京)设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________________;渐近线方程为______________.6.在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为 2 . 7.求与圆(x +2)2+y 2=2外切,并且过定点B (2,0)的动圆圆心M 的轨迹方程.B 级训练(完成时间:21分钟)1.[限时2分钟,达标是( )否( )](xx·福建)双曲线x 2-y 2=1的顶点到其渐近线的距离等于( )A.12B.22C .1 D.22.[限时2分钟,达标是( )否( )](xx·课标Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13x C .y =±12x D .y =±x 3.[限时2分钟,达标是( )否( )](xx·重庆)设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( ) A.43 B.53C.94D .3 4.[限时2分钟,达标是( )否( )](xx·重庆)设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( )A .(233,2]B .[233,2) C .(233,+∞) D .[233,+∞) 5.[限时2分钟,达标是( )否( )](xx·湖南)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为____________.6.[限时5分钟,达标是( )否( )](xx·课标Ⅱ)在平面直角坐标系xOy 中,己知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.7.[限时6分钟,达标是( )否( )](xx·江西)如图,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F .点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值.C 级训练(完成时间:14分钟)1.[限时6分钟,达标是( )否( )](xx·大纲)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别相交于A 、B 两点,且|AF 1|=|BF 1|,证明:|AF 2|、|AB |、|BF 2|成等比数列.2.[限时8分钟,达标是( )否( )](xx·福建)已知双曲线E:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x.(1)求双曲线E的离心率.(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且△OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由.第7讲抛物线A 级训练(完成时间:10分钟)1.抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C .(116,0)D .(0,116) 2.经过抛物线y 2=4x 的焦点且平行于直线3x -2y =0的直线l 的方程是( )A .3x -2y -3=0B .6x -4y -3=0C .2x +3y -2=0D .2x +3y -1=03.已知双曲线y 29-x 216=1,抛物线y 2=2px (p >0),若抛物线的焦点到双曲线的渐近线的距离为3,则p =( )A.154B .5 C.152D .10 4.顶点在坐标原点,对称轴是坐标轴,且经过点M (-2,-4)的抛物线方程是______________.5.抛物线x 2=ay 过点A (1,14),则点A 到此抛物线的焦点的距离为________. 6.(xx·北京)若抛物线y 2=2px 的焦点坐标为(1,0),则p = 2 ,准线方程为 x =-1 .7.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点(-3,2);(2)焦点在直线x -2y -4=0上.B 级训练(完成时间:21分钟)1.[限时2分钟,达标是( )否( )]已知A (x 1,y 1),B (x 2,y 2)是抛物线y 2=4x 上的两个动点,且|AB |=8,则x 1+x 2的最小值是( )A .4B .6C .8D .102.[限时3分钟,达标是( )否( )]已知抛物线y 2=4x 的焦点F ,A ,B 是抛物线上横坐标不相等的两点,若AB 的垂直平分线与x 轴的交点是(4,0),则|AB |是最大值为( )A .2B .4C .6D .103.[限时3分钟,达标是( )否( )](xx·课标Ⅰ)O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .22C .2 3D .44.[限时2分钟,达标是( )否( )](xx·天津)已知抛物线y 2=8x的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为______________.5.[限时2分钟,达标是( )否( )]若抛物线y 2=2px (p >0)的焦点与双曲线x 212-y 24=1的右焦点重合,则p 的值为 8 . 6.[限时2分钟,达标是( )否( )](xx·湖南)平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是____________.7.