24.2.2直线和圆的位置关系第一课时
第一课时直线和圆的位置关系PPT课件(人教版)
探究新知 直线与圆有__三___种位置关系,是用直线与圆的__公__共__点__的个数 来定义的.这也是判断直线与圆的位置关系的重要方法.
(1)相交 (2)相切 (3)相离
两个公共点 一个公共点 没有公共点
探究新知
O
l
相交
O
l
A
相切
O
l
相离
上述变化过程中,除了公共点的个数产生了变化,还有什么量在 改变?你能否用数量关系来判别直线与圆的位置关系?
13
时,
线段AB与⊙C只有一个公共点.
60
CD= cm
13
B
13
12
D
C5A
归纳总结
图形
直线与圆的 位置关系
公共点的个数
圆心到直线的距离 d 与半径 r 的关系
公共点的名称 直线名称
.O r d┐ l
相离
0
d>r
.o
.O
d .┐r l
A.Br 来自d .lC相切 相交
1
2
d=r 切点 切线
d<r 交点 割线
24 圆
24.2.2.1 直线和圆的位置关系
课时目标
1.掌握直线和圆的三种位置关系的定义及其判定方法和性质。
2.通过直线和圆的位置关系的探究,渗透类比,分类, 数形结合思想,培养视察、分析和发现问题的能力。
探究新知
A B
C
点和圆的位置关系有几种?
点到圆心的距离为d,
圆的半径为r,则:
点在圆外 点在圆上 点在圆内
d>r; d=r; d<r.
数量关系
探究新知
把太阳看成一个圆,地平线看成一条直线,注意视
察直线与圆的公共点的个数.
依兰县第四中学九年级数学上册第二十四章圆24.2点和圆直线和圆的位置关系24.2.2直线和圆的位置关
在生活中 , 人们常常利用中心投影来形成光影 效果.例如 , 艺人在银幕后 , 用灯光把人物剪影照 射在银幕上 , 形成皮影戏.电影放映机把电影胶片 上的图像投影到银幕上 , 再配以声音 , 就形成了 电影.
随堂练习
请同学们举出一些平行投影和中心投影的例子.
把以下物体与它们的投影用线连接起来 :
问题探究
观察以下图 , 思考以下问题 :
〔1〕
〔2〕
〔3〕
观察以下图 , 思考以下问题 :
〔1〕
〔2〕
〔3〕
观察以下图 , 思考以下问题 :
【素养提升] 16.(14分)如下图 , ⊙O的直径DE=12 cm , 在Rt△ABC中 , ∠ACB= 90° , ∠ABC=30° , BC=12 cm , ⊙O以2 cm/s的速度从左向右移动 , 在 移动过程中 , DE始终在直线BC上 , 设运动的时间为t(s) , 当t=0时 , ⊙O 在△ABC的左侧 , OC=8 cm , 当t为何值时 , △ABC的一边所在的直线与⊙O 相切 ? 解 : 当⊙O与AC在AC的左侧相切时 , t=1 ; 当⊙O与AB在AB左侧相切时 , t=4 ; 当⊙O与AC在AC的右侧相切时 , t=7 ; 当⊙O与AB在AB右侧相切时 , t=16 , ∴t=1 , 4 , 7 , 16时 , ⊙O与△ABC的一边所在直线相切
3.(3分)在平面直角坐标系xOy中 , 以点(-3 , 4)为圆心 , 4为半径的圆( C)
A.与x轴相交 , 与y轴相切
B.与x轴相离 , 与y轴相交
C.与x轴相切 , 与y轴相交
D.与x轴相切 , 与y轴相离
4.(3分)已知⊙O的半径为2 , 直线l上有一点P满足PO=2 ,
人教版九年级数学上册说课稿:24.2.2直线和圆的位置关系(一)
24.2.2 直线和圆的位置关系说课稿(一)一、说教材(一)、教材所处的地位及作用直线和圆的位置关系是人教版九年级数学第二十四章第二节的内容,是本章的重点内容之一。
圆的教学在平面几何中乃至整个中学教学都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,是在学生学习了点和圆的位置关系的基础上进行的,为后面学习圆与圆的位置关系作好铺垫,起到承上启下的作用。
(二)、教学目标1.知识与技能目标:①探索并了解直线和圆的位置关系;②根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置关系;③能够利用公共点个数和数量关系来判断直线和圆的位置关系。
2.过程与方法目标:①学生经历操作、观察、发现、总结出直线和圆的位置关系的过程,培养学生观察、比较、概括的逻辑思维能力;②学生经历探索直线和圆的位置关系中圆心到直线的距离与圆的半径的数量关系的过程,培养学生运用数学语言表述问题的能力。
3.情感态度与价值观目标:通过本节知识的操作、实验、发现、确认等数学活动,从探索直线和圆的位置关系中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感。
(三)、教学重点、难点根据新课程标准要求,结合教学目标,我确定了本节课教学重点是:探索并了解直线和圆的位置关系。
教学难点是:掌握直线和圆的三种位置关系与判定。
可以说,教学重点和难点得以实施,是课堂教学获得成功的关键。
(四)、教学用具为了上好这节课以及根据本节课的内容,我准备多媒体课件和一些作图工具,这些教学用具的使用,可以进一步优化课堂教学,提高教学效率。
二、说教法学法(一)教法结合学科特点及学生的情况,在本节课中我采取类比迁移法,并结合直观演示、数形结合、动手操作等多种形式的教学手段进行教学,这样不仅充分调动了学生的积极性,也让整个课堂活跃起来。
(二)学法教是为了学生更好地学,学生是课堂教学的主体,现代教育更重视在教学过程中对学生的学法指导。
我主要指导学生采用观察讨论法、分析及归纳等多种学习方法,从而真正落实到把课堂还给学生,让学生成为课堂的主角。
第1课时 直线和圆的位置关系
24.2.2 直线和圆的位置关系第1课时直线和圆的位置关系1.直线l上的一点到圆心O的距离等于☉O的半径,则直线l与☉O 的位置关系是( D )(A)相切(B)相交(C)相离(D)相切或相交2.已知☉O的半径为8 cm,如果一条直线和圆心O的距离为8 cm,那么这条直线和这个圆的位置关系为( B )(A)相离(B)相切(C)相交(D)相交或相离3.已知☉O的半径为5 cm,O到直线a的距离为3 cm,则☉O与直线a 的位置关系是相交.直线a与☉O的公共点个数是 2 .4.已知☉O的半径是4 cm,O到直线a的距离是4 cm,则☉O与直线a 的位置关系是相切.5.已知☉O的半径为6 cm,O到直线a的距离为7 cm,则直线a与☉O 的公共点个数是0 .6.已知,☉O的直径是6 cm,O到直线a的距离是4 cm,则☉O与直线a 的位置关系是相离.7. 已知如图∠AOB=30°,M为OB边上任意一点,以M为圆心,2 cm为半径作☉M.当OM= 4 cm时,☉M与OA相切.8.已知圆O的半径为r,点O到直线l的距离为5厘米.(1)若r大于5厘米,则l与圆O的位置关系是相交;(2)若r等于2厘米,l与圆O有0 个公共点.9.在Rt△ABC中,∠C=90°,AC=3 cm,BC=4 cm,以C为圆心,r为半径的圆与AB有何位置关系?(1)r=2 cm;(2)r=2.4 cm;(3)r=3 cm.解:∵△ABC为直角三角形,∴根据直角三角形的勾股定理可得AB===5(cm),设AB边上高为h,则h·AB=AC·BC,h==2.4(cm),∴(1)当r=2 cm,d>r,则AB与☉C相离;(2)当r=2.4 cm,d=r,则AB与☉C相切;(3)当r=3 cm,r>d,则AB与☉C相交.10.