8年级勾股定理经典练习答案

合集下载

勾股定理典型练习题(含答案)

勾股定理典型练习题(含答案)

勾股定理典型练习题(含答案)1.勾股定理典型练题勾股定理是几何中的一个重要定理。

在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。

如图1所示,由边长相等的小正方形和直角三角形构成,可以用其面积关系验证勾股定理。

图2是由图1放入矩形内,已知AC = 4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为多少?已知AB = 3,得到∠BAC = 90°。

根据勾股定理,BC = 5.所以矩形KLMJ的面积为 4 × 5 + 3 × 4 = 32.因此,答案为C。

2.勾股定理典型练题XXX所示,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。

若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是多少?根据图中所示,正方形E的边长为2,所以面积为2 × 2 = 4.因此,答案为C。

3.勾股定理典型练题如图所示,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点。

则图中阴影部分的面积是多少?首先,根据勾股定理,AC = 4,BC = 4,AB = 4√2.因此,三角形ABC的面积为4√2 × 4 / 2 = 8√2.由于三角形ADE和三角形ABF相似,所以ADE的面积是ABF的面积的一半。

同理,三角形BDF和三角形BCE相似,所以BDF的面积是BCE的面积的一半。

因此,阴影部分的面积为8√2 - 2 × 2 - 2 ×1 = 8√2 - 6.因此,答案为C。

4.勾股定理典型练题如图所示,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为多少?根据图中所示,正方形a和正方形c的边长分别为√5和√11.因此,正方形b的边长为√11 - √5,所以面积为(√11 - √5)² = 6.因此,答案为C。

5.勾股定理典型练题如图所示,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则S1和S2的大小关系是什么?首先,根据勾股定理,AB = √(BC² + AC²) = 2√2.因此,半圆的面积为π × (2√2 / 2)² = 2π。

八年级数学 勾股定理 练习题及答案

八年级数学 勾股定理 练习题及答案
设路线1的长度为 ,则 =AC =AB +BC =5 +(5π) =25+25π .
路线2:高AB+底面直径BC,如图甲所示:
设路线2的长度为 ,则 =(AB+BC) =(5+10) =225.
∵ - =25+25π -225=25π -200=25(π -8)>0.
∴ > ,∴ > .所以选择路线2较短.
勾股定理
练习题
温故而知新:
1.勾股定理
直角三角形两条直角边a,b的平方和等于斜边c的平方,即a +b =c .
2.勾股定理的验证
勾股定理的证明方法很多,据说已有400余种,其证明的内涵极其丰富.常用的证法是面积割补法,如图所示.
3.直角三角形的性质
两锐角互余(角的关系)、勾股定理(边的关系),30°角所对的直角边等于斜边的一半(边角关系),这些性质在求线段的长度、证明线段倍分关系、证明线段平方关系等方面有广泛的应用.
(2)通过探究,用含n的代数式表示S,则S =________.
解析:利用正方形与三角形面积扩大与缩小的规律推导出公式.
答案:解:∵第二个正方形的边长为 ,它的面积就是 ,也就是第一个正方形面积的 ,
同理,第二个三角形的面积也是第一个三角形的面积的 ,
∴S2=(1+ )× ,依此类推,
S3=(1+ )× × ,即S3=(1+ )×( ) ,
解析:S3=S1+S2=SA+SB+SC+SD=2+5+1+2=10.
例5如图,△ABC中,已知∠BAC=45°,AD⊥BC于点D,BD=2,DC=3,求AD的长.小萍灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:

勾股定理初二练习题及答案

勾股定理初二练习题及答案

勾股定理初二练习题及答案勾股定理是初中数学中十分重要的定理之一,它在数学中的应用广泛,是解决直角三角形问题的基础。

下面将为大家提供一些勾股定理的初二练习题及答案,希望能够帮助大家更好地理解和掌握这一概念。

练习题1:已知直角三角形的两个直角边分别为3cm和4cm,求斜边的长度。

解答:根据勾股定理,直角三角形斜边的平方等于两个直角边的平方和。

设斜边长度为x,则根据勾股定理可得:x² = 3² + 4²x² = 9 + 16x² = 25两边同时开方,得到x = 5。

因此,该直角三角形的斜边长度为5cm。

练习题2:已知直角三角形的斜边为10cm,直角边为6cm,求另一个直角边的长度。

解答:根据勾股定理,直角三角形斜边的平方等于两个直角边的平方和。

设另一个直角边长度为x,则根据勾股定理可得:10² = x² + 6²100 = x² + 36x² = 100 - 36x² = 64两边同时开方,得到x = 8。

因此,该直角三角形的另一个直角边长度为8cm。

练习题3:一个直角三角形的斜边长度为13cm,另一个直角边的长度为5cm,求第二个直角边的长度。

解答:根据勾股定理,直角三角形斜边的平方等于两个直角边的平方和。

设第二个直角边长度为x,则根据勾股定理可得:13² = 5² + x²169 = 25 + x²x² = 169 - 25x² = 144两边同时开方,得到x = 12。

因此,该直角三角形的第二个直角边长度为12cm。

通过以上练习题,我们可以看到勾股定理的运用。

只需要知道其中两个量,即可求解第三个量。

这是数学中的一种非常有用的定理,能够帮助我们解决许多实际问题。

总结起来,勾股定理可以用公式表示为:斜边² = 直角边₁² + 直角边₂²其中,斜边表示直角三角形的斜边,直角边₁和直角边₂分别表示直角三角形的两个直角边。

人教版初中八年级数学下册第十七章《勾股定理》经典练习题(含答案解析)

人教版初中八年级数学下册第十七章《勾股定理》经典练习题(含答案解析)

一、选择题1.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3 2.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 3.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 4.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA 5.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS6.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 7.下列各命题中,假命题是( )A .有两边及其中一边上的中线对应相等的两个三角形全等B .有两边及第三边上高对应相等的两个三角形全等C .有两角及其中一角的平分线对应相等的两三角形全等D .有两边及第三边上的中线对应相等的两三角形全等8.如图,已知AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .∠B =2∠DAC C .AD 平分∠EDC D .ED +AC >AD9.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:410.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD 11.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .1212.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④ 13.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ 14.已知,如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB ,下列条件中:①∠AOC =∠BOC ,②PD =PE ,③OD =OE ,④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有( )A .1个B .2个C .3个D .4个15.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个二、填空题16.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.17.如图,ABC 中,D 是AB 上的一点,DF 交AC 于点E ,AE CE =,//CF AB ,若四边形DBCF 的面积是26cm ,则ABC 的面积为______2cm .18.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .19.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .20.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.21.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.22.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .23.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.24.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,垂足为A ,B ,S △AOM =8cm 2,OA=4cm ,则MB=___.25.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.26.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题27.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上(不与点B ,C 重合),过点C 作CE ⊥AD ,垂足为点E ,交AB 于点F ,连接DF .(1)请直接写出∠CAD 与∠BCF 的数量关系;(2)若点D 是BC 中点,在图2中画出图形,猜想线段AD ,CF ,FD 之间的数量关系,并证明你的猜想.28.如图,AB AD =,AC AE =,CAE BAD ∠=∠.求证:B D ∠=∠.29.如图,在△ABC中,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,D是BC的中点,证明:∠B=∠C.30.如图,一条河流MN旁边有两个村庄A,B,AD⊥MN于D.由于有山峰阻挡,村庄B 到河边MN的距离不能直接测量,河边恰好有一个地点C能到达A,B两个村庄,与A,B 的连接夹角为90°,且与A,B的距离也相等,测量C,D的距离为150m,请求出村庄B到河边的距离.。

初二勾股定理测试题及答案

初二勾股定理测试题及答案

初二勾股定理测试题及答案一、选择题1. 在直角三角形中,如果直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 82. 已知一个三角形的两边长分别为5和12,且这两边构成直角,那么第三边的长度是多少?A. 10B. 13C. 15D. 17二、填空题3. 如果一个直角三角形的直角边长分别为6和8,那么斜边的长度是_________。

4. 直角三角形的斜边长为13,一条直角边长为5,另一条直角边的长度是_________。

三、计算题5. 在一个直角三角形中,如果已知斜边长为10,一条直角边长为6,求另一条直角边的长度。

6. 一个直角三角形的两条直角边长分别为x和y,斜边长为z。

已知x=9,y=12,求z的值。

四、解答题7. 一个梯形的两底边长分别为3和5,高为4,求梯形的对角线长度。

8. 一个长方体的长、宽、高分别为3米、4米和5米,求这个长方体的对角线长度。

答案:一、选择题1. A(根据勾股定理:3² + 4² = 5²)2. B(根据勾股定理:5² + 12² = 13²)二、填空题3. 10(根据勾股定理:6² + 8² = 10²)4. 12(根据勾股定理:5² + 12² = 13²)三、计算题5. 另一条直角边的长度为8(根据勾股定理:6² + 8² = 10²)6. z的值为15(根据勾股定理:9² + 12² = 15²)四、解答题7. 梯形的对角线长度为5(根据勾股定理:(3+5)² + 4² = 5²)8. 长方体的对角线长度为5(根据勾股定理:3² + 4² + 5² = 50,再开方得5)结束语:通过本次测试,我们复习了勾股定理的应用,希望同学们能够熟练掌握并灵活运用勾股定理解决实际问题。

八年级数学(下)《勾股定理习题》练习题含答案

八年级数学(下)《勾股定理习题》练习题含答案

图1E八年级数学(下)《勾股定理习题》练习题1已知:如图1,点A 、D 、B 、E 在同一条直线上,AD=BE,AC∥DF,BC∥EF.求证:AC=DF.2已知:如图2,BE⊥AC,DF⊥AC,垂足分别是E 、F,O 是BD 的中点. 求证:BE=DF.3已知:如图3, AB=DE,BC=EF,AF=CD. 求证:AB∥DE, BC∥EF.4已知:如图4, AB=AD,AC=AE, ∠BAD=∠CAE.求证:. ∠B=∠D.5已知:如图5, AD=AE,点D 、E 在BC 上,BD=CE,∠ADE=∠AED.求证: ⊿ABE≌⊿ACD图56已知:如图6,已知AC、BD相交于点O,AB∥CD, OA=OC.求证: AB=CD7已知:如图7,已知AC∥DF,BC=EF,∠C=∠F.求证: ⊿ABC≌⊿DEF.8已知:如图8,已知AC=AE,AB=AD.求证: OB=OD.9在直线L上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4= .S4 S3S2S1图1L 32 1C 图7F之间的关系,并分别用含n 的代数式表示a 、b 、c :a= ,b= ,c= ; (2)猜想以a 、b 、c 为边的三角形是否 为直角三角形,并验证你的猜想.11分析:这是一道结论开放题,据题意经过分析,符合要求的点C 有多个,如图2所示,1C ,2C ,3C ,4C ,5C ,6C 都是符合要求的点.参考答案1思路分析:要证明AC=DF,则需要证明⊿ABC≌⊿DEF.在⊿ABC和⊿DEF中,由AC∥DF可得∠CAB=∠FDE, 由BC∥EF可得∠CBA=∠FED,现已证两三角形的两组对应角相等,所以考虑夹边,用ASA,证明⊿ABC≌⊿DEF.由已知AD=BE可得:AD+DB=BE+DB,即AB=DE,命题得证.2思路分析:要证明BE=DF,则需要证明⊿BOE≌⊿DOF.在⊿BOE和⊿DOF中,由BE⊥AC,DF⊥AC可得∠BEO=∠DFO=90°,∠BOE=∠DOF,现已证两三角形的两组对应角相等,所以考虑其中一组对应角的对边,用AAS,证明⊿BOE≌⊿DOF.由已知O是BD的中点可得:OB=OD,条件已具备,命题得证.3思路分析:要证明AB∥DE, BC∥EF,则需要证明∠A=∠D,∠BCA=∠EFD,由此只需要证明⊿ABC≌⊿DEF.在⊿ABC和⊿DEF中,已知AB=DE,BC=EF,即两三角形的两组对应边相等,因此,只需证明边AC=DF,用SSS证明⊿ABC≌⊿DEF.由已知AF=CD,根据等式性质得:AF+CF=CD+CF,即AC=DF,命题得证.4思路分析:要证明∠B=∠D,只需要证明⊿ABC≌⊿ADE.在⊿ABC和⊿ADE中,已知AB=AD, AC=AE,即两三角形的两组对应边相等,因此,只需证明两条已知边的夹角相等,用SAS证明⊿ABC≌⊿ADE.由已知∠BAD=∠CAE,根据等式性质得:∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,命题得证.5思路分析:要证明⊿ABE≌⊿ACD,在⊿ABE和⊿ACD中,已知AD =AE, ∠ADE=∠AED即相邻的一角一边对应相等,因此,只需证明∠ADE与∠AED的另一邻边相等即可,用SAS证明⊿ABE≌⊿ACD.由已知BD=CE可得:BD+DE=CE+DE,即BE=CD,命题得证.6思路分析:要证明AB=CD,则需要证明⊿ABO≌⊿CDO.在⊿ABO和⊿CDO中,已知OA =OC, ∠AOB=∠COD即相邻的一角一边对应相等,因此,只需证明OA与OC的另一邻角相等即可,用ASA证明⊿ABO≌⊿CDO.由已知AB∥CD可得:∠A=∠C,命题得证.7思路分析:要证明⊿ABC≌⊿DEF,在⊿ABC和⊿DEF中,已知BC =E F, ∠C=∠F,即相邻的一角一边对应相等,因此,只需证明已知边的对角相等(∠A=∠EDF)即可,从而用AAS证明⊿ABC≌⊿DEF.由已知AC∥DF可得:∠A=∠EDF,命题得证.8思路分析:要证明OB=OD,则需要证明⊿BOE≌⊿DOC,已知一边和它的对角相等,即由AC=AE,AB=AD可得BE=DC,对顶角∠BOE=∠DOC,从而只要证明另一组角相等(∠B=∠D)即可.要证明∠B=∠D,只需要证明⊿ABC≌⊿ADE,因为题中已知AC=AE,AB=AD,∠A是公共角,所以⊿BOE≌⊿DOC,∠B=∠D得证,从而命题得证.9分析: 经过观察图形,可以看出正放着正方形面积与斜放置的正方形之间关系为: S1+S2=1;S 2+S3=2; S3+S4=3;这样数形结合可把问题解决.解: S1代表的面积为S1的正方形边长的平方, S2代表的面积为S2的正方形边长的平图4EDCBA图3ED图2图2方,所以S 1+S 2=斜放置的正方形面积为1;同理S 3+S 4=斜放置的正方形面积为3,故S 1+S 2+S 3+S 4=1+3=4. 10分析:解:(1)12-n ;2n ;12+n(2)猜想以a 、b 、c 为边的三角形是直角三角形. 验证:由于124122)1(24224222++=++-=+-n n n n n n n为边、、,所以,以,即)()所以(c b a c b a n n n n n n 222222222422121,12)1(=++=+-++=+的三角形是直角三角形.11如图2所示,是由边长为1的小正方形组成的正方形网格,以线段AB (A ,B 为格点)为一条直角边任1C 意画一个Rt△ABC,且点C 为格点,并求出以BC 为边的正方形的面积.解:画出的Rt△ABC 如图2中所示,41624222+=+=BC =20,所以以BC 为边的正方形面积为20.。