[限时7分钟,达标是( )否( )](xx·福建)如图,在抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心|OC |为半径作圆,设圆C 与准线l 交于不同的两点M ,N .(1)若点C 的纵坐标为2,求|MN |;(2)若|AF |2=|AM |·|AN |,求圆C 的半径.C 级训练(完成时间:20分钟)1.[限时8分钟,达标是( )否( )]已知A 、B 两点在抛物线C :x 2=4y 上,点M (0,4)满足MA →=λBM →.(1)求证:OA →⊥OB →;(2)设抛物线C 过A 、B 两点的切线交于点N .(ⅰ)求证:点N 在一条定直线上;(ⅱ)设4≤λ≤9,求直线MN 在x 轴上截距的取值范围.[限时12分钟,达标是()否()](xx·广东广州二模)已知点A(2,1)在抛物线E:x2=ay上,直线l1:y=kx+1(k∈R,且k≠0)与抛物线E相交于B,C两点,直线AB,AC分别交直线l2:y=-1于点S,T.(1)求a的值;(2)若|ST|=25,求直线l1的方程;(3)试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.第8讲轨迹问题A 级训练(完成时间:15分钟)1.一动点到两坐标轴的距离之和的两倍等于这个动点到原点距离的平方,则动点的轨迹方程为( )A .x 2+y 2=2x +2yB .x 2+y 2=2x -2yC .x 2+y 2=-2x +2yD .x 2+y 2=2|x |+2|y |2.动点P 与定点A (-1,0),B (1,0)的连线的斜率之积为-1,则P 点的轨迹方程是( )A .x 2+y 2=1B .x 2+y 2=1(x ≠±1)C .x 2+y 2=1(x ≠1)D .y =1-x 23.动点P 到直线x =1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是( )A .中心在原点的椭圆B .中心在(5,0)的椭圆C .中心在原点的双曲线D .中心在(5,0)的双曲线4.长为2a 的线段AB 的两个端点分别在x 轴,y 轴上滑动,则AB 中点的轨迹方程为______________.5.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹方程为____________.6.已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0).求动点M 的轨迹方程,并说明它表示什么曲线.B 级训练(完成时间:17分钟)1.[限时2分钟,达标是( )否( )]若动点P 到定点F (1,-1)的距离与到直线l :x -1=0的距离相等,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .直线2.[限时2分钟,达标是( )否( )]已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D .2x -y +5=03.[限时2分钟,达标是( )否( )]已知椭圆的方程为x 24+y 2=1,双曲线的左、右焦点分别是椭圆的左、右顶点,而双曲线的左、右顶点分别是椭圆的左、右焦点.则双曲线的方程为( )A.x 25-y 2=1B.x 23-y 2=1 C .x 2-y 23=1 D .x 2-y 25=1 4.[限时2分钟,达标是( )否( )]已知抛物线和椭圆都经过点M (1,2),它们在x 轴上有共同焦点,椭圆的对称轴是坐标轴,抛物线的顶点为坐标原点.则椭圆的方程是( ) A.x 23+22+y 22+22=1 B.x 23-22+y 22-2=1 C.x 24+y 23=1 D.x 23+y 22=1 5.[限时2分钟,达标是( )否( )]已知实数m ,n 满足m 2+n 2=1,则P (m +n ,m -n )的轨迹方程是____________.6.[限时2分钟,达标是( )否( )]设A 1、A 2是椭圆x 29+y 24=1长轴的两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2的交点M 的轨迹方程是________________.7.[限时5分钟,达标是( )否( )]已知圆C 方程为:x 2+y 2=4.(1)直线l 过点P (1,2),且与圆C 交于A 、B 两点,若|AB |=23,求直线l 的方程;(2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ →=OM→+ON →,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.C 级训练(完成时间:16分钟)1.[限时8分钟,达标是( )否( )]已知圆C 的方程为x 2+y 2+2x -7=0,圆心C 关于原点对称的点为A ,P 是圆上任一点,线段AP 的垂直平分线l 交PC 于点Q .(1)当点P 在圆上运动时,求点Q 的轨迹L 的方程;(2)过点B (1,12)能否作出直线l 2,使l 2与轨迹L 交于M 、N 两点,且点B 是线段MN 的中点?若这样的直线l 2存在,请求出它的方程和M 、N 两点的坐标;若不存在,请说明理由.2.[限时8分钟,达标是()否()]经过点F(0,1)且与直线y=-1相切的动圆的圆心轨迹为M,点A、D在轨迹M上,且关于y轴对称,过线段AD(两端点除外)上的任意一点作直线l,使直线l与轨迹M在点D处的切线平行,设直线l与轨迹M交于点B、C.