已知Rt△ABC的斜边AB=6 cm,直角边AC=3 cm,以点C为圆心,半径分别为2 cm和4 cm画两个圆,这两个圆与AB有怎样的位置关系?当半径多长时,AB与☉C相切?解: 过C作CD⊥AB,交AB于点D,Rt△ABC的斜边AB=6 cm,AC=3 cm,根据勾股定理得BC=3 cm.∵S△ABC=AB·CD=AC·BC,∴CD= cm,以点C为圆心,当半径为 cm时,AB与☉C相切;∵2<<4,∴以点C为圆心,分别以2 cm和4 cm为半径画两个圆,这两个圆与直线AB分别相离和相交;故答案为以点C为圆心,分别以2 cm和4 cm为半径作两个圆,这两个圆与直线AB分别相离和相交;以点C为圆心,当半径为 cm时,AB与☉C相切.11. 如图,∠AOB=30°,点M在OB上,且OM=5 cm,以M为圆心,r为半径画圆,试讨论r的大小与所画☉M和射线OA的公共点个数之间的对应关系.解: 作MN⊥OA于N,如图,∵∠AOB=30°,∴MN=OM=×5=,∴当r=时,☉M与射线OA只有一个公共点;当0<r<时,☉M与射线OA没有公共点;当<r≤5时,☉M与射线OA有两个公共点;当r>5时,☉M与射线OA只有一个公共点.所以当0<r<时,☉M与射线OA没有公共点;当r=或r>5时,☉M与射线OA只有一个公共点; 当<r≤5时,☉M与射线OA有两个公共点.。
人教版初中数学《直线和圆的位置关系》_完美课件
2.已知⊙O的半径为5cm, 圆心O与直线AB的距离为d, 根据条件
填写d的范围:
(1)若AB和⊙O相离, 则
;
(2)若AB和⊙O相切, 则
;
(3)若AB和⊙O相交,则
.
【获奖课件ppt】人教版初中数学《直 线和圆 的位置 关系》 _完美 课件1- 课件分 析下载
典例精析 【获奖课件ppt】人教版初中数学《直线和圆的位置关系》_完美课件1-课件分析下载
问题1 如果我们把太阳看成一个圆,地平线看成一条直 线,那你能根据直线和圆的公共点个数想象一下,直线和 圆有几种位置关系吗?
讲授新课
在观察中发现
问题2 请同学在纸上画一个圆,拿出直尺并不断改变其位 置。你能发现直尺和圆的公共点个数的变化情况吗?公共 点个数最少时有几个?最多时有几个?
讲授新课
填一填: 直线与圆的 位置关系
(2)当r=2.4cm时,有d=r. 因此⊙C和AB相切.
讲授新课 【获奖课件ppt】人教版初中数学《直线和圆的位置关系》_完美课件1-课件分析下载
在探究中归纳
合作探究
(用圆心O到直线的距离d与圆的半径r的关系来区分)
o
o
dr
r d
∟
直线和圆相交 直线和圆相切 直线和圆相离
∟
o r
d
【获奖课件ppt】人教版初中数学《直 线和圆 的位置 关系》 _完美 课件1- 课件分 析下载
讲授新课 【获奖课件ppt】人教版初中数学《直线和圆的位置关系》_完美课件1-课件分析下载
在对比中发现
问题2 怎样用d(圆心与直线的距离)来判别直线与圆的位置关
系呢?
类 dp 比r
dPd
rp r
学 点P在⊙O内 习 点P在⊙O上
人教初中数学九上 《直线和圆的位置关系(第1课时)》教案 (公开课获奖)
24.2.2直线和圆的位置关系教学目标(一)教学知识点1.理解直线与圆有相交、相切、相离三种位置关系.2.了解切线的概念,探索切线与过切点的直径之间的关系.(二)能力训练要求1.经历探索直线与圆位置关系的过程,培养学生的探索能力.2.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化.(三)情感与价值观要求通过探索直线与圆的位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点经历探索直线与圆位置关系的过程.理解直线与圆的三种位置关系.了解切线的概念以及切线的性质.教学难点经历探索直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系.探索圆的切线的性质.教学方法教师指导学生探索法.教具准备投影片三张教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些?[生]圆是平面上到定点的距离等于定长的所有点组成的图形.即圆上的点到圆心的距离等于半径;圆的内部到圆心的距离小于半径;圆的外部到圆心的距离大于半径.因此点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外.也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内.[师]本节课我们将类比地学习直线和圆的位置关系.Ⅱ.新课讲解1.复习点到直线的距离的定义[生]从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离.如下图,C为直线AB外一点,从C向AB引垂线,D为垂足,则线段CD即为点C到直线AB的距离.2.探索直线与圆的三种位置关系[师]直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的.如大家请看课本113页,观察图中的三幅照片,地平线和太阳的位置关系怎样?作一个圆,把直尺的边缘看成一条直线,固定圆,平移直尺,直线和圆有几种位置关系?[生]把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;把直尺的边缘看成一条直线,则直线和圆有三种位置关系.[师]从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢?[生]有三种位置关系:[师]直线和圆有三种位置关系,如下图:它们分别是相交、相切、相离.当直线与圆相切时(即直线和圆有唯一公共点),这条直线叫做圆的切线(tan gent line).当直线与圆有两个公共点时,叫做直线和圆相交.当直线与圆没有公共点时,叫做直线和圆相离.因此,从直线与圆有公共点的个数可以断定是哪一种位置关系,你能总结吗?[生]当直线与圆有唯一公共点时,这时直线与圆相切;当直线与圆有两个公共点时,这时直线与圆相交;当直线与圆没有公共点时,这时直线与圆相离.[师]能否根据点和圆的位置关系,点到圆心的距离d和半径r作比较,类似地推导出如何用点到直线的距离d和半径r之间的关系来确定三种位置关系呢?[生]如上图中,圆心O到直线l的距离为d,圆的半径为r,当直线与圆相交时,d<r;当直线与圆相切时,d=r;当直线与圆相离时,d>r,因此可以用d与r间的大小关系断定直线与圆的位置关系.[师]由此可知:判断直线与圆的位置关系有两种方法.一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定.投影片(§3.5.1A)(1)从公共点的个数来判断:直线与圆有两个公共点时,直线与圆相交;直线与圆有唯一公共点时,直线与圆相切;直线与圆没有公共点时,直线与圆相离.(2)从点到直线的距离d与半径r的大小关系来判断:d<r时,直线与圆相交;d=r时,直线与圆相切;d>r时,直线与圆相离.投影片(§3.5.1B)[例1]已知Rt△ABC的斜边AB=8cm,AC=4cm.(1)以点C为圆心作圆,当半径为多长时,AB与⊙C相切?