八年级数学《勾股定理》练习题含答案

八年级数学《勾股定理》练习题含答案

八年级数学《勾股定理》练习题含答案一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2(C)225cm2(D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b;(2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个(C)3个(D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC 的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S1+S2与S3的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S1+S2与S3的关系;图②(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.图③答案:1.a2+b2,勾股定理.2.(1)13;(2)9;(3)2,3;(4)1,2.2.4.52,5.5.132cm.6.A.7.B.8.C.3.59.(1)a=45cm.b=60cm;(2)540;(3)a=30,c=34;(4)63;(5)12.1010.B.11..512.4.13..314.(1)S1+S2=S3;(2)S1+S2=S3;(3)S1+S2=S3.。

(新)八年级数学《勾股定理》精选练习题及答案解析

(新)八年级数学《勾股定理》精选练习题及答案解析

勾股定理精选题一、选择题1.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的大正方形.设直角三角形较长的直角边为a,较短的直角边为b,且a:b=4:3,则大正方形面积与小正方形面积之比为()A.25:9 B.25:1 C.4:3 D.16:92.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m3.下列结沦中,错误的有()①Rt△ABC中,已知两边分别为3和4,则第三边的长为5;②三角形的三边分别为a、b、c,若a2+b2=c2,则∠A=90°;③若△ABC中,∠A:∠B:∠C=1:5:6,则这个三角形是一个直角三角形;④若(x﹣y)2+M=(x+y)2成立,则M=4xy.A.0个B.1个C.2个D.3个4.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4 B.4πC.8πD.85.已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是()A.a2﹣b2=c2B.∠A﹣∠B=∠CC.∠A:∠B:∠C=3:4:5 D.a:b:c=7:24:256.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为()A.x2﹣3=(10﹣x)2B.x2﹣32=(10﹣x)2C.x2+3=(10﹣x)2D.x2+32=(10﹣x)27.若△ABC的三边a、b、c满足(a﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.如图,等腰△ABC中,AB=AC=10cm,BC=12cm,D为BC上一点,连接AD,E为AD上一点,连接BE,若∠ABE=∠BAE═∠BAC,则DE的长为()A.cm B.cm C.cm D.1cm9.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1 B.2018 C.2019 D.202010.满足下列条件的△ABC不是直角三角形的是()A.AC=3,BC=5,AB=4 B.AC:BC:AB=3:4:5C.∠A:∠B:∠C=1:2:3 D.∠A:∠B:∠C=3:4:5二、填空题11.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.12.如图所示,一棵36m高的树被风刮断了,树顶落在离树根24m处,则折断处的高度AB是m.13.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积为.14.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.15.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.t=时△ABP为直角三角形.16.已知等腰△ABC中,AB=AC=5,BC=6,则△ABC的面积为.17.已知△ABC中,AB=10,BC=21,CA=17,则△ABC的面积等于.18.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.19.已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.20.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD上的任意一点,则AP+EP的最小值是____________cm.三、解答题21.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA方向运动,动点Q从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?22.如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,试判断三角形的形状.B'=3.将纸片沿某条直线折叠,使点B落在点B' 23.如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,C处,点A的对应点为A',折痕分别与AD,BC边交于点M,N.求BN的长.24.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长.26.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON 方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.27.如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s的速度移动,请你探究,当P 运动几秒时,P点与顶点A的连线PA与腰垂直.28.如图,已知AB=12,AB⊥BC于点B,AB⊥AD于点A,AD=5,BC=10.点E是CD的中点,求AE的长.29.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.30.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B 方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.勾股定理精选题(参考答案)一、选择题1.【答案】【解析】解:∵a:b=4:3,∴大正方形面积与小正方形面积之比为(a2+b2):(a﹣b)2=b2:b2=25:1.故选:B.2.【答案】【解析】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C.3.【答案】【解析】C4.【答案】【解析】解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.5.【答案】【解析】解:(A)当∠A=90°时,此时a2=b2+c2,故A能成立.(B)∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,故B能成立.(C)设∠A=3x,∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴x=15°,∴∠C=75°,故C不能成立.当∠C=90°,∴a2+b2=c2,故D能成立,故选:C.6.【答案】【解析】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.故选:D.7.【答案】【解析】解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.8.【答案】【分析】根据条件得出AE=BE,再使用勾股定理计算.【解析】解:∵AB=AC,∠BAE═∠BAC,∴AD⊥BC,∴∠BDE=90°,BD=BC=6,∵AB=10,∴AD==8,∵∠ABE=∠BAE,∴AE=BE,设DE=x,则AE=BE=8﹣x,在Rt△BDE中,BE2=DE2+BD2,∴(8﹣x)2=x2+62,解得:x=,即DE=cm,故选:C.9.【答案】【解析】解:设直角三角形的是三条边分别是a,b,c.根据勾股定理,得a2+b2=c2,即正方形A的面积+正方形B的面积=正方形C的面积=1.推而广之,“生长”了2019次后形成的图形中所有的正方形的面积和是2020×1=2020.故选:D.10.【答案】【解析】解:A、∵32+42=52∴满足△ABC是直角三角形;B、∵32+42=25,52=25,∴32+42=52,∴AC:BC:AB=3:4:5满足△ABC是直角三角形;C、∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴∠A:∠B:∠C=1:2:3满足△ABC是直角三角形;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=×180°=75°,∴∠A:∠B:∠C=3:4:5,△ABC不是直角三角形.故选:D.二、填空题11.【答案】【解析】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.12.【答案】【解析】根据题意构造直角三角形,设AB=x米,则AC=(36﹣x)米,BC=24米,由勾股定理得出方程,解方程即可.解:由勾股定理得:x2+242=(36﹣x)2,解得:x=10;即折断处的高度AB是10m;故答案为:10.13.【答案】【解析】解:在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB==10,则S阴影=S半圆AC+S半圆BC+S△ABC﹣S半圆AB=π+π+×6×8﹣π=24.故答案为:2414.【答案】【解析】解:连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.15.【答案】【解析】解:在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4cm,由题意知BP=2tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即2t=4,t=2;②当∠BAP为直角时,BP=2tcm,CP=(2t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(2t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(2t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=2或t=,故答案为:2s或s16.【答案】【解析】解:如图,过点A作AD⊥BC,垂足为点D,∵AB=AC=5,BC=6,∴BD=CD=BC=×6=3,∵AD2+BD2=AB2,∴AD==4,∴S△ABC=BC•AD=×4×6=12,故答案为:12.17.【答案】【解析】解:过点A作AD⊥BC.设BD=x,则CD=21﹣x,在Rt△ABD中,AD2=102﹣x2,在Rt△ADC中,AD2=172﹣(21﹣x)2,∴102﹣x2=172﹣(21﹣x)2,100﹣x2=289﹣441+42x﹣x2,解得x=6,∴CD=15,在Rt△ACD中,AD==8,∴△ABC的面积=×BC•AD=×21×8=84.故答案为:84.18.【答案】3.6或4.32或4.8【解析】19.【答案】3,2, 8;【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.20.【答案】5【解析】作E 点关于直线BD 的对称点E′,连接AE′,则线段AE′的长即为AP+EP 的最小值5.三、解答题21.【答案】【解析】解:设运动x 秒时,它们相距15cm ,则CP =xcm ,CQ =(21﹣x )cm ,依题意有 x 2+(21﹣x )2=152,解得x 1=9,x 2=12.故运动9秒或12秒时,它们相距15cm .22.【答案】【解析】因为a 2+b 2+c 2+50=6a+8b+10c ,所以a 2+b 2+c 2-6a-8b-10c+50=0,即a 2-6a+9+b 2-8b+16+c 2-10c+25=0,所以(a-3)2+(b-4)2+(c-5)2=0,所以a=3,b=4,c=5,因为a 2+b 2=c 2,所以三角形为直角三角形.23.【答案】 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称,∴AM A M '=,BN B N '=.设BN B N x '==,则9CN x =-.∵ 正方形ABCD ,∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3,∴ 222(9)3x x -+=.解得5x =.∴ 5BN =.24.【答案】【解析】设EC=xcm ,则DE=(8-x )cm ,由折叠可知,EF=DE ,AD=AF ,在直角△ABF 中,由勾股定理得AB 2+BF 2=AF 2,即82+BF 2=102,所以BF=6cm ,所以FC=10-6=4(cm ).在直角△EFC 中,由勾股定理得FC 2+CE 2=EF 2,即42+x 2=(8-x )2,解之得x=3,即EC 的长度为3cm.25.【答案】【解析】过D 作DE ⊥AB ,垂足为E ,因为∠1=∠2,所以CD=DE=15,在Rt △BDE 中,BE 2=BD 2-DE 2=252-152=202,所以BE=20,因为∠1=2,∠C=∠DEA=90°,AD=AD ,所以Rt △ACD ≌Rt △AED ,又因为AB 2=AC 2+BC 2,即(AC+20)2=AC 2+(15+25)2,解得AC=30.26.【答案】【解析】解:(1)过点A 作AD ⊥ON 于点D ,∵∠NOM=30°,AO=80m ,∴AD=40m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离为40米;(2)由图可知:以50m 为半径画圆,分别交ON 于B ,C 两点,AD ⊥BC ,BD=CD=21BC ,OA=80m , ∵在Rt △AOD 中,∠AOB=30°,∴AD=21OA=21×80=40m , 在Rt △ABD 中,AB=50,AD=40,由勾股定理得:m AD AB BD 3040502222=-=-=, 故BC=2×30=60米,即重型运输卡车在经过BD 时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即3006018000=米/分钟, ∴重型运输卡车经过BD 时需要60÷300=0.2(分钟)=12(秒).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.27.【答案】【解析】解:如图,作AD ⊥BC ,交BC 于点D ,∵BC=8cm ,∴BD=CD=21BC=4cm , ∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P 运动的时间为7秒或25秒.28.【答案】【解析】如图,延长AE交BC于点F.因为AB⊥BC,AB⊥AD,所以AD∥BC所以∠D=∠C,∠DAE=∠CFE,又因为点E是CD的中点,所以DE=CE.因为在△AED与△FEC中,∠D=∠C,∠DAE=∠CFE,DE=CE,所以△AED≌△FEC(AAS),所以AE=FE,AD=FC.因为AD=5,BC=10.所以BF=5.在Rt△ABF中,AF2=AB2+BF2=122+52=169,所以AF=13,所以AE=AF=6.5.29.【答案】【解析】解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,当t=6时,点P与A重合,也符合条件,∴当或6时,P在△ABC的角平分线上;(3)在Rt△ABC中,∵AB=5cm,BC=3cm,∴AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,∴PC=BC,即4﹣2t=3,∴t=,当P在AB上时,△BCP为等腰三角形,①CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,∴BE=BC=,∴PB=AB,即2t﹣3﹣4=,解得:t=,②PB=BC,即2t﹣3﹣4=3,解得:t=5,③PC=BC,如图3,过C作CF⊥AB于F,∴BF=BP,∵∠ACB=90°,由射影定理得;BC2=BF•AB,即32=×5,解得:t=,∴当时,△BCP为等腰三角形.30.【答案】【解析】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.。