(1)求轨迹M的方程;(2)证明:∠BAD=∠CAD;(3)若点D到直线AB的距离等于22|AD|,且△ABC的面积为20,求直线BC的方程.第9讲圆锥曲线的综合问题A 级训练(完成时间:15分钟)1.(xx·广东清远一模)已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =12x ,则双曲线的离心率为( ) A.52B.5C.54D .2 2.已知λ∈R ,则不论λ取何值,曲线C :λx 2-x -λy +1=0恒过定点( )A .(0,1)B .(-1,1)C .(1,0)D .(1,1)3.设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OA →·OB →=( ) A.34 B .-34C .3D .-34.(xx·广东韶关一模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 24-y 212=1的焦点相同,且椭圆上任意一点到两焦点的距离之和为10,那么,该椭圆的离心率等于( ) A.35 B.45C.54D.345.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为__________________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆x 27+y 23=1的公共点有 2 个.6.双曲线x 2-y 2=4上一点P (x 0,y 0)在双曲线的一条渐近线上的射影为Q ,已知O 为坐标原点,则△POQ 的面积为定值 1 .7.过点A (0,a )作直线交圆M :(x -2)2+y 2=1于B 、C 两点,在线段BC 上取一点P ,使P 点满足:AB →=λAC →,BP →=λPC →(λ∈R ).(1)试问动点P 的轨迹是否是直线?说明理由;(2)若将(1)的轨迹上的点的坐标扩大到取全体实数且扩大范围后的轨迹交圆M 于点R 、S ,求△MRS 面积的最大值.B 级训练(完成时间:20分钟)1.[限时2分钟,达标是( )否( )]斜率为1的直线l 与椭圆x 24+y 2=1相交于A 、B 两点,则|AB |的最大值为( ) A .2 B.455C.4105D.81052.[限时2分钟,达标是( )否( )] 设F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的左右焦点,若直线x =ma (m >1)上存在一点P ,使△F 2PF 1是底角为30°的等腰三角形,则m 的取值范围是( )A .1<m <2B .m >2C .1<m <32D .m >323.[限时2分钟,达标是( )否( )]设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-12,12] B .[-2,2] C .[-1,1] D .[-4,4]4.[限时2分钟,达标是( )否( )]已知抛物线y 2=2px (p >0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线交于一点M (1,m ),点M 到抛物线焦点的距离为3,则双曲线的离心率等于( ) A .3 B .4C.13D.145.[限时2分钟,达标是( )否( )](xx·广东潮州二模)已知双曲线x 2a 2-y 2b2=1的左焦点为F 1,左、右顶点为A 1、A 2,P 为双曲线上任意一点,则分别以线段PF 1,A 1A 2为直径的两个圆的位置关系为( )A .相交B .相切C .相离D .以上情况都有可能6.[限时2分钟,达标是( )否( )]椭圆x 2a 2+y 25=1(a 为定值,且a >5)的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,△F AB 的周长的最大值是12,则该椭圆的离心率是________.7.[限时8分钟,达标是( )否( )](xx·广东韶关二模)已知点A ,B 的坐标分别为(-2,0),(2,0).直线AP ,BP 相交于点P ,且它们的斜率之积是-14,记动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设Q 是曲线C 上的动点,直线AQ ,BQ 分别交直线l :x =4于点M ,N ,线段MN 的中点为D ,求直线QB 与直线BD 的斜率之积的取值范围;(3)在(2)的条件下,记直线BM 与AN 的交点为T ,试探究点T 与曲线C 的位置关系,并说明理由.C级训练(完成时间:10分钟) 1.[限时10分钟,达标是()否()](xx·广东汕头一模)已知椭圆E的方程为x24m2+y2m2=1(m>0),如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别为A(2,0),B(0,1),C(2,1).(1)求椭圆E的离心率;(2)若椭圆E与△ABC无公共点,求m的取值范围;(3)若椭圆E与△ABC相交于不同的两点,分别为M、N,求△OMN面积S的最大值.第十章 解析几何第1讲 直线的方程【A 级训练】1.D 解析:直线x sin 2-y cos 2=0的斜率为:k =sin 2cos 2=tan 2,因为2∈(0,π),所以直线的倾斜角为2. 2.B 解析:对命题①④,方程不能表示倾斜角是90°的直线,对于②,此方程即直线的两点式方程变形,故②正确.对命题③,当直线平行于一条坐标轴时,则直线在该坐标轴上截距不存在,故不能用截距式表示直线.