(2)以点C为圆心,分别以2cm和4cm的长为半径作两个圆,这两个圆与AB分别有怎样的位置关系?分析:根据d与r间的数量关系可知:d=r时,相切;d<r时,相交;d>r时,相离.解:(1)如上图,过点C作AB的垂线段CD.∵AC=4cm,AB=8cm;∴cos A=12 ACAB,∴∠A=60°.∴CD=AC sin A=4sin60°=23(cm).因此,当半径长为23cm时,AB与⊙C相切.(2)由(1)可知,圆心C到AB的距离d=23cm,所以,当r=2cm时,d>r,⊙C与AB相离;当r=4cm时,d<r,⊙C与AB相交.3.议一议(投影片§3.5.1C)(1)你能举出生活中直线与圆相交、相切、相离的实例吗?(2)上图(1)中的三个图形是轴对称图形吗?如果是,你能画出它们的对称轴吗?(3)如图(2),直线CD与⊙O相切于点A,直径AB与直线CD有怎样的位置关系?说一说你的理由.对于(3),小颖和小亮都认为直径AB垂直于CD.你同意他们的观点吗?[师]请大家发表自己的想法.[生](1)把一只筷子放在碗上,把碗看作圆,筷子看作直线,这时直线与圆相交;自行车的轮胎在地面上滚动,车轮为圆,地平线为直线,这时直线与圆相切;杂技团中骑自行车走钢丝中的自行车车轮为圆,地平线为直线,这时直线与圆相离.(2)图(1)中的三个图形是轴对称图形.因为沿着d所在的直线折叠,直线两旁的部分都能完全重合.对称轴是d所在的直线,即过圆心O且与直线l垂直的直线.(3)所谓两条直线的位置关系,即为相交或平行,相交又分垂直和斜交,直线CD与⊙O 相切于点A,直径AB与直线CD垂直,因为图(2)是轴对称图形,AB是对称轴,所以沿AB 对折图形时,AC与AD重合,因此∠BAC=∠BAD=90°.[师]因为直线CD与⊙O相切于点A,直径AB与直线CD垂直,直线CD是⊙O的切线,因此有圆的切线垂直于过切点的直径.这是圆的切线的性质,下面我们来证明这个结论.在图(2)中,AB与CD要么垂直,要么不垂直.假设AB与CD不垂直,过点O作一条直径垂直于CD、垂足为M,则OM<OA,即圆心O到直线CD的距离小于⊙O的半径,因此CD 与⊙O相交,这与已知条件“直线CD与⊙O相切”相矛盾,所以AB与CD垂直.这种证明方法叫反证法,反证法的步骤为第一步假设结论不成立;第二步是由结论不成立推出和已知条件或定理相矛盾.第三步是肯定假设错误,故结论成立.Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课学习了如下内容:1.直线与圆的三种位置关系.(1)从公共点数来判断.(2)从d与r间的数量关系来判断.2.圆的切线的性质:圆的切线垂直于过切点的半径.3.例题讲解.Ⅴ.课后作业习题3.7Ⅵ.活动与探究如下图,A 城气象台测得台风中心在A 城正西方向300千米的B 处,并以每小时107千米的速度向北偏东60°的BF 方向移动,距台风中心200千米的范围是受台风影响的区域.(1)A 城是否会受到这次台风的影响?为什么?(2)若A 城受到这次台风的影响,试计算A 城遭受这次台风影响的时间有多长?分析:因为台风影响的范围可以看成以台风中心为圆心,半径为200千米的圆,A 城能否受到影响,即比较A 到直线BF 的距离d 与半径200千米的大小.若d >200,则无影响,若d ≤200,则有影响.解:(1)过A 作AC ⊥BF 于C .在Rt △ABC 中,∵∠CBA =30°,BA =300,∴AC =AB sin30°=300×12=150(千米). ∵AC <200,∴A 城受到这次台风的影响.(2)设BF 上D 、E 两点到A 的距离为200千米,则台风中心在线段DE 上时,对A 城均有影响,而在DE 以外时,对A 城没有影响.∵AC =150,AD =AE =200,∴DC =22200150507-=.∴DE =2DC =1007. ∴t =1007107s v ==10(小时). 答:A 城受影响的时间为10小时.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩D CA BD CAB所以△BAD ≌△CAD . 所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DC A BD CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题.(二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC . ∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P .EDCABPD C A B∴∠4=∠ACD.∴DE=EC.同理可证:AE=DE.∴AE=C E.板书设计一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,则它的对称轴一定是()A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解 (教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习1.计算:(1))1)(1(y x x y x y +--+(2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(a a a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)b a ab - (3)3 五、1.(1)22yx xy - (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
《24.2.2 直线和圆的位置关系》第一课时课件
有d=r, (2)当r=2.4cm时, 因此⊙C和AB相切。
D
d
(3)当r=3cm时, 有d<r, 因此,⊙C和AB相交。
D
d
l
l
除了用公共点的个数来区分直 线与圆的位置关系外,能否像点和 圆的位置关系一样用数量关系的方 法来判断直线和圆的位置关系?
相关知识点回忆
.A
1.直线外一点到这条直线 的垂线段的长度叫点到直线 的距离。
D
a
2、连结直线外一点与直线所 垂线段 有点的线段中,最短的是______ ?
.O
r
d
.O
6.5cm
6.5cm O·
A d=4.5cm M B
O·
d=6.5cm N
O·
6.5cm
d=8cm
D 直线与圆相交,
解 (1)
d=4.5cm< r = 6.5cm
有两个公共点;
(2) d=6.5cm = r = 6.5cm 直线与圆相切, 直线与圆相离,
有一个公共点;
(3) d=8cm>r = 6.5cm
l 这时的直线叫做圆的割线 .
直线和圆有唯一的公共点,
.O . . A B
. O 切点 A . O
割 线
切 线
叫做直线和圆相切 . 这时的直线叫切线,
唯一的公共点叫切点. 直线和圆没有公共点, 叫做直线和圆相离 .
l
l
抢答
快速判断下列各图中直线与圆的位置关系. .O1 l .O l .O
.O2
. O
格宜一中 杨波
观察
在太阳升起过程中,太阳和地平线会有几 种位置关系? 我们把太阳看作一个圆,地平线看作一条 直线,由此你能得出直线和圆的位置关系吗?