八年级勾股定理典型练习题含答案

八年级勾股定理典型练习题含答案
3、如图,将长方形ABCD沿直线BD折叠,使点C落在点C′处,BC′交AD于E,AD=8,AB=4.求△BED的面积.
4、如图,每个小正方形的边长都相等,A,B,C是小正方形的顶点,则∠ABC的大小为()
A.45°B.50°C.55°D.60°
题型二勾股定理中的网格问题
5、如图,在正方形网格中,每个小正方形边长都为1,则网格上△ABC中,边长为无理数的边长有()
∴AB= ,
选C.
15、答案:B
解答:先将图形展开,根据两点之间,线段最短,利用根据勾股定理即可得出结论.
如图所示:沿AC将圆柱的侧面展开,∵底面半径为2cm,∴BC= =2π≈6cm,
在Rt△ABC中,∵AC=8cm,BC=6cm,∴AB= = =10cm.
16、答案:B
解答:将长方体展开,连接A、B,
A.5 B.25C.10 +5D.35
17、如图,长方体的高为3厘米,底面是正方形,边长为2厘米,现有一小虫从A出发,沿长方体表面到达C处,问小虫走的路程最短为多少厘米?
18、如图,A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1km,BD=3km,且CD=3km,现要在河边上建一个水厂向A、B两村输送自来水,铺设水管的费用为20000元/km,请你在CD上选择水厂位置O,使铺设水管的费用最低,并求出铺设水管的总费用.
勾股定理中的常见题型
题型一勾股定理与翻折问题
1、已知,如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE 面积为()
A.6cm2B.8cm2C.10cm2D.12cm2
2、如图所示,在长方形ABCD中,AB=8,BC=4,将长方形沿AC折叠,使点D落在点D′处,求重叠部分△AFC的面积.

八年级初二数学勾股定理练习题及答案

八年级初二数学勾股定理练习题及答案
三、解答题
21.如图,一架长 25 米的梯子,斜靠在竖直的墙上,这时梯子底端离墙 7 米. (1)此时梯子顶端离地面多少米? (2)若梯子顶端下滑 4 米,那么梯子底端将向左滑动多少米?
22.(1)计算: 3 12 2
1 3
48 2 3 ;
(2)已知 a、b、c 满足| a 2 3 | 3 2 b (c 30)2 0 .判断以 a、b、c 为边能否
___________.
14.等腰三角形的腰长为 5,一腰上的高为 3,则这个等腰三角形底边的长为________ 15.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形 OABC 是矩形,点 A、C 的 坐标分别为 A(10,0)、C(0,4),点 D 是 OA 的中点,点 P 在 BC 边上运动,当△ ODP 是腰长为 5 的等腰三角形时,点 P 的坐标为_____.
16.以直角三角形的三边为边向外作正方形 P,Q,K,若 SP=4,SQ=9,则 SK ___
17.如图所示,“赵爽弦图”是由 8 个全等的直角三角形拼接而成的,记图中正方形 ABCD,
正方形 EFGH,正方形 MNKT 的面积分别为 S1, S2 , S3 ,已知 S1 S2 S3 10 ,则 S2 的值是
构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不 能,请说明理由. 23.我国古代数学家赵爽曾用图 1 证明了勾股定理,这个图形被称为“弦图”.2002 年在北京 召开的国际数学家大会(ICM 2002)的会标(图 2),其图案正是由“弦图”演变而来.“弦图”是由 4 个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图 1 解答下列 问题: (1)叙述勾股定理(用文字及符号语言叙述); (2)证明勾股定理;

初二勾股定理试题及答案

初二勾股定理试题及答案

初二勾股定理试题及答案一、选择题1. 下列选项中,哪一项是勾股定理的表达式?A. a + b = cB. a² + b² = c²C. a × b = cD. a ÷ b = c答案:B2. 如果直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 7C. 8D. 9答案:A3. 一个直角三角形的斜边长为10,一条直角边长为6,那么另一条直角边的长度是多少?A. 8B. 4C. 6D. 10答案:A二、填空题1. 已知直角三角形的两条直角边长分别为6和8,根据勾股定理,斜边的长度为______。

答案:102. 如果一个直角三角形的斜边长为13,其中一条直角边长为5,那么另一条直角边的长度是______。

答案:12三、解答题1. 一个直角三角形的两条直角边长分别为9和12,求斜边的长度。

答案:根据勾股定理,斜边的长度为√(9² + 12²) = √(81 + 144) = √225 = 15。

2. 一个直角三角形的斜边长为17,其中一条直角边长为8,求另一条直角边的长度。

答案:设另一条直角边的长度为x,根据勾股定理,有x² + 8² =17²,即x² + 64 = 289,解得x² = 225,所以x = √225 = 15。

四、证明题1. 证明:如果直角三角形的两条直角边长分别为a和b,斜边长为c,那么a² + b² = c²。

答案:设直角三角形的两条直角边分别为a和b,斜边为c。

在三角形中,我们可以构造一个边长为a和b的正方形,以及一个边长为c的正方形。

在这两个正方形中,我们可以画出四个相同的直角三角形,每个三角形的直角边长分别为a和b,斜边长为c。

这样,我们可以将这四个三角形拼成一个边长为a+b的正方形,其面积为(a+b)²。

(完整版)八年级勾股定理典型练习题含答案

(完整版)八年级勾股定理典型练习题含答案

八年级勾股定理典型练习题含答案一、选择题1、下列各组数中,能构成直角三角形的是A:4,5,B:1,1:6,8,11 D:5,12,22、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为 A:26B:1 C:20D:213、在平面直角坐标系中,已知点P的坐标是,则OP 的长为 A:3B:4C:5D:74、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为 A: B:C:5D:、等边三角形的边长为2,则该三角形的面积为A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为A、 B、C、8D、9、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A、3cmC、6cm22B、4cm D、12cm228、若△ABC中,AB?13cm,AC?15cm,高AD=12,则BC 的长为 A、1 B、 C、14或4D、以上都不对二、填空题1、若一个三角形的三边满足c?a?b,则这个三角形是2、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面。

3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。

2224、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为。

5、如右图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=___________。

E6、一只蚂蚁从长为4cm、宽为cm,高是cm的FC长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是____________cm。

7、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围是________________。

八年级数学(下)第十七章《勾股定理》同步练习(含答案)

八年级数学(下)第十七章《勾股定理》同步练习(含答案)

八年级数学(下)第十七章《勾股定理》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.一个直角三角形有两条边长分别为6和8,则它的第三条边长可能是 A .8B .9C .10D .11【答案】C2.Rt △ABC 中,斜边BC =2,则AB 2+AC 2+BC 2的值为 A .8B .4C .6D .无法计算【答案】A【解析】利用勾股定理,由Rt △ABC 中,BC 为斜边,可得AB 2+AC 2=BC 2,代入数据可得 AB 2+AC 2+BC 2=2BC 2=2×22=8.故选A .3.如图,在四边形ABCD 中,∠BAD =90°,∠DBC =90°,AD =4,AB =3,BC =12,则CD 为A .5B .13C .17D .18【答案】B【解析】∵∠BAD =90°,∴△ADB 是直角三角形,∴BD =22AD AB +=2234+=5,∵∠DBC =90°,∴△DBC 是直角三角形,∴CD =22BD BC +=22512+=13,故选B .4.如图的三角形纸片中,AB =8,BC =6,AC =5,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长是A .7B .8C .11D .14【答案】A5.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为2和10,则b 的面积为A .8B .10+2C .23D .12【答案】D【解析】如图,∵a 、b 、c 都为正方形,∴BC =BF ,∠CBF =90°,AC 2=2,DF 2=10,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABC 和△DFB 中, 13BAC FDBBC BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFB ,∴AB =DF ,在△ABC 中,BC 2=AC 2+AB 2=AC 2+DF 2=2+10=12,∴b 的面积为12.故选D .6.如图,一棵大树被大风刮断后,折断处离地面8 m ,树的顶端离树根6 m ,则这棵树在折断之前的高度是A .18 mB .10 mC .14 mD .24 m【答案】A【解析】∵BC =8 m ,AC =6 m ,∠C =90º,∴AB 22228610BC AC +=+= m ,∴树高10+8=18 m . 故选A .7.如图,盒内长、宽、高分别是6 cm、3 cm、2 cm,盒内可放木棒最长的长度是A.6 cm B.7 cm C.8 cm D.9 cm【答案】B8.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为A.45B.85C.165D.245【答案】C【解析】S△ABC=12×BC×AE=12×BD×AC,∵AE=4,AC=2243=5,BC=4,即12×4×4=12×5×BD,解得BD=165.故选C.二、填空题:请将答案填在题中横线上.9.已知在△ABC中,AB=9,AC=10,BC=17,那么边AB上的高等于__________.【答案】8【解析】如图,作CD⊥AB交AB的延长线于D点,设CD=x,AD=y,在直角△ADC中,AC2=x2+y2,在直角△BDC中,BC2=x2+(y+AB)2,解方程得y=6,x=8,即CD=8,∵CD即AB边上的高,∴AB边上的高等于8.故答案为:8.10.如图,在△ABC中,∠C=90°,AC=6,AB=10,现分别以A、B为圆心,大于12AB长为半径作弧,两弧相交于点M、N,作直线MN,分别交AB、BC于点D、E,则CE的长为__________.【答案】7 411.如图,在△ABC中,∠BAC=120°,AB=AC,点M、N在边BC上,且∠MAN=60°.若BM=2,CN=4,则MN的长为__________.【答案】23【解析】∵∠BAC=120°,AB=AC,∴△ABM绕点A逆时针旋转120°至△APC,如图,连接PN,∴△ABM≌△ACP,∴∠B=∠ACP=30°,PC=BM=2,∠BAM=∠CAP,∴∠NCP=60°,∴∠CPD=30°.∵∠MAN=60°,∴∠BAM+∠NAC=∠NAC+∠CAP=60°=∠MAN,∵AM=AP,AN=AN,∴△MAN≌△PAN,∴MN=PN,过点P作BC的垂线,垂足为D,∴CD=12PC=1,DN=CN-CD=4-1=3,∴PD3∴PN =22PD DN +=22(3)3+=23,∴MN =PN =23.故答案为:23.12.如图,△ABC 中,∠A =90°,AB =3,AC =6,点D 是AC 边的中点,点P 是BC 边上一点,若△BDP 为等腰三角形,则线段BP 的长度等于__________.【答案】32或5在△BDC 中,设BH =x 2222(32)3(35)x x =-,解得:5x =在△BDH 中,229(32)()55DH =-=, 在△PDH 中,设PH =y ,则BP =PD 5y -,由勾股定理得222()(55y y +=,解得:5y = ③当BP 为底时,则BD =PD =32P 点与C 点重合时,PD =3,且点P 是BC 边上一点,不是延上长线上的,所以不存在.故答案为:325 三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知:四边形ABCD 中,BD 、AC 相交于O ,且BD 垂直AC ,求证:2222AB CD AD BC +=+.14.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?【解析】在Rt ABC △中,224AC AB BC =-=米,故可得地毯长度=AC +BC =7米, ∵楼梯宽2米,∴地毯的面积=14平方米, 故这块地毯需花14×30=420元. 答:地毯的长度需要7米,需要花费420元.15.如图,在一棵树(AD )的10 m 高B 处有两只猴子,其中一只爬下树走向离树20m 的池塘C 处,而另一只则爬到树顶D 后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?16.如图,A城气象台测得台风中心在A城正西方向320 km的B处,以每小时40 km的速度向北偏东60°的BF方向移动,距离台风中心200 km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?【解析】(1)如图,由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320 km,则AC=160 km,因为160<200,所以A城要受台风影响.。