综上可得,①③④都不正确,只有②正确.3.A 解析:由点斜式,得y -5=-34(x +2),即3x +4y -14=0.4.60° 解析:l 1与l 2表示的图象如图所示,y =1与x 轴平行,y =3x +3的倾斜角为60°,所以y =1与y =3x +3的夹角为60°.5.y =-34(x -1) 解析:由已知可得,tan α=3,所以直线l 2的斜率k =tan 2α=2tan α1-tan 2α=2×31-9=-34,因为直线l 2过点(1,0),所以直线l 2的方程为y =-34(x -1). 6.4 解析:因为k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4.7.解析:(1)因为直线l 方程为y =2x -2,所以当y =0时,x =1,即直线l 与x 轴的交点A 的坐标为(1,0);当x =0时,y =-2,直线l 与y 轴的交点B 的坐标为(0,-2);(2)设点C (-2,2)到直线l :y =2x -2的距离为d ,则d =|2×-2-2-2|22+-12=85, 又|AB |=1-02+[0--2]2=5,所以S △ABC =12|AB |d =12×5×85=4. 【B 级训练】1.A 解析:因为A (2,-3)是直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的公共点,所以2a 1-3b 1+1=0,且2a 2-3b 2+1=0,所以两点(a 1,b 1)和(a 2,b 2)都在同一条直线2x -3y +1=0上,故点(a 1,b 1)和(a 2,b 2)所确定的直线方程是2x -3y +1=0.2.C 解析:从1,2,3,4,5这五个数中每次取两个不同的数作为A 、B 的值,取法数为A 25,而当⎩⎪⎨⎪⎧ A =1B =2与⎩⎪⎨⎪⎧ A =2B =4;⎩⎪⎨⎪⎧ A =2B =1与⎩⎪⎨⎪⎧A =4B =2时所得直线重合,则所得不同直线为A 25-2=5×4-2=18(条).3.A 解析:设点P 的横坐标为x 0,因为y =x 2+2x +3,所以y ′x =x 0=2x 0+2,利用导数的几何意义得2x 0+2=tan α(α为点P 处切线的倾斜角),又因为α∈[0,π4], 所以0≤2x 0+2≤1,所以x 0∈[-1,-12]. 4.x =1 解析:AB 的长度恒定,故△ABC 面积最大,只需要C 到直线AB 的距离最大即可.此时,C 在AB 的中垂线上,由于AB 的中垂线过原点,则AB 的中垂线方程为y =-3x ,代入x 2+y 2=4,得C (1,-3),所以直线BC 的方程是x =1.5.解析:(1)设点C (x ,y ).因为边AC 的中点M 在y 轴上得5+x 2=0, 因为边BC 的中点N 在x 轴上得3+y 2=0, 解得x =-5,y =-3.故所求点C 的坐标是(-5,-3).(2)点M 的坐标是(0,-52),点N 的坐标是(1,0),直线MN 的方程是y -0-52-0=x -10-1,即5x -2y -5=0.6.解析:(1)由kx -y +1+2k =0,得y -1=k (x +2),所以,直线l 经过定点(-2,1).(2)由题意得A (2k +1-k,0),B (0,2k +1), 且⎩⎪⎨⎪⎧2k +1-k <01+2k >0,故k >0,△AOB 的面积为S =12×2k +1k ×(2k +1)=4k 2+4k +12k =2k +2+12k≥4, 当且仅当k =12时等号成立,此时面积取最小值4,k =12,直线的方程是:x -2y +4=0. (3)由直线过定点(-2,1),可得当斜率k >0或k =0时,直线不经过第四象限.故k 的取值范围为[0,+∞).【C 级训练】1.B 解析:因为直线l 过点(a,0)和(0,b ),可设直线l 的方程为:x a +y b=1, 因为直线l 过点(1,3),所以1a +3b=1, 即3a =(a -1)b ,又a ∈N *,b ∈N *,所以当a =1时,b =3,此时,直线和x 轴垂直,和y 轴无交点,直线不过(0,b ),故a =1时不满足条件.当a ≥2时,b =3a a -1=3+3a -1,① 当a =2时,b =6,当a =4时,b =4,当a >4时,由①知,满足条件的正整数b 不存在,综上,满足条件的直线有2条,故选B.2.13解析:设直线l 的倾斜角为α,则直线AB 的倾斜角为2α, 其斜率tan2α=-5+2-1-3=34, 利用二倍角的正切函数公式得2tan α1-tan 2α=34, 化简得:3tan 2α+8tan α-3=0,即(3tan α-1)(tan α+3)=0,解得tan α=-3或tan α=13, 而由tan2α=34>0得2α是锐角, 则α∈(0,π4),所以tan α=13.第2讲两直线的位置关系【A级训练】1.C 解析:因为直线2x +y -5=0的斜率等于-2, 故所求的直线的斜率等于12, 故过点A (1,2)且垂直于直线2x +y -5=0的直线方程为y -2=12(x -1),即x -2y +3=0.2.C 解析:因为A (-2,1)、B (4,3),所以k AB =13,AB 中点坐标为(1,2), 故所求直线方程为3x +y -5=0.3.A 解析:当命题p 成立时,直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,故两直线的斜率相等,所以a =-1.当q 成立时,a =-1,直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,故命题p 成立.