最新人教版九年级数学上册《直线和圆的位置关系》优质教案
第二十四章圆24.2.2 直线和圆的位置关系第1课时直线和圆的位置关系学习目标:1.了解直线和圆的位置关系.2.了解直线与圆的不同位置关系时的有关概念.3.理解直线和圆的三种位置关系时圆心到直线的距离d和圆的半径r之间的数量关系.4.会运用直线和圆的三种位置关系的性质与判定进行有关计算.重点:理解直线和圆的三种位置关系时圆心到直线的距离d和圆的半径r之间的数量关系.难点:会运用直线和圆的三种位置关系的性质与判定进行有关计算.一、知识链接1.点和圆的位置关系有几种(画图表示)?2.如何用数量关系来判断点和圆的位置关系呢?二、要点探究探究点1:用定义判断直线与圆的位置关系问题1 如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线和圆的公共点个数想象一下,直线和圆有几种位置关系吗?问题2 请同学在纸上画一条直线l,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?要点归纳:如图1,直线和圆没有公共点,我们说直线l与圆相离;如图2,直线和圆只有一个公共点,我们说直线l与圆相切,直线l叫做圆的切线,这个点叫做切点;如图3,直线和圆有两个个公共点,我们说直线l与圆相交,直线l叫做圆的割线.判一判1.直线与圆最多有两个公共点. ( )2.若直线与圆相交,则直线上的点都在圆上. ( )3.若A是⊙O上一点,则直线AB与⊙O相切. ( )4.若C为⊙O外一点,则过点C的直线与⊙O相交或相离. ( )5.直线a 和⊙O有公共点,则直线a与⊙O相交. ( )探究点2:用数量关系判断直线与圆的位置关系问题1 同学们用直尺在圆上移动的过程中,除了发现公共点的个数发生了变化外,还发现有什么量也在改变?它与圆的半径有什么样的数量关系呢?问题2 怎样用d(圆心与直线的距离)来判别直线与圆的位置关系呢?要点归纳:设圆心O到直线的距离为d,圆O的半径为r,则有:<r;=r;>r;练一练1.已知圆的半径为6cm,设直线和圆心的距离为d :(1)若d=4cm,则直线与圆,直线与圆有个公共点.(2)若d=6cm,则直线与圆,直线与圆有个公共点.(3)若d=8cm,则直线与圆,直线与圆有个公共点.2.已知⊙O的半径为5cm,圆心O与直线AB的距离为d,根据条件填写d的范围:(1)若AB和⊙O相离,则;(2)若AB和⊙O相切,则;(3)若AB和⊙O相交,则 .例1 在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1) r=2cm;(2) r=2.4cm; (3) r=3cm.方法总结:要了解AB与⊙C的位置关系,只要知道圆心C到AB的距离d与r的关系.已知r,只需求出C到AB的距离d.【变式题1】Rt△ABC,∠C=90°,AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C与直线AB没有公共点?【变式题2】Rt△ABC,∠C=90,AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C 与线段AB 有一个公共点?当半径r 为何值时,圆C 与线段AB 有两个公共点?三、课堂小结______ ______ ______ ______ ______2.直线和圆相交,圆的半径为r ,且圆心到直线的距离为5,则有( )A. r < 5B. r > 5C. r = 5D. r ≥ 53.☉O 的最大弦长为8,若圆心O 到直线l 的距离为d=5,则直线l 与☉O( )A. 相交B.相切C. 相离D.以上三种情况都有可能4.☉O 的半径为,直线l 上的一点到圆心O 的距离是5,则直线l 与☉O 的位置关系是( )A. 相交或相切B. 相交或相离C. 相切或相离D. 上三种情况都有可能5.在平面直角坐标系中,圆心O 的坐标为(-3,4),以半径r 在坐标平面内作圆,(1)当r________时,⊙O 与坐标轴有1个交点;(2)当r 满足_________时,⊙O 与坐标轴有2个交点;(3)当r_________时,⊙O 与坐标轴有3个交点;(4)当r__________时,⊙O 与坐标轴有4个交点.6.设⊙O 的半径为2,圆心O 到直线l 的距离OP=m ,且m 使得关于x 的方程2x 2−−1=0有实数根,试判断直线l 与⊙O 的位置关系.拓展提升:已知☉O 的半径r=7cm ,直线l 1 // l 2,且l 1与☉O 相切,圆心O 到l 2的距离为9cm.求l 1与l 2的距离. 参考答案自主学习一、知识链接1.解:如图所示.点在圆内 点在圆上 点在圆外2.解:设OP=d,当d <r 时,点P 在⊙O 内;当d=r 时,点P 在⊙O 上;当d >r 时,点P 在⊙O 外.课堂探究二、要点探究探究点1::用定义判断直线与圆的位置关系问题1:直线与圆的公共点个数分别为0,1,2,则直线与圆的位置关系有三种.问题2:公共点个数最少时为0,最多时为2.判一判:(1)√ (2)× (3)× (4)× (5)× 探究点2::用数量关系判断直线与圆的位置关系问题1:圆心到直线的距离d 也在变化,有d <r,d=r,d >r 三种情况.问题2:当d >r 时,直线与圆相离;当d=r 时,直线与圆相切;当d <r 时,直线与圆相交. 练一练1.(1)相交 2 (2)相切 1 (3)相离 02.(1)d >5cm (2)d=5cm (3)0cm <d <5cm例1 解:过C 作CD ⊥AB ,垂足为D.在△ABC 中,5(cm).AB == 根据三角形的面积公式有11.22CD AB AC BC ⋅=⋅54 2.4(cm).3AC BC CD AB ⋅⨯∴===即圆心C到AB的距离d=2.4cm.(1)当r=2cm时,有d >r,因此⊙C和AB相离.(2) 当r=2.4cm时,有d=r.因此⊙C和AB相切.(3) 当r=3cm时,有d<r,因此,⊙C和AB相交.变式题1 解:当0cm<r<2.4cm或r>4cm时,⊙C与线段AB没有公共点.变式题2 解:当r=2.4cm或3cm<r≤4cm时,⊙C与线段AB有一个公共点.当2.4cm<r≤3cm 时,⊙C与线段AB有两公共点.当堂检测1.(1)相离(2)相交(3)相切(4)相交(5)相交2.B3.C4.A5.(1)=3 (2)3<r<4 (3)=4或5 (4)>4且r≠56.解:因为关于x的方程2x2−x+m−1=0有实数根,所以 =b2-4ac≥0,即8-4×2×(m-1)≥0,解得m≤2,又因为⊙O的半径为2,所以直线与圆相切或相交.拓展提升解:(1) l2与l1在圆的同一侧:m=9-7=2 cm(2)l2与l1在圆的两侧:m=9+7=16 cm教师寄语同学们,生活让人快乐,学习让人更快乐。
24.2.2 第1课时 直线和圆的位置关系 初中数学人教版九年级上册课件
2.已知⊙O的半径为5 cm,圆心O与直线AB的距离为d,根据条
件填写d的范围:
(1)若AB和⊙O相离,则 d > 5 cm
;
(2)若AB和⊙O相切,则 d = 5 cm
;
(3)若AB和⊙O相交,则 0 cm≤d < 5 cm .
典例精析
例1 在Rt△ABC中,∠C=90°,AC=3 cm,BC=4 cm,
以C为圆心,r为半径的圆与AB有怎样的位置关系?
为什么?
(1) r=2 cm;(2) r=2.4 cm; (3) r=3 cm.