八年级数学-勾股定理练习题(含解析)

八年级数学-勾股定理练习题(含解析)

八年级数学-勾股定理练习题(含解析)一、单选题1.已知直角三角形的两条直角边的长分别是1 )A .1BC .2D .32.下面各图中,不能证明勾股定理正确性的是( )A .B .C .D .3.一直角三角形的三边分别为2、3、x ,那么x 为( )A B C D .无法确定4.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A .2cmB .3cmC .4cmD .5cm5.如图,在Rt ABC ∆中,90ACB ∠=o ,正方形,AEDC BCFG 的面积分别为25和144,则AB 的长度为( )A .13B .169C .12D .56.如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD⊥AC 于点D .则BD 的长为()A B C D 7.如图,三角形纸片ABC ,AB=AC ,∠BAC=90°,点E 为AB 中点,沿过点E 的直线折叠,使点B 与点A 重合,折痕现交于点F ,已知EF=32,则BC 的长是( )A B . C .3 D .8.如图所示,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( )A .123S S S +=B .222123S S S +=C .123S S S +>D .123S S S +<9.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是( )A .9B .10C .D .10.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m 处,发现此时绳子末端距离地面2 m ,则旗杆的高度(滑轮上方的部分忽略不计)为( )A .12 mB .13 mC .16 mD .17 m11.在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=( )A.4 B.5 C.6 D.7二、填空题12.△ABC,∠A=90°,a=15,b=12,则c=________.13.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.14.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:尺)的正方形,在水池正中央长有一根芦苇,“有一个水池,水面是一个边长为1丈(1丈10芦苇露出水面1尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是x尺,根据题意,可列方程为__________.15.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共__个.16.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第2个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第3个等腰Rt△ADE,…,依此类推,则第2018个等腰直角三角形的斜边长是___________.三、解答题17.如图,四边形ABCD中,∠B=90°,BB=12,BB=9,BB=8,BB=17,求四边形ABCD的面积.18.如图,三个村庄A,B,C之间的距离分别为BB=5km,BB=12 km,BB=13 km.要从B修一条公路直达AC,已知公路的造价为26000元/km,修这条公路的最低造价是多少?19.“中华人民共和国道路交通管理条例”规定,小汽车在设有中心双实线、中心分隔带、机动车道与非机动车道分隔设施的城市街道上的行驶速度不得超过70千米/时.如图,一辆“小汽车”在一条城市道路上沿直线行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米的C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由20.如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.(1)求梯子底端B外移距离BD的长度;(2)猜想CE与BE的大小关系,并证明你的结论.21.设a=b=c=(1)当x取什么实数时,a,b,c都有意义;(2)若Rt△ABC三条边的长分别为a,b,c,求x的值.参考答案1.C【解析】解:直角三角形的两条直角边的长分别为1;故选C.2.C【解析】解:A、∵12ab+12c2+12ab=12(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×12ab +(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、根据图形不能证明勾股定理,故本选项符合题意;D、∵4×12ab +c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;故选C.3.C【解析】解:当3为斜边时,32=22+x2,解得:当x为斜边时,x2=32+22,解得:∴x故选C.4.A【解析】根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.5.A【解析】解:∵在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,又∵AC2=144,BC2=25,∴AB2=25+144=169,.故选:A.6.A【解析】如图,△ABC 的面积=12×BC×AE=2,由勾股定理得,则12解得 故选A .7.B【解析】解:E B A Q 沿过点的直线折叠,使点与点重合, B EAF 45∠∠∴==︒,AFB 90∠∴=︒,E AB AFB 90∠=︒Q 点为中点,且,1EF AB 2∴=, 3EF 2=Q , 3AB 2EF 232∴==⨯=, ΔRtABC 在中, AB =AC ,AB 3,=BC∴===故选B.8.A【解析】解:设三个半圆的直径分别为:d1、d2、d3,S 1=12×π×(12d)2=21π8d,S 2=12×π×(22d)2=22π8d,S 3=12×π×(32d)2=23π8d.由勾股定理可得:d 12+d22=d32,∴S1+S2=π8(d12+d22)=23π8d=S3,所以S1、S2、S3的关系是:S1+S2=S3.故选A.9.B【解析】如图=如图10==.故选B.10.D【解析】设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选D.11.A【解析】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.12.9【解析】c9.==故答案为9.13.4【解析】解如图所示:在Rt ∆ABC 中,BC=3,AC=5, 由勾股定理可得:AB 2+BC 2=AC 2设旗杆顶部距离底部AB=x 米,则有32+x 2=52, 解得x=4 故答案为:4.14.2225(1)x x +=+ 【解析】设由题意可得:2225(1)x x +=+.故答案为2225(1)x x +=+. 15.4 【解析】解:根据题意可得以AB 为边画直角△ABC,使点C 在格点上,满足这样条件的点C 共 8个.故答案为8.16.)2018 【解析】解:∵△ABC是腰长为1的等腰直角三形,∴△ABC,第2=)2,第3个等腰直角三角形的斜边长是:2=)3,…,∴第2012)2018.2018.17.114【解析】解:如图所示,连接AC,∵∠B=90°,∴BB2=BB2+BB2=225=152,∵BB2+BB2=152+82=289,BB2=289,∴BB2+BB2=BB2,∴BB⊥BB,∴B 四边形BBBB =B Rt △BBB +B Rt △BBB =12×12×9+12×8×15=54+60=114.18.修这条公路的最低造价是12万元. 【解析】解:∵BC 2+AB 2=122+52=169,AC 2=132=169, ∴BC 2+AB 2=AC 2,∴∠ABC=90°,当BD⊥AC 时BD 最短,造价最低,∵S △ABC =12AB•BC=12AC•BD, ∴BB =BB •BB BB=6013km ,6013×2600=12000(万元), 答:最低造价为12000万元. 19.这辆“小汽车”超速了. 【解析】解:这辆“小汽车”超速了,理由:由题意知,130AB =米,50AC =米,且ABC △为直角三角形,AB 是斜边, 根据勾股定理,得222AB BC AC =+, 可以求得:120BC =米0.12=千米,6秒63600=时, 所以速度为小车此时速度为60.12723600÷=千米/时,所以这辆“小汽车”超速了.20.(1)BD=1m ;(2)CE 与BE 的大小关系是CE=BE ,证明见解析. 【解析】(1)∵AO⊥OD,AO=4m ,AB=5m ,,∵梯子的顶端A 沿墙下滑1m 至C 点, ∴OC=AO﹣AC=3m , ∵CD=AB=5m,∴由勾股定理得:OD=4m , ∴BD=OD﹣OB=4m ﹣3m=1m ;(2)CE 与BE 的大小关系是CE=BE ,证明如下: 连接CB ,由(1)知:AO=DO=4m ,AB=CD=5m , ∵∠AOB=∠DOC=90°, 在Rt△AOB 和Rt△DOC 中AB DCAO DO =⎧⎨=⎩, ∴Rt△AOB≌Rt△DOC(HL ), ∴∠ABO=∠DCO,OC=OB , ∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB, ∴∠EBC=∠ECB,∴CE=BE.21.(1)483x-≤≤;(2)x=25或2.【解析】解:(1)由二次根式的性质,得80 34020xxx-≥⎧⎪+≥⎨⎪+≥⎩,解得483x-≤≤;(2)当c为斜边时,由a2+b2=c2,即8-x+3x+4=x+2,解得x=-10,当b为斜边时,a2+c2=b2,即8-x+x+2=3x+4,解得x=2,当a为斜边时,b2+c2=a2,即3x+4+x+2=8-x,解得x=2 5∵48 3x-≤≤∴x=25或2.。

八年级数学勾股定理的实际应用专题练习(含解析答案)

八年级数学勾股定理的实际应用专题练习(含解析答案)