综上,p 是q 的充要条件.4.C 解析:直线l :y =k (x -2)的方程化为kx -y -2k =0,所以点P (-1,3)到该直线的距离为d =|-k -3-2k |k 2+1=3|k +1|k 2+1=31+2k k 2+1,由于2k k 2+1≤1,所以d ≤32,即距离的最大值等于32,故选C.5.3x -2y +5=0 解析:设A (-1,1),B (2,-1),当AB ⊥l 时,点B 与l 的距离最大,因为k AB =-1-12--1=-23,所以直线l 的斜率k =-1k AB ,所以此时l 的方程为y -1=32(x +1),即为3x -2y +5=0.6.4x -y -3=0 解析:与直线x +4y -8=0垂直的直线l 为4x -y +m =0,即y =x 4在某一点的导数为4,而y ′=4x 3,所以y =x 4在(1,1)处导数为4,故方程为4x -y -3=0.7.解析:联立两条直线的方程可得:⎩⎪⎨⎪⎧ 3x +2y -7=0x -y +1=0, 解得x =1,y =2.所以l 1与l 2交点坐标是(1,2).设与直线5x -y +3=0平行的直线方程为5x -y +c =0.因为直线l 过l 1与l 2交点(1,2),代入解得c =-3,所以直线l 的方程为5x -y -3=0.【B 级训练】1.B 解析:解方程组⎩⎪⎨⎪⎧ kx -y -k +1=0x -ky +2k =0, 得两直线的交点坐标为(k k -1,2k -1k -1), 因为0<k <12,所以,k k -1<0,2k -1k -1>0, 所以交点在第二象限.2.D 解析:直线l 1:y =x sin α的斜率为sin α,而sin α∈[-1,1],即直线l 1的斜率k 1∈[-1,1],直线l 2:y =2x +c 的斜率k 2=2,因为k 1≠k 2,所以直线l 1与l 2不可能平行,即两直线必然相交,则直线l 1与l 2通过绕l 1上某点旋转可以重合.3.B 解析:直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),故直线l 2经过定点(0,2).4.C 解析:由l 1∥l 3得k =5,由l 2∥l 3得k =-5,由⎩⎪⎨⎪⎧ x -y =0x +y -2=0,得⎩⎪⎨⎪⎧x =1y =1. 若(1,1)在l 3上,则k =-10.故若l 1,l 2,l 3能构成一个三角形,则k ≠±5且k ≠-10.5.x -y -1=0 解析:由已知,。
2019-2020年高三数学一轮复习 解析几何练习2
2019-2020年高三数学一轮复习 解析几何练习2 一、选择题 1.已知两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则m 的值等于 ( )A .0或-12B .12或-6 C .-12或12 D .0或12解析:依题意得|3m +2+3|m 2+1=|-m +4+3|m 2+1,∴|3m +5|=|m -7|, ∴3m +5=m -7或3m +5=7-m . ∴m =-6或m =12. 答案:B2.直线x -2y +1=0关于直线x =1对称的直线方程是 ( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0解析:由⎩⎪⎨⎪⎧x -2y +1=0x =1得交点A (1,1), 且可知所求直线斜率为-12.∴方程为x +2y -3=0. 答案:D3.(南昌模拟)P 点在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则P点坐标为 ( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2) 解析:设P (x,5-3x ),则d =|x -5+3x -1|12+-12=2,|4x -6|=2,4x -6=±2,∴x =1或x =2,∴P (1,2)或(2,-1).答案:C4.直线l 1:3x +4y -7=0与直线l 2:6x +8y +1=0间的距离为 ( )A.85B.32 C .4 D .8解析:因为直线l 2的方程可化为3x +4y +12=0.所以直线l 1与直线l 2的距离为|12+7|32+42=32. 答案:B5.使三条直线4x +y =4,mx +y =0,2x -3my =4不能围成三角形的m 值最多有 ( )A .1个B .2个C .3个D .4个解析:要使三条直线不能围成三角形,只需其中两条直线平行或者三条直线共点即可. 若4x +y =4与mx +y =0平行,则m =4;若4x +y =4与2x -3my =4平行,则m =-16; 若mx +y =0与2x -3my =4平行,则m 值不存在;若4x +y =4与mx +y =0及2x -3my =4共点,则m =-1或m =23. 综上可知,m 值最多有4个.答案:D6.曲线|x |2-|y |3=1与直线y =2x +m 有两个交点,则m 的取值范围是 ( ) A .m >4或m <-4B .-4<m <4C .m >3或m <-3D .-3<m <3解析:曲线|x |2-|y |3=1的草图如图所示.与直线y =2x +m 有两个交点. 则m >4或m <-4..答案:A二、填空题7.过两直线x +3y -10=0和y =3x 的交点,并且与原点距离为1的直线方程为________________.解析:设所求直线为(x +3y -10)+λ(3x -y )=0,整理,得(1+3λ)x +(3-λ)y -10=0.由点到直线距离公式,得λ=±3.∴所求直线为x =1和4x -3y +5=0.答案:x =1或4x -3y +5=08.(苏州检测)已知实数x 、y 满足2x +y +5=0,那么x 2+y 2的最小值为 解析:x 2+y 2表示点(x ,y )到原点的距离.