B
分析:要了解AB与⊙C的位置关系,只要知
道圆心C到AB的距离d与r的关系.已知r,只 4
需求出C到AB的距离d. C
D A
3
解:过C作CD⊥AB,垂足为D.
在△ABC中,
dD
(2) 当r=2.4 cm时,有d=r, 因此⊙C和AB相切.
(3) 当r=3 cm时,有d<r, 因此⊙C和AB相交.
d D
dD
变式题:
1.在Rt△ABC中,∠C=90°,AC=3 cm,BC=4 cm,
以C为圆心画圆,当半径r为何值时,圆C与直线
AB没有公共点?
B
解:当0 cm<r<2.4 cm或r>4cm
A. r < 5 B. r > 5 C. r = 5 D. r ≥ 5
3. ☉O的最大弦长为8,若圆心O到直线l的距离为d=5,
则直线l与☉O ( C )
A. 相交
B.相切
C. 相离
D.以上三种情况都有可能
4. ☉O的半径为5,直线l上的一点到圆心O的距离是5,
则直线l与☉O的位置关系是( A )
人教版数学九年级上册:24.2.2 直线和圆的位置关系 教案(附答案)
24.2.2 直线和圆的位置关系第1课时 直线和圆的位置关系教学目标1.理解掌握同一平面内的直线与圆的三种位置关系.2.理解记忆割线、切线、切点等概念.3.能根据圆心到直线的距离d 与半径r 的大小关系,准确判断出直线与圆的位置关系. 预习反馈阅读教材P95~96,完成下列知识探究.1.直线和圆有两个公共点时,直线和圆相交,这条直线叫做圆的割线.2.直线和圆只有一个公共点时,直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.3.直线和圆没有公共点时,直线和圆相离.4.设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,则有:直线l 和⊙O 相交⇔d <r ;直线l 和⊙O 相切⇔d =r ;直线l 和⊙O 相离⇔d >r .例题讲解例1 在Rt △ABC 中,∠C =90°,AB =4 cm ,BC =2 cm ,以C 为圆心,r 为半径的圆与AB 有何种位置关系?请你写出判断过程.(1)r =1.5 cm ;(2)r = 3 cm ;(3)r =2 cm.【解答】 过点C 作CD ⊥AB ,垂足为D.∵AB =4 cm ,BC =2 cm ,∴AC =2 3 cm.又∵S △ABC =12AB ·CD =12BC ·AC ,∴CD =BC ·AC AB = 3 cm. (1)r =1.5 cm 时,相离;(2)r = 3 cm 时,相切;(3)r =2 cm 时,相交.【跟踪训练1】 在Rt △ABC 中,∠C =90°,AC =3 cm ,BC =4 cm ,以C 为圆心,r 为半径作圆.当r 满足0<r<125__cm 时,⊙C 与直线AB 相离;当r 满足r =125__cm 时,⊙C 与直线AB 相切;当r 满足r>125__cm 时,⊙C 与直线AB 相交. 【跟踪训练2】 已知⊙O 的半径为5 cm ,圆心O 到直线a 的距离为3 cm ,则⊙O 与直线a 的位置关系是相交.直线a 与⊙O 的公共点个数是2.例2 已知⊙O 的半径是3 cm ,直线l 上有一点P 到O 的距离为3 cm ,试确定直线l 和⊙O 的位置关系.【解答】 相交或相切.【跟踪训练2】 如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,若以C 为圆心,r 为半径的圆与斜边AB 只有一个公共点,则r 的取值范围是多少?【点拨】 分相切和相交两类讨论.解:r =2.4或3<r ≤4.巩固训练1.已知⊙O 的半径为5,直线l 是⊙O 的切线,则点O 到直线l 的距离是(C)A .2.5B .3C .5D .102.已知OA平分∠BOC,P是OA上任意的一点.若以点P为圆心的圆与OC相离,则⊙P 与OB的位置关系是(B)A.相切B.相离C.相交 D.相离或相切3.在△ABC中,AB=AC=5,BC=6,以点A为圆心,4为半径作⊙A,则BC与⊙A的位置关系是(C)A.相交 B.相离C.相切 D.不确定4.已知∠AOB=30°,M为OB上的一点,且OM=5 cm,以M为圆心,r为半径的圆与直线OA有怎样的位置关系?为什么?(1)r=2 cm;(2)r=4 cm;(3)r=2.5 cm.解:圆心M到OA的距离d=0.5OM=0.5×5=2.5(cm).(1)r=2 cm时,d>r,直线OA与⊙M相离;(2)r=4 cm时,d<r,直线OA与⊙M相交;(3)r=2.5 cm时,d=r,直线OA与⊙M相切.第2课时切线的判定和性质教学目标1.探索并掌握切线与过切点的半径之间的位置关系.2.能判定一条直线是否为圆的切线;会过圆上一点画圆的切线.3.会运用圆的切线的性质与判定来解决相关问题.预习反馈阅读教材P97~98,完成下列问题.1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2.切线的性质:①切线和圆只有一个公共点;②切线到圆心的距离等于半径;③圆的切线垂直于过切点的半径.3.当已知一条直线是某圆的切线时,切点的位置是确定的,辅助线常常是连接圆心和切点,得到半径,那么半径垂直于切线.例题讲解例(教材P98例1)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,求证:AC是⊙O的切线.【解答】证明:过点O作OE⊥AC,垂足为E,连接OD,OA.∵⊙O与AB相切于点D,∴OD⊥AB.又△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线.∴OE=OD,即OE是⊙O的半径.这样,AC经过⊙O的半径OE的外端E,并且垂直于半径OE,所以AC与⊙O相切.【方法归纳】在解决有关圆的切线问题时,常常需要作过切点的半径.【跟踪训练】 如图,AB 为⊙O 的直径,点E 在⊙O 上,C 为BE ︵的中点,过点C 作直线CD ⊥AE 于D ,连接AC.试判断直线CD 与⊙O 的位置关系,并说明理由.解:直线CD 与⊙O 相切,理由:连接OC.∵C 为BE ︵的中点,∴BC ︵=CE ︵.∴∠DAC =∠BAC.∵OA =OC ,∴∠BAC =∠OCA.∴∠DAC =∠OCA.∴OC ∥AD.∵AD ⊥CD ,∴OC ⊥CD.又∵OC 为⊙O 的半径,∴CD 是⊙O 的切线.巩固训练1.在正方形ABCD 中,点P 是对角线AC 上的任意一点(不包含端点),以P 为圆心的圆与AB 相切,则AD 与⊙P 的位置关系是(B)A .相离B .相切C .相交D .不能确定2.如图,A ,B 是⊙O 上的两点,AC 是过点A 的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于60°时,AC 才能成为⊙O 的切线.第2题图 第3题图3.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C.若∠A =25°,则∠D =40°.4.如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,交AB 于点E ,过点D 作DF ⊥AB ,垂足为F ,连接DE.求证:直线DF 与⊙O 相切.证明:连接OD.∵AB =AC ,∴∠B =∠C.∵OD =OC ,∴∠ODC =∠C.