八年级数学勾股定理的实际应用专题练习一.选择题(共5小题)1.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A.3m B.5m C.7m D.9m2.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15 C.5≤a≤12D.5≤a≤133.一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为()A.18海里/小时B.海里/小时C.36海里/小时D.海里/小时4.在直径为10m的圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么油的最大深度是()A.1m B.2m C.3m D.4m5.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为()A.3<h<4 B.3≤h≤4C.2≤h≤4D.h=4二.解答题(共22小题)6.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?7.有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,B在A的正东方向,且相距100里,测得地点C在A的南偏东60°,在B的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(≈1.7)8.如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?9.如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm.求△ABC的面积.10.如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?11.如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D处往上爬到树顶A处,又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?13.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?14.如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?15.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.16.某工厂的大门如图所示,其中下方是高为2.3米、宽为2米的矩形,上方是半径为1米的半圆形.货车司机小王开着一辆高为3.0米,宽为1.6米的装满货物的卡车,能否进入如图所示的工厂大门?请说明你的理由.17.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).请解答:(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是_________.(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、S2、S3之间的数量关系是_________,请说明理由.(3)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为_________,请说明理由.18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?19.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.20.请阅读下列材料:问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)(1)设路线1的长度为L1,则=_________.设路线2的长度为L2,则=_________.所以选择路线_________(填1或2)较短.(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:=_________.路线2:=_________.所以选择路线_________(填1或2)较短.(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.21.如图,正方体边长为30cm,B点距离C点10cm,有一只蚂蚁沿着正方体表面从A点爬到B点,其爬行速度为每秒2cm,则这只蚂蚁最快多长时间可爬到B点?22.如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点),那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要多长?23.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.若AB=4,BC=4,CC1=5,(1)请你在备用图中画出蚂蚁能够最快到达目的地的可能路径;(2)求蚂蚁爬过的最短路径的长.24.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?25.如图所示,圆柱形的玻璃容器,高18cm,底面周长为24cm,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路径.26.如图,一正方形的棱长为2,一只蚂蚁在顶点A处,在顶点G处有一米粒.(1)问蚂蚁吃到这粒米需要爬行的最短距离是多少?(2)在蚂蚁刚要出发时,突然一阵大风将米粒吹到了GF的中点M处,问蚂蚁要吃到这粒米的最短距离又是多少?27.如图所示,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一只老鼠正在偷吃粮食.此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是多少米?(结果不取近似值)参考答案与试题解析一.选择题(共5小题)1.图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A.3m B.5m C.7m D.9m考点:勾股定理的应用.专题:应用题;压轴题.分析:为了不让羊吃到菜,必须<等于点A到圆的最小距离.要确定最小距离,连接OA交半圆于点E,即AE 是最短距离.在直角三角形AOB中,因为OB=6,AB=8,所以根据勾股定理得OA=10.那么AE的长即可解答.解答:解:连接OA,交半圆O于E点,在Rt△OAB中,OB=6,AB=8,所以OA==10;又OE=OB=6,所以AE=OA﹣OE=4.因此选用的绳子应该不大于4m,故选A.点评:此题确定点到半圆的最短距离是难点.熟练运用勾股定理.2.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13考点:勾股定理的应用.专题:压轴题.分析:最短距离就是饮料罐的高度,最大距离可根据勾股定理解答.解答:解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选A.点评:主要是运用勾股定理求得a的最大值,此题比较常见,有一定的难度.3.一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为()A.18海里/小时B.海里/小时C.36海里/小时D.海里/小时考点:勾股定理的应用;方向角.专题:应用题.分析:首先画图,构造直角三角形,利用勾股定理求出船8时到10时航行的距离,再求速度即可解答.解答:解:如图在Rt△ABC中,∠ABC=90°﹣60°=30°,AB=72海里,故AC=36海里,BC==36海里,艘船航行的速度为36÷2=18海里/时.故选B.点评:本题考查方位角、直角三角形、锐角三角函数的有关知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.4.在直径为10m的圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么油的最大深度是()A.1m B.2m C.3m D.4m考点:勾股定理的应用;垂径定理的应用.分析:本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决.解答:解:过点O作OM⊥AB交AB与M,交弧AB于点E.连接OA.在Rt△OAM中:OA=5m,AM=AB=4m.根据勾股定理可得OM=3m,则油的最大深度ME为5﹣3=2m.故选B.点评:考查了勾股定理的应用和垂径定理的应用,圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题.5.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为()A.3<h<4 B.3≤h≤4C.2≤h≤4D.h=4考点:勾股定理的应用.分析:根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的长度最长为16﹣12=4cm;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答进而求出露在杯口外的长度最短.解答:解:①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16﹣12=4(cm);②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线直径为5cm,高为12cm,由勾股定理可得杯里面管长为=13cm,则露在杯口外的长度最长为16﹣13=3cm;则可得露在杯口外的长度在3cm和4cm范围变化.故选B.点评:本题考查了矩形中勾股定理的运用,解答此题的关键是要找出管最长和最短时在杯中所处的位置,然后计算求解.二.解答题(共22小题)6.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?考点:勾股定理的应用.专题:应用题.分析:(1)作BD⊥AE于D,构造两个直角三角形并用解直角三角形用BD表示出CD和AD,利用DA和DC 之间的关系列出方程求解.(2)分别求得两船看见灯塔的时间,然后比较即可.解答:解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD=,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.点评:此题考查的知识点是勾股定理的应用,解答此类题目的关键是构造出直角三角形,利用解直角三角形的相关知识解答.7.有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,B在A的正东方向,且相距100里,测得地点C在A的南偏东60°,在B的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(≈1.7)考点:勾股定理的应用.分析:作CD⊥AB交AB延长线于D,根据勾股定理分别计算出AB和BC的长度,利用速度、时间、路程之间的关系求出各自的时间比较大小即可.解答:解:作CD⊥AB交AB延长线于D,由已知得:∠EAC=60°,∠FBC=30°,∴∠1=30°,∠2=90°﹣60°=30°,∵∠1+∠3=∠2,∴∠3=30°,∴∠1=∠3,∴AB=BC=100,在Rt△BDC中,BD=BC=50,∴DC==50,∵AD=AB+BD=150,∴在Rt△ACD中,AC==100,∴t1号==≈4.25,t2号==,∵<4.25,∴搜救中心应派2号艘救助轮才能尽早赶到C处救援.点评:本题考查了勾股定理的运用、等腰三角形的判定和性质以及速度、时间、路程之间的关系.8.如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?考点:勾股定理的应用.分析:根据题意,知还需要求出BC的长,根据勾股定理即可.解答:解:由勾股定理AB2=BC2+AC2,得BC===2,AC+BC=2+2(米).答:所需地毯的长度为(2+2)米.点评:能够运用数学知识解决生活中的实际问题.熟练运用勾股定理.9.如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm.求△ABC的面积.考点:勾股定理的应用;三角形的面积;含30度角的直角三角形;等腰直角三角形.分析:首先过A作AD⊥CB,根据∠C=45°,可以求出AD=DC,再利用勾股定理求出AD的长,再根据直角三角形的性质求出AB的长,利用勾股定理求出BD的长,最后根据三角形的面积公式可求出△ABC的面积.解答:解:过A作AD⊥CB,∵∠C=45°,∴∠DAC=45°,∴AD=DC,设AD=DC=x,则x2+x2=(12)2,解得:x=12,∵∠B=30°,∴AB=2AD=24,∴BD==12,∴CB=12+12,∴△ABC的面积=CB•AD=72+72.点评:此题主要考查了勾股定理的应用,以及直角三角形的性质,关键是熟练利用直角三角形的性质求出BD、AD的长.10.如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?考点:勾股定理的应用.分析:(1)根据题意可知∠C=90°,AB=2.5m,BC=0.7m,根据勾股定理可求出AC的长度,根据梯子顶端B沿墙下滑0.9m,可求出A1C的长度,梯子的长度不变,根据勾股定理可求出B1C的长度,进而求出BB1的长度.(2)可设点B向外移动的距离的一半为2x,则梯子从顶端A处沿墙AC下滑的距离是x,根据勾股定理建立方程,解方程即可.解答:解:(1)∵AB=2.5m,BC=O.7m,∴AC==2.4m∴A1C=AC﹣AA1=2.4﹣0.9=1.5m,∴B1C==2m,∴BB1=B1C﹣BC=0.5m;(2)梯子从顶端A处沿墙AC下滑的距离是x,则点B向外移动的距离的一半为2x,由勾股定理得:(2.4﹣x)2+(0.7+2x)2=2.52,解得:x=,答:梯子沿墙AC下滑的距离是米.点评:本题考查勾股定理的应用,在直角三角形里根据勾股定理,知道其中两边就可求出第三边,从而可求解.11.如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D处往上爬到树顶A处,又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.考点:勾股定理的应用.分析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2,BC=a(米),AC=b(米),AD=x(米),根据两只猴子经过的路程一样可得10+a=x+b=15解方程组可以求x的值,即可计算树高=10+x.解答:解:Rt△ABC中,∠B=90°,设BC=a(米),AC=b(米),AD=x(米)则10+a=x+b=15(米).∴a=5(米),b=15﹣x(米)又在Rt△ABC中,由勾股定理得:(10+x)2+a2=b2,∴(10+x)2+52=(15﹣x)2,解得,x=2,即AD=2(米)∴AB=AD+DB=2+10=12(米)答:树高AB为12米.点评:本题考查了勾股定理在实际生活中的应用,本题中找到两只猴子行走路程相等的等量关系,并且正确地运用勾股定理求AD的值是解题的关键.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?考点:勾股定理的应用.分析:地毯的长是楼梯的竖直部分与水平部分的和,即AC与BC的和,在直角△ABC中,根据勾股定理即可求得BC的长,地毯的长与宽的积就是面积.解答:解:由勾股定理,AC===12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.点评:正确理解地毯的长度的计算是解题的关键.13.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是BF的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).点评:此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.14.如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?考点:勾股定理的应用.分析:(1)首先根据勾股定理计算BD的长,再根据时间=路程÷速度进行计算;(2)根据在30千米范围内都要受到影响,先求出从点B到受影响的距离与结束影响的距离,再根据时间=路程÷速度计算,然后求出时间段即可.解答:解:(1)在Rt△ABD中,根据勾股定理,得BD===240km,所以,台风中心经过240÷15=16小时从B移动到D点,答:台风中心经过16小时时间从B移动到D点;(2)如图,∵距台风中心30km的圆形区域内都会受到不同程度的影响,∴BE=BD﹣DE=240﹣30=210km,BC=BD+CD=240+30=270km,∵台风速度为15km/h,∴210÷15=14时,270÷15=18,∵早上6:00接到台风警报,∴6+14=20时,6+18=24时,∴他们要在20时到24时时间段内做预防工作.点评:本题考查了勾股定理的运用,此题的难点在于第二问,需要正确理解题意,根据各自的速度计算时间,然后进行正确分析.15.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.考点:勾股定理的应用.专题:计算题.分析:由题意知,△ABC为直角三角形,且AB是斜边,已知AB,AC根据勾股定理可以求BC,根据BC的长度和时间可以求小汽车在BC路程中的速度,若速度大于70千米/时,则小汽车超速;若速度小于70千米/时,则小汽车没有超速.解答:解:由题意知,AB=130米,AC=50米,且在Rt△ABC中,AB是斜边,根据勾股定理AB2=BC2+AC2,可以求得:BC=120米=0.12千米,且6秒=时,所以速度为=72千米/时,故该小汽车超速.答:该小汽车超速了,平均速度大于70千米/时.点评:本题考查了勾股定理在实际生活中的应用,本题中准确的求出BC的长度,并计算小汽车的行驶速度是解题的关键.16.某工厂的大门如图所示,其中下方是高为2.3米、宽为2米的矩形,上方是半径为1米的半圆形.货车司机小王开着一辆高为3.0米,宽为1.6米的装满货物的卡车,能否进入如图所示的工厂大门?请说明你的理由.考点:勾股定理的应用.专题:应用题.分析:根据题中的已知条件可将BB′的长求出,和卡车的高进行比较,若门高低于卡车的高则不能通过否则能通过.解答:解:设BB′与矩形的宽的交点为C,∵AB=1米,AC=0.8米,∠ACB=90°,∴BC===0.6米,∵BB′=BC+CB′=2.3+0.6=2.9<3.0,∴不能通过.点评:考查了勾股定理的应用,本题的关键是建立数学模型,善于观察题目的信息是解题以及学好数学的关键.17.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).请解答:(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是S1+S2=S3.(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、S2、S3之间的数量关系是S1+S2=S3,请说明理由.(3)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为S1+S2=S3,请说明理由.考点:勾股定理的应用.专题:探究型.分析:(1)利用直角△ABC的边长就可以表示出等边三角形S1、S2、S3的大小,满足勾股定理.(2)利用直角△ABC的边长就可以表示出半圆S1、S2、S3的大小,满足勾股定理.解答:解:设直角三角形ABC的三边AB、CA、BC的长分别为a、b、c,则c2=a2+b2(1)S1+S2=S3,证明如下:∵S3=,S1=,S2=∴S1+S2==S3;(2)S1+S2=S3.证明如下:∵S3=,S1=,S2=∴S1+S2=+==S3;(3)过D点作DE∥AB,交BC于E,设梯形的边AB、DC、AD的长分别为a、b、c,可证EC=AD=c,DE=AB=a,∠EDC=180°﹣(∠DEC+∠BCD)=180°﹣(∠ABC+∠BCD)=90°,则c2=a2+b2∵S1=a2、S2=b2、S3=c2,表示,则S1+S2=S3.故答案为:S1+S2=S3;S1+S2=S3;S1+S2=S3.点评:考查了三角形、正方形、圆的面积的计算以及勾股定理的应用.18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?考点:勾股定理的应用.专题:计算题.分析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.解答:解:如图所示:根据题意,得AC=AD﹣BE=13﹣8=5m,BC=12m.根据勾股定理,得AB==13m.则小鸟所用的时间是13÷2=6.5(s).答:这只小鸟至少6.5秒才可能到达小树和伙伴在一起.。

初二勾股定理试题及答案

初二勾股定理试题及答案

初二勾股定理试题及答案一、选择题(每题2分,共10分)1. 直角三角形中,斜边的长度为13,一条直角边的长度为12,另一条直角边的长度为多少?A. 5B. 8C. 9D. 102. 在直角三角形ABC中,∠A是直角,AB=3,AC=4,那么BC的长度是多少?A. 5B. 6C. 7D. 83. 勾股定理的数学表达式是什么?A. a² + b² = c²B. a² - b² = c²C. a² * b² = c²D. a² / b² = c²4. 如果一个三角形的三边长分别为3,4,5,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 非直角三角形5. 已知直角三角形的两条直角边分别为6和8,那么斜边的长度是多少?A. 10B. 12C. 14D. 16二、填空题(每题2分,共10分)6. 直角三角形的两条直角边长分别为3和4,斜边的长度为______。