根据数形结合得x 2+y 2的最小值为原点到直线2x +y +5=0的距离,即d =55= 5. 答案:5 9.已知1a +1b=1(a >0,b >0),点(0,b )到直线x -2y -a =0的距离的最小值为________. 解析:点(0,b )到直线x -2y -a =0的距离为d =a +2b 5=15(a +2b )(1a +1b )=15(3+2b a +a b )≥15(3+22)=35+2105,当a 2=2b 2且a +b =ab ,即a =1+2,b =2+22时取等号. 答案:35+2105三、解答题10.已知直线l 经过点P (3,1),且被两平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段之长为5,求直线l 的方程.解:法一:若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1、l 2的交点分别为A (3,-4)和B (3,-9),截得的线段AB 的长|AB |=|-4+9|=5.符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组⎩⎪⎨⎪⎧ y =k x -3+1,x +y +1=0, 得A (3k -2k +1,-4k -1k +1) 解方程组⎩⎪⎨⎪⎧y =k x -3+1,x +y +6=0, 得B (3k -7k +1,-9k -1k +1) 由|AB |=5,得(3k -2k +1-3k -7k +1)2+(-4k -1k +1+9k -1k +1)2=52. 解之,得k =0,即所求的直线方程为y =1.综上可知,所求l 的方程为x =3或y =1.法二:由题意,直线l 1、l 2之间的距离为d =|1-6|2=522,且直线l 被平行直线l 1、l 2所截得的线段AB 的长为5(如图所示),设直线l 与直线l 1的夹角为θ,则sin θ=5225=22,故θ=45°. 由直线l 1:x +y +1=0的倾斜角为135°,知直线l 的倾斜角为0°或90°,又由直线l 过点P (3,1),故直线l 的方程为x =3或y =1.11.已知两直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0.求分别满足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与l 2垂直;(2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等.解:(1)∵l 1⊥l 2,∴a (a -1)+(-b )·1=0,即a 2-a -b =0.①又点(-3,-1)在l 1上,∴-3a +b +4=0②由①②得a =2,b =2.(2)∵l 1∥l 2,∴a b =1-a ,∴b =a 1-a. 故l 1和l 2的方程可分别表示为:(a -1)x +y +4a -1a=0, (a -1)x +y +a 1-a=0, 又原点到l 1与l 2的距离相等.∴4⎪⎪⎪⎪a -1a =⎪⎪⎪⎪a 1-a ,∴a =2或a =23, ∴a =2,b =-2或a =23,b =2. 12.两条互相平行的直线分别过点A (6,2)和B (-3,-1),如果两条平行直线间的距离为d ,求:(1)d 的变化范围;(2)当d 取最大值时,两条直线的方程.解:(1)当两条平行直线与AB 垂直时,两平行直线间的距离最大,最大值为d =|AB |=6+32+2+12=310,当两条平行线各自绕点B ,A 逆时针旋转时,距离逐渐变小,越来越接近于0,所以0<d ≤310,即所求的d的变化范围是(0,310].(2)当d取最大值310时,两条平行线都垂直于AB,所以k=-1k AB=-12--16--3=-3,故所求的直线方程分别为y-2=-3(x-6)和y+1=-3(x+3),即3x+y-20=0和3x+y+10=0..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高三数学一轮复习 解析几何练习1一、选择题1.已知过点A (-2,m )和B (m,4)的直线与直线2x +y -1=0平行,则m 的值为 ( ) A .0 B .-8 C .2D .10解析:由k =4-m m +2=-2,得m =-8.答案:B2.(宜宾模拟)直线x sin α+y +2=0的倾斜角的取值范围是 ( ) A .[0,π) B .[0,π4]∪[3π4,π)C .[0,π4]D .[0,π4]∪(π2,π)解析:设题中直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1]. 又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π答案:B3.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是 ( )A .x -2y +4=0B .x +2y -4=0C .x -2y -4=0D .x +2y +4=0解析:直线2x -y -2=0与y 轴的交点为A (0,-2), 所求直线过A 且斜率为-12,∴所求直线方程:y +2=-12(x -0),即x +2y +4=0.答案:D4.设点A (-2,3),B (3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是( )A .(-∞,-52]∪[43,+∞)B .(-43,52)C .[-52,43]D .