∴∠ODC =∠B.∴OD ∥AB.∵DF ⊥AB ,∴OD ⊥DF.又∵点D 在⊙O 上,∴直线DF与⊙O相切.课堂小结1.有圆的切线时,常常连接圆心和切点得切线垂直于半径;2.“连半径证垂直”与“作垂直证半径”——判定直线与圆相切.①当直线与圆有公共点时,只需“连半径、证垂直”即可;②当已知条件中没有指出圆与直线有公共点时,常运用“d=r”进行判断,辅助线的作法是过圆心作已知直线的垂线,证明垂线段的长等于半径.第3课时切线长定理教学目标1.理解并掌握切线长定理,能熟练运用所学定理来解答问题.2.了解三角形的内切圆及内心的特点,会画三角形的内切圆.预习反馈阅读教材P99~100,完成下列知识探究.1.经过圆外一点作圆的切线,这点和切点之间线段的长叫做这点到圆的切线长.图中的切线长为PA,PB.2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,图中相等的线段有PA,PB,这一点和圆心的连线平分两条切线的夹角,图中相等的角为∠APO=∠BPO.3.与三角形各边都相切的圆叫做三角形的内切圆.4.三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心,它到三边的距离相等.例题讲解例(教材P100例2)如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=9,BC=14,CA=13.求AF,BD,CE的长.【解答】设AF=x,则AE=x,CD=CE=AC-AE=13-x,BD=BF=AB-AF=9-x.由BD+CD=BC,可得(13-x)+(9-x)=14.解得x=4.因此AF=4,BD=5,CE=9.【跟踪训练】如图,已知⊙O是Rt△ABC(∠C=90°)的内切圆,切点分别为D,E,F.(1)求证:四边形ODCE 是正方形;(2)设BC =a ,AC =b ,AB =c ,求⊙O 的半径r.解:(1)证明:∵BC ,AC 分别与⊙O 相切于D ,E ,∴∠ODC =∠OEC =∠C =90°.∴四边形ODCE 为矩形.又∵OE =OD ,∴矩形ODCE 是正方形.(2)由(1)得CD =CE =r ,∴a +b =BD +AE +2r =BF +AF +2r =c +2r ,解得r =a +b -c 2. 巩固训练1.如图,Rt △ABC 中,∠C =90°,AC =6,BC =8,则△ABC 的内切圆半径r =2.第1题图 第2题图 第3题图2.如图,AD ,DC ,BC 都与⊙O 相切,且AD ∥BC ,则∠DOC =90°.3.如图,点O 为△ABC 的外心,点I 为△ABC 的内心.若∠BOC =140°,则∠BIC =125°.4.如图,△ABC 切⊙O 于D ,E ,F 三点,内切圆⊙O 的半径为1,∠C =60°,AB =5,则△ABC 的周长为课堂小结1.切线长定理. 2.三角形的内切圆及内心. 3.直角三角形内切圆半径公式.。
青海省西宁市沈那中学九年级数学上册 24.2.2 直线与圆
24.2.2 直线与圆的位置关系(第一课时)教学目标:掌握直线和圆的三种位置关系的定义及其判定方法和性质。
通过直线和圆的位置关系的探究,向学生渗透类比、分类、数形结合的思想,培养学生观察、分析和发现问题的能力。
教学重点:⑴.经历探索直线和圆的位置关系的过程,得出直线和圆的三种位置关系。
⑵.用数量关系表述直线和圆的位置关系。
教学难点:通过数量关系判断直线和圆的位置关系。
教学方法:观察、分析、启发、讲授学习方法:观察、探究,合作交流教学过程:复习提问:点与圆有几种位置关系?它们如何表示?唐朝诗人王维的诗句:“大漠孤烟直,长河落日圆。
”描述了塞外日落时的情景,我们把太阳看作是圆,地平线看作是一条直线,请同学们想想直线和圆会有几种位置关系?实践活动,探究新知:活动1.想象太阳在升起的过程中与地平线有几种位置关系?直线与圆的交点各有几个?活动2.在纸上画一个圆,把直尺看作是一条直线,在纸上移动直尺,发现直线和圆的位置关系是怎样的?直线与圆的公共点个数是怎样变化的?问题:⑴概括直线与圆的有哪几种位置关系,你是怎样区分这几种位置关系的?(2)如何用语言描述三种位置关系?由学生操作、观察、分析发现直线和圆的位置关系,师生共同得出结论:⑴.直线与圆相离:直线与圆没有公共点时,叫做直线与圆相离。
⑵.直线与圆相切:直线与圆只有一个公共点时,叫做直线与圆相切,直线叫做圆的切线,这个点叫做切点。
⑶.直线与圆相交:直线与圆有两个公共点时,叫做直线与圆相交,直线叫做圆的割线。
问题1:直线与圆除了上述三种位置关系外,是否还有第四种关系?直线与圆的公共点是否能多于两个?答:由于在同一直线上的三点不可能做圆,因而直线不可能与圆有三个公共点,故直线与圆不可能有第四种关系,公共点不可能多于两个。
问题2:点与圆的位置关系可以由点与圆的距离来决定,那么直线与圆的位置关系可以由什么来决定呢?学生有较充足的时间讨论,探究。
设d是圆心O到直线l的距离,r为⊙O的半径,用d与r的关系可以判定直线与圆的位置关系,即当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交。
人教版九年级数学上册:24.2.2 直线和圆的位置关系(第一课时)
24.2.2直线和圆的位置关系(第一课时)知识点圆和圆的位置关系:1.直线和圆有三种位置关系:相交、相切、相离.相交:直线和圆_________________________,这时我们说这条直线和圆相交,这条直线叫做圆的割线,公共点叫做交点.相切:直线和圆_________________________,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.相离:直线和圆________________________,这时我们说这条直线和圆相离.2.设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,那么:直线l 与⊙O 相交⇔d<r ;直线l 与⊙O 相切⇔d=r ;直线l 与⊙O 相离⇔d>r .一、选择题1.已知⊙O 的半径为8cm ,若一条直线到圆心O 的距离为8cm ,那么这条直线和这个圆的位置关系是( )A .相离B .相切C .相交D .相交或相离2.⊙O 的半径r=5 cm ,点P 在直线l 上,若OP=5 cm ,则直线l 与⊙O 的位置关系是( )A .相离B .相切C .相交D .相切或相交3.已知⊙O 的面积为9π,若点O 到直线l 的距离为π,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法确定4.设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 应满足的条件是( )A .d=3B .d ≤3C .d <3D .d >35.⊙O 内最长弦长为m ,直线l 与⊙O 相离,设点O 到l 的距离为d ,则d 与m 的关系是( )A .d=mB .d >mC .d >2mD .d <2m6. ⊙O 的半径为4,圆心O 到直线l 的距离为则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定8.