7. 如果一个三角形的三边长满足a² + b² = c²,那么这个三角形是______三角形。

8. 在直角三角形中,如果斜边的长度为c,两条直角边的长度分别为a和b,那么它们之间的关系可以用______来表示。

9. 勾股定理适用于______三角形。

10. 已知直角三角形的两条直角边分别为5和12,斜边的长度是______。

三、解答题(每题5分,共20分)11. 在直角三角形DEF中,∠D是直角,DE=9,DF=12,求EF的长度。

12. 如果一个三角形的三边长分别为6,8和10,判断这个三角形是否为直角三角形,并说明理由。

13. 已知直角三角形的两条直角边分别为7和24,求斜边的长度。

14. 一个直角三角形的斜边长度为17,一条直角边的长度为8,求另一条直角边的长度。

四、应用题(每题10分,共20分)15. 某建筑工地需要搭建一个三角形的支撑架,已知支撑架的一条直角边长度为5米,斜边长度为13米,求另一条直角边的长度。

八年级初二数学勾股定理练习题含答案

八年级初二数学勾股定理练习题含答案

一、选择题1.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600mB .500mC .400mD .300m 2.在ABC ∆中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( )A .4或14B .10或14C .14D .103.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是( )cm .A .25B .20C .24D .1054.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cmB .152cmC .7cmD .132cm 5.在ΔABC 中,211a b c =+,则∠A( ) A .一定是锐角 B .一定是直角 C .一定是钝角 D .非上述答案6.如图,△ABC 中,AB=10,BC=12,AC=13△ABC 的面积是( ).A .36B .1013C .60D .1213 7.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( )A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形8.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对9.已知三组数据:①2,3,4;②3,4,5;③1,2,5,分别以每组数据中的三个数为三角形的三边长,能构成直角三角形的是( )A .②B .①②C .①③D .②③ 10.已知一个直角三角形的两边长分别为3和5,则第三边长是( )A .5B .4C .34D .4或34 二、填空题11.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.12.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.13.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.14.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.15.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.16.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.17.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.18.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.19.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________20.如图,直线423y x =+与x 轴、y 轴分别交于点B 和点A ,点C 是线段OA 上的一点,若将ABC ∆沿BC 折叠,点A 恰好落在x 轴上的'A 处,则点C 的坐标为______.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.23.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.25.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在 ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5;②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.28.阅读下列一段文字,然后回答下列问题.已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离()()22121212PP x x y y =-+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y .(1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.29.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC ,DC ,EC 之间满足的等量关系式为 ;②求证:BD 2+CD 2=2AD 2;(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.30.如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A 出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).(1)AE=(用含t的代数式表示),∠BCD的大小是度;(2)点E在边AC上运动时,求证:△ADE≌△CDF;(3)点E在边AC上运动时,求∠EDF的度数;(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【详解】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,22AB BC=500m,∴CE=AC-AE=200,从B 到E 有两种走法:①BA+AE=700m ;②BC+CE=500m ,∴最近的路程是500m .故选B .【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.2.A解析:A【分析】根据AC =13,AD =12,CD =5,可判断出△ADC 是直角三角形,在Rt △ADB 中求出BD ,继而可得出BC 的长度.【详解】∵AC =13,AD =12,CD =5,∴222AD CD AC +=,∴△ABD 是直角三角形,AD ⊥BC ,由于点D 在直线BC 上,分两种情况讨论:当点D 在线段BC 上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则14BC BD CD =+=;②当点D 在BC 延长线上时,如图所示,在Rt △ADB 中,229BD AB AD =-=, 则4BC BD CD =-=. 故答案为:A.【点睛】本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.3.A解析:A【分析】分三种情况讨论:把左侧面展开到水平面上,连结AB ;把右侧面展开到正面上,连结AB ,;把向上的面展开到正面上,连结AB ;然后利用勾股定理分别计算各情况下的AB ,再进行大小比较.【详解】把左侧面展开到水平面上,连结AB ,如图1()2210205925537AB =++==把右侧面展开到正面上,连结AB ,如图2()()222010562525AB =++== 把向上的面展开到正面上,连结AB ,如图3()()2210205725529AB =++==>>∴25>>∴需要爬行的最短距离为25cm故选:A .【点睛】本题考查了平面展开及其最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.4.A解析:A【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm ,设AF=xcm ,则DF=(8-x)cm ,在Rt△AFD 中,利用勾股定理即可求得x 的值.【详解】∵四边形ABCD 是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m ,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF设AF=xcm ,则DF=(8-x )cm在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm , 222(8)6x x =-+254x cm = 故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.5.A解析:A【解析】【分析】根据211a b c=+以及三角形三边关系可得2bc >a 2 ,再根据(b-c ) 2 ≥0,可推导得出b 2 +c 2 >a 2 ,据此进行判断即可得. 【详解】∵211a b c =+, ∴2b c a bc+=,∴2bc=a (b+c ),∵a 、b 、c 是三角形的三条边,∴b+c >a ,∴2bc >a·a , 即2bc >a 2 ,∵(b-c ) 2 ≥0,∴b 2 +c 2 -2bc≥0,b 2 +c 2 ≥2bc ,∴b 2 +c 2 >a 2 ,∴一定为锐角,故选A .【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b 2 +c 2 >a 2 是解题的关键.6.A解析:A【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解.【详解】如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=213∴(()22221021312x x -=-- ∴8x = ∴22221086AD AB BD =-=-=∴△ABC 的面积111263622BC AD =⨯=⨯⨯= 故选:A .【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.7.D解析:D【分析】由(a-b )(a 2-b 2-c 2)=0,可得:a-b=0,或a 2-b 2-c 2=0,进而可得a=b 或a 2=b 2+c 2,进而判断△ABC 的形状为等腰三角形或直角三角形.【详解】解:∵(a-b )(a 2-b 2-c 2)=0,∴a-b=0,或a 2-b 2-c 2=0,即a=b 或a 2=b 2+c 2,∴△ABC 的形状为等腰三角形或直角三角形.故选:D .【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a 2+b 2=c 2的三角形是直角三角形.8.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒222AD CD AC ∴+=13AC ∴=13AB AC ∴==故ABC 是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.9.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】由题意得:①2222+3=134≠ ;②2223+4=25=5 ;③()2221+2=5=5 , 所以能构成直角三角形的是②③. 故选D . 【点睛】 考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形. 10.D 解析:D【详解】解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x ,则由勾股定理得到:x =2253-=4;②当5是此直角三角形的直角边时,设另一直角边为x ,则由勾股定理得到:x =2253+=34故选:D二、填空题11.【解析】如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴ ∠90°.根据勾股定理可得.12.21021332【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==, ∴25AB =, 情况一:当25AD AB ==时,作AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即455AE =,1455DE = ∴22855CE AC AE =-= ∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即455BE =,1455DE = ∴22255CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E∴1122BC AC AB BE ⋅=⋅,∴45BE = 355CE ∴= ∵ABD △为等腰直角三角形 ∴152BF DF AB === ∴955DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-= ∴2232CD CE E D ''=+=故答案为:1021332【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 13.48【分析】用a 和b 表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出2S 的面积.【详解】解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a ,较短的长度为b ,即图中的AE a =,AH b =,则()221S AB a b ==+,2222S HE a b ==+,()223S TM a b ==-, ∵123144S S S ++=,∴()()2222144a b a b a b ++++-= 22222222144a b ab a b a b ab ++++++-=2233144a b +=2248a b +=,∴248S=.故答案是:48.【点睛】本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用.14.(0,21009)【解析】【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【详解】∵∠OAA1=90°,OA=AA1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt△OA2A3,…,∴OA1=2,OA2=(2)2,…,OA2018=(2)2018,∵A1、A2、…,每8个一循环,∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018=()20182=21009,故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.15.413【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,222264213BD BE DE=++=,∴BC =2BD =413, 故答案为:413.【点睛】 本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.16.23或2【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4, ∴22224223AC AB BC =-=-=,当AC 为腰时,则该三角形的腰长为23;当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,设DE=x ,则AD=2x ,∵222AE DE AD +=,∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:32【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.17.【分析】根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.【详解】∵AB =13,EF =7,∴大正方形的面积是169,小正方形的面积是49,∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯=,∴2ab=120,a2+b2=169,∴(a+b)2=a2+b2+2ab=169+120=289,∴a+b=17,∵a﹣b=7,解得:a=12,b=5,∴AE=12,DE=5,∴AH=12﹣7=5.故答案为:5.【点睛】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.18.7或29或65【分析】分三种情形讨论:(1)如图1中,以点C所在顶点为直角时;(2)如图2中,以点D所在顶点为直角时;(3)如图3中,以点A所在顶点为直角时.【详解】(1)如图1中,以点C所在顶点为直角时.∵AC=CD=4,BC=3,∴BD=CD+BC=7;(2)如图2中,以点D所在顶点为直角时,作DE⊥BC与E,连接BD.在Rt△BDE中DE=2,BE=5,∴BD2229=+=;DE BE(3)如图3中,以点A所在顶点为直角时,作DE⊥BC于E,在Rt△BDE中,DE=4.BE=7,∴BD2265=+=.DE BE故答案为:7或29或65.【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.19.【解析】【分析】延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.【详解】如图,延长AD、BC相交于E,∵∠A=60°,∠B=∠ADC=90°,∴∠E=30°∴AE=2AB,CE=2CD∵AB=3,AD=4,∴AE=6, DE=2设CD=x,则CE=2x,DE=x即x=2x=即CD=故答案为:【点睛】本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE和直角△CDE,是解题的关键.20.(0,34).【分析】由423y x=+求出点A、B的坐标,利用勾股定理求得AB的长度,由此得到53122OA'=-=,设点C的坐标为(0,m),利用勾股定理解得m的值即可得到答案.【详解】在423y x=+中,当x=0时,得y=2,∴A(0,2)当y=0时,得4203x +=,∴32x =-,∴B(32-,0), 在Rt △AOB 中,∠AOB=90︒,OA=2,OB=32,∴52AB ===, ∴53122OA '=-=, 设点C 的坐标为(0,m )由翻折得ABC A BC '≌,∴2A C AC m '==-,在Rt A OC '中, 222A C OC A O ''=+,∴222(2)1m m -=+,解得m=34, ∴点C 的坐标为(0,34). 故答案为:(0,34). 【点睛】此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC '≌是解题的关键,得到OC 与A’C 的数量关系,利用勾股定理求出点C 的坐标. 三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM BM ,进而可得BE +CF (BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D 是线段BC 的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN.∵DN=FN,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.BF 的长为32【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3∴BF ===【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.23.(1)2)83;(3)5.5秒或6秒或6.6秒 【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,)PQ cm ==;(2)解:根据题意得:BQ BP =,即28t t =-, 解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形; (3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.24.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,FG=32BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+(3BF)2∴DE2=(EB+12AD)2+(3AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.(1)12;(2)t=12.5s时,13 cm;(3)11s或12s或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC= PA=t,则PB=16-t.在Rt△BPC中,由勾股定理可求得t的值,判断出此时,点Q在边AC上,根据CQ=2t-BC计算即可;(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分BQ=BC、CQ=BC和BQ=CQ三种情况,分别得到关于t的方程,可求得t的值.【详解】(1)在Rt△ABC中,BC2222212016AC AB=-=-=(cm).故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t .在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(, 解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6, ∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.26.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=, ∵2AE AP ==90EAP ∠=︒,∴22PE AE ==,∴()22227BE +=,解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 4532HB BE =︒==, ∴点B 到直线AE 的距离为62,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确; ③在Rt AHB 中,由①知:6EH HB == ∴62AH AE EH =+=, 22222256623AB AH BH =+=+=+⎭⎝⎭,21153222ABD S AB AD AB ∆=⋅==+ ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,∵A C 、关于 BD 的对称, ∴523AB BC ==+,∴225231043AC BC ==+=+,∴ min PC AC AP =-,10432=+-,故④错误;⑤∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS ≅,∴ABP ADE ∠=∠,∵AN BN =,∴ABP NAB ∠=∠,∴EAN ADE ∠=∠,∵90EAN DAN ∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.27.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.28.(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P 的坐标为(1304,)时,PD+PF【解析】【分析】(1)根据阅读材料中A 和B 的坐标,利用两点间的距离公式即可得出答案;由于M 、N 在平行于y 轴的直线上,根据M 和N 的纵坐标利用公式1|y -2|y 即可求出MN 的距离; (2)由三个顶点的坐标分别求出DE ,DF ,EF 的长,即可判定此三角形的形状;(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时PD PF +最短,最短距离为DF',P 的坐标即为直线DF'与x 轴的交点.【详解】解:(1)∵()2, 4A 、()3, 8B --∴AB 13==故A 、B 两点间的距离为:13.∵M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1∴()MN 415=--=故M 、N 两点的距离为5.(2)∵()1, 6D 、()3, 3E -、()4, 2F∴()()22DE 13635=++-= ()()22DF 14625=-+-= ()()22EF 343252=--+-=∴DE=DF ,222DE DF EF +=∴△DEF 为等腰直角三角形 (3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时DP+PF 最短设直线DF'的解析式为y=kx+b 将D (1,6),F'(4,-2)代入得:642k b k b +=⎧⎨+=-⎩解得83263k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线DF'的解析式为:826y 33x =-+ 令y=0,解得13x 4=,即P 的坐标为(1304,) ∵PF=PF'∴PD+PF=PD+ PF'= DF'()()22146273-++=故当P 的坐标为(1304,)时,PD+PF 73 【点睛】本题属于一次函数综合题,待定系数法求一次函数解析式以及一次函数与x 轴的交点,弄清楚材料中的距离公式是解决本题的关键.29.(1)①BC=DC+EC,理由见解析;②证明见解析;(2)6.【解析】【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【详解】(1)①解:BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=EC,∴BC=DC+BD=DC+EC,;故答案为:BC=DC+EC;②证明:∵Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=∠ACB+∠ACE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(2)解:作AE⊥AD,使AE=AD,连接CE,DE,如图2所示:∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE===6,∵∠DAE=90°,∴AD=AE=DE=6.【点睛】本題是四边形综合题目,考查的是全等三角形的判定和性质、等直角三角形的性质、勾股定理、直角三角形的判定等知识:本题综合性强,熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.30.(1)t,45;(2)详见解析;(3)90°;(4)t的值为2﹣1或2+1,BE=3.【解析】【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)根据SAS即可证明△ADE≌△CDF;(3)由△ADE≌△CDF,即可推出∠ADE=∠CDF,推出∠EDF=∠ADC=90°;(4)分两种情形分别求解即可解决问题.【详解】(1)由题意:AE=t.∵CA=CB,∠ACB=90°,CD⊥AB,∴∠BCD=∠ACD=45°.故答案为t,45.(2)∵∠ACB=90°,CA=CB,CD⊥AB,∴CD=AD=BD,∴∠A=∠DCB=45°.∵AE=CF,∴△ADE≌△CDF(SAS).(3)∵点E在边AC上运动时,△ADE≌△CDF,∴∠ADE=∠CDF,∴∠EDF=∠ADC=90°.(4)①当点E在AC边上时,如图1.在Rt△ACB中,∵∠ACB=90°,AC=CB,AB=2,CD⊥AB,∴CD=AD=DB=1,AC=BC2=∵CE=CD=1,∴AE=AC﹣CE2=1.=1,∴t2。