(-∞,-43]∪[52,+∞)解析:直线ax +y +2=0恒过点M (0,-2),且斜率为-a , ∵k MA =3---2-0=-52,k MB =2--3-0=43,由图可知:-a >-52且-a <43, ∴a ∈(-43,52).答案:B5. (皖南八校联考)已知直线a 2x +y +2=0与直线bx - (a 2+1)y -1=0互相垂直,则|ab |的最小值为 ( )A .5B .4C .2D .1解析:由题意知,a 2b -(a 2+1)=0且a ≠0,∴a 2b =a 2+1,∴ab =a 2+1a =a +1a,∴|ab |=|a +1a |=|a |+1|a |≥2.(当且仅当a =±1时取“=”).答案:C6.直线l 1:3x -y +1=0,直线l 2过点(1,0),且l 2的倾斜角是l 1的倾斜角的2倍,则直线l 2的方程为 ( )A .y =6x +1B .y =6(x -1)C .y =34(x -1)D .y =-34(x -1)解析:设直线l 1的倾斜角为α,则由tan α=3可求出直线l 2的斜率k =tan2α=2tan α1-tan 2α=-34,再由直线l 2过点(1,0)即可求得其方程. 答案:D 二、填空题7.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.解析:由题可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m 2-3n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35n =315.故m +n =345.答案:3458.(长沙模拟)已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________.解析:直线AB 的方程为x 3+y 4=1,P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3. 答案:39.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为________. 解析:由题意知截距均不为零.设直线方程为x a +y b=1,由⎩⎪⎨⎪⎧a +b =62a +1b=1,解得⎩⎪⎨⎪⎧a =3b =3或⎩⎪⎨⎪⎧a =4b =2.故所求直线方程为x +y -3=0或x +2y-4=0.答案:x +y -3=0或x +2y -4=0 三、解答题10.在△ABC 中,已知A (5,-2)、B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求:(1)顶点C 的坐标; (2)直线MN 的方程.解:(1)设点C 的坐标为(x ,y ),则有x +52=0,3+y2=0, ∴x =-5,y =-3.即点C 的坐标为(-5,-3).(2)由题意知,M (0,-52),N (1,0),∴直线MN 的方程为x -y52=1,即5x -2y -5=0.11.已知两点A (-1,2),B (m,3). (1)求直线AB 的方程; (2)已知实数m ∈[-33-1,3-1],求直线AB 的倾斜角α的取值范围. 解:(1)当m =-1时,直线AB 的方程为x =-1,当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1). (2)①当m =-1时,α=π2;②当m ≠-1时,m +1∈[-33,0)∪(0,3], ∴k =1m +1∈(-∞,-3]∪[33,+∞), ∴α∈[π6,π2)∪(π2,2π3].综合①②知,直线AB 的倾斜角α的取值范围为[π6,23π].12.已知实数x ,y 满足y =x 2-2x +2(-1≤x ≤1).试求:y +3x +2的最大值与最小值.解:由y +3x +2的几何意义可知,它表示经过定点P (-2,-3)与曲线段AB 上任一点(x ,y )的直线的斜率k ,如图可知:k PA ≤k ≤k PB ,由已知可得: A (1,1),B (-1,5),∴43≤k ≤8, 故y +3x +2的最大值为8,最小值为43.2019-2020年高三数学一轮复习 解析几何练习2一、选择题1.已知两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则m 的值等于 ( )A .0或-12 B.12或-6C .-12或12D .0或12解析:依题意得|3m +2+3|m 2+1=|-m +4+3|m 2+1,∴|3m +5|=|m -7|,∴3m +5=m -7或3m +5=7-m .∴m =-6或m =12.答案:B2.直线x -2y +1=0关于直线x =1对称的直线方程是 ( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0解析:由⎩⎪⎨⎪⎧x -2y +1=0x =1得交点A (1,1),且可知所求直线斜率为-12.∴方程为x +2y -3=0.答案:D3.(南昌模拟)P 点在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则P 点坐标为 ( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2) 解析:设P (x,5-3x ),则d =|x -5+3x -1|12+-2=2,|4x -6|=2,4x -6=±2, ∴x =1或x =2,∴P (1,2)或(2,-1). 答案:C4.直线l 1:3x +4y -7=0与直线l 2:6x +8y +1=0间的距离为 ( ) A.85 B.32 C .4D .8解析:因为直线l 2的方程可化为3x +4y +12=0.