如图,1O e 的半径为1,正方形ABCD 的边长为6,点2O 为正方形ABCD 中心,12O O ⊥AB 于P 点,12O O =8,若将1O e 绕点P 按顺时针方向旋转360°,在旋转过程中,1O e 与正方形ABCD 的边只有一个公共点的情况共出现( )次.A .3B .5C .6D .7二、填空题9.如图,已知∠AOB=30°,M 为OA 边上一点,以M 为圆心、2 cm 为半径作⊙M .若点M 在OA 边上运动,则当OM= _________cm 时,⊙M 与OB 相切.10.已知Rt △ABC 的斜边AB=6 cm ,直角边AC=3 cm .(1)以C 为圆心,2 cm 长为半径的圆和AB 的位置关系是_________;(2)以C 为圆心,4 cm 长为半径的圆和AB 的位置关系是_________;(3)如果以C 为圆心的圆和AB 相切,则半径长为_________.11.⊙O 半径为r ,圆心O 到直线l 的距离为d ,且d 与r 是方程29200x x -+=的两根,则直线l 与⊙O 的位置关系是 .12.如图,在矩形ABCD 中,AB =6,BC =2.8,⊙O 是以AB 为直径的圆,则直线DC 与⊙O 的位置关系是 .13.如图,已知∠AOB=30°,M 为OB,若以M 为圆心,r 为半径作圆,那么:(1)当直线AB 与⊙M 相离时,r 的取值范围是 ; (2)当直线AB 与⊙M 相切时,r 的取值范围是 ;(3)当直线AB 与⊙M 有公共点时,r 的取值范围是 .14.在平面直角坐标系xOy 中,以点(-3,4)为圆心,4为半径的圆与x 轴 ,与y 轴 .15.如图,直线y x =+与x 轴、y 轴分别相交于A ,B 两点,圆心P 的坐标为(1,0),圆P 与y 轴相切于点O .若将圆P 沿x 轴向左移动,当圆P 与该直线相交时,横坐标为整数的点P 的个数是___________.三、解答题16.已知△ABC 中,AB=AC=5,BC=6,以点A 为圆心,以4为半径作⊙A ,⊙A 与直线BC 的位置关系怎样?17.如图,Rt △ABC 中,∠C =90°,BC=4,AC=3,以点C 为圆心,以r 为半径作圆,若⊙C 与线段AB 相交,求r 的取值范围.19.如图,在Rt △ABC 中,∠C =90°,∠A =30°,AO =x ,⊙O 的半径为1,问:当x 在什么范围内取值时,AC 与⊙O 相离、相切、相交?20.某工厂将地处A ,B A ,B 两地职工的联系,企业准备在相距2km 的A ,B AB ),经测量,在A 地的北偏东60°方向,B 地的西偏北45°方向的C 0.7km 的公园,则修筑的这条公路会不会穿过公园?为什么?B24.2.2直线和圆的位置关系(第一课时)知识点1. 两个公共点 只有一个公共点 没有公共点一、选择题1.B2.D3.C4.B5.C6.A7.B8.B二、填空题9.410.(1)相离 (2)相交 (3cm 11.相交或相离12.相交13.(1)502r << (2)52r = (3)52r > 14.与x 轴相切,与y 轴相交15.3 三、解答题16.解:过A 作AD ⊥BC 于点D,则BD=CD=3∴4AD ==∴⊙A 与直线BC 相切.17.解:∵BC >AC∴以C 为圆心,r 为半径所作的圆与斜边AB 有两个交点,则圆的半径应大于CD ,小于或等于AC由勾股定理知,5AB ==11221134522ABC S AC BC CD AB CD ∆==∴⨯⨯=⨯⨯Q g g ∴CD=2.4即r 的取值范围是2.4<r ≤318.解:因为关于x 的方程22210x x m -+-=有实数根所以240b ac ∆=-≥即2(42(1)0m --⨯⨯-≥解这个不等式得m ≤2又因为⊙O 的半径为2所以直线与圆相切或相交.19.解:过点O 作OD ⊥AC 于D ,AC 与⊙O 相切时OD=1 ∵∠A =30°,∴AO =2OD =2,即x =2∴当x >2时,AC 与⊙O 相离当x =2时,AC 与⊙O 相切当0﹤x <2时,AC 与⊙O 相交20.解:过点C 作CD ⊥AB ,垂足为D∵∠B=45°∴∠BCD =45°,CD=BD设CD=x ,则BD=x由∠A=30°知AC=2x ,AD2,1x x +===10.7320.7CD =≈>即∴ 以C 为圆心,以0.7km 为半径的圆与AB 相离 答:计划修筑的这条公路不会穿过公园.。
反证法
24.2.2直线和圆的位置关系(第一课时)学习目标:(1)能用自己的语言描述直线与圆的三种位置关系.(2)能从图中找到割线、切线、切点.(3)会从公共点的个数或能根据圆心到直线的距离d与半径r的大小关系,准确判断出直线与圆的位置关系一:直线与圆的位置关系的定义问题1:如图,在太阳升起的过程中,太阳和地平线会有几种位置关系?我们把太阳看作一个圆,地平线看作一条直线,由此你能得出直线和圆的位置关系吗?直线和圆有几种位置关系?怎样判断直线和圆这几种位置关系?5分钟阅读教材第95页到第96页的内容、完成下列内容:①(学生活动)请同学们在纸上画一个圆,把直尺边缘看成一条直线,移动直尺,你能得出直线和圆的位置关系吗?②(学生活动)请同学们在纸上画一条直线l,把硬币、钥匙环、水瓶盖的边缘看作圆,在纸上移动硬币、钥匙环、水瓶盖,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?③填写下表:二:直线与圆的位置关系的性质与判定问题1 刚才同学们用直尺在圆上移动的过程中,除了发现公共点的个数发生了变化外,还发现有什么量也在改变?它与圆的半径有什么样的数量关系呢?问题2 怎样用d(圆心与直线的距离)来判别直线与圆的位置关系呢?三:例题讲解:圆的直径是13cm,如果圆心到直线的距离分别是:(1)4.5cm;(2) 6.5cm;(3) 8cm.那么直线与圆分别是什么位置关系?直线和圆有几个公共点?四:当堂检测2.在Rt△ABC中,∠C=90度,AC=6cm,BC=8cm,以C为圆心,为r半径作圆,当r=2cm ,⊙C与直线AB位置关系是,当r=4.8cm,⊙C与直线AB位置关系是,当r=5cm,⊙C与直线AB位置关系是。
3.已知: ⊙O半径为4cm,若直线上一点P与圆心O距离为6cm,那么直线与圆的位置关系是()A. 相离B. 相切C. 相交D. 无法确定4.⊙O直径是8,直线l和⊙O相交,圆心O到直线l的距离是d,则d应满足()A. d<8B. 4<d<8C. 0 ≤d<4D. d>05.直线和圆相交,圆的半径为r,且圆心到直线的距离为5,则有()A.r < 5B. r > 5C. r = 5D. r ≥56. ⊙O的半径为5,直线l上的一点到圆心O的距离是5,则直线l与⊙O的位置关系是()A. 相交或相切B. 相交或相离C. 相切或相离D. 上三种情况都有可能五课堂小结:通过本堂课的学习,你有什么收获?还有什么疑问?六作业布置:.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm(2)r=2.4cm(3)r=3cm变式题:1.Rt△ABC,∠C=90°AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C与直线AB没有公共点?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)如图,在纸上画一条直线 l,把钥匙 环看作一个圆,在纸上移动钥匙环,你能 发现在钥匙环移动的过程中,它与直线l的 公共点的个数吗?