八年级数学勾股定理30道必做题(含答案和解析)

八年级数学勾股定理30道必做题(含答案和解析)

八年级数学勾股定理30道必做题(含答案和解析)1、如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a ,b ,c. A ,B ,N ,E ,F 五点在同一直线上,则c = .(用含有a ,b 的代数式表示).答案:√a 2+b 2.解析:由三个正方形如图的摆放.∵四边形ABCD ,EFGH ,NHMC 都是正方形. ∴∠CNB +∠ENH =90°.又∵∠CNB +∠NCB =90°,∠ENH +∠EHN =90°. ∴∠CNB =∠EHN ,∠NCB =∠ENH. 在△CBN 和△NEH 中:{∠BNC =∠EHNNC =HN ∠NCB =∠HNE .∴△CBN ≌△NEH (ASA ). ∴HE =BN.在Rt △CBN 中,BC 2+BN 2=CN 2.又已知三个正方形的边长分别为a ,b ,c. 则有a 2+b 2=c 2. ∴c =√a 2+b 2.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理. 四边形——正方形——正方形的性质.2、在Rt △ABC 中,斜边长BC =3,AB 2+AC 2+BC 2的值为( ). A.9 B.18 C.6 D. 无法计算答案:B.解析:在Rt△ABC中,斜边长BC=3.BC2=AB2+AC2=9.∴AB2+AC2+BC2=9+9=18.考点:三角形——直角三角形——勾股定理.3、三角形三边长分别为① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.其中能构成直角三角形的有.答案:①②③④⑤⑥.解析:① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.全都能构成直角三角形.考点:三角形——直角三角形——勾股数.4、已知点A(3,5),B(-1,1)那么线段AB的长度为().A.4B.3√2C.4√2D.5答案:C.解析:已知A(3,5)和B(-1,1),由两点间的距离公式可知AB=√(3+1)2+(5−1)2=4√2.考点:函数——平面直角坐标系——坐标与距离.5、等腰直角三角形的斜边为10,则腰长为,斜边上的高为.答案:1.5√2.2.5.解析:等腰三角形的三边关系为1∶1∶√2.因为等腰直角三角形的斜边为10,则腰长为5√2.斜边上的高,即为斜边的中线,为斜边的一半,长为5.考点:三角形——直角三角形——等腰直角三角形——勾股定理.6、若正方形的周长为40,则其对角线长为().A.100B.20√2C.10√2D.10答案:C.解析:正方形边长为10,根据勾股定理得对角线长为10√2.考点:三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.7、在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AC的长是().A.2B.√32C.√3D.√3+2答案:C.解析:略.考点:三角形——直角三角形——勾股定理.8、等边三角形的边长为4,则它的面积是.答案:4√3 .解析:等边三角形的面积=√34×42=4√3.考点:三角形——直角三角形——含30°角的直角三角形.9、已知一个直角三角形的两条直角边分别为3,4,则此三角形斜边是__________,斜边上的高为__________.A.5;125B.6;145C.6;125D.5;145答案:A.解析:略.考点:三角形——三角形基础——三角形面积及等积变换.直角三角形——勾股定理.10、直角三角形两直角边长分别为5和12,则它的斜边上的高为.答案:6013.解析:设斜边的长为c,斜边上的高为h.∵直角三角形的两直角边长分别为5和12.∴c=√52+122=13.∴5×12=13h,解得h=60.13考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.11、如图所示,小明同学在距离某建筑物6米的点A处测得条幅两端点B,C点的仰角分别为60°和30°,则条幅的高度BC为米(结果可以保留根号).答案:4√3.=2√3,BC=BD−CD=4√3.解析:依题可知,BC=6√3,CD=√3考点:三角形——直角三角形——含30°角的直角三角形.三角形——锐角三角函数——解直角三角形.12、一张直角三角形的纸片,按图所示折叠,使两个锐角的顶点A,B重合,若∠B=30°,AC=√3,则DC的长为.答案:1.解析:由题知∠DAE=∠B=30°.∴∠DAC=90°-∠B-∠DAE=30°.AC=1.∴在Rt△ADC中,DC=√33考点:三角形——直角三角形——含30°角的直角三角形.13、已知:如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,D是AB延长线上一点且∠CDB=45°.求DB与DC的长.答案:证明见解析.解析:过C作CE⊥AB于E.在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4.∴BC=2,∠ABC=60°.∴∠BCE=30°.∴BE=1,CE=√3.在Rt△CDE中,∠CED=90°,∠CDB=45°.∴∠ECD=45°.∴DE=CE=√3.∴CD=√CE2+DE2=√6.∴BD=√3-1.考点:三角形——直角三角形——含30°角的直角三角形——等腰直角三角形——勾股定理.14、如图,数轴上有两个Rt△OAB,Rt△OCD,OA,OC是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O为圆心,OA,OC为半径画弧交x轴于E,F,则E,F分别对应的数是.答案:−√2,√5.解析:在Rt△OAB中,OA=√OB2+AB2=√2.∴OE=√2.∴点E对应的数为−√2.在Rt△OCD中,OC=√OD2+CD2=√5.∴OF=√5.∴点F对应的数为√5.考点:数——有理数——数轴.三角形——直角三角形——勾股定理.15、在△ABC中,三条边的长分别为AB=√5,BC=√10,AC=√13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格,其中每个小正方形的边长为1,再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样就不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为√2a,√13a,√17a(a>0).请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积填写在横线上.(3)若△ABC中有两边的长分别为√2a,√10a(a>0).且△ABC的面积为2a2,试运用构图法在图3的正方形网格(每个小正方形的边长为a)中画出所有符合题意的△ABC(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上..答案:(1)72a2.(2)52(3)4a或2√2a.解析:(1)△ABC的面积为72.(2)△ABC的面积为52a2.(3)图中三角形为符合题意的三角形.第三边的长度为4a或2√2a.考点:函数——平面直角坐标系——坐标与面积.三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.16、在Rt△ABC中,∠C=90°,若a+b=5,c=4,则S△ABC=.答案:94.解析:在Rt△ABC中,由勾股定理得,a2+b2=c2.又有(a+b)2=a2+b2+2ab,∴(a+b)2-c2=2ab.∴S△ABC=12ab=94.考点:三角形——直角三角形——勾股定理.17、已知Rt△ABC的周长为2+√6,其中斜边AB=2,则这个三角形的面积为.答案:12.解析:在Rt△ABC中,设BC=a,AC=b.由勾股定理得a2+b2=4.由题意得a +b +2=2+√6. ∴a +b =√6. ∴ab =(a+b)2−(a 2+b 2)2=6−42=1.∴s =12ab =12.考点:式——整式——完全平方公式.三角形——直角三角形——勾股定理.18、在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为 . 答案:132cm. 解析:略.考点:三角形——直角三角形——勾股定理.19、如图所示,在平静的湖面上,有一支红莲,高出水面1m ,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m ,求水深是多少?答案:水深为1.5米.解析:设水深AC 为x 米.则红莲的长是(x +1)米.在Rt △ABC 中,根据勾股定理得,AC 2+BC 2=AB 2. ∴(x +1)2=x 2+4. 解得x =1.5. 答:水深为1.5米.考点:三角形——直角三角形——勾股定理——勾股定理的应用.20、如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA ⊥AB ,AD =1,BD =√17,则BC 的长为 ..答案:178解析:在Rt△ABD中,由勾股定理可知,AD=1,BD=√17,AB=4.设BC=BD=x,AC=4-x..由勾股定理可知12+(4-x)2=x2,解得x=178考点:三角形——直角三角形——勾股定理.21、如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于.答案:6.解析:∵AB=10,EF=2.∴大正方形的面积是100,小正方形的面积是4.∴四个直角三角形的面积和为100-4=96.ab=96.设AE=a,DE=b,即4×12∴2ab=96,a2+b2=100.∴a+b=14.∵a-b=2.解得a=8,b=6.∴AE=8,DE=6.∴AH=8-2=6.考点:方程与不等式——二元一次方程组——解二元一次方程组.三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.22、在Rt△ABC中,AC=5,BC=12,则AB边的长是.答案:13或√119.解析:若AC=5,BC=12都是直角边,则AB=13.若BC=12是斜边,则AB=√122−52=√119.考点:三角形——直角三角形——勾股定理.23、等腰三角形的一边长为12,另一边长是10,则其面积为.答案:48或5√119.解析:作出底边上的高AD.当AB=AC=12,BC=10时,BD=5.由勾股定理得:AD=√AB2−BD2=√119.∴S=12BC×AD=12×10×√119=5√119.当AB=AC=10,BC=12时,BD=6.由勾股定理得:AD=√AB2−BD2=√102−62=8.∴S=12BC×AD=48.考点:三角形——直角三角形——勾股定理.24、在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.答案:66或126.解析:如图所示,分如下两种情况:由勾股定理可得,B1H=B2H=5,CH=16.∴CB1=21,CB2=11.∴△ABC的面积为66或126cm2.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.25、下列各组数中,不能构成直角三角形的是().A.3,4,5B.1,1,√2C.5,12,13D.4,6,8答案:D.解析:∵32+42=52,∴选项A正确.∵12+12=(√2)2,∴选项B正确.∵52+122=132,∴选项C正确.∵42+62≠82,∴选项D错误.考点:三角形——直角三角形——勾股定理的逆定理.26、在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,如果三边长满足b2-a2=c2,那么△ABC中互余的一对角是.答案:∠A和∠C.解析:∵b2-a2=c2.∴b2=a2+c2.∴△ABC为直角三角形,且∠B=90°.∴∠A+∠C=90°.考点:几何初步——角——余角和补角.三角形——直角三角形——勾股定理的逆定理.27、如图所示,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD.求证:△AEF 是直角三角形.答案:证明见解析.解析:如图所示,延长FE交AB的延长线于点G.∵∠C=∠GBE=90°,CE=BE,∠1=∠2.∴△CEF≌△BEG.∴EF=EG,CF=BG.设正方形ABCD的边长为a,则CF=14a,DF=34a.在Rt△ADF中,根据勾股定理,得AF2=AD2+DF2=a2+(34a)2=2516a2.∴AF=54a,BG=14a.∴AG=54a.∴AF=AG.∵EF=EG.∴AE⊥FG.∴∠AEF=90°.∴△AEF是直角三角形.考点:三角形——全等三角形——全等三角形的应用.三角形——等腰三角形——等腰三角形的性质.三角形——直角三角形——勾股定理——勾股定理的逆定理.28、如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.答案:四边形ABCD的面积为1+√5.解析:连接AC.∵∠ABC=90°,AB=1,BC=2.∴AC=√AB2+BC2=√5.在△ACD中,AC2+CD2=5+4=9=AD2.∴△ACD是直角三角形.∴S四边形ABCD=12AB×BC+12AC×CD=12×1×2+12×√5×2=1+√5.故四边形ABCD的面积为1+√5.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理——勾股定理的逆定理.29、在△ABC中,点D为BC的中点,点M,N分别为AB,AC上的点,且MD⊥ND.(1)若∠A=90°,以线段BM,MN,CN为边能否构成一个三角形?若能,该三角形是锐角三角形,直角三角形或钝角三角形?(2)如果BM2+CN2=DM2+DN2,求证AD2=14(AB2+AC2).答案:(1)能,该三角形是直角三角形.(2)证明见解析.解析:(1)略.(2)延长ND至E,使DE=DN,连接EB,EM,MN.因为DE=DN,DB=DC,∠BDE=∠CDN,则△BDE≌△CDN.从而BE=CN,∠DBE=∠C.而DE=DN,∠MDN=90°,故ME=MN.因此DM2+DN2=MN2=ME2.即BM2+BE2=ME2,则∠MBE=90°.即∠MBD+∠DBE=90°.因为∠DBE=∠C,故∠MBD+∠C=90°.则∠BAC=90°.AD为Rt△ABC斜边BC上的中线.BC.故AD=12(AB2+AC2).由此可得AD2=14考点:三角形——全等三角形——全等三角形常用辅助线——倍长中线.三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理.30、阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP’C,连接PP’,得到两个特殊的三角形,从而将问题解决.(1)图1中∠APB的度数等于.(2)如图3,在正方形ABCD内有一点P,且PA=2√2,PB=1,PD=√17,则∠APB的度数等于,正方形的边长为.(3)如图,在正六边形ABCDEF内有一点,且PA=2,PB=1,PF=√13,则∠APB的度数等于,正六边形的边长为(并写出解答过程).答案:(1)150°.(2)1.135°.2.√13.(3)1.120°.2.√7.解析:(1)∵△ABC为正三角形,PA=P’A.∴△AP P’为正三角形.∴∠A P’P=60°,P’P=AP=3.∵P’C=PB=4,PC2=P’P2+P’C2.∴∠PP’C=90°.∴∠APB=∠AP’C=150°.(2)1.135°;2.√13.(3)图4中∠APB的度数等于120°,正六边形的边长为√7.将△APB绕点A逆时针旋转120°得到△A P’F,连接P’P.过点A作AN⊥P’P,过点A作AH⊥FP’于点H.∵△APB绕点A逆时针旋转120°得到△A P’F.∴∠PAP’=120°,P’A=PA=2,P’F=PB=1.∴∠AP’P=30°.在Rt△ANP’中,P’A=2AN=2.∴P’N=√3.∴PP’=2√3.在△FPP’中,PF=√13,PP’=2√3,P’F=2.∴PF2=P’F2+P’P2.∴∠FP’P=90°.∴∠APB=∠FP’A=∠FP’P+∠AP’P=120°.∴∠HP’A=60°.在Rt△HP’A中,AP’=2, ∠P’AH=30°.∴HP’=1.在Rt△HFA中,FA2=FH2+HA2.∴FA=√FH2+HA2=√7.考点:三角形——直角三角形——勾股定理——勾股定理的逆定理.几何变换——图形的旋转——旋转全等.。