所以直线l 1与直线l 2的距离为|12+7|32+42=32. 答案:B5.使三条直线4x +y =4,mx +y =0,2x -3my =4不能围成三角形的m 值最多有 ( ) A .1个 B .2个 C .3个D .4个解析:要使三条直线不能围成三角形,只需其中两条直线平行或者三条直线共点即可. 若4x +y =4与mx +y =0平行,则m =4;若4x +y =4与2x -3my =4平行,则m =-16;若mx +y =0与2x -3my =4平行,则m 值不存在;若4x +y =4与mx +y =0及2x -3my =4共点,则m =-1或m =23.综上可知,m 值最多有4个. 答案:D6.曲线|x |2-|y |3=1与直线y =2x +m 有两个交点,则m 的取值范围是 ( )A .m >4或m <-4B .-4<m <4C .m >3或m <-3D .-3<m <3解析:曲线|x |2-|y |3=1的草图如图所示.与直线y =2x +m 有两个交点.则m >4或m <-4.. 答案:A 二、填空题7.过两直线x +3y -10=0和y =3x 的交点,并且与原点距离为1的直线方程为________________.解析:设所求直线为(x +3y -10)+λ(3x -y )=0, 整理,得(1+3λ)x +(3-λ)y -10=0. 由点到直线距离公式,得λ=±3. ∴所求直线为x =1和4x -3y +5=0. 答案:x =1或4x -3y +5=08.(苏州检测)已知实数x 、y 满足2x +y +5=0,那么x 2+y 2的最小值为 解析:x 2+y 2表示点(x ,y )到原点的距离.根据数形结合得x 2+y 2的最小值为原点到直线2x +y +5=0的距离,即d =55= 5.答案: 59.已知1a +1b=1(a >0,b >0),点(0,b )到直线x -2y -a =0的距离的最小值为________.解析:点(0,b )到直线x -2y -a =0的距离为d =a +2b5=15(a +2b )(1a +1b )=15(3+2ba +ab)≥15(3+22)=35+2105,当a 2=2b 2且a +b =ab ,即a =1+2,b =2+22时取等号.答案:35+2105三、解答题10.已知直线l 经过点P (3,1),且被两平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段之长为5,求直线l 的方程.解:法一:若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1、l 2的交点分别为A (3,-4)和B (3,-9),截得的线段AB 的长|AB |=|-4+9|=5.符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组⎩⎪⎨⎪⎧y =k x -+1,x +y +1=0, 得A (3k -2k +1,-4k -1k +1)解方程组⎩⎪⎨⎪⎧y =k x -+1,x +y +6=0, 得B (3k -7k +1,-9k -1k +1)由|AB |=5,得(3k -2k +1-3k -7k +1)2+(-4k -1k +1+9k -1k +1)2=52.解之,得k =0,即所求的直线方程为y =1. 综上可知,所求l 的方程为x =3或y =1.法二:由题意,直线l 1、l 2之间的距离为d =|1-6|2=522,且直线l被平行直线l 1、l 2所截得的线段AB 的长为5(如图所示),设直线l 与直线l 1的夹角为θ,则sin θ=5225=22,故θ=45°.由直线l 1:x +y +1=0的倾斜角为135°,知直线l 的倾斜角为0°或90°,又由直线l 过点P (3,1),故直线l 的方程为x =3或y =1.11.已知两直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0. 求分别满足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与l 2垂直;(2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等. 解:(1)∵l 1⊥l 2, ∴a (a -1)+(-b )·1=0, 即a 2-a -b =0.①又点(-3,-1)在l 1上, ∴-3a +b +4=0② 由①②得a =2,b =2.(2)∵l 1∥l 2,∴a b =1-a ,∴b =a1-a .故l 1和l 2的方程可分别表示为: (a -1)x +y +a -a =0,(a -1)x +y +a1-a =0,又原点到l 1与l 2的距离相等. ∴4⎪⎪⎪⎪⎪⎪a -1a =⎪⎪⎪⎪⎪⎪a 1-a ,∴a =2或a =23,∴a =2,b =-2或a =23,b =2.12.两条互相平行的直线分别过点A (6,2)和B (-3,-1),如果两条平行直线间的距离为d ,求:(1)d 的变化范围;(2)当d 取最大值时,两条直线的方程.解:(1)当两条平行直线与AB 垂直时,两平行直线间的距离最大,最大值为d =|AB |=+2++2=310,当两条平行线各自绕点B ,A 逆时针旋转时,距离逐渐变小,越来越接近于0,所以0<d ≤310,即所求的d 的变化范围是(0,310].(2)当d 取最大值310时,两条平行线都垂直于AB , 所以k =-1k AB =-12--6--=-3,故所求的直线方程分别为y -2=-3(x -6) 和y +1=-3(x +3), 即3x +y -20=0和3x +y +10=0.。