(3)你能用实物演示这个过程吗?
(1)直线和圆的公共点个数的变化 情况如何?公共点个数最少时有几个? 最多时有几个?
(2)通过刚才的研究,你认为直 线和圆的位置关系可分为几种类型呢?
2:圆的直径是13cm ,如果直线与圆心 的距离分别是, (1) 4.5cm ; (2) 6.5cm ; (3) 8cm. 那么直线和圆分别是什么位置关系? 有几个公共点?
1.根据直线和圆相切的定义,经过 点A用直尺近似地画出⊙O的切线.
A
· O
下面我们共同完成作图后,再回答问题:
(1)任意画一个半径为r的⊙O。 (2)任意画⊙O的一条半径 OD。 (3)过D作直线l⊥OD。 直线l满足 第一:经过半径的外端 第二:垂直于这条半径 切线的判定定理:经过半径的外端并且垂直于这 条半径的直线是圆的切线。
活动一、复习提问:
1、点与圆有几种位置关系?
C.
.B
.A
2、怎样判定点和圆的位置关系?
大于 (1)点到圆心的距离____ 半径时,点在圆外。 等于半径时,点在圆上。 (2)点到圆心的距离____ 小于半径时,点在圆内。 (3)点到圆心的距离____
(1)如图,在太阳升起的过程中,太阳 和地平线会有几种位置关系?我们把太 阳看作一个圆,地平线看作一条直线, 由此你能得出直线和圆的位置关系吗?
个公共点?分别说出直线l和圆的位置关系. 2.已知圆的半径等于10厘米,直线l和圆只有一个公 共点,求圆心到直线l的距离. 3.如果⊙O的直径为10厘米,圆心O到直线AB的距离
为10厘米,那么⊙O和直线AB有怎样的位置关系?
= 30°M 是OB上的一点,且OM =5 C cm 以M为圆心,以r 为半径 的圆与 直线OA 有怎样的 O 30° 关系?为什么? 5 (1)r = 2 cm ;
小小体会
我们可以根据直线与圆的公共 点的个数来判断直线与圆的位置关 系.
议一议:仿照点和圆的位置关系的判 定方法,你还有其他的方法来判断直线与
.
. 圆的位置关系吗?能否根据圆心到直线的
..
距离和圆半径的数量关系来判断?
d
.Or
A B
H
相离
l
观察讨论:当直线与圆相离、 相切、相交时,圆心到直线的距 离d与半径r有何关系? 1、直线与圆相离
.O
d
d>r d=r d<r
.
C
r .D
l
相切
2、直线与圆相切
d
Or
.
E
.F 相交
l
3、直线与圆相交
小结:
判定直线 与圆的位置关系的方法有____ 两 种:
直线与圆的公共点 (1)根据定义,由________________
的个数来判断; 圆心距d与半径r (2)根据性质,由_________________ 的关系来判断。
我们一起来归纳:
1.直线与圆的位置关系(图形特征---用公共点的个数来区分) 特点:直线和圆有两个公共点,叫做 直线和圆相交,这时的直线叫做圆的割线.
.
A
.O
.
B
特点:直线和圆有唯一的公共点, 叫做直线和圆相切.这时的直线叫切线, 唯一的公共点叫切点.
.O
.
切点 A
.O 特点:直线和圆没有公共点,叫 做直线和圆相离.
1)若AB和⊙O相离, 则
相交 2.直线和圆有2个交点,则直线和圆_________; 相切 直线和圆有1个交点,则直线和圆_________; 直线和圆有没有交点,则直线和圆_________; 相离
练习:
3、设⊙O的半径为4,点O到直线a的距离为d, 若⊙O与直线a至多只有一个公共点,则d为…(C ) A、dBiblioteka 4 B、d<4 C、d≥4 D、d=4
∴OC⊥AB
CA=CB
∵ OC为⊙O的半径
∴AB是⊙O的切线
如果知道直线是圆的切线,有什 么性质定理呢?
2.AB是⊙O的弦,C是⊙O 外一点,BC是⊙O的切 线,AB交过C点的直径于 点D,OA⊥CD,试判断 △BCD的形状,并说明你 的理由.
3.AB是⊙O的直 径,AE平分∠BAC交 ⊙O于点E,过点E 作⊙O的切线交 AC的延长线于点D, 试判断△AED的 形状,并说明理 由.
总结:
图形 直线与圆的 位置关系
.O r d ┐ l .o d r ┐ l .
A
. B
.O d r ┐ . lC
相离
0 d>r
相切
1 d=r
相交
2 d<r
公共点的个数
圆心距 d 与半径 r 的关系
公共点的名称 直线名称
切点
切线
交点
割线
1.已知圆的半径等于5厘米,圆心到直线l的距离是:
(1)4厘米;(2)5厘米;(3)6厘米.直线l与圆分别有几
4、 如图:∠AOB
A
2.5
M
B
(2) r = 4 cm ;
(3) r = 2.5 cm .
变式
如图:M是OB上的 一点,且OM =5 cm 以M 为圆心,半径r=2.5cm作 ⊙M. 试问过O的射线 OA与OB所夹的锐角a 取什么值时射线OA与 ⊙M 1)相离 (2)相切 (3)相交 ?
4、设⊙p的半径为4cm,直线l上一点A到圆心的 距离为4cm,则直线l与⊙O的位置关系 是……………………………………………( D) A、相交 B、相切 C、相离 D、相切或相交
P 4cm l A
P 4cm A l
应用迁移
1、在△ABC中,AB=10cm,BC=6cm,AC
=8cm, (1)若以C为圆心,4 cm长为半径画⊙C,则 ⊙C与AB的位置关系怎样? (2)若要使AB与⊙C 相切,则⊙C的半径应当是 多少? (3)若要以AC为直径画⊙O,则⊙O与AB、BC 的位置关系分别怎样?
在实际应用中,常采用第二种方法判定。
生活中的例 子
太阳与地平线的位置关系, 列车的轮子与铁轨之间的 关系,都给我们直线与圆 的位置关系的印象.
1、已知⊙O的半径为6cm, 圆心O与直线AB的距离为d, 根据 条件填写d的范围:
d > 6cm ; 2)若AB和⊙O相切, 则 d = 6cm ; 3)若AB和⊙O相交,则 0cm≤ d < 6cm .
o r
D
P
l
判断
1.经过半径外端的直线是圆的切线(×
2.与半径垂直的直线是圆的切线( ×
注意:若直线满足①, 若直线满足②,
)
)
而不满足②;
而不满足①。
O
O
l
例1
直线AB经过⊙O上的点C,并且OA=OB,CA=CB, 求证:直线AB是⊙O的切线.
证明: 连接OC ∵ 在△OAB中, OA=OB,