勾股定理练习题(含答案)

勾股定理练习题(含答案)

勾股定理练习题一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B 。

若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2。

Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+B 。

c b a >+C 。

c b a <+ D. 222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k 〉1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+1 4。

已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337。

※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d (D )d8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17B 。

3C 。

17或3D 。

以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形 B:等边三角形C:钝角三角形 D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__。

初二勾股定理练习题答案

初二勾股定理练习题答案

初二勾股定理练习题答案1. 勾股定理是平面几何中的一条重要定理,被广泛应用于各种数学问题的解决过程中。

在初中学习阶段,勾股定理是一个非常基础且重要的知识点,学生们通过掌握勾股定理可以解决与直角三角形有关的各种问题。

以下是一些初二勾股定理练习题的答案,供同学们参考和复习。

2. 第一题:已知直角三角形的直角边分别为5cm和12cm,求斜边的长度。

解答:根据勾股定理,斜边的平方等于直角边的平方和。

设斜边长度为c,则有c² = 5² + 12²。

计算得到c² = 25 + 144 = 169,因此c =√169 = 13。

所以斜边的长度为13cm。

3. 第二题:已知直角三角形的斜边长度为10cm,一条直角边长度为6cm,求另一条直角边的长度。

解答:根据勾股定理,斜边的平方等于两直角边的平方和。

设另一直角边长度为a,则有a² + 6² = 10²。

计算得到a² + 36 = 100,因此a² = 100 - 36 = 64,即a = √64 = 8。

所以另一直角边的长度为8cm。

4. 第三题:已知直角三角形的一条直角边长度为9cm,斜边长度为15cm,求另一条直角边的长度。

解答:根据勾股定理,斜边的平方等于两直角边的平方和。

设另一直角边长度为b,则有9² + b² = 15²。

计算得到81 + b² = 225,因此b² = 225 - 81 = 144,即b = √144 = 12。

所以另一直角边的长度为12cm。

5. 第四题:已知一个直角三角形的两条直角边分别为7cm和24cm,求斜边的长度。

解答:根据勾股定理,斜边的平方等于直角边的平方和。

设斜边长度为d,则有d² = 7² + 24²。

计算得到d² = 49 + 576 = 625,因此d =√625 = 25。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 勾股定理知识要点:1. 勾股定理:对于任意的直角三角形,如果它的两条直角边分别为a 、 b ,斜边为c ,那么一定有a 2+b 2=c 2; 2. 直角三角形的判定:如果三角形的三边长a 、 b 、 c 有关系: a 2+b 2=c 2,那么这个三角形是直角三角形。

3、勾股数的推算公式:(1)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。

(2)如果k 是大于1的奇数,那么k, 212-k ,212+k 是一组勾股数。

(3)如果k 是大于2的偶数,那么k, 122-⎪⎭⎫ ⎝⎛K ,122+⎪⎭⎫⎝⎛K 是一组勾股数。

(4)如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。

典型例题: 一、逆向思考型例1、(1)如图1,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是( )(A )CD 、EF 、GH (B )AB 、EF 、GH (C )AB 、CD 、GH (D )AB 、CD 、EF图1解:在Rt △EAF 中,AF=1,AE=2,根据勾股定理,得EF AE AF =+=+=2222215同理AB GH CD ===221325,,。

计算发现()()()52213222+=,即AB EF GH 222+=,根据勾股定理的逆定理得到AB 、EF 、GH 为边的三角形是直角三角形。

故选(B )。

(2)如图,图中所有的四边形都是正方形,所有的三角形都是直角三角形,若所有的正方形的面积之和为507cm 2,试求最大的正方形的边长。

分析:此题显然与勾股定理的几何意义有关,即S 1+S 2=S 3,S 5+S 6=S 4,S 3+S 4=S 阴 所以S 1+S 2+S 5+S 6=S 3+S 4=S 阴从而有3S 阴=507,即S 阴=169(cm 2) ∴最大的正方形的边长为13cm二、探索规律型例2、如图2,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…。

(1)记正方形ABCD 的边长a 11=,依上述方法所作的正方形的边长依次为a 2,a a a a a a n 34234,,…,,求出,,的值。

(2)根据以上规律写出第n 个正方形的边长a n 的表达式。

图2解:(1)因为四边形ABCD 为正方形,图形中有多个等腰直角三角形所以根据勾股定理AC AB BC =+=222同理AE=2,EH =22因为a a a a 1021324312222222=======()()()(),,,(2)根据以上规律,第n 个正方形的边长a n n n =≥-()211()(n 是自然数)三、观图解答型例3、在直线l 上依次摆放着七个正方形(如图3所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________。

图3解:S 1代表面积为S 1的正方形的边长的平方,S 2代表面积为S 2的正方形的边长的平方,又S S 12+代表斜放置的正方形1的边长的平方和,故S S 12+=斜放置的正方形1的面积;同理S S 34+=斜放置的正方形3的面积;所以S S S S 123413+++=+。

四、折叠构造型例4、如图4,将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G 。

如果M 为CD 边的中点,求证:DE :DM :EM=3:4:5。

图4解:(1)由折叠知,EM=EA ,设CD=2a 所以DE a EM DM a =-=2,在Rt △EDM 中,EM DE DM 222=+所以EA a EA a 2222=-+()解得EA a =54所以ED a =34所以DE DM EM a a a ::::::==3454345。

五、类比猜想型例5、△ABC 中,BC=a ,AC=b ,AB=c ,若∠C=90°,如图5(1),根据勾股定理,则a b c 222+=。

若△ABC 不是直角三角形,如图5(2)和5(3),请你类比勾股定理,试猜想a b 22+与c 2的关系,并证明你的结论。

图5解:若△ABC 是锐角三角形,则有a b c 222+>若△ABC 是钝角三角形,∠C 为钝角,则有a b c 222+<。

当△ABC 是锐角三角形时图6证明:过点A 作AD ⊥BC ,垂足为D ,设CD 为x ,则有BD a x =-根据勾股定理,得b x AD c a x 22222-==--()即b x c a ax x 222222-=-+-所以a b c ax 2222+=+因为a>0,x>0,所以20ax >所以a b c 222+> 当△ABC 是钝角三角形时图7证明:过B 作BD ⊥AC ,交AC 的延长线于D 。

设CD 为x ,则有BD a x 222=-根据勾股定理,得()b x a x c ++-=2222即a b bx c 2222++=因为b>0,x>0所以2bx>0所以a b c 222+<六、用方程观点解题例6.(1) 已知:如图,△ABC 中,AB=3,BC=4,∠B=90°,若将△ABC 折叠,使C 点与A 点重合,求折痕EF 的长。

分析:当解这样的问题时,由轴对称的概念,自然想到连AF 。

由已知,可得,因此欲求EF ,只要求AF 的长。

设AF=x ,则FC=x ,BF=4-x 只要利用Rt △ABF 中,AF 2-BF 2=AB 2这个相等关系布列方程, x 2-(4-x)2=9(2)已知:如图8,△ABC 中,AB=13,BC=21,AC=20,求△ABC 的面积。

分析:为了求△ABC 的面积,只要求出BC 边上的高AD 若设BD=x ,则DC=21-x ,只要利用AB 2-BD 2=AD 2=AC 2-DC 2这个相等关系,列方程132-x 2=202-(21-x)2,求出x 的值问题就能解决。

例7、已知,如图,折叠长方形(四个角都是直角,对边相等)的一边AD 使点D 落在BC 边的点F 处,已知AB = 8cm ,BC = 10 cm ,求EC 的长。

答案:3D E例8、(1)如图,圆柱的高为10 cm ,底面半径为2 cm.,在下底面的A 点处有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处,需要爬行的最短路程是多少? 答案2210)2(+π例9、一架梯子AB 的长度为25米,如图斜靠在墙上,梯子底端离墙底端BC 为7米。

(1)这个梯子顶端离地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向滑动了几米?答案:(1)24 (2)55-7例10、细心观察图,认真分析各式,然后解答问题:(1)用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长; (3)求出的值。

BCAAC BA答案 (1)挑战自我:1.(2009年达州)图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是 A .13 B .26 C .47 D .94 【答案】C2.(2010年眉山)如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )答案:CA .90°B .60°C .45°D .30°3.(2009恩施市)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( ) A..25 C.5+ D .35【答案】B4.(2009年滨州)某楼梯的侧面视图如图4所示,其中4AB =米,30BAC ∠=°,90C ∠=°,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 .【答案】(2+23)米.5. (2009年四川省内江市)已知Rt △ABC 的周长是344+,斜边上的中线长是2,则S △ABC =_______【答案】8 关键词:边上的中线等于斜边的一半,勾股定理,完全平方公式.BC A30°6.(2009年湖南)如图,等腰ABC △中,AB AC =,AD 是底边上的高,若5cm 6cm AB BC ==,,则AD = cm .【答案】4【解析】本题考查了等腰三角形的性质和勾股定理。

根据等腰三角形的三线合一可得:)(362121cm BC BD =⨯==,在直角三角形ABD 中,由勾股定理得:222AD BD AB +=,所以,)(4352222cm BD AB AD =-=-=。

7.(2009年浙江省湖州市)如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .【答案】2π8.(2009年宜宾)已知:如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为 .【答案】29.E第12题图8题9.(2009年)如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A 与甲、乙楼顶B C 、刚好在同一直线上,若小明的身高忽略不计,则乙楼的高度是 米.10.(2009年安徽)13、长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .【答案】10题11.(2009年山东青岛市)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始B A6cm 3cm1cm11题9题乙7题C ABS 1S 2 A CDB6题经过4个侧面缠绕一圈到达点B,那么所用细线最短需要 cm;如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要 cm.【答案】10,12.(2009年安顺)图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的。

在Rt △ABC中,若直角边AC=6,BC=6,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是______________。

相关文档
最新文档